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60E15; 34A34; 26C10; 65H05.

In the last few decades, the �eld of mathematical inequalities has proved to be

an extensively applicable �eld. It is applicable in the following manner:

� Integral inequalities play an important role in several other branches of math-

ematics and statistics with reference to its applications.

� The elementary inequalities are proved to be helpful in the development of

many other branches of mathematics.

The development of inequalities has been established with the publication of the

books by G. H. Hardy, J. E. Littlewood and G. Polya [47] in 1934, E. F. Beckenbach

and R. Bellman [13] in 1961 and by D. S. Mitrinovíc, J. E. Peµcaríc and A. M. Fink

[64] & [65] in 1991. The publication of later has resulted to bring forward some

new integral inequalities involving functions with bounded derivatives that measure

bounds on the deviation of functional value from its mean value namely, Ostrowski

inequality [69]. The books by D. S. Mitrinovíc, J. E. Peµcaríc and A. M. Fink have

also brought to focus integral inequalities which establish a connection between the

integral of the product of two functions and the product of the integrals of the two

functions namely, inequalities of Grüss [46] and µCeby�ev type (see [64], p. 297).
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These type of inequalities are of supreme importance because they have immediate

applications in Numerical integration, Probability theory, Information theory and

Integral operator theory. The monographs presented by S. S. Dragomir and Th.

M. Rassias [36] in 2002 and by N. S. Barnett, P. Cerone and S. S. Dragomir [8]

in 2004 can well justify this statement. In these monographs, separate aspects of

applications of inequalities of Ostrowski-Grüss and µCeby�ev type were established.

The main aim of this dissertation is to address the domains of establishing

inequalities of Ostrowski-Grüss and µCeby�ev type and their applications in Statis-

tics, Numerical integration and Non-linear analysis. The tools that are used are

Peano kernel approach, the most classical and extensively used approach in devel-

oping such integral inequalities, Lebesgue and Riemann-Stieltjes integrals, Lebesgue

spaces, Korkine�s identity [52], the classical µCeby�ev functional, Pre-Grüss and Pre-

µCeby�ev inequalities proved in [60].

This dissertation presents some generalized Ostrowski type inequalities. These

inequalities are being presented for nearly all types of functions i.e., for higher

di¤erentiable functions, bounded functions, absolutely continuous functions, (l; L)-

Lipschitzian functions, monotonic functions and functions of bounded variations.

The inequalities are then applied to composite quadrature rules, special means,

probability density functions, expectation of a random variable, beta random vari-

able and to construct iterative methods for solving non-linear equations.

The generalizations to the inequalities are obtained by introducing arbitrary

parameters in the Peano kernels involved. The parameters can be so adjusted to

recapture the previous results as well as to obtain some new estimates of such

inequalities.

The Ostrowski type inequalities for twice di¤erentiable functions have been ex-

tensively addressed by N. S. Barnett et al. and Zheng Liu in [9] and [59]. We have

presented some perturbed inequalities of Ostrowski type in Lp (a; b) ; p � 1; p =1

which generalize and re�ne the results of [9] and [59].

In the past few years, Ostrowski type inequalities are developed for functions

in higher spaces i.e., for L-Lipschitzian functions and (l; L)-Lipschitzian functions.

We, in here, have obtained Ostrowski type inequality for n- di¤erentiable (l; L)-

Lipschitzian functions, a generalizations of such inequalities for L-Lipschitzian func-
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tions and (l; L)-Lipschitzian functions.

The �rst inequality of Ostrowski-Grüss type was presented by S. S. Dragomir

and S. Wang in [39]. In this dissertation, some improved and generalized Ostrowski-

Grüss type inequalities are further generalized for the �rst and twice di¤erentiable

functions in L2 (a; b). Some generalizations of Ostrowski-Grüss type inequality in

terms of upper and lower bounds of the �rst and twice di¤erentiable functions are

also given. The inequalities are then applied to probability density functions, special

means, generalized beta random variable and composite quadrature rules.

In the recent past, many researchers have used µCeby�ev type functionals to

obtain some new product inequalities of Ostrowski-, µCeby�ev-, and Grüss type. We,

in here, have also taken into account this domain to present some generalizations

and improvements of such inequalities. The generalizations are obtained for �rst

di¤erentiable absolutely continuous functions with �rst derivatives in Lp (a; b) ; p >

1 and for twice di¤erentiable functions in L1 (a; b). A product inequality is also

given for monotonic non-decreasing functions. The inequalities are then applied to

the expectation of a random variable.

In [3], G. A. Anastassiou has extended µCeby�ev-Grüss type inequalities on RN

over spherical shells and balls. We have extended this inequality for n-dimensional

Euclidean space over spherical shells and balls on Lp [a; b] ; p > 1.

Some weighted Ostrowski type inequalities for a random variable whose proba-

bility density functions belong to fLp (a; b) ; p =1; p > 1g are presented as weighted

extensions of the results of [10] and [33]. Ostrowski type inequalities are also applied

to obtain various tight bounds for the random variables de�ned on a �nite intervals

whose probability density functions belong to fLp (a; b) ; p =1; p > 1g.

This dissertation also describes the applications of specially derived Ostrowski

type inequalities to obtain some two-step and three-step iterative methods for solv-

ing non-linear equations.

Some Ostrowski type inequalities for Newton-Cotes formulae are also presented

in a generalized or optimal manner to obtain one-point, two-point and four-point

Newton-Cotes formulae of open as well as closed type.

The results presented here extend various inequalities of Ostrowski type upto

their year of publication.
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Chapter 1

Introduction

G. H. HARDY, J. E. LITTLEWOOD and G. POLYA in their book titled "IN-

EQUALITIES", in the preface to the �rst edition of 1934, say:

". ., Historical and bibliographical questions are particularly troublesome in

a subject like this, which has applications in every part of mathematics but has

never been developed systematically. It is often really di¢ cult to trace the origin

of a familiar inequality. It is quite likely to occur �rst as an auxiliary proposition,

often without explicit statement, in a memoir on geometry or astronomy; it may

have been rediscovered. Many years later, by half a dozen di¤erent authors; and

no accessible statement of it may be quite complete... . We have done our best

to be accurate and have given all references we can, but we have never under-

taken systematic bibliographical research. We follow the common practice, when

a particular inequality is habitually associated with a particular mathematician�s

name; we speak of the inequalities of Schwartz, Hölder and Jensen, though all these

inequalities can be traced further back; . . . "

In 1938, a Ukrainian mathematician Alexander Markowich Ostrowski (1893-

1986) discovered an inequality through his paper [69]. Since then this inequality is

stated after the name of A. Ostrowski as Ostrowski inequality. Following the subse-

quent idea of general and particular inequalities as given by A. M. Fink in his essay

"On history of inequalities", this is a particular inequality which holds for a class

of functions with bounded derivatives. This inequality is recalled and addressed

several times in many books and research papers in view of its generalizations and

re�nements, yet we would say that a comprehensive overview is still required to

follow the course of its advancements systematically.
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We, in the following section would attempt to bring to light the history and

advancements of Ostrowski Inequality.

1.1 Ostrowski type inequalities- a historical overview

Inequalities have proved to be an exalted and applicable tool for the development

of many branches of Mathematics. It�s importance has increased noticeably during

the past few decades and it is now dealt as an independent branch of Mathemat-

ics. Many research groups are working to create an awareness of the theory of

inequalities and their applicability in sciences, e.g., Research Group of Mathemat-

ical Inequalities and Applications (RGMIA). This �eld is active and experiencing

a tremendous boost with the passage of time in theory as well as in applications.

One element that particularly intensi�es its importance is its applications in var-

ious �elds. Uptill now, a vast number of research papers and books have been

dedicated to inequalities and their numerous applications. The theory being pre-

sented through this literature has not only brought forward some new results but

it would also be helpful in creating new insights in the years to come.

This subject paved its way towards attracting attention since the publication of

the classical books by G. H. Hardy, J. E. Littlewood and G. Polya [47] (1934), E.

F. Beckenbach and R. Bellman [13] (1961), D. S. Mitrinovíc [66] (1970) and by D.

S. Mitrinovíc, J. E. Peµcaríc and A. M. Fink [64] (1991). These monographs covered

comprehensive literature of the classical and new inequalities upto their year of

publication followed by a series of monographs by G. V. Milovanovíc [41] and B. G.

Pachpatte [75] and by D. Bainov and P. Simeonov [7] on Integral inequalities and

their applications.

Integral inequalities that establish bounds on the physical quantities are of

supreme importance in the sense that these types of inequalities are not only useful

in nonlinear analysis, numerical integration, approximation theory, probability the-

ory, stochastic analysis, statistics, information theory, and integral operator theory

but also have applications in the areas of physics, technology and biological sciences.

Among this type, there are many inequalities measuring the deviation of the

average of a function over an interval from a linear combination of the values of

the function and some of its derivatives. A chapter namely, "Integral inequality

2



involving functions with bounded derivatives" on similar type of inequalities was

presented by D. S. Mitrinovíc et al. [65] (1991) in their book which had drawn

the attention of the research world towards a special domain of the theory of in-

equalities �Ostrowski Inequality�which estimates the deviation of the values of a

function from its mean value. The chapter was based on the classical papers by A.

Ostrowski [69], G. V. Milovanovíc and J. E. Pecaríc [62] and A. M. Fink [42]. These

research papers had in the true sense laid down the foundation stone of the further

development of Ostrowski type inequalities which would be de�ned in the sequel.

Ostrowski type inequalities add up to the literature of inequalities in the sense

that they have immediate applications in Numerical Integration and Probability

Theory. In 1998, S. S. Dragomir and S. Wang [40] presented a new proof to the

classical Ostrowski�s inequality and for the �rst time applied it to the estimation

of error bounds for some special means and for some numerical quadrature rules.

It is with the same viewpoint, the two monographs [36, 8] were written in 2002

and 2004 by the members of RGMIA to present some selected results on Ostrowski

type inequalities and their applications. In [36], one may �nd results for univariate

and multivariate real functions and their natural applications in the error analysis

of numerical quadrature for both simple and multiple integrals as well as for the

Riemann-Stieltjes integral and the intention of [8] was to establish applications in

Probability Theory & Statistics by obtaining various tight bounds for the expec-

tation, variance and moments of continuous random variables de�ned over a �nite

interval as an evident application of Ostrowski type inequalities.

In the last few years, the researchers, in an attempt of obtaining sharp bounds

of this inequality in terms of variety of Lebesgue spaces involving, at most, the

�rst derivative have been able to construct some new inequalities, for example,

inequalities of Ostrowski-Grüss type, Ostrowski-µCeby�ev type, etc. The key role in

obtaining these inequalities has been played by Peano kernels, Hölder�s inequality,

Grüss inequality, µCeby�ev functional, Korkine�s identity, pre-Grüss inequality and

pre-µCeby�ev inequality.

Historically, the �rst step was taken by S. S. Dragomir and S. Wang [39] in 1997

to construct an inequality of Ostrowski-Grüss type- a perturbed version of Ostrowski

inequality by the use of Grüss inequality. This domain was then addressed by many

3



authors in the coming years, for example, in 1999 P. Cerone et al. [21] extended this

inequality for twice di¤erentiable mappings, in 2000 M. Matíc et al. [61] generalized

and improved this inequality for n-di¤erentiable mappings which was improved by

N. S. Barnett et al. [12] by the use of µCeby�ev functional and later in 2001 by

X. L. Cheng in his paper [23]. Recently, a number of authors have worked to

obtain tighter estimates of this inequality by the use of Euler type and generalized

Euler type identities. These identities are also used to develop some higher order

Ostrowski type inequalities and some e¢ cient quadrature rules of Gauss-Legendre

type. The Gauss type quadrature rules have also been developed in the research

papers [99, 95, 96] by N. Ujevíc. N. Ujevíc, however, has obtained these quadrature

rules as a consequence of constructing optimal quadrature rules by minimizing their

error bound in the sense of inequalities.

Another inequality of Ostrowski type was constructed by connecting Ostrowski

inequality with an inequality due to P. L. µCeby�ev (see [64], p. 297). This in-

equality is named in literature as Ostrowski-µCeby�ev type inequality. These type

of inequalities have also been developed by applying certain convexity assumptions

on the underlying function.

An obvious extension towards the generalization of Ostrowski type inequalities

was to use weighted integrals, hence giving rise to weighted Ostrowski type inequal-

ities. The weighted version of Ostrowski inequality was �rst presented in 1983 by J.

E. Peµcaríc and B. Savíc in ([84], Teorema 8, p. 190) which was rediscovered in ([35],

Theorem 2.1) in 1999. D. S. Mitrinovíc et al. [65] have reported a weighted multi-

dimensional analogue of the Ostrowski inequality in the �rst partial derivatives of

the mapping. In [36], a chapter namely "Product inequalities and weighted quadra-

ture" had been devoted to report the further advancements of weighted Ostrowski

type inequalities.

An evident step towards the generalization of Ostrowski inequality was to give

its multi-dimensional analogue. As mentioned above in [65], D. S. Mitrinovíc et al.

have reported a weighted multi-dimensional version of the Ostrowski inequality in

the �rst partial derivatives of the mapping involved. However, an optimal upper

bound on the deviation of a multi-dimensional function from its averages i.e., a

multivariate Ostrowski inequality was presented by G. A. Anastassiou [1] in 1997
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as a generalization to classical Ostrowski inequality. In 1998, N. S. Barnett and S.

S. Dragomir [11] gave an Ostrowski type inequality for double integrals while an

n-dimensional analogue of Ostrowski inequality was established by S. S. Dragomir

et al. [32] in 1999 for mappings of Hölder type. Furthermore, B. G. Pachpatte in

2000, in his article [73] presented an Ostrowski type inequality for three independent

variables. Later, in 2001, B. G. Pachpatte had given an Ostrowski type inequality

for two independent variables [74]. This topic was revisited by G. A. Anastassiou

in 2002 in [2]. This domain was also addressed in view of Ostrowski-Grüss type

inequalities by N. Ujevíc in 2003 in [104]. Recently, in [3], G. A. Anastassiou has

presented µCeby�ev-Grüss type inequalities on RN over spherical shells and balls

which are inequalities of multivariate type in spherical coordinate system.

It is impossible to list all the work dealing with the estimates of Ostrowski

type inequalities due to its wide range of generalizations, extensions and varia-

tions. Moreover, such estimates are considered not only on Lebesgue spaces but

also for functions that are of bounded variation, convex, Hölder continuous and

Lipschitzian or absolutely continuous and for di¤erentiable function of higher or-

der. Results related to Ostrowski type Inequalities for twice di¤erentiable mappings

with derivatives in di¤erent Lebesgue spaces Lp[a; b] (1 � p � 1) are discussed in

[9].

The books and research papers mentioned above provide an extensive amount of

literature on Ostrowski type inequalities which may be helpful for new researchers

in exploring noteworthy results of this �eld.

1.2 Some signi�cant results

We would now like to state and summarize some signi�cant results, concepts of this

area and some fundamental inequalities of our interest. We start with the following:

1.2.1 Ostrowski Inequality

In 1938, A. Ostrowski has proved an inequality involving function with bounded

derivative which was named as Ostrowski inequality [69] (see also [65] p. 468). The

result is given as follows:
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Theorem 1.1 Let f : I � R! R be a di¤erentiable function on (a; b) and let, on

(a; b) ;
��f 0 (x)�� �M . Then, for every x 2 [a; b] ;������f (x)� 1

b� a

bZ
a

f (t) dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a)

f 0
1
; (1.1)

The constant 1
4
is sharp in the sense that it cannot be replaced by a smaller one.

The interpretation of Ostrowski inequality can be described in two ways as

follows:

1. Estimation of deviation of functional value from its Average value.

2. The estimate of approximating area under the curve by a rectangle.

G. V. Milovanovíc and J. E. Pecaríc [62] (see inequalities also [65], pp. 468-469)

proved:

Theorem 1.2 Let f (x) be n (> 1) times di¤erentiable function such that
��f (n) (x)�� �

M for x 2 (a; b). Then, for every x 2 [a; b]����� 1n
 
f (x) +

n�1X
k=1

Fk

!
� 1

b� a

Z b

a

f (y) dy

�����
� M

n (n+ 1)!

(x� a)n+1 + (b� x)n+1

b� a ; (1.2)

where Fk is de�ned by

Fk = Fk (f ;n;x; a; b)

=
n� k
k!

f (k�1) (a) (x� a)k � f (k�1) (b) (x� b)k

b� a : (1.3)

A. M. Fink [42] generalized the above result as:

Theorem 1.3 Let f (n�1) (t) be absolutely continuous on [a; b] with f (n) 2 Lp (a; b)

then ����� 1n
 
f (x) +

n�1X
k=1

Fk

!
� 1

b� a

Z b

a

f (y) dy

�����
� K (n; p; x)

f (n)
p
; (1.4)

where

K (n; p; x) =
1

n!

h
(x� a)n+

1
p0 + (b� x)n+

1
p0
i 1
p0

b� a B ((n� 1) p0 + 1; p0 + 1)
1
p0 ; (1.5)
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if 1 < p � 1 and

K (n; 1; x) =
(n� 1)n�1

nnn!

max f(x� a)n ; (b� x)ng
b� a ;

where B (x; y) is the beta function.

For p > 1; these are best possible in the sense that for each x there is an

f for which equality holds. For p = 1; equality holds for no function. The

proof of this theorem follows by applying Hölder�s inequality on the remainder
1

(n�1)!

xR
y

(x� t)n�1 f (n) (t) dt.

1.2.2 Peano Kernel

Let f (x) have a continuous (n+ 1) st derivative in [a; b] and let a linear functional

F (f) of f be approximated by a linear functional E (f) such that E (f) vanishes

when f is any polynomial of degree n or less. Then,

E (f) =

bZ
a

f (n+1) (t)K (t) dt;

where

K (t) =
1

n!
Ex
�
(x� t)n+

�
;

and

(x� t)n+ =

8<: (x� t)n ; x � t

0; x < t:

The notations Ex means the linear functional E is applied to the x variable in

its argument
�
(x� t)n+

�
. The function K (t) is called Peano kernel for the linear

functional E. It is also called an e¢ cient function for E.

1.2.3 µCeby�ev Functional

For two measurable functions f; g : [a; b]! R, de�ne the functional,

T (f; g; a; b) :=
1

b� a

bZ
a

f (x) g (x) dx�

0@ 1

b� a

bZ
a

f (x) dx

1A0@ 1

b� a

bZ
a

g (x) dx

1A ;
(1.6)

which in literature is called the µCeby�ev functional, provided the integrals in (1.6)

exist.
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1.2.4 Grüss inequality

In [46], G. Grüss proved:

Theorem 1.4 Let f and g be two functions de�ned and integrable on [a; b].Further,

let

' � f (x) � �;  � g (x) � �; (1.7)

for each x 2 [a; b] ; where '; �; ;� are given real constants. Then,

jT (f; g)j � 1

4
(�� ') (�� ) ; (1.8)

where the constant 1
4
is the best possible.

1.2.5 Pre-Grüss inequality

The following Pre-Grüss inequality was established by M. Matíc et al. in [60].

Theorem 1.5 Let g; h : [a; b]! R be two integrable functions. If

� � g (t) � A; (1.9)

for all t 2 [a; b] for some constants � and A; then

jT (g; h)j � 1

2
(A� �)

p
T (h; h): (1.10)

The proof follows by combining Grüss inequality with

T 2 (g; h) � T (g; g)T (h; h) ; (1.11)

which is valid (see [83], p. 209). In [36], the term premature Grüss inequality was

used for pre-Grüss inequality that the result was obtained by not fully completing

the proof of the Grüss inequality. It has been further mentioned that the premature

Grüss inequality is completed if one of the functions, g or h, is explicitly known.

1.2.6 µCeby�ev Inequality

In ([64], p. 297), it has been stated that the �rst conversion of the µCeby�ev inequality

is due to P. L. µCeby�ev. In 1882, he proved that:
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Theorem 1.6 Let f and g be absolutely continuous functions on [a; b] and if f 0

and g
0
are the functions bounded on [a; b]. Then

jT (f; g)j � 1

12
(b� a)2

f 0
1

g0
1
; (1.12)

is valid with equality if and only if f
0
and g

0
are constants.

1.2.7 Pre-µCeby�ev Inequality

The following Pre-µCeby�ev inequality was proved by M. Matíc et al. in [60].

Theorem 1.7 Let g be absolutely continuous functions on [a; b] and g and h are

integrable on [a; b] ; then

jT (g; h)j � 1p
12
(b� a) sup

t2[a;b]

���g0 (t)���pT (h; h): (1.13)

The proof follows by combining µCeby�ev inequality with

T 2 (g; h) � T (g; g)T (h; h) ; (1.14)

which is valid (see [83], p. 209). In ([8], Remark 60) it has been stated that the

Pre-µCeby�ev inequality provides better estimates than would be obtained using the

classical µCeby�ev inequality.

1.2.8 µCeby�ev-Grüss type Inequality

In 1970, A. Ostrowski [70] proved the following combination of µCeby�ev and Grüss

inequalities:

Theorem 1.8 Let f : [a; b]! R be integrable on [a; b] with �1 � m � f � M �

1 and let g be absolutely continuous function on [a; b] and g
0 2 L1 (a; b). Then

jT (f; g)j � 1

8
(b� a) (M �m)

g0
1
: (1.15)

1.2.9 Ostrowski-Grüss type inequality

In 1997, S. S. Dragomir and S. Wang [39], by the use of the Grüss inequality proved

the following Ostrowski- Grüss type integral inequality.
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Theorem 1.9 Let f : I ! R; where I � R is an interval, be a mapping di¤er-

entiable in the interior I0 of I; and let a; b 2 I0 with a < b. If  � f
0
(x) � �;

x 2 [a; b] for some constants ;� 2 R; then������f (x)� 1

b� a

bZ
a

f (t) dt� f (b)� f (a)
b� a

�
x� a+ b

2

�������
� 1

4
(b� a) (�� ) ; (1.16)

for all x 2 [a; b].

1.2.10 Mid-point Inequality

The classical midpoint inequality states that������(b� a) f(a+ b2 )�
bZ
a

f (t) dt

������ � 1

24
(b� a)3

f 00
1
; (1.17)

where the mapping f : [a; b]! R is assumed to be twice continuously di¤erentiable

on the interval (a; b) and the second derivative be bounded on (a; b) ; that is,f 00
1
= sup

t2(a;b)

���f 00 (t)��� <1:
1.2.11 Trapezoid Inequality

The classical trapezoid inequality states that������(b� a)2
[f(a) + f (b)]�

bZ
a

f (t) dt

������ � 1

12
(b� a)3

f 00
1
; (1.18)

where the mapping f : [a; b]! R is assumed to be twice continuously di¤erentiable

on the interval (a; b) and the second derivative be bounded on (a; b) ; that is,f 00
1
= sup

t2(a;b)

���f 00 (t)��� <1:
1.2.12 Simpson�s Inequality

The following inequality is known in literature as Simpson�s inequality:������b� a6
�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
�

bZ
a

f (t) dt

������
� 1

2880

f (4)1 (b� a)5 ; (1.19)
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where the mapping f : [a; b] ! R is assumed to be four times continuously di¤er-

entiable on the interval (a; b) and the fourth derivative be bounded on (a; b) ; that

is, f (4)1 = sup
t2(a;b)

��f (4) (t)�� <1:
1.2.13 Korkine�s Identity

The Korkine�s identity (see [52]) & ([64], p. 296) is de�ned as

1

b� a

bZ
a

f (t) g (t) dt� 1

b� a

bZ
a

f (t) dt
1

b� a

bZ
a

g (t) dt

=
1

2 (b� a)2

bZ
a

bZ
a

(f (t)� f (s)) (g (t)� g (s)) dtds; (1.20)

provided that f; g : [a; b]! R are measurable and all the involved integrals exist.

1.2.14 Diaz-Metcalf inequality

The Diaz-Metcalf inequality presented by J. B. Diaz and F. T. Metcalf in [27] or

(see [65], p. 83) is stated as:

Theorem 1.10 If f is continuously di¤erentiable on (a; b) and suppose f (t1) =

f (t2) for a � t1 � t2 � b; thenZ b

a

[f (t)� f (t1)]2 dt

� 4

�2
max

(
(t1 � a)2 ; (b� t2)2 ;

�
t2 � t1
2

�2)Z b

a

�
f
0
(x)
�2
dx: (1.21)

1.2.15 Special Means

Let us recall the following means:

(a) The Arithmetic Mean

A = A(a; b) =
a+ b

2
; a; b � 0:

(b) The Geometric Mean

G = G(a; b) =
p
ab ; a; b � 0:
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(c) The Harmonic Mean

H = H(a; b) =
2

1
a
+ 1

b

; a; b > 0.

(d) The Logarithmic Mean

L = L(a; b) =

8<: a; if a = b
b�a

ln b�ln a ; if a 6= b
; a; b > 0:

(e) The Identric Mean

I = I(a; b) =

8<: a; if a = b

1
e

�
bb

aa

� 1
b�a
; if a 6= b:

; a; b > 0:

(f) The p-logarithmic Mean

Lp = Lp(a; b) =

8<: a; if a = bh
bp+1�ap+1
(p+1)(b�a)

i 1
p
; if a 6= b;

where p 2 Rn f�1; 0g ; a; b > 0.

The following inequality holds in literature:

H � G � L � I � A:

It is also known that Lp is monotonically increasing over p 2 R and L0 = I and

L�1 = L.
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1.3 Objective of the Thesis

The problem of generalization/extension of integral inequalities that present bounds

on the physical quantities i.e., inequalities of Ostrowski-Grüss and µCeby�ev type is

aimed to be overseen in this thesis in the following manner:

1. By estimating some more bounds on the deviations through other norms while

the classical approach refers to the supremum norm i.e., for functions with

bounded derivatives.

2. By estimating bounds on the deviations in terms of higher di¤erentiable func-

tions while the classical inequalities were assumed to involve �rst di¤erentiable

functions only.

3. Consideration of random variables, therefore, generating obvious applications

of these inequalities in probability theory.

4. Consideration of special means with reference to its applications in �nding

direct relations of these means.

5. By switching to multiplicative framework, hence, developing some new mul-

tivariate and product inequalities of Ostrowski, Grüss and µCeby�ev type.

6. By directing towards other classes of functions; for functions that are of:

bounded variation, monotonic and lipschitzian or absolutely continuous, hence,

paving way to move in larger domains, for example, from absolutely continu-

ous functions to function of bounded variation and from Lipschitzian functions

to (l; L)-Lipschitzian functions.

7. By de�ning such integral inequalities in Euclidean domain i.e., moving from

intervals to rectangles, shells, balls and spheres.

8. The deduction of the optimal error bound for such inequalities under the

assumptions under consideration.

9. Extending the variations of Ostrowski-Grüss and µCeby�ev inequalities; hence,

working on to obtain some more inequalities of Ostrowski-Grüss, Ostrowski-

µCeby�ev and µCeby�ev-Grüss type.
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10. Presenting new applications of these inequalities in non-linear analysis, i.e.,

construction of quadrature based iterative methods for solving non-linear

equations in single variable.

This dissertation is oriented towards generalizing some results on Ostrowski type

inequalities keeping in view the above mentioned goals. The directions in which the

generalized versions of Ostrowski type inequalities are intended to be used are its

applications in numerical integration and special means, applications to cumulative

distribution functions, expectations for random variables and some new applications

in solving non-linear equations will also be given.

1.4 Thesis Overview

The dissertation presents some generalization of the Ostrowski type inequality and

its applications. To obtain these generalizations, the approach being taken into

account is to modify the Peano kernel involved by introducing arbitrary parameters

or by introducing weight functions.

The dissertation comprises nine chapters.

Chapter 2 covers the generalization of Ostrowski type inequalities for twice

di¤erentiable functions in the domain of usual Lebesgue spaces Lp (a; b) ; p =1; 1;

p > 1. It also incorporates generalized Ostrowski type inequalities for n-times di¤er-

entiable and (l; L)- Lipschitzian mappings. Applications of the obtained inequalities

in numerical integration and special means are also presented.

In Section 2.1, a general form of integral inequality of Ostrowski type for twice

di¤erentiable function whose �rst derivative is absolutely continuous and second

derivative is bounded is presented. In Section 2.2, some perturbed generalizations of

inequalities of Ostrowski type involving functions whose �rst derivative is absolutely

continuous and second derivative belongs to Lp (a; b) ; p = 1;1; p > 1 are presented.

Section 2.3 contains a generalized Ostrowski type inequality for (l; L) Lipschitzian

mappings. Applications to composite quadrature rules are also given.

Chapter 3 includes some extensions of Ostrowski-Grüss type inequalities for

�rst and twice di¤erentiable functions and their applications to quadrature rules,

special means, probability density functions and beta random variable.
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In Section 3.1, an Ostrowski-Grüss type inequality involving functions whose

�rst derivative belongs to L2 (a; b) is obtained. In Section 3.2, a generalized Ostrowski-

Grüss type inequality for twice di¤erentiable function in terms of lower and upper

bound of the second derivative is established. Later, in Section 3.3, a similar in-

equality is obtained with second derivative in L2 (a; b). In Section 3.4, the estimates

of �rst inequality of Ostrowski-Grüss type are presented in terms of the upper and

lower bounds of the �rst derivative and later in terms of the Euclidean norm of

second derivative by using Diaz-Metcalf inequality.

Chapter 4 presents some generalized product inequalities of Ostrowski-µCeby�ev

type and their applications for the expectation of a random variable. It also includes

µCeby�ev-Grüss type inequality for spherical shells and balls calculated by using

spherical coordinate system in the sense of multivariate inequalities.

In Section 4.1, a product inequality of µCeby�ev type is obtained for functions

which are absolutely continuous with �rst derivatives in Lp (a; b) ; p > 1. In Sec-

tion 4.2, some product inequalities of µCeby�ev type have been developed for twice

di¤erentiable functions whose �rst derivatives are absolutely continuous and sec-

ond derivatives belong to L1 (a; b). In Section 4.3, an integral inequality involving

the product of two functions and its applications to probability density functions

is presented. Section 4.4 presents extension of µCeby�ev-Grüss type inequalities for

Lp [a; b] ; p > 1 on n-dimensional Euclidean space over spherical shells and balls,

thus, obtaining multivariate inequalities of µCeby�ev-Grüss type are obtained by

working in Rn.

Chapter 5 incorporates some Ostrowski type inequalities for Newton-Cotes

formulae in an optimal or generalized manner. The error inequalities thus ob-

tained generate one-point, two-point and four-point Newton-Cotes formulae as spe-

cial cases.

In Section 5.1, a family of four-point quadrature rule of closed type is developed

which recaptures Gauss two-point, Simpson�s 3
8
and Lobatto four-point quadrature

rule with error bounds in terms of twice di¤erentiable functions. The optimal

case is also addressed. In Section 5.2, a two-point quadrature rule is developed for

functions of bounded variations and for L-Lipschitzian functions which can generate

Newton-Cotes formulae of open as well as closed type as special cases.
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Chapter 6 comprises some weighted Ostrowski type inequalities for a random

variable whose probability density functions belongs to the usual Lebesgue spaces

Lp [a; b] ; p = 1; 1; p > 1 which generalize some previous results by including

weighted integrals.

In Section 6.1, some weighted Ostrowski type inequalities for probability den-

sity functions, expectation of a random variable and for beta random variable are

obtained. The estimates are presented in terms of the k:k1-norm of the proba-

bility density function. In Section 6.2, some weighted Ostrowski type inequalities

are developed for a random variable whose probability density function belong to

Lp [a; b] ; p > 1.

Chapter 7 describes applications of Ostrowski type inequalities to probability

density function, expectation of a random variable and generalized beta random

variable. The inequalities obtained in this chapter are improvements of some pre-

vious inequalities of this domain.

Chapter 8 contains some new applications of Ostrowski type inequalities in

constructing iterative algorithms for solving non-linear equations. Some generalized

and computationally e¢ cient iterative algorithms are presented in this chapter.

Chapter 9 takes into account a critical analysis of the generalizations and

improvements obtained in this dissertation and some future extensions.

16



Chapter 2

Generalization of Ostrowski type inequal-

ities for di¤erentiable mappings

We, in this chapter, present some Ostrowski type inequalities for twice di¤erentiable

functions.

2.1 A generalized integral inequality for twice di¤erentiable

mappings

In this section, a general form of integral inequality of Ostrowski type for twice

di¤erentiable mappings whose second derivatives are bounded and �rst derivatives

are absolutely continuous is established. The generalized integral inequality points

some better bounds than some already presented bounds. The inequality is then

applied to numerical integration and special means.

2.1.1 Introduction

In recent years, a number of authors have worked on the generalizations of Os-

trowski�s inequality. For example, this topic is considered in [34, 59, 61, 100].

In [22], P. Cerone, S. S. Dragomir and J. Roumeliotis, established an integral

inequality of Ostrowski type for mappings with bounded second derivatives. A

similar inequality has been established by S. S. Dragomir and N. S. Barnett in [31].

In [38], S. S. Dragomir and A. Sofo, pointed out an integral inequality of Ostrowski

type similar in a sense to that of [22] or [31]. However, this inequality contains a

minor mistake. The corrected version [63] of the inequality is given in the form of
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the following theorem:

Theorem CDR. Let g : [a; b] �! R be a mapping whose �rst derivative is

absolutely continuous on [a; b] and assume that the second derivative g
00
2 L1 (a; b).

Then, we have the inequality

������
bZ
a

g(t)dt� 1
2

�
(b� a)

�
g(x) +

g(a) + g(b)

2

�
� (b� a)

�
x� a+ b

2

�
g
0
(x)

�������
�

g00
1

 
1

3

����x� a+ b2
����3 + (b� a)348

!
; (2.1)

for all x 2 [a; b].

The main aim of this section is to point out a generalization of (2.1). It turns

out that this generalization can give better results than the estimations based on

(2.1).

2.1.2 Main Results

We establish here a general form of integral inequality (2.1) and apply it to numerical

integration and special means. The inequality is given in the form of the following

theorem:

Theorem 2.1 Let g : [a; b] �! R be a mapping whose �rst derivative is absolutely

continuous on [a; b] and assume that the second derivative g
00
2 L1 (a; b). Then, we

have the inequality������ 1

(b� a)

bZ
a

g(t)dt� 1
2

�
(1� h) g(x) + (1 + h)

�
g (a) + g (b)

2

�

� (1� h) (x� a+ b
2
)g

0
(x)� hb� a

4

�
g
0
(b)� g

0
(a)
������

�
g00

1

1

(b� a)

"
1

3

����x� a+ b2
����3 + (b� a)348

	 (h)

#
(2.2)
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or equivalently,������
bZ
a

g(t)dt� (b� a)
2

�
(1� h) g (x) + (1 + h)

�
g (a) + g (b)

2

�

� (1� h)
�
x� a+ b

2

�
g
0
(x)� hb� a

4

�
g
0
(b)� g

0
(a)
������

�
g00

1

"
1

3

����x� a+ b2
����3 + (b� a)348

	 (h)

#
; (2.3)

for all x 2 [a+ h b�a
2
; b� h b�a

2
];

where 	(h) = (1� h)
�
2 (1� h)2 � 1

�
+ 2h; h 2 [0; 1] :

Proof. Let us start with the following integral identity,

f(x) =
1

(1� h)

24 1

(b� a)

bZ
a

f(t)dt� h
2
(f (a) + f (b))

35
+

1

(b� a) (1� h)

bZ
a

p(x; t)f
0
(t)dt:

This implies

(1� h) f(x) =
1

(b� a)

bZ
a

f(t)dt� h
2
(f (a) + f (b))

+
1

b� a

bZ
a

p(x; t)f
0
(t)dt; (2.4)

for all x 2 [a+ h b�a
2
; b� h b�a

2
]; h 2 [0; 1] provided f is absolutely continuos on [a; b]

and the kernel p : [a; b]2 �! R de�ned in [34] is given by:

p(x; t) =

8<: t�
�
a+ h b�a

2

�
; if t 2 [a; x]

t�
�
b� h b�a

2

�
; if t 2 (x; b]:

A simple proof using the integration by parts can be found in [34]. We choose in

(2.4),

f(x) =

�
x� a+ b

2

�
g
0
(x);
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to get

(1� h)
�
x� a+ b

2

�
g
0
(x)

=
1

(b� a)

bZ
a

�
t� a+ b

2

�
g
0
(t)dt� h

4
(b� a)

�
g
0
(b)� g

0
(a)
�

+
1

b� a

bZ
a

p(x; t)

�
g
0
(t) +

�
t� a+ b

2

�
g
00
(t)

�
dt: (2.5)

Integrating by parts, we have

bZ
a

�
t� a+ b

2

�
g
0
(t)dt = (b� a)

�
g (a) + g(b)

2

�
�

bZ
a

g(t)dt: (2.6)

Also,

bZ
a

p(x; t)g
0
(t)dt = (1� h) (b� a) g(x) + hb� a

2
(g (a) + g (b))�

bZ
a

g(t)dt: (2.7)

Using (2.6) and (2.7) in (2.5), we get:

(1� h)
�
x� a+ b

2

�
g
0
(x)

=
(1 + h)

2
(g (a) + g (b))� hb� a

4

�
g
0
(b)� g

0
(a)
�

+(1� h) g (x)� 2

b� a

bZ
a

g(t)dt;

+
1

b� a

bZ
a

p(x; t)

�
t� a+ b

2

�
g
00
(t)dt:

or

1

b� a

bZ
a

g(t)dt =
(1 + h)

4
(g (a) + g (b))� hb� a

8

�
g
0
(b)� g

0
(a)
�

+
(1� h)
2

g (x)� (1� h)
2

�
x� a+ b

2

�
g
0
(x):

+
1

2 (b� a)

bZ
a

p(x; t)

�
t� a+ b

2

�
g
00
(t)dt;
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for all x 2 [a+ h b�a
2
; b� h b�a

2
]. This implies������ 1

b� a

bZ
a

g(t)dt

�1
2

�
(1� h) g (x) + (1 + h)

�
g (a) + g (b)

2

�
� (1� h)

�
x� a+ b

2

�
g
0
(x)� hb� a

4

�
g
0
(b)� g

0
(a)
������

=

������ 1

2 (b� a)

bZ
a

p(x; t)

�
t� a+ b

2

�
g
00
(t)dt

������ ;
� 1

2 (b� a)

bZ
a

jp(x; t)j
����t� a+ b2

���� ���g00 (t)��� dt: (2.8)

Obviously, we have

bZ
a

jp(x; t)j
����t� a+ b2

���� ���g00 (t)��� dt
�

g00
1

bZ
a

jp(x; t)j
����t� a+ b2

���� dt; (2.9)

where g00
1
= sup

t2(a;b)

���g00 (t)��� <1:
Also,

I =

bZ
a

jp(x; t)j
����t� a+ b2

���� dt
or

I =

xZ
a

����t� �a+ hb� a2
����� ����t� a+ b2

���� dt+
bZ
x

����t� �b� hb� a2
����� ����t� a+ b2

���� dt:
(2.10)

We have two cases:

a) For x 2
�
a+ h b�a

2
; a+b
2

�
; we obtain:

I =

a+h b�a
2Z

a

�
a+ h

b� a
2

� t
��

a+ b

2
� t
�
dt

+

xZ
a+h b�a

2

�
t�
�
a+ h

b� a
2

���
a+ b

2
� t
�
dt

21



+

a+b
2Z
x

(b� hb� a
2

� t)
�
a+ b

2
� t
�
dt

+

b�h b�a
2Z

a+b
2

(b� hb� a
2

� t)
�
t� a+ b

2

�
dt

+

bZ
b�h b�a

2

�
t�
�
b� hb� a

2

���
t� a+ b

2

�
dt:

After some simple calculations, we obtain

I =
2

3

�
a+ b

2
� x
�3
+
(b� a)3

24

�
3h+ 2 (1� h)3 � 1

�
; (2.11)

for all x 2
�
a+ h b�a

2
; a+b
2

�
.

b) For x 2
�
a+b
2
; b� h b�a

2

�
; we take

I =

a+h b�a
2Z

a

�
a+ h

b� a
2

� t
��

a+ b

2
� t
�
dt

+

a+b
2Z

a+h b�a
2

�
t�
�
a+ h

b� a
2

���
a+ b

2
� t
�
dt

+

xZ
a+b
2

�
t�
�
a+ h

b� a
2

���
t� a+ b

2

�
dt

+

b�h b�a
2Z

x

(b� hb� a
2

� t)
�
t� a+ b

2

�
dt

+

bZ
b�h b�a

2

�
t�
�
b� hb� a

2

���
t� a+ b

2

�
dt:

I =
2

3

�
x� a+ b

2

�3
+
(b� a)3

24

�
3h+ 2 (1� h)3 � 1

�
; (2.12)

for all x 2
�
a+b
2
; b� h b�a

2

�
.
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Using (2.9), (2.10) (2.11) and (2.12) in (2.8), we obtain������ 1

b� a

bZ
a

g(t)dt� 1
2

�
(1� h) g (x) + (1 + h)

�
g (a) + g (b)

2

�

� (1� h)
�
x� a+ b

2

�
g
0
(x)� hb� a

4

�
g
0
(b)� g

0
(a)
������

�

g00
1

2 (b� a)

"
2

3

����x� a+ b2
����3 + (b� a)324

�
3h+ 2 (1� h)3 � 1

�#
;

=

g00
1

(b� a)

"
1

3

����x� a+ b2
����3 + (b� a)348

	 (h)

#
;

for all x 2 [a+ h b�a
2
; b� h b�a

2
];

where 	(h) = 3h+ 2 (1� h)3 � 1;

= (1� h)
�
2 (1� h)2 � 1

�
+ 2h; h 2 [0; 1] :

Remark 2.1 Choosing h = 0 in (2.3) gives us the inequality (2.1).

Remark 2.2 In (2.1), if we investigate the estimates for the end points x = a;

x = b and the midpoint x = a+b
2
; we �nd that the midpoint gives us the best estimate,

so that from inequality (2.3), we have:������
bZ
a

g(t)dt� (b� a)
2

[(1� h) g
�
a+ b

2

�

+(1 + h)

�
g (a) + g (b)

2

�
� hb� a

4

�
g
0
(b)� g

0
(a)
������

�
g00

1

(b� a)3

48
	 (h) : (2.13)

Remark 2.3 If we investigate 	(h) for di¤erent values of h 2 [0; 1] ; we �nd that

	(h) < 1; for 0 < h <
6

10
(2.14)

and it is minimum for h = 3
10
.Thus, for the speci�ed range of h as mentioned in

(2.14), our result gives us better estimate than as given in [22] i.e.,

	(h)

48
<
1

48
; for 0 < h <

6

10
:
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The special cases of (2.13) are given in the form of following remark.

Remark 2.4 (i) Choosing h = 3
10
in the inequality (2.13) gives us the best esti-

mate:������
bZ
a

g(t)dt� (b� a)
20

�
7g(
a+ b

2
) +

13

2
(g(a) + g(b))� 3

4
(b� a)

�
g
0
(b)� g

0
(a)
��������

� 293

24000
(b� a)3

g00
1
; (2.15)

which has a better estimate than the three-point quadrature inequalities pre-

sented in [9] and [59] for k:k1 norm

(ii) If we choose h = 1 in the inequality (2.13), we get a perturbed trapezoid

inequality as follows:������
bZ
a

g(t)dt� (b� a)
�
g (a) + g (b)

2

�
� b� a

8

�
g
0
(b)� g

0
(a)
�������

�
g00

1

(b� a)3

24
; (2.16)

which has a better estimate than the perturbed trapezoid inequalities presented

in [9] and [59] for k:k1 norm.

2.1.3 Applications in Numerical Integration

We may use the inequality (2.2), to get the estimates of composite quadrature rules

with smaller error than that which may be obtained by the classical results.

Theorem 2.2 Let In : a = x0 < x1 < � � � < xn�1 < xn = b be a partition of the

interval [a; b], hi = xi+1� xi; � 2 [0; 1]; xi+ � hi2 � �i � xi+1� �
hi
2
; i = 0; � � � ; n� 1;

then
bZ
a

g (t) dt = S(g; g
0
; In; �; �) +R(g; g

0
; In; �; �);

where

S(g; g
0
; In; �; �) =

1

2

n�1X
i=0

�
(1� �) g (�i) + (1 + �)

�
g (xi) + g (xi+1)

2

�

� (1� �)
�
�i �

xi + xi+1
2

�
g
0
(�i)�

�

4
hi

�
g
0
(xi+1)� g

0
(xi)

��
hi (2.17)

24



and ���R(g; g0 ; In; �; �)���
�

g00
1

"
n�1X
i=0

 
1

3

�����i � xi + xi+12

����3 + h3i48	 (�)
!#

;

=
g00

1

"
1

3

n�1X
i=0

�����i � xi + xi+12

����3 + 	(�)48

n�1X
i=0

h3i

#
; (2.18)

where 	(�) = (1� �)
�
2 (1� �)2 � 1

�
+ 2�; � 2 [0; 1] :

Proof. Applying inequality (2.12) on �i 2
�
xi + �

hi
2
; xi+1 � � hi2

�
and summing

over i from 0 to n� 1 and using triangular inequality, we get (2.18).

Remark 2.5 Choosing � = 0 gives us as a special case [38], the corrected version

of estimates of composite quadrature rules.

Corollary 2.1 For �i =
xi+xi+1

2
; (i = 0; � � �n� 1) ; then we have the following

quadrature rule:

S(g; g
0
; In; �)

=
1

2

n�1X
i=0

[(1� �) g
�
xi + xi+1

2

�
+ (1 + �)

�
g (xi) + g (xi+1)

2

�
��
4
hi

�
g
0
(xi+1)� g

0
(xi)

�
]hi (2.19)

and ���R(g; g0 ; In; �)��� � 	(�)

48

g00
1

n�1X
i=0

h3i ; � 2 [0; 1] : (2.20)

Remark 2.6 (i) If we choose � = 0 in (2.19) and (2.20); (i = 0; � � �n� 1) ; then

�
S(g; In) =

1

2

n�1X
i=0

�
g

�
xi + xi+1

2

�
+
g (xi) + g(xi+1

2

�
hi (2.21)

and

�
R(g; In) �

g00
1

48

n�1X
i=0

h3i : (2.22)

It may be noted that
�
S(g; In) is an arithmetic mean of the midpoint and trape-

zoidal quadrature rules.
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(ii) If we choose � = 3
10
in (2.19) and (2.20); (i = 0; � � �n� 1) ; then

S(g; g
0
; In) =

1

20

n�1X
i=0

�
7g

�
xi + xi+1

2

�
+
13

2
g (xi) + g(xi+1)

�
hi

� 3
80

n�1X
i=0

h
g
0
(xi+1)� g

0
(xi)

i
hi (2.23)

and

R(g; In) �
293

24000

g00
1

n�1X
i=0

h3i ; (2.24)

which is a perturbed composite three point quadrature inequality of Simpson�s

type.

(iii) If we choose � = 1 in (2.19) and (2.20); (i = 0; � � �n� 1) ; then

S(g; g
0
; In) =

1

2

n�1X
i=0

(g (xi) + g(xi+1))hi

�1
8

n�1X
i=0

h
g
0
(xi+1)� g

0
(xi)

i
hi (2.25)

and

R(g; In) �
1

24

g00
1

n�1X
i=0

h3i ; (2.26)

which is a perturbed composite trapezoid inequality.

2.1.4 Applications for some Special Means

The inequality (2.2) may be written as

����(1� h)2
g(x) +

(1 + h)

2

�
g(a) + g(b)

2

�

�(1� h)
2

(x� A (a; b)) g
0
(x)� hb� a

8

�
g
0
(b)� g

0
(a)
�
� 1

b� a

bZ
a

g(t)dt

������
�

g00
1

(b� a)

"
1

3
jx� A (a; b)j3 + (b� a)

3

48
	 (h)

#
; (2.27)

where 	(h) = (1� h)
�
2 (1� h)2 � 1

�
+ 2h; h 2 [0; 1] :

26



Choosing h = 0 gives us as a special case, the corrected version of the inequality

in [38] as follows:������12
�
g(x) +

�
g(a) + g(b)

2

�
� (x� A (a; b)) g

0
(x)

�
� 1

b� a

bZ
a

g(t)dt

������
�

g00
1

"
1

3 (b� a) jx� A (a; b)j
3 +

(b� a)2

48

#
: (2.28)

We may now apply (2.27), to deduce some inequalities for special means using some

particular mappings. The results of the special means are therefore as follows:

Example 1 Consider g(t) = ln t; g : (0;1)! R; then

1

b� a

bZ
a

g(t)dt = ln I(a; b);

g(a) + g(b)

2
= lnG(a; b);

g
0
(b)� g

0
(a) = � b� a

G2(a; b)

and g00
1
= sup

t2(a;b)

g00 (t) = 1

a2
:

From (2.27), we have:����(1� h) ln x+ (1 + h) lnG(a; b)� (1� h)�1� A(a; b)x

�
+h
(b� a)2

4

1

G2(a; b)
� 2 ln I(a; b)

�����
� 2

a2

 
1

3 (b� a) jx� A (a; b)j
3 +

(b� a)2

48
	 (h)

!
:

from which we obtain the estimate at the centre x = a+b
2
= A (a; b) ; so that�����(1� h) lnA(a; b) + (1 + h) lnG(a; b) + h(b� a)24

1

G2
� 2 ln I(a; b)

�����
� (b� a)2

24a2
	(h)

or �����ln
�
A(1�h)G(1+h)

I2

�
+ h

(b� a)2

4

1

G2(a; b)

����� � (b� a)2

24a2
	(h) ;
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from which we obtain the best estimate if we choose h = 3
10
;that is�����ln

 
A

7
10G

13
10

I2

!
+
3 (b� a)2

40

1

G2(a; b)

����� � 293

12000a2
(b� a)2 :

For h = 0; we have

jlnA(a; b) + lnG(a; b)� 2 ln I(a; b)j

� (b� a)2

24a2
:

Example 2 Consider g(x) = 1
t
; g : (0;1)! (0;1) ; then

1

b� a

bZ
a

g(t)dt = L�1(a; b)

g(a) + g(b)

2
=

A(a; b)

G2(a; b)
;

g
0
(b)� g

0
(a) =

2 (b� a)
H (a; b)G2 (a; b)

and g00
1
= sup

t2(a;b)

g00 (t) = 2

a3
:

From (2.27), we have

j(1 + h) A(a; b)
2G2(a; b)

+
(1� h)
2x

�
2� A(a; b)

x

�
�h(b� a)

2

4

1

H (a; b)G2 (a; b)
� L�1(a; b)j

� 2

a3

 
1

3 (b� a) jx� A (a; b)j
3 +

(b� a)2

48
	 (h)

!

and the estimate at the centre point x = a+b
2
= A(a; b); so that�����(1 + h) A(a; b)2G2(a; b)

+
(1� h)
2A(a; b)

� h(b� a)
2

4

1

H (a; b)G2 (a; b)
� L�1(a; b)

�����
� (b� a)2

24a3
	(h) ;

which becomes best by choosing h = 3
10
in the above inequality;�����13 A(a; b)20G2(a; b)

+
7

20A(a; b)
� 3 (b� a)

2

40

1

H (a; b)G2 (a; b)
� L�1(a; b)

�����
� 293

12000a3
(b� a)2 :
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Also for h = 0; we have���� A(a; b)2G2(a; b)
+

1

2A(a; b)
� L�1(a; b)

���� � (b� a)2

24a3
:

Example 3 Consider g(t) = tp; g : (0;1) �! (0;1); where p 2 Rnf�1; 0g then

for a < b

1

b� a

bZ
a

g(t)dt = Lpp(a; b);

g(a) + g(b)

2
= A(ap; bp);

g
0
(b)� g

0
(a) = p (p� 1) (b� a)Lp�2p�2(a; b)

and g00
1
= jp(p� 1)j

8<: bp�2 if p 2 [2;1)

ap�2 if p 2 (�1; 2]nf�1; 0g:
From (2.27), we obtain����(1� h)2

xp�1 [(1� p)x+ pA(a; b)] + (1 + h)
2

A(ap; bp)

�h(b� a)
2

8
p (p� 1)Lp�2p�2(a; b)� Lpp(a; b)

�����
� jp(p� 1)j �p(a; b)

 
1

3 (b� a) jx� A (a; b)j
3 +

(b� a)2

48
	 (h)

!
;

where

�p(a; b) =

8<: bp�2 if p 2 [2;1)

ap�2 if p 2 (�1; 2]nf�1; 0g:

At x = a+b
2
= A (a; b), we get����(1� h) Ap(a; b)2

+
(1 + h)

2
A(ap; bp)

�h(b� a)
2

8
p (p� 1)Lp�2p�2(a; b)� Lpp(a; b)

�����
� jp(p� 1)j �p(a; b)

(b� a)2

48
	 (h)

or

j(1� h)Ap(a; b) + (1 + h)A(ap; bp)

�h(b� a)
2

4
p (p� 1)Lp�2p�2(a; b)� 2Lpp(a; b)

�����
� jp(p� 1)j �p(a; b)

(b� a)2

24
	 (h) :
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which gives us the best estimate at h = 3
10
;���� 710Ap(a; b) + 1310A(ap; bp)

�3(b� a)
2

10
p (p� 1)Lp�2p�2(a; b)� 2Lpp(a; b)

�����
� jp(p� 1)j �p(a; b)

293 (b� a)2

12000
:

Moreover, at h = 0

��Ap(a; b) + A(ap; bp)� 2Lpp(a; b)��
� jp(p� 1)j �p(a; b)

(b� a)2

24
:

2.2 Some new perturbed Ostrowski type inequalities

In this section, some new perturbed Ostrowski type inequalities are presented by

working with twice di¤erentiable functions whose �rst derivatives are absolutely

continuous and the second derivatives belong to fLi (a; b) : i =1; 1; pg ; p > 1; the

usual Lebesgue spaces which re�ne and generalize some previous inequalities of this

domain.

2.2.1 Introduction

Recently, in [59], Zheng Liu established some more Ostrowski type inequalities for

twice di¤erentiable mappings.

In this section, we present some new perturbed Ostrowski type inequalities for

twice di¤erentiable mappings which generalize and re�ne the inequalities presented

in [19, 20, 22, 38] and ([9], Theorem 20). The inequalities presented in [38] and ([9],

Theorem 20), however, contained minor mistakes. The corrected versions [63, 86]

of the inequalities are given in the form of the following theorems:

Theorem 2.3 Let g : [a; b] �! R be a mapping whose �rst derivative is absolutely

continuous on [a; b] and assume that the second derivative g
00
2 L1 (a; b). Then, we

30



have the inequality������
bZ
a

g (t) dt� 1
2
(b� a)

�
g (x) +

g (a) + g (b)

2
�
�
x� a+ b

2

�
g
0
(x)

�������
�

 
(b� a)3

48
+
1

3

����x� a+ b2
����3
!g00

1
; (2.29)

for all x 2 [a; b].

Theorem 2.4 Let g : [a; b] �! R be a mapping whose �rst derivative is absolutely

continuous on [a; b]. If we assume that the second derivative g
00
2 Lp (a; b) ; 1 < p <

1; then we have the inequality:������
bZ
a

g (t) dt� 1
2
(b� a)

�
g (x) +

g (a) + g (b)

2
�
�
x� a+ b

2

�
g
0
(x)

�������
� 1

2

�
b� a
2

�2+ 1
q g00

p

�

8>>>>>><>>>>>>:

[B (q + 1; q + 1) +Bx1 (q + 1; q + 1) + 	x2 (q + 1; q + 1)]
1
q ;

for x 2
�
a; a+b

2

�
[B (q + 1; q + 1) + 	x3 (q + 1; q + 1) +Bx4 (q + 1; q + 1)]

1
q ;

for x 2 (a+b
2
; b];

(2.30)

where 1
p
+ 1

q
= 1; p > 1; q > 1; and B (:; :) is the Beta function of Euler given by

B (l; s) =

1Z
0

tl�1 (1� t)s�1 dt; l; s > 0:

Moreover,

Br (l; s) =

rZ
0

tl�1 (1� t)s�1 dt;

is the incomplete Beta function,

	r (l; s) =

rZ
0

tl�1 (1 + t)s�1 dt;

is a real positive valued integral,

x1 =
2 (x� a)
b� a ; x2 = 1� x1;

x3 = x1 � 1; x4 = 2� x1;
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and g00
p
=

�Z b

a

���g00 (t)���p dt� 1
p

:

If g
00
2 L1 (a; b) ; then������

bZ
a

g (t) dt� 1
2

�
g (x) +

g (a) + g (b)

2
�
�
x� a+ b

2

�
g
0
(x)

�
(b� a)

������
�

g00
1

8
(b� a)2 ; (2.31)

where g00
1
=

�Z b

a

���g00 (t)��� dt� :
Moreover, the special cases of the inequalities presented in the following subsec-

tion are comparable with those presented in [59] and in some cases present some

new and better estimations.

2.2.2 Main Results

The following theorem holds:

Theorem 2.5 Let f : [a; b] ! R be a di¤erentiable mapping whose �rst deriva-

tive is absolutely continuous on [a; b] and assume that the second derivative f
00 2

Lp (a; b) ; 1 � p � 1. Then, we have the inequality:������
bZ
a

f (t) dt� (b� a) [(1� 2h) f (x) + h (f (a) + f (b))

� (1� 2h)
�
x� a+ b

2

�
f
0
(x)

�
+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
� E (p; x; h)

f 00
p
; (2.32)

for all x 2 [a; b] and h 2 [0; 1] ; where

E (p; x; h)

=
1

2 (2q + 1)
1
q

�
2h2q+1 (b� a)2q+1 + (x� a� h (b� a))2q+1

+(b� x� h (b� a))2q+1
� 1
q ; (2.33)
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if p > 1; q � 1 with 1
p
+ 1

q
= 1 and for p = 1

E (1; x; h) =

8<: 1
2

��
1
2
� h
�
(b� a) +

��x� a+b
2

���2 ; 0 � h < 1
2

1
2
h2 (b� a)2 ; 1

2
� h � 1:

(2.34)

Proof. Let us de�ne the piece-wise continuous mapping K (:; :;h) : [a; b]2 ! R

for h 2 [0; 1] as:

K (x; t;h) =

8<: 1
2
(t� a� h (b� a))2 ; if t 2 [a; x]

1
2
(t� b+ h (b� a))2 ; if t 2 (x; b]:

(2.35)

Integrating by parts, we obtain

bZ
a

K (x; t;h) f
00
(t) dt

=

xZ
a

(t� a� h (b� a))2

2
f
00
(t) dt+

bZ
x

(t� b+ h (b� a))2

2
f
00
(t) dt

= (1� 2h) (b� a)
�
x� a+ b

2

�
f
0
(x) +

h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�
� (1� 2h) (b� a) f (x)� h (b� a) (f (a) + f (b)) +

bZ
a

f (t) dt; (2.36)

which results into the following integral identity:

bZ
a

f (t) dt = (1� 2h) (b� a) f (x) + h (b� a) (f (a) + f (b))

� (1� 2h) (b� a)
�
x� a+ b

2

�
f
0
(x)

�h
2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�
+

bZ
a

K (x; t;h) f
00
(t) dt: (2.37)

Applying modulus on both sides of (2.36), we get������
bZ
a

f (t) dt� (b� a) [(1� 2h) f (x) + h (f (a) + f (b))

� (1� 2h)
�
x� a+ b

2

�
f
0
(x)

�
+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
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=

������
bZ
a

K (x; t;h) f
00
(t) dt

������ : (2.38)

For �xed x; by applying Hölder�s inequality on the right hand side of (2.38) for
1
p
+ 1

q
= 1 with p > 1; q � 1, we obtain������

bZ
a

f (t) dt� (b� a) [(1� 2h) f (x) + h (f (a) + f (b))

� (1� 2h)
�
x� a+ b

2

�
f
0
(x)

�
+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
�
f 00

p

0@ bZ
a

jK (x; t;h)jq dt

1A
1
q

: (2.39)

Now simple calculation leads to

bZ
a

jK (x; t;h)jp dt

=
1

2q (2q + 1)

�
2h2q+1 (b� a)2q+1 + (x� a� h (b� a))2q+1

+(b� x� h (b� a))2q+1
�
: (2.40)

Using (2.40) in (2.39), we get the required inequality (2.32) with E (p; x; h) de�ned

by (2.33).

For p = 1; (2.38) gives������
bZ
a

f (t) dt� (b� a) [(1� 2h) f (x) + h (f (a) + f (b))

� (1� 2h)
�
x� a+ b

2

�
f
0
(x)

�
+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
� sup

t2[a;b]
jK (x; t;h)j

f 00
1
; (2.41)

and it can be easily calculated that

sup
t2[a;b]

jK (x; t;h)j =

8<: 1
2

��
1
2
� h
�
(b� a) +

��x� a+b
2

���2 ; 0 � h < 1
2

1
2
h2 (b� a)2 ; 1

2
� h � 1:

(2.42)

Combining (2.41) and (2.42), completes the proof for 1 � p � 1.

We now state the inequality (2.32) explicitly for p = 1 in the form of the

following theorem:
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Theorem 2.6 Let f be as in Theorem 2.5, then������
bZ
a

f (t) dt� (b� a) [(1� 2h) f (x) + h (f (a) + f (b))

� (1� 2h)
�
x� a+ b

2

�
f
0
(x)

�
+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
�
"
(b� a)3

24

�
1� 6h+ 12h2

�
+
(b� a)
2

(1� 2h)
�
x� a+ b

2

�2#f 00
1
: (2.43)

Remark 2.7 By choosing h = 0 in (2.43), we get the inequality������
bZ
a

f (t) dt� (b� a)
�
f (x)�

�
x� a+ b

2

�
f
0
(x)

�������
�

"
(b� a)3

24
+
1

2
(b� a)

�
x� a+ b

2

�2#f 00
1
; (2.44)

which is exactly ([22], Theorem 2.1). Thus, Theorem 2.6 is a generalization of ([22],

Theorem 2.1).

Remark 2.8 By choosing h = 1
4
in (2.43), we get the inequality������

bZ
a

f (t) dt� (b� a)
2

�
f (x) +

f (a) + f (b)

2
�
�
x� a+ b

2

�
f
0
(x)

�

+
1

32
(b� a)2

�
f
0
(b)� f 0 (a)

�����
�
"
(b� a)3

96
+
1

4
(b� a)

�
x� a+ b

2

�2#f 00
1
: (2.45)

It can be observed that the left hand side of (2.45) is a perturbation of left hand side

of inequality (2.29). Moreover, (2.45) provides better estimations than (2.29) for

x = a+b
2
. Therefore, (2.45) can be regarded as its re�nement.

Corollary 2.2 Let f be as in Theorem 2.5, then the following holds:������
bZ
a

f (t) dt� (b� a)
�
(1� 2h) f

�
a+ b

2

�
+ h (f (a) + f (b))

�

+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
� (b� a)3

24

�
1� 6h+ 12h2

� f 00
1
; (2.46)

for all h 2 [0; 1].
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Proof. Putting x = a+b
2
in (2.43), we get the desired inequality (2.46).

The following special cases of (2.46) hold:

Remark 2.9 (i) For h = 0; (2.46) recaptures the classical midpoint inequality

as follows ������
bZ
a

f (t) dt� (b� a) f
�
a+ b

2

�������
� (b� a)3

24

f 00
1
: (2.47)

(ii) For h = 1
2
; (2.46) gives������
bZ
a

f (t) dt� (b� a)
2

(f (a) + f (b)) +
(b� a)2

8

�
f
0
(b)� f 0 (a)

�������
� (b� a)3

24

f 00
1
; (2.48)

which is a perturbed trapezoid inequality and it is not di¢ cult to see that it

is better than the classical trapezoid inequality. Moreover, it is also better

than the perturbed trapezoid inequalities presented in [22] and [59] for f
00 2

L1 (a; b).

(iii) For h = 1
4
; (2.46) gives������

bZ
a

f (t) dt� (b� a)
4

�
f (a) + 2f

�
a+ b

2

�
+ f (b)

�
+
(b� a)2

32

�
f
0
(b)� f 0 (a)

�������
� (b� a)3

96

f 00
1
; (2.49)

which is a new perturbed averaged trapezoid-midpoint rule and it is better than

the simple average midpoint-trapezoid inequality presented in [38] and [59] for

f
00 2 L1 (a; b).

(iv) For h = 1
6
; (2.46) gives������

bZ
a

f (t) dt� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
+
(b� a)2

72

�
f
0
(b)� f 0 (a)

�������
� (b� a)3

72

f 00
1
; (2.50)
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which is a new perturbed variant of Simpson�s inequality for twice di¤erentiable

function f . However, the simple Simpson�s inequality established in [59] for

f
00 2 L1 (a; b) is better than (2.50).

Corollary 2.3 Let f be as in Theorem 2.5, then we have a family of perturbed

trapezoid inequality as follows:�����
Z b

a

f (t) dt� b� a
2

(f (a) + f (b)) +
(b� a)2

2

�
h2 � h+ 1

2

��
f
0
(b)� f 0 (a)

������
� (b� a)3

6

�
1� 3h+ 3h2

� f 00
1
; (2.51)

for all h 2 [0; 1].

Proof. The inequality (2.51) can be easily obtained by choosing x = a and x = b

in (2.43), summing up the resultant inequalities, using the triangular inequality and

dividing them by 2.

Remark 2.10 It may be observed that (2.20) can presents some better perturbed

trapezoid inequalities as compared to the classical trapezoid rule for the range
�
1
2
� 1

6

p
3; 1

2
+ 1

6

p
3
�

of h.

The explicit representation of the inequality (2.32) for p = 2 is given as:

Corollary 2.4 Let f be as in Theorem 2.5, then������
bZ
a

f (t) dt� (b� a) [(1� 2h) f (x) + h (f (a) + f (b))

� (1� 2h)
�
x� a+ b

2

�
f
0
(x)

�
+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
� (b� a)

5
2

2

24 1
80

�
32h5 + (1� 2h)5

�
+
1

2
(1� 2h)3

 
x� a+b

2

b� a

!2

+(1� 2h)
 
x� a+b

2

b� a

!435 1
2 f 00

2
; (2.52)

for all x 2 [a; b] and h 2 [0; 1].
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Remark 2.11 By choosing h = 0 in (2.52), we get the inequality������
bZ
a

f (t) dt� (b� a)
�
f (x)�

�
x� a+ b

2

�
f
0
(x)

�������
� (b� a)

5
2

2

24 1
80
+
1

2

 
x� a+b

2

b� a

!2
+

 
x� a+b

2

b� a

!435 1
2 f 00

2
; (2.53)

which is exactly ([19], Corollary 2.2). Thus, (2.52) is a generalization of ([19],

Corollary 2.2).

Remark 2.12 By choosing h = 1
4
in (2.52), we get the inequality������

bZ
a

f (t) dt� (b� a)
2

�
f (x) +

f (a) + f (b)

2
�
�
x� a+ b

2

�
f
0
(x)

�

+
1

32
(b� a)2

�
f
0
(b)� f 0 (a)

�����
� (b� a)

5
2

2

24 1

1280
+
1

16

 
x� a+b

2

b� a

!2
+
1

2

 
x� a+b

2

b� a

!435 1
2 f 00

2
: (2.54)

It can be observed that the left hand side of (2.54) is a perturbation of left hand side

of inequality (2.30). Moreover, (2.54) is better than inequality ([9], Corollary 11)

for x = a+b
2
. Therefore, (2.54) can comparatively present better estimations than

([9], Corollary 11).

Corollary 2.5 Let f be as in Theorem 2.5, then the following holds:������
bZ
a

f (t) dt� (b� a)
�
(1� 2h) f

�
a+ b

2

�
+ h (f (a) + f (b))

�

+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
� (b� a)

5
2

8
p
5

�
32h5 + (1� 2h)5

� 1
2

f 00
2
; (2.55)

for all h 2 [0; 1].

Proof. Putting x = a+b
2
in (2.52), we get the desired inequality (2.55).

The following special cases of (2.55) hold:
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Remark 2.13 (i) For h = 0 in (2.55), we recapture the following midpoint in-

equality for f
00 2 L2 (a; b)������

bZ
a

f (t) dt� (b� a) f
�
a+ b

2

�������
� (b� a)

5
2

8
p
5

f 00
2
: (2.56)

(ii) For h = 1
2
; (2.55) gives������
bZ
a

f (t) dt� (b� a)
2

(f (a) + f (b)) +
(b� a)2

8

�
f
0
(b)� f 0 (a)

�������
� (b� a)

5
2

8
p
5

f 00
2
; (2.57)

which is a perturbed trapezoid inequality and it is not di¢ cult to see that (2.57)

is comparable with the best bound of inequality of this type established in [19]

and [59].

(iii) For h = 1
4
; (2.55) gives������

bZ
a

f (t) dt� (b� a)
4

�
f (a) + 2f

�
a+ b

2

�
+ f (b)

�
+
(b� a)2

32

�
f
0
(b)� f 0 (a)

�������
� (b� a)

5
2

32
p
5

f 00
2
; (2.58)

which is a new perturbed averaged trapezoid-midpoint rule for f
00 2 L2 (a; b)

and is better than the simple average midpoint-trapezoid inequality presented

in [59].

(iv) For h = 1
6
; (2.55) gives������

bZ
a

f (t) dt� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
+
(b� a)2

72

�
f
0
(b)� f 0 (a)

�������
� 11

72
p
55
(b� a)

5
2

f 00
2
; (2.59)

which is a new perturbed variant of Simpson�s inequality for twice di¤erentiable

function f for f
00 2 L2 (a; b) and is better than the simple Simpson�s inequality

presented in [59].
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Corollary 2.6 Let f be as in Theorem 2.5, then we have a family of perturbed

trapezoid inequality�����
Z b

a

f (t) dt� b� a
2

(f (a) + f (b)) +
(b� a)2

2

�
h2 � h+ 1

2

��
f
0
(b)� f 0 (a)

������
� (b� a)

5
2

2
p
5

�
h5 + (1� h)5

� 1
2

f 00
2
; (2.60)

for all h 2 [0; 1].

Proof. The inequality (2.60) can be easily obtained by choosing x = a and x = b

in (2.52), summing up the resultant inequalities, using the triangular inequality and

dividing them by 2.

The following special cases of perturbed Ostrowski type inequality (2.32) for

p = 1 hold:

Remark 2.14 By choosing h = 0 in (2.32) and (2.34), we get the inequality������
bZ
a

f (t) dt� (b� a)
�
f (x)�

�
x� a+ b

2

�
f
0
(x)

�������
� 1

2

�
b� a
2

+

����x� a+ b2
�����2 f 00

1
: (2.61)

which is exactly ([20], Theorem 2.1). Thus, the inequality (2.32) together with

(2.34) generalizes ([20], Theorem 2.1).

Remark 2.15 By choosing h = 1
4
in (2.32) and (2.34), we get the inequality������

bZ
a

f (t) dt� (b� a)
2

�
f (x) +

f (a) + f (b)

2
�
�
x� a+ b

2

�
f
0
(x)

�

+
1

32
(b� a)2

�
f
0
(b)� f 0 (a)

�����
� 1

2

�
b� a
4

+

����x� a+ b2
�����2 f 00

1
: (2.62)

It can be observed that the left hand side of (2.62) is a perturbation of left hand side

of inequality (2.31). Moreover, (2.62) is better than (2.31) for x = a+b
2
. Therefore,

(2.62) can comparatively present better and re�ned estimations than (2.31).
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Corollary 2.7 Let f be as in Theorem 2.5, then the following holds:������
bZ
a

f (t) dt� (b� a)
�
(1� 2h) f

�
a+ b

2

�
+ h (f (a) + f (b))

�

+
h2

2
(b� a)2

�
f
0
(b)� f 0 (a)

�����
�

8<:
(b�a)2
8

(1� 2h)2 ; 0 � h < 1
2

1
2
h2 (b� a)2 ; 1

2
� h � 1

f 00
1
; (2.63)

for all h 2 [0; 1].

Proof. Putting x = a+b
2
in (2.32) and (2.34), we get the desired inequality

(2.63).

Remark 2.16 (i) By choosing h = 0 in (2.63); we recapture the midpoint in-

equality for f
00 2 L1 (a; b) as follows������

bZ
a

f (t) dt� (b� a) f
�
a+ b

2

�������
� (b� a)2

8

f 00
1
: (2.64)

(ii) By choosing h = 1
4
in (2.63); we get������

bZ
a

f (t) dt� (b� a)
4

�
f (a) + 2f

�
a+ b

2

�
+ f (b)

�
+
(b� a)2

32

�
f
0
(b)� f 0 (a)

�������
� (b� a)2

32

f 00
1
;

(2.65)

which is a new perturbed average trapezoid-midpoint rule with f
00 2 L1 (a; b).

(iii) By choosing h = 1
6
in (2.63); we obtain������

bZ
a

f (t) dt� (b� a)
6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
+
(b� a)2

72

�
f
0
(b)� f 0 (a)

�������
� (b� a)2

18

f 00
1
;

(2.66)

which is a new perturbed variant of Simpson�s inequality for twice di¤erentiable

function f with f
00 2 L1 (a; b).
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Corollary 2.8 Let f be as in Theorem 2.5, then we have a family of perturbed

trapezoid inequality�����
Z b

a

f (t) dt� b� a
2

(f (a) + f (b)) +
(b� a)2

2

�
h2 � h+ 1

2

��
f
0
(b)� f 0 (a)

������
� (b� a)2

2

f 00
1

8<: (1� h)2 ; 0 � h � 1
2
;

h2 ; 1
2
< h � 1;

(2.67)

for all h 2 [0; 1].

Proof. The inequality (2.67) can be easily obtained by choosing x = a and x = b

in (2.32) and (2.34), summing up the resultant inequalities, using the triangular

inequality and dividing them by 2.

Remark 2.17 For h = 1
2
in (2.67), we have the following perturbed trapezoid in-

equality: ������
bZ
a

f (t) dt� (b� a)
2

(f (a) + f (b)) +
(b� a)2

8

�
f
0
(b)� f 0 (a)

�������
� (b� a)2

8

f 00
1
; (2.68)

which has been obtained in [17].

2.2.3 Applications in Numerical Integration

We may use Theorem 2.5 to get the estimates of composite quadrature rules with

smaller error than that which may be obtained by the classical results.

Let In : a = x0 < x1 < � � � < xn�1 < xn = b be a division of the interval

[a; b], hi = xi+1 � xi; � 2 [0; 1]; xi � � i � xi+1; i = 0; � � � ; n � 1; be a sequence of

intermediate points, then the following theorems hold:

Theorem 2.7 Let f : [a; b] ! R be a di¤erentiable mapping whose �rst deriva-

tive is absolutely continuous on [a; b] and assume that the second derivative f
00 2

L1 (a; b). Then, we have the following quadrature formula:

bZ
a

f (t) dt = A(f; f
0
; In; �; �) +R1(f; f

0
; In; �; �)
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where

A(f; f
0
; In; �; �) = (1� 2�)

n�1X
i=0

hif (� i) + �

n�1X
i=0

hi (f (xi) + f (xi+1))

� (1� 2�)
n�1X
i=0

hi

�
� i �

xi + xi+1
2

�
f
0
(� i) ; (2.69)

and the remainder satis�es the estimation:

���R1(f; f 0 ; In; �; �)��� �
f 00

1

"
1

24

�
1� 6� + 12�2

� n�1X
i=0

h3i

+
(1� 2�)
2

n�1X
i=0

hi

�
� i �

xi + xi+1
2

�2#
; (2.70)

for all � 2 [0; 1].

Proof. Applying inequality (2.43) on � i 2 [xi; xi+1] (i = 0; :::; n� 1) and sum-

ming over i from 0 to n� 1 and using triangular inequality, we get (2.70).

Theorem 2.8 Let f : [a; b] ! R be a di¤erentiable mapping whose �rst deriva-

tive is absolutely continuous on [a; b] and assume that the second derivative f
00 2

Lp (a; b) ; p > 1. Then, we have the following quadrature formula:

bZ
a

f (t) dt = A(f; f
0
; In; �; �) +R2(f; f

0
; In; �; �)

where

A(f; f
0
; In; �; �) = (1� 2�)

n�1X
i=0

hif (� i) + �

n�1X
i=0

hi (f (xi) + f (xi+1))

� (1� 2�)
n�1X
i=0

hi

�
� i �

xi + xi+1
2

�
f
0
(� i) ;

and the remainder satis�es the estimation:

���R2(f; f 0 ; In; �; �)��� �
f 00

p

1

2 (2q + 1)
1
q

"
n�1X
i=0

�
2�2q+1h2q+1i

+(� i � xi � �hi)
2q+1

+(xi+1 � � i � �hi)
2q+1�� 1q ; (2.71)

for all � 2 [0; 1].
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Proof. Applying inequalities (2.32) and (2.33) on � i 2 [xi; xi+1] (i = 0; :::; n� 1)

and summing over i from 0 to n� 1 and using triangular inequality, we get (2.71).

Theorem 2.9 Let f : [a; b] ! R be a di¤erentiable mapping whose �rst deriva-

tive is absolutely continuous on [a; b] and assume that the second derivative f
00 2

L1 (a; b) ; p > 1. Then, we have the following quadrature formula:

bZ
a

f (t) dt = A(f; f
0
; In; �; �) +R3(f; f

0
; In; �; �)

where

A(f; f
0
; In; �; �) = (1� 2�)

n�1X
i=0

hif (� i) + �

n�1X
i=0

hi (f (xi) + f (xi+1))

� (1� 2�)
n�1X
i=0

hi

�
� i �

xi + xi+1
2

�
f
0
(� i) ;

and the remainder satis�es the estimation:���R3(f; f 0 ; In; �; �)���
� 1

2

f 00
1

8<:
���1
2
� �
�� v (h) + supi=0;:::;n�1 ��� i � xi+xi+1

2

���2 ; 0 � � < 1
2

1
2
�2v2 (h) ; 1

2
� � < 1

;(2.72)

where v (h) = max fhiji = 0; :::; n� 1g.

Proof. Applying inequalities (2.32) and (2.34) on � i 2 [xi; xi+1] (i = 0; :::; n� 1)

and summing over i from 0 to n� 1 and using triangular inequality, we get (2.72).

Theorem 2.10 Let f : [a; b] ! R be a di¤erentiable mapping whose �rst deriva-

tive is absolutely continuous on [a; b] and assume that the second derivative f
00 2

L2 (a; b). Then, we have the following quadrature formula:

bZ
a

f (t) dt = A(f; f
0
; In; �; �) +R4(f; f

0
; In; �; �);

where

A(f; f
0
; In; �; �) = (1� 2�)

n�1X
i=0

hif (� i) + �
n�1X
i=0

hi (f (xi) + f (xi+1))
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� (1� 2�)
n�1X
i=0

hi

�
� i �

xi + xi+1
2

�
f
0
(� i)

and the remainder satis�es the estimation:���R4(f; f 0 ; In; �; �)��� � 1

2

f 00
2

"
1

80

�
32�5 + (1� 2�)5

� n�1X
i=0

h5i

+
1

2
(1� 2�)3

n�1X
i=0

h3i

�
� i �

xi + xi+1
2

�2

+(1� 2�)
n�1X
i=0

hi

�
� i �

xi + xi+1
2

�4# 1
2

; (2.73)

for all � 2 [0; 1].

Proof. Applying inequality (2.52) on � i 2 [xi; xi+1] (i = 0; :::; n� 1) and sum-

ming over i from 0 to n� 1 and using triangular inequality, we get (2.73).

2.3 A generalization of Ostrowski type inequality for (l; L)

Lipschitzian mappings

In this section, we present an Ostrowski type inequality for n-times di¤erentiable

(l; L)�Lipschitzian functions. The presented inequality is a generalization of Os-

trowski inequality for L�Lipschitzian and (l; L)�Lipschitzian functions and recap-

tures many previous results as special cases.

2.3.1 Introduction

In [30], S. S. Dragomir obtained Ostrowski�s integral inequality for Lipschitzian

mappings as follows:

Theorem 2.11 Let u : [a; b]! R be L-Lipschitzian mapping on [a; b] i.e.,

ju (x)� u (y)j � L jx� yj ; for all x 2 [a; b] :

Then, we have the inequality:������
bZ
a

u (t) dt� (b� a)u (x)

������ � L
241
4
+

 
x� a+b

2

b� a

!235 (b� a)2 ; (2.74)

for all x 2 [a; b]. The constant 1
4
is the best possible one.
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In [15], P. Cerone and S. S. Dragomir obtained three point inequalities of Os-

towski and Grüss type in usual Lebesgue spaces and for Lipschitzian, monotonic

and mappings of bounded total variation. They further generalized the inequalities

obtained in [15] for n-di¤erentiable function f; where f (n) 2 Lp (a; b) ; p > 1 in [16].

Three-point inequality of Ostrowski type for L-Lipschitzian function obtained in

[15] is stated below:

Theorem 2.12 Let f : [a; b] ! R be L-Lipschitzian on [a; b]. Then, the following

inequality holds:������
bZ
a

f (t) dt� [(� (x)� a) f (a) + (� (x)� � (x)) f (x) + (b� � (x)) f (b)]

������
� L

("�
b� a
2

�2
+

�
x� a+ b

2

�2#

+

�
� (x)� a+ x

2

�2
+

�
� (x)� x+ b

2

�2)
; (2.75)

where � : [a; x]! R and � : (x; b]! R.

Some special cases of Theorem 2.12 may also be considered for choice of � (x)

and � (x) as given in [15]. It may also be noted that (2.75) is a generalization of

(2.74) for � (x) = a and � (x) = b.

In some recent papers [58, 57], Zheng Liu has obtained inequalities of Ostrowski

and Grüss type for (l; L)-Lipschitzian mappings. Ostrowski type inequality obtained

by Liu in [57] for (l; L)-Lipschitzian function is stated as follows:

Theorem 2.13 Let f : [a; b] ! R be (l; L)-Lipschitzian on [a; b]. Then, for all

x 2 [a; b] ; we have:������12 [(x� a) f (a) + (b� a) f (x) + (b� x) f (b)]�
bZ
a

f (t) dt

������
� 1

4

"�
x� a+ b

2

�2
+
(b� a)2

4

#
(L� l) ; (2.76)

������12 [(x� a) f (a) + (b� a) f (x) + (b� x) f (b)]�
bZ
a

f (t) dt

������
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� b� a
2

�
b� a
2

+

����x� a+ b2
����� (S � l) (2.77)

and ������12 [(x� a) f (a) + (b� a) f (x) + (b� x) f (b)]�
bZ
a

f (t) dt

������
� b� a

2

�
b� a
2

+

����x� a+ b2
����� (L� S) ; (2.78)

where S = f(b)�f(a)
b�a .

In this section, we give a generalization of Theorem 2.11, Theorem 2.12 and

Theorem 2.13 for n�times di¤erentiable (l; L)-Lipschitzian functions.

For the sake of convenience, we re-state some de�nitions, lemmas and identities

which are intended to be used to obtain our desired generalization.

De�nition 2.1 The function f : [a; b] ! R is said to be L-Lipschitzian on [a; b] ;

if for some L > 0 and all x; y 2 [a; b] ;

jf (x)� f (y)j � L jx� yj :

De�nition 2.2 The function f : [a; b]! R is said to be (l; L)-Lipschitzian on [a; b]

if

l (x2 � x1) � f (x2)� f (x1) � L (x2 � x1) for a � x1 � x2 � b;

where l; L 2 R with l < L.

Remark 2.18 It may be noted that a (l; L)-Lipschitzian function is a L-Lipschitzian

function for l = �L.

The following known lemmas are useful in the sequel.

Lemma 2.1 (see [15]) Let g; �:[a; b]! R be such that g is Riemann integrable on

[a; b] and � is L-Lipschitzian on [a; b].Then,������
bZ
a

g (t) d� (t)

������ � L
Z b

a

jg (t)j dt;

where � is L-Lipschitzian if it satis�es

j� (x)� � (y)j � L jx� yj ;

for all x; y 2 [a; b].
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Lemma 2.2 (see [15]) Let g; � : [a; b]! R be such that g is continuous and � is of

bounded variation on [a; b]. Then, the Riemann-Stieltjes integral
bR
a

g (t) d� (t) exists

and is such that ������
bZ
a

g (t) d� (t)

������ � sup
t2[a;b]

jg (t)j
b_
a

(�) ;

where
bW
a

(�) is the total variation of � on [a; b].

Moreover, we will also use the following identity but from Riemann-Stieltjes

point of view:

Theorem 2.14 (see [16]) Let f : [a; b] ! R be a mapping such that f (n�1) is

absolutely continuous on [a; b] with � : [a; b]! [a; b] and � : [a; b]! [a; b] ; � (x) �

x � � (x) ; then for all x 2 [a; b] ; the following identity holds:

(�1)n
bZ
a

Kn (x; t) f
(n) (t) dt =

bZ
a

f (t) dt�
nX
k=1

1

k!

�
Rk (x) f

(k�1) (x) + Sk (x)
�
;

(2.79)

where the kernel Kn : [a; b]
2 ! R is given by

Kn (x; t) =

8>>><>>>:
(t��(x))n

n!
; t 2 [a; x]

(t��(x))n
n!

; t 2 (x; b]:

(2.80)

Rk (x) = (� (x)� x)k + (�1)k�1 (x� � (x))k (2.81)

and

Sk (x) = (� (x)� a)k f (k�1) (a) + (�1)k�1 (b� � (x))k f (k�1) (b) : (2.82)

2.3.2 Main Results

Theorem 2.15 Let f : [a; b] ! R be a n-times di¤erentiable function and let

f (n�1) be (l; L)-Lipschitzian function. Let � : [a; b] ! [a; b] and � : [a; b] ! [a; b] ;

� (x) � x � � (x). Then, for all x 2 [a; b], we have:������
bZ
a

f (t) dt� (b
2 � a2)
4

(L+ l)�
nX
k=1

1

k!

�
Rk (x) f

(k�1) (x) + Sk;f (x)

�L+ l
2

(xRk (x) + Pk (x))

�����
� L� l

2
Qn (x) ; (2.83)
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������
bZ
a

f (t) dt� (b
2 � a2)
4

(L+ l)�
nX
k=1

1

k!

�
Rk (x) f

(k�1) (x) + Sk;f (x)

�L+ l
2

(xRk (x) + Pk (x))

�����
� 1

n!
(b� a)

�
Dn�1 � l

�
Mn (x) (2.84)

and ������
bZ
a

f (t) dt� (b
2 � a2)
4

(L+ l)�
nX
k=1

1

k!

�
Rk (x) f

(k�1) (x) + Sk;f (x)

�L+ l
2

(xRk (x) + Pk (x))

�����
� 1

n!
(b� a)

�
L�Dn�1�Mn (x) ; (2.85)

with

Rk (x) = (� (x)� x)k + (�1)k�1 (x� � (x))k ;

Pk (x) = (� (x)� a)k a+ (�1)k�1 (b� � (x))k b;

Sk;f (x) = (� (x)� a)k f (k�1) (a) + (�1)k�1 (b� � (x))k f (k�1) (b) ;

Qn (x) =
1

(n+ 1)!

�
(� (x)� a)n+1 + (x� � (x))n+1

+(� (x)� x)n+1 + (b� � (x))n+1
�
;

M (x) = max f� (x)� a; x� � (x) ; x� � (x) ; b� � (x)g (2.86)

and

Dn�1 =
f (n�1) (b)� f (n�1) (a)

b� a : (2.87)

Proof. Let us consider kernel de�ned by (2.80)

Kn (x; t) =

8>>><>>>:
(t��(x))n

n!
; t 2 [a; x]

(t��(x))n
n!

; t 2 (x; b]:

Let

g(n�1) (t) = f (n�1) (t)� L+ l
2
t: (2.88)

It may be observed that the function g(n�1) (t) is M -Lipschitzian on [a; b] with

M = L�l
2
. So, the Riemann-Stieltjes integral

bR
a

Kn (x; t) dg
(n�1) (t) exists and we
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have by applying integration by parts formula for Riemann-Stieltjes integral:

(�1)n
bZ
a

Kn (x; t) dg
(n�1) (t) =

bZ
a

g (t) dt�
nX
k=1

1

k!

�
Rk (x) g

(k�1) (x) + Sk;g (x)
�
;

(2.89)

where

Rk (x) = (� (x)� x)k + (�1)k�1 (x� � (x))k

and

Sk;g (x) = (� (x)� a)k g(k�1) (a) + (�1)k�1 (b� � (x))k g(k�1) (b) : (2.90)

From Lemma 2.1, we have������
bZ
a

Kn (x; t) dg
(n�1) (t)

������ � L� l
2

bZ
a

jKn (x; t)j dt: (2.91)

As calculated in [16],
bZ
a

jKn (x; t)j dt =
1

(n+ 1)!

�
(� (x)� a)n+1 + (x� � (x))n+1

+(� (x)� x)n+1 + (b� � (x))n+1
�

= Qn (x) : (2.92)

So, from (2.89), (2.91) and (2.92), we obtain:������
bZ
a

g (t) dt�
nX
k=1

1

k!

�
Rk (x) g

(k�1) (x) + Sk;g (x)
�������

� L� l
2
Qn (x) : (2.93)

Consequently, substituting (2.88) in (2.93), we get the required inequality (2.83).

Next, let

g
(n�1)
1 (t) = f (n�1) (t)� lt;

g
(n�1)
2 (t) = f (n�1) (t)� Lt: (2.94)

It may be observed that g(n�1)1 (t) and g(n�1)2 (t) are functions of bounded variations

on [a; b] and
b_
a

�
g
(n�1)
1

�
= f (n�1) (b)� f (n�1) (a)� l (b� a) ;

b_
a

�
g
(n�1)
2

�
= L (b� a)�

�
f (n�1) (b)� f (n�1) (a)

�
: (2.95)
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So, the Riemann-Stieltjes integrals
bR
a

Kn (x; t) dg
(n�1)
1 (t) and

bR
a

Kn (x; t) dg
(n�1)
2 (t)

exist and we have by applying integration by parts formula for Riemann-Stieltjes

integral:

(�1)n
bZ
a

Kn (x; t) dg
(n�1)
1 (t) =

bZ
a

g (t) dt�
nX
k=1

1

k!

h
Rk (x) g

(n�1)
1 (x) + Sk;g1 (x)

i
(2.96)

and

(�1)n
bZ
a

Kn (x; t) dg
(n�1)
2 (t) =

bZ
a

g (t) dt�
nX
k=1

1

k!

h
Rk (x) g

(n�1)
2 (x) + Sk;g2 (x)

i
;

(2.97)

where

Rk (x) = (� (x)� x)k + (�1)k�1 (x� � (x))k ;

and

Sk;g1 (x)

= (� (x)� a)k g(n�1)1 (a) + (�1)k�1 (b� � (x))k g(n�1)1 (b) ;

Sk;g2 (x)

= (� (x)� a)k g(n�1)2 (a) + (�1)k�1 (b� � (x))k g(n�1)2 (b) : (2.98)

From Lemma 2.2, we have������
bZ
a

Kn (x; t) dg
(n�1)
1 (t)

������ � max
t2[a;b]

jKn (x; t)j
b_
a

�
g
(n�1)
1

�
;

������
bZ
a

Kn (x; t) dg
(n�1)
2 (t)

������ � max
t2[a;b]

jKn (x; t)j
b_
a

�
g
(n�1)
2

�
(2.99)

As calculated in [16], we have:

max
t2[a;b]

jKn (x; t)j =
1

n!
(max f� (x)� a; x� � (x) ; x� � (x) ; b� � (x)g)n

=
1

n!
Mn (x) : (2.100)

So, from (2.95), (2.96), (2.97), (2.99) and (2.100), we obtain:������
bZ
a

g (t) dt�
nX
k=1

1

k!

h
Rk (x) g

(n�1)
1 (x) + Sk;g1 (x)

i������
� 1

n!
(b� a)

�
Dn�1 � l

�
Mn (x) (2.101)
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and ������
bZ
a

g (t) dt�
nX
k=1

1

k!

h
Rk (x) g

(n�1)
1 (x) + Sk;g1 (x)

i������
� 1

n!
(b� a)

�
L�Dn�1�Mn (x) ; (2.102)

where

Dn�1 =
f (n�1) (b)� f (n�1) (a)

b� a :

By substituting (2.95) in (2.101) and (2.102), we get the required inequalities (2.84)

and (2.85).

Corollary 2.9 Let f be as in Theorem 2.15. Then, for all x 2 [a; b] ; we have:������
bZ
a

f (t) dt� (b
2 � a2)
4

(L+ l)�
nX
k=1

1

k!

h
(1� h)k rk (x) f (k�1) (x)

+hksk;f (x)�
L+ l

2

�
x (1� h)k rk (x) + hkpk (x)

������
� L� l

2 (n+ 1)!
H (h)G (x) ; (2.103)

������
bZ
a

f (t) dt� (b
2 � a2)
4

(L+ l)�
nX
k=1

1

k!

h
(1� h)k rk (x) f (k�1) (x)

+hksk;f (x)�
L+ l

2

�
x (1� h)k rk (x) + hkpk (x)

������
� (b� a)

n!

�
Dn�1 � l

�
�n (x) (2.104)

and ������
bZ
a

f (t) dt� (b
2 � a2)
4

(L+ l)�
nX
k=1

1

k!

h
(1� h)k rk (x) f (k�1) (x)

+hksk;f (x)�
L+ l

2

�
x (1� h)k rk (x) + hkpk (x)

������
� (b� a)

n!

�
L�Dn�1� �n (x) ; (2.105)
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with

rk (x) = (b� x)k + (�1)k�1 (x� a)k ;

pk (x) = (x� a)k a+ (�1)k�1 (b� x)k b;

sk;f (x) = (x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b) ;

G (x) = (x� a)n+1 + (b� x)n+1 ;

� (x) =

�
1

2
+

����h� 12
����� �b� a2 +

����x� a+ b2
����� ;

H (h) = hn+1 + (1� h)n+1 ; (2.106)

and Dn�1 is de�ned by (2.87).

Proof. By choosing,

� (x) = hx+ (1� h) a;

� (x) = hx+ (1� h) b;

in (2.83), (2.84), (2.85) and (2.86), readily produces the required inequalities.

Remark 2.19 It may be noted that for n = 1, � (x) = a, � (x) = b and l = �L in

(2.83), (2.74) is obtained.

Remark 2.20 It may be noted that for n = 1 and l = �L in (2.83), (2.75) is

obtained.

Remark 2.21 It may be noted that for n = 1 and h = 1
2
in (2.103), (2.104),

(2.105) and (2.106), the inequalities (2.76), (2.77) and (2.78) are recaptured.

2.3.3 Applications in Numerical Integration

We may use Corollary 2.9 to get the estimates of composite quadrature rules with

smaller error than that which may be obtained by the classical results.

Let Im : a = x0 < x1 < � � � < xm�1 < xm = b be a division of the interval [a; b]

let � =
�
�0; :::; �m�1

�
be a sequence of intermediate points where �j 2 [xj; xj+1] for

j = 0; 1; :::;m� 1; then the following theorem hold:
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Theorem 2.16 Let f be as in Theorem 2.15. Then, we have the following quadra-

ture formula:

bZ
a

f (t) dt = Am;n(f; Im; �; �) +Rm;n;1(f; Im; �; �);

where

Am;n(f; Im; �; �) =

m�1X
j=0

n�1X
i=0

(�1)k

k!

n
(1� �)k rk

�
�j
�
f (k�1)

�
�j
�

+�k
�
Akjf

(k�1) (xj) + (�1)k�1Bkj f (k�1) (xj+1)
�

�L+ l
2

�
(1� �)k rk

�
�j
�
�j + �

kpk
�
�j
���

� 1
4
(l + L)

m�1X
j=0

�
x2j+1 � x2j

�
(2.107)

and

Aj = �j � xj; Bj = xj+1 � �j; hj = Aj +Bj = xj+1 � xj;

rk
�
�j
�
= Bkj + (�1)

k�1Akj ; pk
�
�j
�
= Akjxj + (�1)

k�1Bkj xj+1;

for j = 0; :::;m� 1 and the remainder satis�es the estimation:

jRm;n;1(f; Im; �; �)j �
L� l

2 (n+ 1)!
H (�)

m�1X
j=0

�
An+1j +Bn+1j

�
; (2.108)

H (�) = �n+1 + (1� �)n+1 ;

for all � 2 [0; 1].

Proof. Applying inequality (2.103) on � i 2 [xj; xj+1] (j = 0; :::;m� 1) and

summing over j from 0 to m� 1 and using triangular inequality, we get (2.108).

Theorem 2.17 Let f be as in Theorem 2.15. Then, we have the following quadra-

ture formula:

bZ
a

f (t) dt = Am;n(f; Im; �; �) +Rm;n;2(f; Im; �; �);

where

Am;n(f; Im; �; �) =
m�1X
j=0

n�1X
i=0

(�1)k

k!

n
(1� �)k rk

�
�j
�
f (k�1)

�
�j
�

+�k
�
Akjf

(k�1) (xj) + (�1)k�1Bkj f (k�1) (xj+1)
�
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�L+ l
2

�
(1� �)k rk

�
�j
�
�j + �

kpk
�
�j
���

� 1
4
(l + L)

m�1X
j=0

�
x2j+1 � x2j

�
and

Aj = �j � xj; Bj = xj+1 � �j; hj = Aj +Bj = xj+1 � xj;

rk
�
�j
�
= Bkj + (�1)

k�1Akj ; pk
�
�j
�
= Akjxj + (�1)

k�1Bkj xj+1;

for j = 0; :::;m� 1 and the remainder satis�es the estimation:

jRm;n;2(f; Im; �; �)j �
�
1
2
+
��� � 1

2

���n
n!

�
f (n�1) (b)� f (n�1) (a)� l (b� a)

�
�
�
v (h)

2
+ max

j

�����j � xj + xj+12

�����n ; (2.109)

v (h) = fhjjj = 0; :::;m� 1g ;

for all � 2 [0; 1].

Proof. Applying inequality (2.104) on � i 2 [xj; xj+1] (j = 0; :::;m� 1) and

summing over j from 0 to m� 1 and using triangular inequality, we get (2.109).

2.4 Conclusion

In this chapter, by the use of modi�ed Peano kernels, some Ostrowski type in-

equalities depending on the second derivatives are highlighted. Ostrowski type

inequalities for twice di¤erentiable functions have been extensively addressed in the

research papers [9] and [59]. We, in here, have presented some generalizations and

improvements of the inequalities presented in [9] and [59].

In Section 2.1, we have presented a generalization (2.2) of the inequality (2.1)

obtained in [38] (or see [9], Section 7) for twice di¤erentiable functions whose �rst

derivatives are absolutely continuous and second derivatives belong to L1 (a; b) by

introducing a parameter h 2 [0; 1]. From Remark 2.3, it is clear that (2.2) can

present some better estimates for a speci�ed range of h than (2.1). This general-

ization also results in obtaining a three-point inequality for a speci�c value of h as

mentioned in Remark 2.4. The three-point inequality thus obtained has a better

bound than the three-point inequalities presented in [9] and [59] for k:k1 � norm.

Remark 2.4 also shows that the perturbed trapezoid inequality that can be ob-

tained from (2.2) is better than the perturbed inequalities presented in [9] and [59]

55



of perturbed trapezoid type for k:k1 � norm. The inequality is then applied for a

partition of the interval [a; b] to obtain some composite quadrature rules. The in-

equality is also applied to special means by properly choosing the function involved

to get some direct relationships between di¤erent means.

In Section 2.2, some generalizations and re�nements of the inequalities of Os-

trowski type for twice di¤erentiable functions are given in the sense of perturbations

by introducing perturbed versions of inequalities of midpoint, trapezoid, Simpson�s

and averaged trapezoid-midpoint type which re�nes the results of [19, 20, 22, 38]

and ([9], Theorem 20). The Remark 2.7-2.17 justify our claim. The corresponding

composite quadrature rules are obtained in Section 2.2.3.

In Section 2.3, a generalization of Ostrowski type inequality is presented for

(l; L)-Lipschitzian functions which not only extends some Ostrowski type inequali-

ties L-Lipschitzian mappings to an higher space of (l; L)-Lipschitzian mappings but

also generalizes some Ostrowski type inequalities for (l; L)-Lipschitzian mappings.

Remark 2.19, 2.20 and 2.21 justify this fact. Applications for composite quadrature

rules are also given in Section 2.3.3.
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Chapter 3

Some Generalized Ostrowski-Grüss type

inequalities

The integral inequality that measures the deviation of the integral of the product

of two functions and the product of the integrals is known in the literature as the

Grüss inequality. The inequality is stated in the form of Theorem 1.4.

In 1997, S. S. Dragomir and S. Wang [39], by the use of the Grüss inequality

proved the following Ostrowski-Grüss type integral inequality:

Theorem 3.1 Let f : I ! R; where I � R is an interval, be a mapping di¤er-

entiable in the interior I0 of I; and let a; b 2 I0 with a < b. If  � f
0
(x) � �;

x 2 [a; b] for some constants ;� 2 R; then������f (x)� 1

b� a

bZ
a

f (t) dt� f (b)� f (a)
b� a

�
x� a+ b

2

�������
� 1

4
(b� a) (�� ) ; (3.1)

for all x 2 [a; b].

This inequality provides a relation between Ostrowski inequality [69] and the

Grüss inequality [64].

We, in this chapter present some extensions of the inequality (3.1) for �rst and

twice di¤erentiable functions.
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3.1 A generalization of Ostrowski-Grüss type inequality for

�rst di¤erentiable mappings

In this section, we improve and further generalize some Ostrowski-Grüss type in-

equalities involving �rst di¤erentiable functions and apply them to probability den-

sity functions, generalized beta random variable and special means.

3.1.1 Introduction

In 2000, M. Matíc, J. E. Peµcaríc and N. Ujevíc [61], by the use of pre-Grüss in-

equality improved the factor of the right membership of (3.1) with 1
4
p
3
as follows:

Theorem 3.2 Let f : I ! R; where I � R is an interval, be a mapping di¤er-

entiable in the interior I0 of I; and let a; b 2 I0 with a < b. If  � f
0
(x) � �;

x 2 [a; b] for some constants ;� 2 R; then������f (x)� 1

b� a

bZ
a

f (t) dt� f (b)� f (a)
b� a

�
x� a+ b

2

�������
� 1

4
p
3
(�� ) (b� a) ; (3.2)

for all x 2 [a; b].

In 2000, N. S. Barnett et al.[12], by the use of µCeby�ev functional, improved the

Matíc-Pecaríc-Ujevíc result by providing �rst membership of the right side of (3.2)

in terms of Euclidean norm as follows:

Theorem 3.3 Let f : [a; b]! R be an absolutely continuous function whose deriv-

ative f
0
2 L2 [a; b]. Then we have the inequality������f (x)� 1

b� a

bZ
a

f (t) dt� f (b)� f (a)
b� a

�
x� a+ b

2

�������
� (b� a)

2
p
3

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

;

� 1

4
p
3
(�� ) (b� a) ;

if  � f
0
(t) � � for almost everywhere t on [a; b] (3.3)

for all x 2 [a; b].
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Also in [12], we can �nd the pre-Grüss inequality as

T 2 (f; g) � T (f; f)T (g; g) ;

where f; g 2 L2 [a; b] and T (f; g) is the µCeby�ev functional as de�ned above.

In the following subsection, we give a generalization of (3.3) and then apply it to

probability density functions, generalized beta random variable and special means.

3.1.2 Main Results

Theorem 3.4 Let f : [a; b] ! R be an absolutely continuous function whose �rst

derivative f
0
2 L2 (a; b). Then, we have the inequality������(1� h)
�
f (x)� f (b)� f (a)

b� a

�
x� a+ b

2

��
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f (t) dt

������
�

"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h)

�
x� a+ b

2

�2# 1
2

�

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

;

� 1

2
(�� )

"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h)

�
x� a+ b

2

�2# 1
2

;

if  � f
0
(t) � � almost everywhere t on [a; b] (3.4)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].

Proof. We consider the kernel as de�ned in [34] p : [a; b]2 ! R

p (x; t) =

8<: t�
�
a+ h b�a

2

�
; if t 2 [a; x]

t�
�
b� h b�a

2

�
; if t 2 (x; b]:

Using Korkine�s identity:

T (f; g) :=
1

2 (b� a)2

bZ
a

bZ
a

(f (t)� f (s)) (g (t)� g (s)) dtds;

we obtain

1

b� a

bZ
a

p (x; t) f
0
(t) dt� 1

b� a

bZ
a

p (x; t) dt
1

b� a

bZ
a

f
0
(t) dt

=
1

2 (b� a)2

bZ
a

bZ
a

(p (x; t)� p (x; s))
�
f
0
(t)� f

0
(s)
�
dtds: (3.5)
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Since,

1

b� a

bZ
a

p (x; t) f
0
(t) dt = (1� h) f (x) + hf (a) + f (b)

2
� 1

b� a

bZ
a

f (t) dt;

1

b� a

bZ
a

p (x; t) dt = (1� h)
�
x� a+ b

2

�
and

1

b� a

bZ
a

f
0
(t) dt =

f (b)� f (a)
b� a ;

then by (3.5) we get the following identity:

(1� h)
�
f (x)� f (b)� f (a)

b� a

�
x� a+ b

2

��
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f (t) dt

=
1

2 (b� a)2

bZ
a

bZ
a

(p (x; t)� p (x; s))
�
f
0
(t)� f

0
(s)
�
dtds; (3.6)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1] :

Using the Cauchy-Bunyakowski-Schwartz inequality for double integrals,we may

write

1

2 (b� a)2

������
bZ
a

bZ
a

(p (x; t)� p (x; s))
�
f
0
(t)� f

0
(s)
�
dtds

������
�

0@ 1

2 (b� a)2

bZ
a

bZ
a

(p (x; t)� p (x; s))2 dtds

1A
1
2

�

0@ 1

2 (b� a)2

bZ
a

bZ
a

�
f
0
(t)� f

0
(s)
�2
dtds

1A
1
2

: (3.7)

However,

1

2 (b� a)2

bZ
a

bZ
a

(p (x; t)� p (x; s))2 dtds

1

b� a

bZ
a

p2 (x; t) dt�

0@ 1

b� a

bZ
a

p (x; t) dt

1A2

=
1

b� a

"�
x�

�
a+ h b�a

2

��3
+
�
b� h b�a

2
� x
�3

3
+
h3 (b� a)3

12

#

� (1� h)2
�
x� a+ b

2

�2
: (3.8)
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In addition, simple calculations show that�
x�

�
a+ h

b� a
2

��3
+

�
b� hb� a

2
� x
�3

= (b� a) (1� h)
"
3

�
x� a+ b

2

�2
+
(1� h)2 (b� a)2

4

#
(3.9)

and

1

2 (b� a)2

bZ
a

bZ
a

�
f
0
(t)� f

0
(s)
�2
dtds

=
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2
: (3.10)

Using (3.6)-(3.10), we deduce the �rst inequality.

Moreover, if  � f
0
(t) � � almost everywhere t on (a; b) ; then, by using Grüss

inequality, we have

0 � 1

b� a

bZ
a

�
f
0
(t)
�2
dt�

0@ 1

b� a

bZ
a

f
0
(t) dt

1A2

� 1

4
(�� )2 ;

which proves the last inequality of (3.4).

Remark 3.1 Since

3h2 � 3h+ 1 � 1; 8 h 2 [0; 1] :

and is minimum for h = 1
2
.

Thus, (3.4) shows an overall improvement in the inequality obtained by Barnett

et al. [12].

The following remark contains some special cases of (3.4):

Remark 3.2 (i) For h = 1, i.e., x = a+b
2
; (3.4) gives������(b� a) f (a) + f (b)2
�

bZ
a

f (t) dt

������
� (b� a)2

2
p
3

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

;

� 1

4
p
3
(�� ) (b� a)2

if  � f
0
(t) � � almost everywhere t on [a; b] ; (3.11)

which is trapezoid inequality.
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(ii) For h = 0 and x = a+b
2
; (3.4) gives������(b� a) f

�
a+ b

2

�
�

bZ
a

f (t) dt

������
� (b� a)2

2
p
3

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

;

� 1

4
p
3
(�� ) (b� a)2

if  � f
0
(t) � � almost everywhere t on [a; b] ; (3.12)

which is mid-point inequality.

(iii) For h = 1
2
and x = a+b

2
; (3.4) gives������f (a) + 2f

�
a+b
2

�
+ f (b)

4
� 1

b� a

bZ
a

f (t) dt

������
� (b� a)2

4
p
3

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

;

� 1

8
p
3
(�� ) (b� a)2

if  � f
0
(t) � � almost everywhere t on [a; b] ; (3.13)

which is an averaged mid-point and trapezoid inequality.

(iv) For h = 1
3
and x = a+b

2
; (3.4) gives������(b� a) f (a) + 4f

�
a+b
2

�
+ f (b)

6
�

bZ
a

f (t) dt

������
� (b� a)2

6

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

;

� 1

12
(�� ) (b� a)2 ;

if  � f
0
(t) � � almost everywhere t on (a; b) ; (3.14)

which is a variant of Simpson�s inequality for �rst di¤erentiable function f; f
0

is integrable and there exist constants ;� 2 R such that  � f
0
(t) � �; t 2

(a; b).

62



3.1.3 Application for Probability Density Functions

Let X be a continuous random variable having the probability density function

f : [a; b]! R+ and the cumulative distribution function F : [a; b]! [0; 1], i.e.,

F (x) =

xZ
a

f (t) dt; x 2
�
a+ h

b� a
2
; b� hb� a

2

�
� [a; b] ;

and

E (X) =

bZ
a

t f (t) dt;

is the expectation of the random variable X on the interval [a; b]. Then, we may

have the following.

Theorem 3.5 Under the above assumptions and if the probability density function

belongs to L2 [a; b] ; then we have the inequality����(1� h) �F (x)� 1

b� a

�
x� a+ b

2

��
+
h

2
� b� E (X)

b� a

����
� 1

b� a

"
1

12

�
3h2 � 3h+ 1

�
+ h (1� h)

�
x� a+ b

2

�2# 1
2

�

�
(b� a) kfk22 � 1

� 1
2 ;

� (M �m)
2 (b� a)

"
1

12

�
3h2 � 3h+ 1

�
+ h (1� h)

�
x� a+ b

2

�2# 1
2

;

if m � f �M almost everywhere on [a; b] ; (3.15)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
.

Proof. Put in (3.4), f = F to get (3.15).

Corollary 3.1 Under the above assumptions, we have����(1� h) Pr�X � a+ b

2

�
+
h

2
� b� E (X)

b� a

����
� 1

2
p
3

�
3h2 � 3h+ 1

� 1
2
�
(b� a) kfk22 � 1

� 1
2 ;

� 1

4
p
3

�
3h2 � 3h+ 1

� 1
2 (M �m) ; m � f �M as above. (3.16)
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3.1.4 Applications for generalized beta random variable

If X is a beta random variable with parameters �3 > �1; �4 > �1 and for �2 > 0

and any �1; the generalized beta random variable

Y = �1 + �2X;

is said to have a generalized beta distribution [51] and the probability density func-

tion of the generalized beta distribution of beta random variable is given as

f (x) =

8<:
(x��1)�3 (�1+�2�x)�4

�(�3+1;�4+1)�
(�3+�4+1)
2

; for �1 < x < �1 + �2

0; otherwise,

where � (l;m) is the beta function with l; m > 0 and is de�ned as

� (l;m) =

1Z
0

xl�1 (1� x)m�1 dx:

For p; q > 0 and h 2 [0; 1); we choose,

�1 =
h

2
;

�2 = (1� h) ;

�3 = p� 1;

�4 = q � 1:

Then, the probability density function associated with generalized beta random

variable

Y =
h

2
+ (1� h)X;

takes the form

f (x) =

8<:
(x�h

2 )
p�1
(1�h

2
�x)

q�1

�(p;q)(1�h)p+q�1 ; h
2
< x < 1� h

2

0; otherwise.

Now,

E (Y ) =

1�h
2Z

h
2

xf (x) dx

= (1� h) p

p+ q
+
h

2
: (3.17)
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and

kf (:; p; q)k22 =
1

(1� h) �2 (p; q)
� (2p� 1; 2q � 1) : (3.18)

Then, by Theorem 3.5, we may state the following:

Proposition 3.1 Let X be a beta random variable with parameters (p; q). Then for

generalized beta random variable

Y =
h

2
+ (1� h)X;

we have the inequality�����Pr (Y � x)� x+ 12
�
� q

p+ q

����
�

"
1

12

�
3h2 � 3h+ 1

�
+ h (1� h)

�
x� 1

2

�2# 1
2

�

�
� (2p� 1; 2q � 1)� (1� h) �2 (p; q)

� 1
2

(1� h)
3
2 � (p; q)

; (3.19)

for all x 2
�
h
2
; 1� h

2

�
.

In particular, for x = 1
2
in (3.19), we have:����Pr�Y � 1

2

�
� q

p+ q

����
� 1

2
p
3

�
3h2 � 3h+ 1

� 1
2

�
� (2p� 1; 2q � 1)� (1� h) �2 (p; q)

� 1
2

(1� h)
3
2 � (p; q)

:

3.1.5 Applications for Special Means

Example 4 Consider the mapping f (x) = xp, p 2 R n f�1; 0g. Then

1

b� a

Z b

a

f (t) dt = Lpp (a; b) ;

f (b)� f (a)
b� a = pLp�1p�1;

f (a) + f (b)

2
=

ap + bp

2
= A (ap; bp)

and
1

b� a

f 02
2
=

1

b� a

Z b

a

���f 0 (t)���2 dt = p2L2(p�1)2(p�1):
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Therefore, (3.4) takes the form��(1� h) �xp � pLp�1p�1 (x� A (a; b))
�
+ hA (ap; bp)� Lpp

��
� jpj

"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h) (x� A)2

# 1
2

�

h
L
2(p�1)
2(p�1) � L

2(p�1)
p�1

i 1
2

(3.20)

Choose x = A in (3.20), to get��(1� h)Ap (a; b) + hA (ap; bp)� Lpp��
� (b� a)

2
p
3

�
3h2 � 3h+ 1

� 1
2 jpj

h
L
2(p�1)
2(p�1) � L

2(p�1)
p�1

i 1
2
;

which is minimum for h = 1
2
. Moreover for h = 1;��A (ap; bp)� Lpp��

� (b� a)
2
p
3
jpj
h
L
2(p�1)
2(p�1) � L

2(p�1)
p�1

i 1
2
:

Example 5 Consider the mapping f (x) = 1
x
;
�
x 2

�
a+ h b�a

2
; b� h b�a

2

�
� (0;1)

�
.

Then,

1

b� a

bZ
a

f (t) dt =
1

L
;

f (b)� f (a)
b� a = � 1

G2
;

f (a) + f (b)

2
=

A

G2
;

1

b� a

bZ
a

���f 0 (t)���2 dt =
a2 + ab+ b2

3a3b3

and

1

b� a

bZ
a

���f 0 (t)���2 dt� �f (b)� f (a)
b� a

�2
=
(b� a)2

3a3b3
:

Therefore, (3.4) becomes����(1� h) �1x + 1

G2
(x� A)

�
+ h

A

G2
� 1

L

����
�

"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h) (x� A)2

# 1
2

�

(b� a)p
3G3

: (3.21)
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Choosing x = A in (3.21), ����(1� h) 1A + h AG2 � 1

L

����
� (b� a)2

6G3
�
3h2 � 3h+ 1

� 1
2 :

If we choose x = L in (3.21), we get����(1� h) LG2 + (2h� 1) AG2 � h 1L
����

�
"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h) (L� A)2

# 1
2

�

(b� a)p
3G3

:

Example 6 Consider the mapping f (x) = lnx;
�
x 2

�
a+ h b�a

2
; b� h b�a

2

�
� (0;1)

�
.

Then

1

b� a

bZ
a

f (t) dt = ln I;

f (b)� f (a)
b� a =

1

L
;

f (a) + f (b)

2
= lnG;

1

b� a

bZ
a

���f 0 (t)���2 dt =
1

G2

and

1

b� a

bZ
a

���f 0 (t)���2 dt� �f (b)� f (a)
b� a

�2
=
L2 �G2
L2G2

:

Thus, (3.4) takes the form����ln x(1�h)GhI
� (1� h) x� A

L

����
�

"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h) (x� A)2

# 1
2

�

(L2 �G2)
1
2

LG
: (3.22)

For x = A; ����ln A(1�h)GhI

����
� (b� a) (3h2 � 3h+ 1)

1
2

2
p
3

(L2 �G2)
1
2

LG
:
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which for h = 1; takes the form ����ln GI
����

� (b� a) (L2 �G2)
1
2

2
p
3LG

:

Also, choosing x = I; we get����ln GhIh � (1� h) I � AL
����

�
"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h) (I � A)2

# 1
2

�

(L2 �G2)
1
2

LG
:

3.2 A generalized Ostrowski-Grüss type inequality for twice

di¤erentiable bounded mappings and applications

In this section, a generalized Ostrowski-Grüss type inequality for twice di¤eren-

tiable mappings in terms of the upper and lower bounds of the second derivative is

established. The inequality is applied to numerical integration.

3.2.1 Introduction

In [39], S. S. Dragomir and S. Wang proved the following Ostrowski type inequal-

ity in terms of lower and upper bounds of the �rst derivative which is known as

Ostrowski-Grüss type inequality. In [9], S. S. Dragomir and N. S. Barnett, proved

the following inequality:

Theorem 3.6 Let f : [a; b] �! R be continuous on [a; b] and twice di¤erentiable

on (a; b) and where the second derivative f
00
: (a; b) �! R satis�es the condition,

' � f 00 (x) � �, for all x 2 (a; b) ;

then, �����f(x) +
"
(b� a)2

24
+
1

2

�
x� a+ b

2

�2#
f
0
(b)� f 0(a)
b� a

�
�
x� a+ b

2

�
f
0
(x)� 1

b� a

bZ
a

f(t)dt

������
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� 1

8
(�� ')

�
1

2
(b� a) +

����x� a+ b2
�����2 ; (3.23)

for all x 2 [a; b].

In the following subsection, we establish a more general form of (3.23) and apply

the result to numerical integration.

3.2.2 Main Results

Theorem 3.7 Let f : [a; b] �! R be a continuous mapping on [a; b], and twice dif-

ferentiable on (a; b) with second derivative f
00
: (a; b) �! R satisfying the condition:

' � f 00 (x) � �; for all x 2
�
a+ h

b� a
2
; b� hb� a

2

�
:

It follows that,����(1� h) �f(x)� �x� a+ b2
�
f
0
(x)

�
+ h

f (a) + f (b)

2

+

"
1

2
(1� h)

�
x� a+ b

2

�2
� (3h� 1) (b� a)

2

24

#�
f
0
(b)� f 0(a)
b� a

�

� 1

b� a

bZ
a

f(t)dt

������
� 1

8
(�� ')

�
1

2
(b� a) (1� h) +

����x� a+ b2
�����2 ; (3.24)

for all x 2 [a+ h b�a
2
; b� h b�a

2
] and h 2 [0; 1].

Proof. The proof uses the following identity:

bZ
a

f(t)dt = (b� a) (1� h) f(x)� (b� a) (1� h)
�
x� a+ b

2

�
f
0
(x)

+h
b� a
2

(f (a) + f (b))� h
2 (b� a)2

8

�
f
0
(b)� f

0
(a)
�

+

bZ
a

K (x; t) f
00
(t) dt; (3.25)

for all x 2 [a+ h b�a
2
; b� h b�a

2
]; where the kernel K : [a; b]2 ! R is de�ned by

K(x; t) =

8<: 1
2

�
t�
�
a+ h b�a

2

��2
; if t 2 [a; x]

1
2

�
t�
�
b� h b�a

2

��2
; if t 2 (x; b]:
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This is a particular form of the identity given in ([36], page 67, Theorem 28).

Observe that the Kernel K satis�es the estimation

0 � K(x; t) �

8<: 1
2

��
b� h b�a

2

�
� x
�2
; x 2 [a+ h b�a

2
; a+b
2
)

1
2

�
x�

�
a+ h b�a

2

��2
; x 2

�
a+b
2
; b� h b�a

2

�
:

(3.26)

Applying Grüss inequality for the mappings f
00
(:) and K (x; :) we get,������ 1

b� a

bZ
a

K (x; t) f
00
(t) dt� 1

b� a

bZ
a

K (x; t) dt
1

b� a

bZ
a

f
00
(t) dt

������
� 1

4
(�� ')�

8<: 1
2

��
b� h b�a

2

�
� x
�2
; x 2 [a+ h b�a

2
; a+b
2
)

1
2

�
x�

�
a+ h b�a

2

��2
; x 2

�
a+b
2
; b� h b�a

2

�
:

(3.27)

Observe that,

bZ
a

K(x; t)dt =

xZ
a

�
t�
�
a+ h b�a

2

��2
2

dt+

bZ
x

�
t�
�
b� h b�a

2

��2
2

dt

=
1

6

"�
x�

�
a+ h

b� a
2

��3
+

��
b� hb� a

2

�
� x
�3

+
h3 (b� a)3

4

#

= (b� a) (1� h)
"
(b� a)2 (1� h)2

24
+
1

2

�
x� a+ b

2

�2#

+
h3 (b� a)3

24
: (3.28)

Using (3.28) in (3.27), we get������ 1

b� a

bZ
a

K (x; t) f
00
(t) dt

�
"
(b� a)2 (1� h)3

24
+
1

2
(1� h)

�
x� a+ b

2

�2

+
h3 (b� a)2

24

#�
f
0
(b)� f 0(a)
b� a

������
� 1

4
(�� ')�

8<: 1
2

��
b� h b�a

2

�
� x
�2
; x 2 [a+ h b�a

2
; a+b
2
)

1
2

�
x�

�
a+ h b�a

2

��2
; x 2

�
a+b
2
; b� h b�a

2

�
:
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Also, by using identity (3.25), the above inequality reduces to,����(1� h) �f(x)� �x� a+ b2
�
f
0
(x)

�
+ h

f (a) + f (b)

2

+

"
1

2
(1� h)

�
x� a+ b

2

�2
� (3h� 1) (b� a)

2

24

#�
f
0
(b)� f 0(a)
b� a

�

� 1

b� a

bZ
a

f(t)dt

������
� 1

4
(�� ')�

8<: 1
2

��
b� h b�a

2

�
� x
�2
; x 2 [a+ h b�a

2
; a+b
2
)

1
2

�
x�

�
a+ h b�a

2

��2
; x 2

�
a+b
2
; b� h b�a

2

�
:

Since,

max

(��
b� h b�a

2

�
� x
�2

2
;

�
x�

�
a+ h b�a

2

��2
2

)

=

8<: 1
2

��
b� h b�a

2

�
� x
�2
; x 2 [a+ h b�a

2
; a+b
2
)

1
2

�
x�

�
a+ h b�a

2

��2
; x 2

�
a+b
2
; b� h b�a

2

�
;

but on the other hand,

max

(��
b� h b�a

2

�
� x
�2

2
;

�
x�

�
a+ h b�a

2

��2
2

)

=
1

2

�
1

2
(b� a) (1� h) +

�
x� a+ b

2

��2
;

inequality (3.24) is proved.

Remark 3.3 For h = 0 in (3.24), we obtain (3.23).

Corollary 3.2 If f is as in Theorem 3.7, then we have the following perturbed

midpoint inequality:����(1� h) f(a+ b2 ) + h
f (a) + f (b)

2

�(3h� 1) (b� a)
24

�
f
0
(b)� f 0(a)

�
� 1

b� a

bZ
a

f(t)dt

������
� 1

32
(�� ') (b� a)2 (1� h)2 ; (3.29)

giving, ������f(a+ b2 ) +
(b� a)
24

�
f
0
(b)� f 0(a)

�
� 1

b� a

bZ
a

f(t)dt

������
� 1

32
(�� ') (b� a)2 ; (3.30)

71



for h = 0.

Remark 3.4 The classical midpoint inequality states that������f(a+ b2 )� 1

b� a

bZ
a

f (t) dt

������ � 1

24
(b� a)2

f 00
1
: (3.31)

If ��' � 4
3

f 001 ; then the estimation provided by (3.29) is better than estimation
in the classical midpoint inequality (3.31). A su¢ cient condition for � � ' �
4
3

f 001 to be true is 0 � ' � �. Indeed, if 0 � ' � �, then � � ' �
f 001 <

4
3

f 001.
Corollary 3.3 Let f be as in Theorem 3.7, then,������f(a) + f (b)2

� (b� a)
12

�
f
0
(b)� f 0(a)

�
� 1

b� a

bZ
a

f(t)dt

������
� 1

32
(�� ')h2 (b� a)2 : (3.32)

Proof. Put x = a and x = b in (3.24) and use the triangle inequality.

Corollary 3.4 Let f be as in Theorem 3.7, then we have the following perturbed

trapezoid inequality:������f(a) + f (b)2
� (b� a)

12

�
f
0
(b)� f 0(a)

�
� 1

b� a

bZ
a

f(t)dt

������
� 1

32
(�� ') (b� a)2 : (3.33)

Proof. Put h = 1 in (3.32).

Remark 3.5 The classical trapezoid inequality states that������f(a) + f (b)2
� 1

b� a

bZ
a

f (t) dt

������ � 1

12
(b� a)2

f 00
1
: (3.34)

If we assume that ��' � 2
3

f 001 ; then the estimation provided by (3.32) is better
than the estimation in the classical trapezoid inequality (3.34).
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3.2.3 Applications in Numerical Integration

Let In : a = x0 < x1 < � � � < xn�1 < xn = b be a division of the interval [a; b],

�i 2 [xi + � hi2 ; xi+1 � �
hi
2
]; (i = 0; 1; � � � ; n� 1) a sequence of intermediate points

and hi := xi+1 � xi; (i = 0; 1; � � � ; n� 1). Then, we have the following composite

quadrature rule:

Theorem 3.8 Let f be as in Theorem 3.7, then we have the following quadrature

formula:
bZ
a

f(t)dt = A
�
f; f

0
; In; �; �

�
+R

�
f; f

0
; In; �; �

�
; (3.35)

where

A
�
f; f

0
; In; �; �

�
= (1� �)

n�1X
i=0

hif(�i)

� (1� �)
n�1X
i=0

hi

�
�i �

xi + xi�1
2

�
f
0
(�i)

+�
n�1X
i=0

hi

�
f (xi) + f (xi+1)

2

�

+
n�1X
i=0

[
1

2
(1� �)

�
�i �

xi + xi+1
2

�2
�(3� � 1)h

2
i

24
]
�
f
0
(xi+1)� f

0
(xi)

�
(3.36)

and the remainder R
�
f; f

0
; In; �; �

�
satis�es the estimation:���R�f; f 0 ; In; �; �����

� 1

8
(�� ')

n�1X
i=0

hi

�
(1� �)
2

hi +

�����i � xi + xi+12

�����2

� 1

32
(�� ') (1� �)2

n�1X
i=0

h3i ; (3.37)

where � 2 [0; 1] and xi + � hi2 � �i � xi+1 � �
hi
2
.
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Proof. Applying Theorem 3.7 on the interval [xi; xi+1] (i = 0; � � � ; n� 1) gives:����(1� �) �hif(�i)� hi��i � xi + xi+12

�
f
0
(�i)

�
+ �hi

�
f (xi) + f (xi+1)

2

�
+

"
1

2
(1� �)

�
�i �

xi + xi+1
2

�2
� (3� � 1)h

2
i

24

#�
f
0
(xi+1)� f

0
(xi)

�

�
xi+1Z
xi

f (t) dt

������
� 1

8
(�� ')hi

�
1

2
(1� �)hi +

�����i � xi + xi+12

�����2 ;
� 1

8
(�� ') (1� �)2 h3i

as �����i � xi + xi+12

���� � (1� �) hi2 for all i 2 f0; 1; :::; n� 1g
for any choice �i of the intermediate points.

Summing the above inequalities over i from 0 to n�1, and using the generalized

triangle inequality, we get the desired estimation (3.37).

Corollary 3.5 The following perturbed midpoint rule holds:

bZ
a

f (x) dx =M
�
f; f

0
; In

�
+RM

�
f; f

0
; In

�
;

where

M
�
f; f

0
; In

�
=

n�1X
i=0

hi f

�
xi + xi+1

2

�
+
1

24

n�1X
i=0

h2i

�
f
0
(xi+1)� f

0
(xi)

�
(3.38)

and the remainder term RM(f; f
0
; In) satis�es the estimation:���RM(f; f 0 ; In)��� � 1

32
(�� ')

n�1X
i=0

h3i : (3.39)

Corollary 3.6 The following perturbed trapezoid rule holds:Z b

a

f (x) dx = T
�
f; f

0
; In

�
+RT

�
f; f

0
; In

�
(3.40)

where

T
�
f; f

0
; In

�
=

n�1X
i=0

hi
f (xi) + f (xi+1)

2
� 1

12

n�1X
i=0

h2i

�
f
0
(xi+1)� f

0
(xi)

�
(3.41)
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and the remainder term RT
�
f; f

0
; In
�
satis�es the estimation:

���RT �f; f 0 ; In���� � 1

8
(�� ')

n�1X
i=0

h3i : (3.42)

Remark 3.6 Note that the above mentioned perturbed midpoint formula (3.28) and

perturbed trapezoid formula (3.41) can o¤er better approximations of the integral
bR
a

f (x) dx for general classes of mappings as discussed in Remarks 3.4 and 3.5.

3.3 A generalization of Ostrowski-Grüss type inequality for

twice di¤erentiable mappings in Euclidean norm

In this section, we improve and further generalize Ostrowski-Grüss type inequality

involving twice di¤erentiable functions. Some applications for probability density

function and generalized beta random variable are also given.

3.3.1 Introduction

The Ostrowski-Grüss type inequality for �rst di¤erentiable mappings has been ex-

tended by P. Cerone, S. S. Dragomir and J. Roumeliotis for twice di¤erentiable

mappings in [21] and the inequality is stated in the form of following theorem:

Theorem 3.9 Let f : I �! R; where I � R is an interval. Suppose that f is twice

di¤erentiable in the interior I0 of I, and let a; b 2 I0 with a < b. If

 � f 00 (x) � �;

for some constants ;� 2 R; then�����f(x) +
 
(b� a)2

24
+
1

2

�
x� a+ b

2

�2!
f
0
(b)� f 0(a)
b� a

�
�
x� a+ b

2

�
f
0
(x)� 1

b� a

bZ
a

f(t)dt

������
� 1

8
(�� )

�
1

2
(b� a) +

����x� a+ b2
�����2 ; (3.43)

for all x 2 [a; b].
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In 2000, M. Matíc, J. Peµcaríc and N. Ujevíc [61], by the use of pre-Grüss in-

equality improved Theorem 3.9 as follows:

Theorem 3.10 Let the assumptions of Theorem 3.9 hold, then for all x 2 [a; b] ;

we have �����f(x) +
 
(b� a)2

24
+
1

2

�
x� a+ b

2

�2!
f
0
(b)� f 0(a)
b� a

�
�
x� a+ b

2

�
f
0
(x)� 1

b� a

bZ
a

f(t)dt

������
� (�� ) l

6
p
5

q
l2 + 15�2; (3.44)

where

l =
b� a
2

and � = x� a+ b
2
:

This result has been further improved by X. L. Cheng in [23] as follows:

Theorem 3.11 Let the assumptions of Theorem 3.9 hold. Then for all x 2 [a; b] ;

we have �����f(x) +
 
(b� a)2

24
+
1

2

�
x� a+ b

2

�2!
f
0
(b)� f 0(a)
b� a

�
�
x� a+ b

2

�
f
0
(x)� 1

b� a

bZ
a

f(t)dt

������
� (�2 � 2)G (a; b; x) ; (3.45)

where

G (a; b; x) =

8>>>>>>><>>>>>>>:

1
3(b�a)

���(x� a) �x� a+b
2

�
(b� x)

��
+
�
1
12
(b� a)2 +

�
x� a+b

2

�2� 3
2

�
; a � x � 1

3
(2a+ b) ;

1
3
(a+ 2b) � x � b;

2
3(b�a)

�
1
12
(b� a)2 +

�
x� a+b

2

�2� 3
2
; 1

3
(2a+ b) � x � 1

3
(a+ 2b) :

Further, in [61] we can �nd the special cases of (3.44) i.e., midpoint and trapezoid

inequalities in the form of following corollary:

Corollary 3.7 Let the assumptions of Theorem 3.9 hold. Then������f
�
a+ b

2

�
+
1

24
(b� a)

�
f
0
(b)� f 0 (a)

�
� 1

b� a

bZ
a

f (t) dt

������
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� 1

24
p
5
(�� ) (b� a)2 : (3.46)

Also, ������f (a) + f (b)2
� 1

12
(b� a)

�
f
0
(b)� f 0 (a)

�
� 1

b� a

bZ
a

f (t) dt

������
� 1

6
p
5
(�� ) (b� a)2 : (3.47)

Moreover, in [101], a sharp Simpson�s inequality for absolutely continuous func-

tions with derivatives, which belong to L2 (a; b) was given as follows:

Theorem 3.12 Let f : [a; b] ! R be an absolutely continuous function, whose

derivative f
0
2 L2 (a; b). Then������b� a6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
�

bZ
a

f (t) dt

������
� (b� a)

3
2

6

"f 02
2
� (f (b)� f (a))

2

b� a

# 1
2

: (3.48)

The inequality is sharp in the sense that the constant 1
6
cannot be replaced by a

smaller one.

We know that for two mappings f; g : [a; b] ! R; the µCeby�ev functional is

denoted by T (f; g) and is de�ned as:

T (f; g) =
1

b� a

bZ
a

f (t) g (t) dt� 1

b� a

bZ
a

f (t) dt
1

b� a

bZ
a

g (t) dt;

provided that f; g and fg are integrable on [a; b].

Also in [61], we can �nd the pre-Grüss inequality as

T 2 (f; g) � T (f; f)T (g; g) ;

where f; g 2 L2 [a; b] and T (f; g) is the µCeby�ev functional as de�ned above.

Moreover, we will use the Korkine�s identity (see [52]) which is de�ned as

1

b� a

bZ
a

f (t) g (t) dt� 1

b� a

bZ
a

f (t) dt
1

b� a

bZ
a

g (t) dt

=
1

2 (b� a)2

bZ
a

bZ
a

(f (t)� f (s)) (g (t)� g (s)) dtds;
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provided that f; g : [a; b]! R are measurable and all the involved integrals exists.

In the following subsection, we improve and further generalize, by the use of

µCeby�ev functional, the M. Matíc et al. [61] results by providing �rst membership

of the right side of (3.44) in terms of Euclidean norm. The bound in (3.44) is given in

terms of functions whose derivatives are bounded whereas the right membership of

the new inequality is in terms of larger class of absolutely continuous functions whose

second derivative f
00 2 L2 (a; b) which enlarges the applicability of the underlying

quadrature rules. Some applications for probability density function and generalized

beta random variable are also given.

3.3.2 Main Results

Theorem 3.13 Let f : [a; b]! R be a mapping whose �rst derivative is absolutely

continuous and the second derivative f
00
2 L2 (a; b). Then we have the inequality����(1� h) �f (x)� �x� a+ b2
�
f
0
(x)

�
+ h

f (a) + f (b)

2

�
"
1

24
(3h� 1) (b� a)2 � 1

2
(1� h)

�
x� a+ b

2

�2#
f
0
(b)� f 0 (a)
b� a

� 1

b� a

bZ
a

f (t) dt

������
� (b� a)2

24 1

2880

�
4� 15h+ 15h2

�
+
1

24
(2� 3h) (1� h)

 
x� a+b

2

b� a

!2

+
1

4
h (1� h)

 
x� a+b

2

b� a

!435 1
2 "

1

b� a

f 002
2
�
�
f
0
(b)� f 0 (a)
b� a

�2# 1
2

� 1

2
(�� ) (b� a)2

�
1

2880

�
4� 15h+ 15h2

�
+
1

24
(2� 3h) (1� h)

 
x� a+b

2

b� a

!2
+
1

4
h (1� h)

 
x� a+b

2

b� a

!435 1
2

;

if  � f 00 (t) � �; almost everywhere t on [a; b] ; (3.49)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].
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Proof. We de�ned in Section 3.2.1, the following kernel K : [a; b]2 ! R

K(x; t) =

8<: 1
2

�
t�
�
a+ h b�a

2

��2
; if t 2 [a; x]

1
2

�
t�
�
b� h b�a

2

��2
; if t 2 (x; b]:

Using Korkine�s identity for K and f
00
; we obtain

1

b� a

bZ
a

K (x; t) f
00
(t) dt� 1

b� a

bZ
a

K (x; t) dt
1

b� a

bZ
a

f
00
(t) dt

=
1

2 (b� a)2

bZ
a

bZ
a

(K (x; t)�K (x; s))
�
f
00
(t)� f 00 (s)

�
dtds; (3.50)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1]. Further in Section 3.2.1, we have

developed the following identities:

1

b� a

bZ
a

K (x; t) f
00
(t) dt

=
1

b� a

bZ
a

f(t)dt� h
2
(f (a) + f (b))� (1� h)

�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+
1

8
h2 (b� a)

�
f
0
(b)� f 0 (a)

�
;

1

b� a

bZ
a

K(x; t)dt =
1

24

�
3h2 � 3h+ 1

�
(b� a)2 + 1

2
(1� h)

�
x� a+ b

2

�2
;

and

1

b� a

bZ
a

f
00
(t) dt =

f
0
(b)� f 0 (a)
b� a :

Then, by (3.50), we get

1

b� a

bZ
a

f(t)dt� (1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
� h
2
(f (a) + f (b))

+

"
1

24
(3h� 1) (b� a)2 � 1

2
(1� h)

�
x� a+ b

2

�2#
f
0
(b)� f 0 (a)
b� a

=
1

2 (b� a)2

bZ
a

bZ
a

(K (x; t)�K (x; s))
�
f
00
(t)� f 00 (s)

�
dtds; (3.51)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].
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Using the Cauchy-Bunyakowski-Schwartz inequality for double integrals, we may

write ������ 1

2 (b� a)2

bZ
a

bZ
a

(K (x; t)�K (x; s))
�
f
00
(t)� f 00 (s)

�
dtds

������
�

0@ 1

2 (b� a)2

bZ
a

bZ
a

(K (x; t)�K (x; s))2 dtds

1A
1
2

�

0@ 1

2 (b� a)2

bZ
a

bZ
a

�
f
00
(t)� f 00 (s)

�2
dtds

1A
1
2

: (3.52)

However,

1

2 (b� a)2

bZ
a

bZ
a

(K (x; t)�K (x; s))2 dtds

=
1

b� a

bZ
a

K
2

(x; t) dt�

0@ 1

b� a

bZ
a

K (x; t) dt

1A2

; (3.53)

0@ 1

b� a

bZ
a

K (x; t) dt

1A2

= (b� a)4
�
1

576

�
1� 6h+ 15h2 � 18h3 + 9h4

�
+
1

24

�
1� 4h+ 6h2 � 3h3

� x� a+b
2

b� a

!2
+
1

4
(1� h)2

 
x� a+b

2

b� a

!435
(3.54)

and

1

b� a

bZ
a

K
2

(x; t) dt

=
1

20 (b� a)

"�
x�

�
a+ h

b� a
2

��5
+

�
b� hb� a

2
� x
�5

+
1

16
h5 (b� a)5

�
:

Taking t = x� a+b
2
; we have

x�
�
a+ h

b� a
2

�
= t+

1

2
(1� h) (b� a) ;

b� hb� a
2

� x =
1

2
(1� h) (b� a)� t:
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Thus, �
x�

�
a+ h

b� a
2

��5
+

�
b� hb� a

2
� x
�5

=

�
t+

1

2
(1� h) (b� a)

�5
+

�
1

2
(1� h) (b� a)� t

�5
:

For real numbers A and B, we have

A5 +B5 = (A+B)
h�
A2 +B2

�2 � (AB)2 � AB �A2 +B2�i :
Now, if A = t+ 1

2
(1� h) (b� a) ; B = 1

2
(1� h) (b� a)� t; then

A2 +B2 =

�
t+

1

2
(1� h) (b� a)

�2
+

�
1

2
(1� h) (b� a)� t

�2
= 2t2 +

(1� h)2 (b� a)2
2

;

AB =
1

4
(1� h)2 (b� a)2 � t2;

A+B = (1� h) (b� a):

Thus, �
x�

�
a+ h

b� a
2

��5
+

�
b� hb� a

2
� x
�5

= 5 (1� h) (b� a)5
24 1
80
(1� h)4 + 1

2
(1� h)2

 
x� a+b

2

b� a

!2
+

 
x� a+b

2

b� a

!435 :
Therefore,

1

b� a

bZ
a

K
2

(x; t) dt

=
1

4
(b� a)4

�
1

80

�
1� 5h+ 10h2 � 10h3 + 5h4

�
+
1

2
(1� h)3

 
x� a+b

2

b� a

!2
+ (1� h)

 
x� a+b

2

b� a

!435 : (3.55)

Using (3.54) and (3.55) in (3.53), we get

1

2 (b� a)2

bZ
a

bZ
a

(K (x; t)�K (x; s))2 dtds

= (b� a)4
24 1

2880

�
4� 15h+ 15h2

�
+
1

24

�
2� 5h+ 3h2

� x� a+b
2

b� a

!2

+
1

4
h (1� h)

 
x� a+b

2

b� a

!435 : (3.56)
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Moreover,

1

2 (b� a)2

bZ
a

bZ
a

�
f
00
(t)� f 00 (s)

�2
dtds

=
1

b� a

f 002
2
�
�
f
0
(b)� f 0 (a)
b� a

�2
: (3.57)

Using (3.51)�(3.53), (3.56)�(3.57), we deduce the �rst inequality.

Moreover, if  � f 00 (t) � � almost everywhere t on (a; b) ; then, by using Grüss

inequality, we have

0 � 1

b� a

bZ
a

f
002
(t) dt�

0@ 1

b� a

bZ
a

f
00
(t) dt

1A2

� 1

4
(�� )2 ;

which proves the last inequality of (3.49).

Remark 3.7 (i) We can get the best estimation from (3.49), only when x = a+b
2

i.e., ����(1� h) f �a+ b2
�
+ h

f (a) + f (b)

2
� 1

24
(3h� 1) (b� a)2 f

0
(b)� f 0 (a)
b� a

� 1

b� a

bZ
a

f (t) dt

������
� 1

24
p
5
(b� a)2

�
4� 15h+ 15h2

� 1
2

"
1

b� a

f 002
2
�
�
f
0
(b)� f 0 (a)
b� a

�2# 1
2

� 1

48
p
5
(�� ) (b� a)2

�
4� 15h+ 15h2

� 1
2 ;

if  � f 00 (t) � �; almost everywhere t on [a; b] : (3.58)

As

4� 15h+ 15h2 � 4; 8 h 2 [0; 1] :

and is minimum for h = 1
2
; implies

1

48
p
5

�
4� 15h+ 15h2

� 1
2 � 1

24
p
5
:

Thus (3.49) shows an overall improvement of the inequality obtained by M.

Matíc et al. [61].
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(ii) For h = 1, i.e., x = a+b
2
; (3.49) gives������f (a) + f (b)2
� 1

12
(b� a)

�
f
0
(b)� f 0 (a)

�
� 1

b� a

bZ
a

f (t) dt

������
� 1

12
p
5
(b� a)2

"
1

b� a

f 002
2
�
�
f
0
(b)� f 0 (a)
b� a

�2# 1
2

� 1

24
p
5
(�� ) (b� a)2 ;

if  � f
00
(t) � �; almost everywhere t on [a; b] ; (3.59)

which is perturbed trapezoid inequality (corrected trapezoid rule)and it is not

di¢ cult to see that it is better than the simple trapezoid inequality.

(iii) For h = 0 and x = a+b
2
; (3.49) gives������f

�
a+ b

2

�
+
1

24
(b� a)

�
f
0
(b)� f 0 (a)

�
� 1

b� a

bZ
a

f (t) dt

������
� 1

12
p
5
(b� a)2

"
1

b� a

f 002
2
�
�
f
0
(b)� f 0 (a)
b� a

�2# 1
2

� 1

24
p
5
(�� ) (b� a)2 ;

if  � f 00 (t) � �; almost everywhere t on [a; b] ; (3.60)

which is perturbed mid-point inequality.

(iv) For h = 1
2
and x = a+b

2
; (3.49) gives������f (a) + 2f

�
a+b
2

�
+ f (b)

4
� 1

48
(b� a)

�
f
0
(b)� f 0 (a)

�
� 1

b� a

bZ
a

f (t) dt

������
� 1

48
p
5
(b� a)2

"
1

b� a

f 002
2
�
�
f
0
(b)� f 0 (a)
b� a

�2# 1
2

;

� 1

96
p
5
(�� ) (b� a)2 ;

if  � f 00 (t) � �; almost everywhere t on [a; b] ; (3.61)

which is a linear combination of Trapezoid and Mid-point rule.
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(v) For h = 1
3
and x = a+b

2
; (3.49) gives������f (a) + 4f
�
a+b
2

�
+ f (b)

6
� 1

b� a

bZ
a

f (t) dt

������
� 1

24
p
30
(b� a)2

"
1

b� a

f 002
2
�
�
f
0
(b)� f 0 (a)
b� a

�2# 1
2

;

� 1

48
p
30
(�� ) (b� a)2 ;

if  � f 00 (t) � �; almost everywhere t on [a; b] ; (3.62)

which is a variant of Simpson�s inequality for twice di¤erentiable function

f; f
00
is integrable and there exist constants ;� 2 R such that  � f 00 (t) � �;

t 2 (a; b).

The estimations (3.58), (3.59), (3.60), (3.61) and (3.62) are expressed in terms

of second derivative of the integrand which are useful when the higher derivatives

of f do not exist or are very large at some points in the domain. Moreover, the

three-point quadrature rule (3.61) which is a linear combination of Trapezoid and

Mid-point rule, o¤ers better estimations than the simple three-point Simpson�s rule

(3.62).

Remark 3.8 In [61], the result corresponding to (3.59) was given, but with 1
6
p
5

in place of our factor 1
24
p
5
showing an improvement of factor 1

4
as it can be seen

from (3.47). Also in [23], (3.59) was given with a factor of 1
18
p
3
which shows that

(3.59) also o¤ers better estimation than as given in [23]. Moreover, we have also

been able to present bounds for three-point quadrature rules as given in and (3.61)

where (3.61) is a extension of (3.49) for twice di¤erentiable mappings.

3.3.3 Application in Numerical integration

Let In : a = x0 < x1 < � � � < xn�1 < xn = b be a division of the interval [a; b] and

hi = xi+1� xi = h = (b�a)
n
; i = 0; � � � ; n� 1; then we have the following quadrature

formula:

Theorem 3.14 Let In be the subdivision of the interval [a; b] and let the assump-
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tions of Theorem 3.13 hold. Then,������
bZ
a

f (t) dt� (1� �)h
n�1X
i=0

�
f (�i)�

�
�i �

xi + xi+1
2

�
f
0
(�i)

�

+
n�1X
i=0

"
1

24
h2 (3� � 1)� 1

2
(1� �)

�
�i �

xi + xi+1
2

�2#�
f
0
(xi+1)� f

0
(xi)

�
��h
2

n�1X
i=0

[f (xi) + f (xi+1)]

�����
�

�
b� a
n

�2 24 1

2880

�
4� 15� + 15�2

�
+
1

24
(2� 3�) (1� �)

n�1X
i=0

 
�i �

xi+xi+1
2

h

!2

+
1

4
� (1� �)

n�1X
i=0

 
�i �

xi+xi+1
2

h

!435 1
2 "
b� a
n

f 002
2
�

n�1X
i=0

�
f
0
(xi+1)� f

0
(xi)

�2# 1
2

:

Proof. Apply inequality (3.49) on the interval [xi; xi+1], i = 0; � � � ; n�1 to get,������
xi+1Z
xi

f (t) dt� (1� �)h
�
f (�i)�

�
�i �

xi + xi+1
2

�
f
0
(�i)

�

+

"
1

24
h2 (3� � 1)� 1

2
(1� �)

�
�i �

xi + xi+1
2

�2#�
f
0
(xi+1)� f

0
(xi)

�
��h
2
[f (xi) + f (xi+1)]

����
� h

5
2

24 1

2880

�
4� 15� + 15�2

�
+
1

24
(2� 3�) (1� �)

 
�i �

xi+xi+1
2

h

!2

+
1

4
� (1� �)

 
�i �

xi+xi+1
2

h

!435 1
2
24 xi+1Z
xi

�
f
00
(t)
�2
dt�

�
f
0
(xi+1)� f

0
(xi)

�2
h

35 1
2

;

for all i = 0; � � � ; n� 1.

Summing over i from 0 to n�1, using triangular inequality and Cauchy-Schwartz

discrete inequality, we get,���R0
(f; f

0
; In; �; �)

���
�

n�1X
i=0

������
xi+1Z
xi

f (t) dt� (1� �)h
�
f (�i)�

�
�i �

xi + xi+1
2

�
f
0
(�i)

�

+

"
1

24
h2 (3� � 1)� 1

2
(1� �)

�
�i �

xi + xi+1
2

�2#�
f
0
(xi+1)� f

0
(xi)

�
��h
2
[f (xi) + f (xi+1)]

����
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� h
5
2

0@n�1X
i=0

0@24 1

2880

�
4� 15� + 15�2

�
+
1

24
(2� 3�) (1� �)

 
�i �

xi+xi+1
2

h

!2

+
1

4
� (1� �)

 
�i �

xi+xi+1
2

h

!435 1
2

1CA
21CA

1
2

�

0B@n�1X
i=0

0B@
24 xi+1Z
xi

�
f
00
(t)
�2
dt�

�
f
0
(xi+1)� f

0
(xi)

�2
h

35 1
2

1CA
21CA

1
2

� h2

24 1

2880

�
4� 15� + 15�2

�
+
1

24
(2� 3�) (1� �)

n�1X
i=0

 
�i �

xi+xi+1
2

h

!2

+
1

4
� (1� �)

n�1X
i=0

 
�i �

xi+xi+1
2

h

!435 1
2 "
h
f 002

2
�

n�1X
i=0

�
f
0
(xi+1)� f

0
(xi)

�2# 1
2

:

Thus, we get the required result.

Remark 3.9 Note that if we choose � = 1
2
; �i =

xi+xi+1
2

; then we get the quadrature

rule which is a linear combination of midpoint rule and trapezoid rule and it o¤ers

the best estimate.

3.3.4 Application for Probability Density Functions

Let X be a random variable having the probability density function f : [a; b]! R+
and the cumulative distribution function F : [a; b]! [0; 1], i.e.,

F (x) =

xZ
a

f (t) dt; x 2
�
a+ h

b� a
2
; b� hb� a

2

�
� [a; b] :

Then, we may have the following:

Theorem 3.15 Under the above assumptions and if the probability density function
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f belongs to L2 [a; b] ; then we have the inequality����(1� h) �F (x)� �x� a+ b2
�
f (x)

�
+
h

2
� b� E (X)

b� a

�
"
1

24
(3h� 1) (b� a)2 � 1

2
(1� h)

�
x� a+ b

2

�2#
f (b)� f (a)

b� a

�����
� (b� a)2

24 1

2880

�
4� 15h+ 15h2

�
+
1

24
(2� 3h) (1� h)

 
x� a+b

2

b� a

!2

+
1

4
h (1� h)

 
x� a+b

2

b� a

!435 1
2 "

1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

� (b� a)2 (M �m)
2

24 1

2880

�
4� 15h+ 15h2

�
+
1

24

�
2� 5h+ 3h2

� x� a+b
2

b� a

!2

+
1

4
h (1� h)

 
x� a+b

2

b� a

!435 1
2

;

if m � f 0 �M; almost everywhere on [a; b] ; (3.63)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].

Proof. Put in (3.49), f = F to get (3.63).

Corollary 3.8 Under the above assumptions, we have����(1� h) Pr�X � a+ b

2

�
+
h

2
� b� E (X)

b� a � (3h� 1)
24

(b� a) (f (b)� f (a))
����

� 1

24
p
5

�
4� 15h+ 15h2

� 1
2 (b� a)2

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

� 1

48
p
5
(M �m)

�
4� 15h+ 15h2

� 1
2 (b� a)2 ;

if m � f 0 �M; almost everywhere on [a; b] : (3.64)

3.3.5 Application for generalized beta random variable

If X is a beta random variable with parameters �3 > �1; �4 > �1 and for �2 > 0

and any �1; the generalized beta random variable

Y = �1 + �2X;
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is said to have a generalized beta distribution [51] and the probability density func-

tion of the generalized beta distribution of beta random variable is,

f (x) =

8<:
(x��1)�3 (�1+�2�x)�4

�(�3+1;�4+1)�
(�3+�4+1)
2

; for �1 < x < �1 + �2

0; otherwise,

where � (l;m) is the beta function with l; m > 0 and is de�ned as

� (l;m) =

1Z
0

xl�1 (1� x)m�1 dx:

For p; q > 0 and h 2 [0; 1); we choose,

�1 =
h

2
;

�2 = (1� h) ;

�3 = p� 1;

�4 = q � 1:

Then, the probability density function associated with generalized beta random

variable

Y =
h

2
+ (1� h)X;

takes the form

f (x) =

8<:
(x�h

2 )
p�1
(1�h

2
�x)

q�1

�(p;q)(1�h)p+q�1 ; h
2
< x < 1� h

2

0; otherwise.

Now,

E (Y ) =

1�h
2Z

h
2

xf (x) dx

= (1� h) p

p+ q
+
h

2
:

df (x; p; q)

dx
=

�
x� h

2

�p�2 �
1� h

2
� x
�q�2

(1� h)p+q�1 � (p; q)
��

(p� 1)� (p� q) h
2
� (p+ q � 2)x

�
;
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and f 0 (:; p; q)2
2
=

1

(1� h)3 �2 (p; q)
�
(p� 1)2 � (2p� 3; 2q � 1)

+ (q � 1)2 � (2p� 1; 2q � 3)

�2 (p� 1) (q � 1) � (2p� 2; 2q � 2)] :

Then, by Theorem 3.14, we may state the following:

Proposition 3.2 Let X be a beta random variable with parameters (p; q). Then,

for generalized beta random variable

Y =
h

2
+ (1� h)X;

we have the inequality����(1� h) �Pr (Y � x)� �x� 12
�
f (x)� q

p+ q

�
�
"
1

24
(3h� 1)� 1

2
(1� h)

�
x� 1

2

�2#
(f (1)� f (0))

�����
� 1

(1� h)
3
2 � (p; q)

�
1

2880

�
4� 15h+ 15h2

�
+

1

24
(2� 3h) (1� h)

�
x� 1

2

�2
+
1

4
h (1� h)

�
x� 1

2

�4# 1
2

��
(p� 1)2 � (2p� 3; 2q � 1) + (q � 1)2 � (2p� 1; 2q � 3)

�2 (p� 1) (q � 1) � (2p� 2; 2q � 2)

� (1� h)3 �2 (p; q) (f (1)� f (0))2
� 1
2 ; (3.65)

for all x 2
�
h
2
; 1� h

2

�
.

3.4 New Estimates for �rst the inequality of Ostrowski-

Grüss type and applications in numerical integration

In this section, some error bounds for the �rst inequalities of Ostrowski-Grüss type

are obtained. These bounds provide some new and better estimates. Applications

in numerical integration are also given.
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3.4.1 Introduction

In [97], N. Ujevíc gave the following estimation of �rst inequality of Osrowski-Grüss

type derived by S. S. Dragomir and S. Wang in [39].

Theorem 3.16 Let f : I ! R; where I � R is an interval, be a di¤erentiable

mapping in the interior Int I of I, and let a; b 2 Int I; a < b. If there exists

constants ;� 2 R such that  � f 0 (t) � �;8 t 2 [a; b] and f 0 2 L1 (a; b) ; then we

have������f (x)�
�
x� a+ b

2

�
f (b)� f (a)

b� a � 1

b� a

bZ
a

f (t) dt

������ � b� a
2

(S � ) ; (3.66)

and������f (x)�
�
x� a+ b

2

�
f (b)� f (a)

b� a � 1

b� a

bZ
a

f (t) dt

������ � b� a
2

(�� S) ; (3.67)

where S = f(b)�f(a)
b�a .

The main aim of this section is to point out better estimations of (3.66), (3.67)

and to apply them in numerical integration. Some mid-point inequalities and cor-

rected trapezoid inequalities are also given.

3.4.2 Main Results

We prove the following result:

Theorem 3.17 Let f : I ! R; where I � R is an interval, be mapping di¤eren-

tiable in the interior Int I of I, and let a; b 2 Int I; a < b. If there exists some

constants ;� 2 R; such that  � f 0 (t) � �; 8 t 2 [a; b] and f 0 2 L1 (a; b) ; then we

have ������(1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f(t)dt

������
� 1

2

�
1� h2

�
(b� a)(S � ) (3.68)

and ������(1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f(t)dt

������
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� 1

2

�
1� h2

�
(b� a)(�� S); (3.69)

where S = f(b)�f(a)
b�a ; x 2

�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].

Proof. Let us consider the mapping p(:; :) : [a; b]2 �! R given by

p(x; t) =

8<: t�
�
a+ h b�a

2

�
; if t 2 [a; x]

t�
�
b� h b�a

2

�
; if t 2 (x; b];

(3.70)

where x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].

Integrating by parts, we successively have

1

b� a

bZ
a

p(x; t)f
0
(t)dt = (1� h) f (x) + hf (a) + f (b)

2
� 1

b� a

bZ
a

f(t)dt: (3.71)

Moreover,

1

(b� a)

bZ
a

p(x; t)dt = (1� h)
�
x� a+ b

2

�
(3.72)

and

1

(b� a)

bZ
a

f
0
(t)dt = f

0
(x): (3.73)

From (3.71), (3.72) and (3.73), we have

(1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+ h

f (a) + f (b)

2
� 1

b� a

Z b

a

f (t) dt

=
1

(b� a)

bZ
a

p(x; t)f
0
(t)dt� 1

(b� a)2

bZ
a

p(x; t)dt

bZ
a

f
0
(t)dt: (3.74)

We denote

Rn(x) =
1

(b� a)

bZ
a

f
0
(t)

0@p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

1A dt: (3.75)

If C 2 R is an arbitrary constant, then we also have

Rn(x) =
1

(b� a)

bZ
a

�
f
0
(t)� C

�0@p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

1A dt: (3.76)

Indeed
bZ
a

0@p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

1A dt = 0: (3.77)
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If we choose C =  in (3.76)

Rn(x) =
1

(b� a)

bZ
a

�
f
0
(t)� 

�0@p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

1A dt;
implies

jRn(x)j �
1

(b� a) supt2[a;b]

������p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

������
�

bZ
a

���f 0(t)� ��� dt: (3.78)

Since

sup
t2[a;b]

������p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

������ = (1� h2) (b� a)
2

(3.79)

and as
bZ
a

���f 0(t)� ��� dt = (S � ) (b� a): (3.80)

From (3.78), (3.79) and (3.80), we have

jRn(x)j �
(1� h2) (b� a)

2
(S � ) : (3.81)

Next, we choose C = � in (3.76)

Rn(x) =
1

(b� a)

bZ
a

�
f
0
(t)� �

�0@p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

1A dt;
implies

jRn(x)j �
1

(b� a) supt2[a;b]

������p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

������ (3.82)

�
bZ
a

����f 0(t)� ����� dt
and as

bZ
a

����f 0(t)� ����� dt = (�� S) (b� a); (3.83)

from (3.79), (3.82) and (3.83), we have

jRn(x)j �
(1� h2) (b� a)

2
(�� S) :

This completes the proof.
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Remark 3.10 For h = 0 in Theorem 3.17, we recapture the results of Theorem

3.16.

Corollary 3.9 Let f be as in Theorem 3.17, then we have the inequalities:

j (1� h)
f(a+ h b�a

2
) + f(b� h b�a

2
)

2
+ h

f (a) + f (b)

2

�(1� h) (b� a)
4

�
f
0
(b� hb� a

2
)� f 0(a+ hb� a

2
)

�

� 1

b� a

bZ
a

f(t)dtj

� (1� h2) (b� a)
2

(S � ) ; (3.84)

and

j (1� h)
f(a+ h b�a

2
) + f(b� h b�a

2
)

2
+ h

f (a) + f (b)

2

�(1� h) (b� a)
4

�
f
0
(b� hb� a

2
)� f 0(a+ hb� a

2
)

�

� 1

b� a

bZ
a

f(t)dtj

� (1� h2) (b� a)
2

(�� S); (3.85)

where h 2 [0; 1].

Proof. Putting in (3.68) x = a + h b�a
2
and x = b � h b�a

2
and then using the

triangular inequality on the summoned of the two inequalities, we get the required

inequality (3.84), and by the same substitution in (3.69), we can get (3.85).

Remark 3.11 If we choose in (3.84) and (3.85), h = 0; then we have the following

perturbed trapezoid inequalities which are better than as we can have from (3.66)

and (3.67). ������f(a) + f(b)2
� (b� a)

4

�
f
0
(b)� f 0(a)

�
� 1

b� a

bZ
a

f(t)dt

������
� (b� a)

2
(S � ) ; (3.86)
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and ������f(a) + f(b)2
� (b� a)

4

�
f
0
(b)� f 0(a)

�
� 1

b� a

bZ
a

f(t)dt

������
� (b� a)

2
(�� S): (3.87)

Remark 3.12 If we choose in (3.76) C = �+
2
; h = 0 and x = a; then x = b and

the summoned of the two inequalities is divided by 2; we get:������f(a) + f(b)2
� (b� a)

4

�
f
0
(b)� f 0(a)

�
� 1

b� a

bZ
a

f(t)dt

������ (3.88)

� (b� a)
8

(�� ):

Remark 3.13 If we put h = 0; x = a+b
2
in (3.68) and (3.69) and add the results

we have the midpoint inequality as:������f(a+ b2 )� 1

b� a

bZ
a

f(t)dt

������ � (b� a)
4

(�� ): (3.89)

Remark 3.14 If we put h = 1
3
; x = a+b

2
in (3.68) and (3.69) and add the results

we have the Simpson�s inequality as:������16
�
f (a) + 4f(

a+ b

2
) + f (b)

�
� 1

b� a

bZ
a

f(t)dt

������ � 2

9
(b� a)(�� ): (3.90)

Remark 3.15 If we put h = 1
2
; x = a+b

2
in (3.68) and (3.69) and add the results

we have the averaged midpoint trapezoid inequality as:������12
�
f(
a+ b

2
) +

f (a) + f (b)

2

�
� 1

b� a

bZ
a

f(t)dt

������ � 3

16
(b� a)(�� ): (3.91)

We now present a result of L2 (a; b).

Theorem 3.18 Let f : I ! R; where I � R is an interval, be continuously twice

di¤erentiable mapping in the interior Int I of I; with f
00
2 L2(a; b), and let a; b 2

Int I; a < b; then we have������(1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f(t)dt

������
� (b� a)1=2

�

�
"
h (1� h)

�
x� a+ b

2

�
+
(b� a)2

12

�
h3 + (1� h)3

�#1=2 f 00
2
; (3.92)
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for all x 2 [a; b].

Proof. From (3.74) and (3.75), we get

Rn(x) = (1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f(t)dt:

(3.93)

If we choose C = f
0
(a+b
2
) in (3.76) and use the Cauchy-Schwarz inequality, then

we get

jRn(x)j

� 1

(b� a)

bZ
a

����f 0(t)� f 0(a+ b2 )

����
������p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

������ dt
� 1

(b� a)

24 bZ
a

�
f
0
(t)� f 0

�
a+ b

2

��2
dt

351=2

�

264 bZ
a

0@p(x; t)� 1

(b� a)

bZ
a

p(x; s)ds

1A2

dt

375
1=2

: (3.94)

By using the Diaz-Metcalf inequality (see Theorem 1.10) for t1 = t2 = a+b
2
, we get

bZ
a

�
f
0
(t)� f 0

�
a+ b

2

��2
dt � (b� a)2

�2

f 002
2
: (3.95)

We have

bZ
a

0@p(x; t)dt� 1

(b� a)

bZ
a

p(x; s)ds

1A2

dt

=

bZ
a

p2(x; t)dt� 1

(b� a)

0@ bZ
a

p(x; s)ds

1A2

dt;

where
bZ
a

p2(x; t)dt =
(b� a)3
12

�
h3 + (1� h)3

�
+(1� h) (b� a)

�
x� a+ b

2

�2
and

1

(b� a)

0@ bZ
a

p(x; s)ds

1A2

= (b� a) (1� h)2 (x� a+ b
2
)2:
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Also
bZ
a

0@p(x; t)dt� 1

(b� a)

bZ
a

p(x; s)ds

1A2

dt

=
(b� a)3
12

�
h3 + (1� h)3

�
+ h (1� h) (b� a)

�
x� a+ b

2

�2
: (3.96)

With the help of (3.93), (3.94), (3.95) and (3.96) we get the required inequality.

3.4.3 Applications in Numerical Integration

Let In : a = x0 < x1 < x2 < :::: < xn�1 < xn = b be the division of the

interval [a; b]; �i 2 [xi + � hi2 ; xi+1 � �
hi
2
] (i = 1; 2; 3::::n� 1). We have the following

quadrature formula:

Theorem 3.19 Let f be as in Theorem 3.17, then for every partition In of [a; b] and

for every intermediate point vector � =
�
�0; �1; :::; �n�1

�
; satisfying �i 2

�
xi + �

hi
2
; xi+1 � � hi2

�
(i = 0; 1; :::; n� 1) ; � 2 [0; 1] ; then we have the following������

bZ
a

f(t)dt� A0
(f; f

0
; �; �; In)

������ � 1

2

�
1� �2

� n�1X
i=0

h2i (Si � ) (3.97)

and ������
bZ
a

f(t)dt� A0
(f; f

0
; �; �; In)

������ � 1

2

�
1� �2

� n�1X
i=0

h2i (�� Si) (3.98)

where

A
0
(f; f

0
; �; �; In) = (1� �)

 
n�1X
i=0

hif( �i)�
n�1X
i=0

hi

�
�i �

xi + xi+1
2

�
f
0
( �i)

!

��
n�1X
i=0

hi
f (xi) + f (xi+1)

2
; (3.99)

for all �i 2 [xi + � hi2 ; xi+1 � �
hi
2
]; � 2 [0; 1] and Si = f(xi+1)�f(xi)

2
; hi := xi+1 �

xi; (i = 0; :::; n� 1).

Proof. Apply Theorem 3.17 on the interval [xi; xi+1]; �i 2 [xi + � hi2 ; xi+1 � �
hi
2
]

where hi := xi+1 � xi, (i = 0; :::; n� 1) to get

j
xi+1Z
xi

f(t)dt� (1� �)
�
hif( �i)� hi

�
�i �

xi + xi+1
2

�
f
0
( �i)

�

� � hi
f (xi) + f (xi+1)

2
j

�
�
1� �2

�
2

h2i (Si � )
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and

j
xi+1Z
xi

f(t)dt� (1� �)
�
hif( �i)� hi

�
�i �

xi + xi+1
2

�
f
0
( �i)

�

� � hi
f (xi) + f (xi+1)

2
j

�
�
1� �2

�
2

hi
2(�� Si):

Summing over i from 0 to n � 1; we get and using the generalization triangle

inequality we have deduced the desired estimations (3.97) and (3.98).

3.5 Conclusion

In this chapter, we have presented some generalizations of Ostrowski-Grüss type

inequality for �rst and twice di¤erentiable functions in Euclidean norm and for

bounded functions. Since the bound in Ostrowski-Grüss inequality can be ap-

plied for absolutely continuous mappings whose �rst derivative is bounded, the

new inequalities can also be applied for the larger classes of absolutely continuous

mappings whose �rst or second derivatives are in L2 (a; b).

In Section 3.1, the generalized Ostrowski-Grüss type inequality (3.4) has an ad-

vantage on (3.3) obtained in [12] in a way that it not only recaptures the special

cases associated with (3.3) but can also present three-point inequalities of averaged

trapezoid and Simpson�s type. It also has applications in special means, for prob-

ability density functions, expectation of a random variable X and generalized beta

random variable.

In Section 3.2, we have presented a generalization of Ostrowski-Grüss type in-

equality for twice di¤erentiable with second derivative bounded obtained in ([9],

Section 5). Remark 3.4 and 3.5 show that the estimates of perturbed mid-point

and trapezoid inequalities presented in here are better than the classical estimates

for these inequalities.

Section 3.3 is concerned with a new generalization Of Ostrowski�s integral in-

equality that can be developed from Pre-Grüss and Grüss inequality. We have

improved the Matíc-Peµcaríc-Ujevic [61] result by providing a better bound for the

�rst membership of Ostrowski-Grüss type inequality for twice di¤erentiable func-

tions. As special cases tighter bounds for mid-point,trapezoid, averaged trapezoid
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and Simpson�s quadrature rules are also obtained and are shown to be better than

the these quadrature rules presented in [61] and [23].

In Section 3.4, we have presented a generalization of Ostrowski-Grüss type in-

equalities obtained in [97] for bounded �rst derivatives. The inequalities (3.68) and

(3.69) are more applicable than the �rst inequality of Osrowski-Grüss type derived

by S. S. Dragomir and S. Wang in [39] and the inequalities (3.66) and (3.67) ob-

tained in [97] because they can be applied for functions whose �rst derivative is

either bounded above or bounded below. Moreover, as special cases we can also get

the estimated for three-point inequalities in our case. A generalized version is also

obtained for higher class of functions with f
00 2 L2 (a; b) by using the Diaz-Metcalf

inequality.
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Chapter 4

Some product inequalities of Ostrowski,

µCeby�ev and Grüss type

For two measurable functions f; g : [a; b]! R, de�ne the functional,

T (f; g; a; b) :=
1

b� a

bZ
a

f (x) g (x) dx�

0@ 1

b� a

bZ
a

f (x) dx

1A0@ 1

b� a

bZ
a

g (x) dx

1A ;
which in literature is called the µCeby�ev functional, provided the involved integrals

exists.

Moreover, in 1882 P. L. µCeby�ev (see [64], p. 297) proved that, if f
0
; g

0 2

L1 [a; b] ; then

jT (f; g; a; b)j � 1

12
(b� a)2

f 0
1

g0
1
:

In the recent past, µCeby�ev functional has remained an area of special interest for

many researchers and has yielded many variants and generalizations in the �eld of

inequalities. It has also played a key role in obtaining some new inequalities of

Ostrowski type, for example, Ostrowski-Grüss type, Ostrowski-µCeby�ev type, etc.

The research papers [97, 76] cover a comprehensive literature on the generalizations

of µCeby�ev functional and its associated bounds.

We, in this chapter, present some extensions of product µCeby�ev type inequalities

for �rst and twice di¤erentiable functions.
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4.1 A note on the generalization of some new µCeby�ev type

inequalities

In this section, we present a generalized µCeby�ev type inequality for absolutely

continuous functions whose derivatives belong to Lp (a; b) ; p > 1. Applications for

probability density functions are also given.

4.1.1 Introduction

In [80], B. G. Pachpatte presented the following µCeby�ev type inequality for p-norm:

Theorem 4.1 Let f; g : [a; b]! R be absolutely continuous functions whose deriv-

atives f
0
; g

0
2 Lp (a; b) ; p > 1 then

jP (C;D; f; g)j � 1

(b� a)2
M

2
q

f 0
p

g0
p
; (4.1)

where

C =
1

3

�
f (a) + f (b)

2
+ 2f

�
a+ b

2

��
;

D =
1

3

�
g (a) + g (b)

2
+ 2g

�
a+ b

2

��
;

M =
(2q+1 + 1) (b� a)q+1

3 (q + 1) 6q
;

with 1
p
+ 1

q
= 1 and

kfkp =
�Z b

a

jf (t)jp dt
� 1

p

<1:

P (�; �; f; g) = �� � 1

b� a

0@� bZ
a

g (t) dt+ �

bZ
a

f (t) dt

1A
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A ; (4.2)

� and � are real constants.

Recently, in [56], Zheng Liu presented the following generalization of (4.1):
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Theorem 4.2 Let the assumptions of Theorem 4.1 hold, then for any � 2 [0; 1] ;

jP (��;��; f; g)j �
1

(b� a)2
M

2
q

�

f 0
p

g0
p
; (4.3)

where

M� =
�q+1 + (1� �)q+1

(q + 1) 2q
(b� a)q+1

and

�� =
�

2
[f (a) + f (b)] + (1� �) f

�
a+ b

2

�
;

�� =
�

2
[g (a) + g (b)] + (1� �) g

�
a+ b

2

�
:

In the following subsection, we obtain a generalization of the inequalities (4.1),

(4.3) and apply them to probability density functions.

4.1.2 Main Results

For suitable functions f; g : [a; b] ! R and h 2 [0; 1] ; we present the following

notations:

�h;x = (1� h) f (x) + h
�
(x� a) f (a) + (b� x) f (b)

b� a

�
;

�h;x = (1� h) g (x) + h
�
(x� a) g (a) + (b� x) g (b)

b� a

�
: (4.4)

and P (�; �; f; g) is as de�ned above in (4.2).

The following result holds:

Theorem 4.3 Let the assumptions of Theorem 4.1 hold, then for any h 2 [0; 1]

and x 2 [a; b] ; we have:

jP (�h;x;�h;x; f; g)j

� 1

(b� a)2
M

2
q

h;x

f 0
p

g0
p

(4.5)

where �h;x and �h;x are as de�ned by (4.4) and

Mh;x =
1

q + 1

�
hq+1 + (1� h)q+1

� �
(x� a)q+1 + (b� x)q+1

�
: (4.6)
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Proof. We de�ne the function

k (x; t;h) =

8<: t� (1� h) a� hx; t 2 [a; x] ;

t� hx� (1� h) b; t 2 (x; b]:

Then, we obtain the following identities:

�h;x �
1

b� a

bZ
a

f (t) dt =
1

b� a

bZ
a

k (x; t;h) f
0
(t) dt; (4.7)

�h;x �
1

b� a

bZ
a

g (t) dt =
1

b� a

bZ
a

k (x; t;h) g
0
(t) dt: (4.8)

Multiplying the left and right hand side of (4.7) and (4.8), we get,

P (�h;x;�h;x; f; g) =
1

(b� a)2

0@ bZ
a

k (x; t;h) f
0
(t) dt

1A0@ bZ
a

k (x; t;h) g
0
(t) dt

1A ;
implies

jP (�h;x;�h;x; f; g)j �
1

(b� a)2

0@ bZ
a

jk (x; t;h)j
���f 0 (t)��� dt

1A0@ bZ
a

jk (x; t;h)j
���g0 (t)��� dt

1A :
(4.9)

Thus, by using the Hölder�s integral inequality:

jP (�h;x;�h;x; f; g)j

� 1

(b� a)2

264
0@ bZ
a

jk (x; t;h)jq dt

1A
1
q
0@ bZ
a

���f 0 (t)���p dt
1A

1
p

375
�

264
0@ bZ
a

jk (x; t;h)jq dt

1A
1
q
0@ bZ
a

���g0 (t)���p dt
1A

1
p

375
=

1

(b� a)2

0@ bZ
a

jk (x; t;h)jq dt

1A
2
q f 0

p

g0
p
: (4.10)

From the de�nition of k (x; t;h) ; it follows that

bZ
a

jk (x; t;h)jq dt = 1

(q + 1)

�
hq+1 + (1� h)q+1

� �
(x� a)q+1 + (b� x)q+1

�
: (4.11)

By using (4.10)-(4.11), (4.5) follows.

102



Remark 4.1 For x = a+b
2
; h = 1

3
in (4.5), (4.1) is recaptured.

Remark 4.2 For x = a+b
2
in (4.5), (4.3) is recaptured.

We, now, state a special case of Theorem 4.3 in the form of the following corol-

lary:

Corollary 4.1 Let the assumptions of Theorem 4.1 hold, then���P ��1;a+b
2
;�1;a+b

2
; f; g

����
� 1

(b� a)2
M

2
q

1;a+b
2

f 0
p

g0
p

(4.12)

where

M1;a+b
2
=

1

2q (q + 1)
(b� a)q+1 ; (4.13)

and

�1;a+b
2
=
f (a) + f (b)

2
;

�1;a+b
2
=
g (a) + g (b)

2
: (4.14)

We, now apply (4.12) to probability density functions as follows:

4.1.3 Applications for Probability Density Functions

Let X be a continuous random variable with the probability density function f :

[a; b]! R+ and the expectation of X is given by

E (X) =

bZ
a

t f (t) dt: (4.15)

The cumulative distribution function F is given as:

F (x) =

xZ
a

f (t) dt; (4.16)

for x 2 [a; b] :

Moreover, let Y be another continuous variable with the probability density

function h : [a; b]! R+ and the expectation of Y is given by

E (Y ) =

bZ
a

t h (t) dt: (4.17)
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The cumulative distribution function H is given as:

H (y) =

yZ
a

h (t) dt; (4.18)

for y 2 [a; b] : Then,

bZ
a

F (x) dx = b� E (X) ;

F (a) = 0; F (b) = 1;

F (a) + F (b)

2
=

1

2
(4.19)

and

bZ
a

H (y) dy = b� E (Y ) ;

H (a) = 0; H (b) = 1;

H (a) +H (b)

2
=

1

2
: (4.20)

Proposition 4.1 Let X; Y; F and H be de�ned as above. Then, the following

holds:�����14
�
1�

�
E (Y )� E (X)

b� a

��
� 1

b� a

�
b� E (X) + E (Y )

2

� 
1�

b� E(X)+E(Y )
2

b� a

!�����
� 1

4

�
b� a
q + 1

� 2
q

kfkp khkp : (4.21)

Proof. By choosing f = F and g = H in (4.12)-(4.14) and simplifying with the

help of (4.15)-(4.20), we get the required inequality.

Remark 4.3 If in (4.21), we choose F = H; then we have:����12 � 1

b� a (b� E (X))
����

� 1

2

�
b� a
q + 1

� 1
q

khkp ; (4.22)

which is known in literature as "trapezoid inequality" for cumulative distribution

functions (see [36], p. 34 for f = H).
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4.2 Some new µCeby�ev type inequalities

In this section, some new µCeby�ev type inequalities have been developed by working

with functions whose �rst derivatives are absolutely continuous and the second

derivatives belong to the usual Lebesgue space L1 (a; b). A uni�ed treatment of the

special cases is also given.

4.2.1 Introduction

In [77], B. G. Pachpatte presented the following µCeby�ev type inequality via trape-

zoid like rules:

Theorem 4.4 Let f; g : [a; b] ! R be di¤erentiable functions so that f
0
; g

0
are

absolutely continuous on [a; b] ; then���P �_F ; _G; f; g���� � (b� a)4

144

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.23)

where

_

F =
f (a) + f (b)

2
� (b� a)

2

12

h
f
0
; a; b

i
;

_

G =
g (a) + g (b)

2
� (b� a)

2

12

h
g
0
; a; b

i
;

and

P (�; �; f; g) = �� � 1

b� a

0@� bZ
a

g (t) dt+ �

bZ
a

f (t) dt

1A
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A ;
h
f
0
; a; b

i
=

f (b)� f (a)
b� a :

Recently, in [56] Zheng Liu has presented the following generalization of (4.23):

Theorem 4.5 Let the assumptions of Theorem 4.4 hold, then for any � 2 [0; 1] ;���P �_��; _��; f; g
���� � (b� a)4 I2 (�)f 00 � hf 0 ; a; bi

1

g00 � hg0 ; a; bi
1
; (4.24)

where

I (�) =

8<: �3

3
� �

8
+ 1

24
; 0 � � � 1

2
;

1
8

�
� � 1

3

�
; 1
2
� � � 1;
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and

�� =
�

2
[f (a) + f (b)] + (1� �) f

�
a+ b

2

�
;

�� =
�

2
[g (a) + g (b)] + (1� �) g

�
a+ b

2

�
_

�� = �� +
1

24
(1� 3�) (b� a)2

h
f
0
; a; b

i
;

_

�� = �� +
1

24
(1� 3�) (b� a)2

h
g
0
; a; b

i
:

In the following subsection, by following an approach similar to that of [56] and

[77], we present some new µCeby�ev type inequalities.

4.2.2 Main Results

For suitable functions f; g : [a; b] ! R and h 2 [0; 1] ; we present the following

notations:
_

T h;x =
1

2
(2� h) f (x)� (1� h)

�
x� a+ b

2

�
f
0
(x)

+
h

2

�
(x� a) f (a) + (b� x) f (b)

b� a

�
;

_

Sh;x =
1

2
(2� h) g (x)� (1� h)

�
x� a+ b

2

�
g
0
(x)

+
h

2

�
(x� a) g (a) + (b� x) g (b)

b� a

�
;

_

Hh;x = (1� h) f (x) + h
�
(x� a) f (a) + (b� x) f (b)

b� a

�

� (1� h)2
�
x� a+ b

2

�
f
0
(x)� h

2

2

 
(b� x)2 f

0
(b)� (x� a)2 f

0
(a)

b� a

!
;

_

Lh;x = (1� h) g (x) + h
�
(x� a) g (a) + (b� x) g (b)

b� a

�

� (1� h)2
�
x� a+ b

2

�
g
0
(x)� h

2

2

 
(b� x)2 g

0
(b)� (x� a)2 g

0
(a)

b� a

!
;

Th;x =
_

T h;x +
1

4
(2� 3h)

h
f
0
; a; b

i
(b� a)2�(x) ;

Sh;x =
_

Sh;x +
1

4
(2� 3h)

h
g
0
; a; b

i
(b� a)2�(x) ;

Hh;x =
_

Hh;x +
1

2

�
3h2 � 3h+ 1

� h
f
0
; a; b

i
(b� a)2�(x)
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and

Lh;x =
_

Lh;x +
1

2

�
3h2 � 3h+ 1

� h
g
0
; a; b

i
(b� a)2�(x) ;

where

�(x) =
1

12
+

 
x� a+b

2

b� a

!2
(4.25)

and
h
f
0
; a; b

i
is de�ned as above.

Theorem 4.6 Let the assumptions of Theorem 4.4 hold, then for any h 2 [0; 1] ;

jP (Th;x; Sh;x; f; g)j

� 1

16
!2 (h) (b� a)4�2 (x)

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.26)

where �(x) ; Th;x and Sh;x are de�ned as above and

! (h) = 2h3 � 3h+ 2: (4.27)

Proof. We de�ne the kernel

K
0
(x; t;h) =

8<: 1
2
(t� a) (t� (1� h) a� hx) ; t 2 [a; x] ;
1
2
(t� b) (t� hx� (1� h) b) ; t 2 (x; b]:

Through simple calculations it can be shown that

1

b� a

bZ
a

f (t) dt� Th;x = I
�
f
0
; f

00
; a; b

�
; (4.28)

1

b� a

bZ
a

g (t) dt� Sh;x = I
�
g
0
; g

00
; a; b

�
; (4.29)

where

I
�
f
0
; f

00
; a; b

�
=

1

b� a

bZ
a

K
0
(x; t;h)

n
f
00
(t)�

h
f
0
; a; b

io
dt:

Multiplying the left and right hand side of (4.28) and (4.29), we get:

P (Th;x; Sh;x; f; g) = I
�
f
0
; f

00
; a; b

�
I
�
g
0
; g

00
; a; b

�
;

implies

jP (Th;x; Sh;x; f; g)j =
���I �f 0 ; f 00 ; a; b���� ���I �g0 ; g00 ; a; b���� : (4.30)
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Following an approach similar to [77], we calculate

���I �f 0 ; f 00 ; a; b���� � 1

b� a

bZ
a

���K 0
(x; t;h)

��� ���f 00 (t)� hf 0 ; a; bi��� dt
� 1

b� a

f 00 (t)� hf 0 ; a; bi
1

bZ
a

���K 0
(x; t;h)

��� dt: (4.31)

In a similar manner,

���I �g0 ; g00 ; a; b���� � 1

b� a

g00 (t)� hg0 ; a; bi
1

bZ
a

���K 0
(x; t;h)

��� dt: (4.32)

From the de�nition of K
0
(x; t;h) ; it follows that

1

b� a

bZ
a

���K 0
(x; t;h)

��� dt = 1

4
! (h) (b� a)2�(x) ; (4.33)

where �(x) and ! (h) are de�ned by (4.25) and (4.27).

By using (4.30)-(4.31) and (4.26) follows.

The following corollary of Theorem 4.6 holds:

Corollary 4.2 Let the assumptions of Theorem 4.4 hold, then for any h 2 [0; 1] ;���P �Th;a+b
2
; Sh;a+b

2
; f; g

����
� 1

2304
!2 (h) (b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.34)

where

Th;a+b
2

=
1

2
(2� h) f

�
a+ b

2

�
+
h

4
(f (a) + f (b))

+
1

48
(2� 3h)

h
f
0
; a; b

i
(b� a)2

and

Sh;a+b
2

=
1

2
(2� h) g

�
a+ b

2

�
+
h

4
(g (a) + g (b))

+
1

48
(2� 3h)

h
g
0
; a; b

i
(b� a)2 ;

! (h) is de�ned by (4.27).
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Remark 4.4 It may observed that for x = a+b
2
; the kernel de�ned in Theorem 4.6

takes the following form:

K
0
�
a+ b

2
; t;h

�
=

8<: 1
2
(t� a)

�
t�
�
a+ h b�a

2

��
; t 2

�
a; a+b

2

�
;

1
2
(t� b)

�
t�
�
b� h b�a

2

��
; t 2 (a+b

2
; b]:

We will now consider the following special cases of the above corollary:

The following special cases of Corollary 4.2 hold:

Remark 4.5 (i) For h = 0, (4.34) takes the form:���P �To;a+b
2
; So;a+b

2
; f; g

����
� 1

576
(b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.35)

with

To;a+b
2
= f

�
a+ b

2

�
+
1

24

h
f
0
; a; b

i
(b� a)2

and

So;a+b
2
= g

�
a+ b

2

�
+
1

24

h
g
0
; a; b

i
(b� a)2 :

(ii) For h = 1, (4.34) takes the form:���P �T
1;
a+b
2
; S

1;
a+b
2
; f; g

����
� 1

2304
(b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.36)

where

T
1;
a+b
2
=
1

4

�
f (a) + 2f

�
a+ b

2

�
+ f (b)

�
� 1

48

h
f
0
; a; b

i
(b� a)2

and

S
1;
a+b
2
=
1

4

�
g (a) + 2g

�
a+ b

2

�
+ g (b)

�
� 1

48

h
g
0
; a; b

i
(b� a)2 :

(iii) For h = 2
3
, (4.34) takes the form:����P �T 2

3
;a+b
2
; S

2
3
;a+b
2
; f; g

�����
� 1

6561
(b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.37)
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where

T
2
3
;a+b
2
=
1

6

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
and

S
2
3
;a+b
2
=
1

6

�
g (a) + 4g

�
a+ b

2

�
+ g (b)

�
:

It may also be noted that ! (h) is minimum for h = 1p
2
.

Theorem 4.7 Let the assumptions of Theorem 4.4 hold, then for any h 2 [0; 1] ;

jP (Hh;x; Lh;x; f; g)j

� 1

4
�2 (h) (b� a)4�2 (x)

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.38)

where �(x) ; Hh;x and Lh;x are as de�ned above and

� (h) = 3h2 � 3h+ 1: (4.39)

Proof. We de�ne the kernel

K1 (x; t;h) =

8<: 1
2
(t� (1� h) a� hx)2 ; t 2 [a; x] ;
1
2
(t� hx� (1� h) b)2 ; t 2 (x; b]:

Through simple calculations, it can be shown that

1

b� a

Z b

a

f (t) dt�Hh;x = J
�
f
0
; f

00
; a; b

�
; (4.40)

1

b� a

Z b

a

g (t) dt� Lh;x = J
�
g
0
; g

00
; a; b

�
; (4.41)

where

J
�
f
0
; f

00
; a; b

�
=

1

b� a

bZ
a

K1 (x; t;h)
n
f
00
(t)�

h
f
0
; a; b

io
dt:

Multiplying the left and right hand side of (4.40) and (4.41), we get:

P (Hh;x; Lh;x; f; g) = J
�
f
0
; f

00
; a; b

�
J
�
g
0
; g

00
; a; b

�
:

This implies

jP (Hh;x; Lh;x; f; g)j =
���J �f 0 ; f 00 ; a; b���� ���J �g0 ; g00 ; a; b���� : (4.42)
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By following an approach similar to [77], we calculate

���J �f 0 ; f 00 ; a; b���� � 1

b� a

bZ
a

jK1 (x; t;h)j
���f 00 (t)� hf 0 ; a; bi��� dt

� 1

b� a

f 00 (t)� hf 0 ; a; bi
1

bZ
a

jK1 (x; t;h)j dt: (4.43)

In a similar manner,

���J �g0 ; g00 ; a; b���� � 1

b� a

g00 (t)� hg0 ; a; bi
1

bZ
a

jK1 (x; t;h)j dt: (4.44)

From the de�nition of K1 (x; t;h) ; it follows that

1

b� a

bZ
a

jK1 (x; t;h)j dt =
1

2
� (h) (b� a)2�(x) ; (4.45)

where �(x) and � (h) are de�ned by (4.25) and (4.39).

Therefore (4.38) follows directly from (4.42)-(4.45).

The following corollary of Theorem 4.7 holds:

Corollary 4.3 Let the assumptions of Theorem 4.5 hold, then for any h 2 [0; 1] ;���P �Hh;a+b
2
; Lh;a+b

2
; f; g

����
� 1

576
�2 (h) (b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.46)

where

Hh;a+b
2
= (1� h) f

�
a+ b

2

�
+
h

2
(f (a) + f (b)) +

1

24
(1� 3h) (b� a)2

h
f
0
; a; b

i
;

and

Lh;a+b
2
= (1� h) g

�
a+ b

2

�
+
h

2
(g (a) + g (b)) +

1

24
(1� 3h) (b� a)2

h
g
0
; a; b

i
;

� (h) is de�ned by (4.39).

Remark 4.6 It may observed that for x = a+b
2
; the kernel de�ned in Theorem 4.7

takes the following form:

K1

�
a+ b

2
; t;h

�
=

8<: 1
2

�
t�
�
a+ h b�a

2

��2
; t 2

�
a; a+b

2

�
;

1
2

�
t�
�
b� h b�a

2

��2
; t 2 (a+b

2
; b]:
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The following special cases of Corollary 4.3 hold:

Remark 4.7 (i) For h = 0, (4.46) takes the form:���P �Ho;a+b
2
; Lo;a+b

2
; f; g

����
� 1

576
(b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.47)

with

Ho;a+b
2
= f

�
a+ b

2

�
+
1

24

h
f
0
; a; b

i
(b� a)2

and

Lo;a+b
2
= g

�
a+ b

2

�
+
1

24

h
g
0
; a; b

i
(b� a)2 :

(ii) For h = 1, (4.46) takes the form:���P �H
1;
a+b
2
; L

1;
a+b
2
; f; g

����
� 1

576
(b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.48)

where

H
1;
a+b
2
=
1

2
(f (a) + f (b))� 1

12

h
f
0
; a; b

i
(b� a)2

and

L
1;
a+b
2
=
1

2
(g (a) + g (b))� 1

12

h
g
0
; a; b

i
(b� a)2 :

(iii) For h = 1
2
, (4.46) takes the form,����P �H 1

2
;a+b
2
; L

1
2
;a+b
2
; f; g

�����
� 1

9216
(b� a)4

f 00 � hf 0 ; a; bi
1

g00 � hg0 ; a; bi
1
; (4.49)

where

H 1
2
;a+b
2
=
1

4

�
f (a) + 2f

�
a+ b

2

�
+ f (b)

�
� 1

48

h
f
0
; a; b

i
(b� a)2

and

L
1
2
;a+b
2
=
1

4

�
g (a) + 2g

�
a+ b

2

�
+ g (b)

�
� 1

48

h
g
0
; a; b

i
(b� a)2 :

It may also be noted that � (h) is minimum for h = 1
2
.
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4.3 An integral inequality involving product of monotonic

functions and applications

In this section, an integral inequality involving the product of two monotonic non-

decreasing functions have been developed. Moreover, using the underlying assump-

tions, we have also presented some special cases.

4.3.1 Introduction

Ostrowski type inequalities have been developed for di¤erent types of functions,

namely absolutely continuous function, function of bounded variation and monotonic

function, etc. In [29], S. S. Dragomir established the following Ostrowski�s inequal-

ity for monotonic mappings:

Theorem 4.8 Let f : [a; b]! R be a monotonic non-decreasing mapping on [a; b].

Then for all x 2 [a; b] ; we have the following inequality:������f (x)� 1

b� a

bZ
a

f (t) dt

������
� 1

b� a

8<:[2x� (a+ b)] f (x) +
bZ
a

sgn (t� x) f (t) dt

9=; ;
� 1

b� a [(x� a) (f (x)� f (a)) + (b� x) (f (b)� f (x))] ;

�
"
1

2
+

��x� a+b
2

��
b� a

#
(f (b)� f (a)) :

The constant 1
2
is the best possible one.

In [37], S. S. Dragomir et al. generalized the above theorem as follows:

Theorem 4.9 Let f : [a; b] ! R be a monotonic non-decreasing mapping on [a; b]
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and t1; t2; t3 2 [a; b] be such that t1 � t2 � t3. Then������
bZ
a

f (x) dx� [(t1 � a) f (a) + (t3 � t1) f (t2) + (b� t3) f (b)]

������
� (b� t3) f (b) + (2t2 � t1 � t3) f (t2)� (t1 � a) f (a) +

bZ
a

T (x) f (x) dx

� (b� t3) (f (b)� f (t3)) + (t3 � t2) (f (t3)� f (t2))

+ (t2 � t1) (f (t2)� f (t1)) + (t1 � a) (f (t1)� f (a))

� max ft1 � a; t2 � t1; t3 � t2; b� t3g (f (b)� f (a)) ;

where

T (x) =

8<: sgn (t1 � x) for x 2 [a; t2] ;

sgn (t3 � x) for x 2 [t2; b] :

The following known lemmas is useful in the sequel.

Lemma 4.1 (see [15]) Let p; � 2 [a; b] ! R be such that p is Riemann integrable

on [a; b] and � is monotonic non-decreasing on [a; b]. Then������
bZ
a

p (t) d� (t)

������ �
bZ
a

jp (t)j d� (t) :

In the following subsection, we present an integral inequality involving product

of two monotonic non-decreasing functions, thus providing a new estimation for

these type of inequalities in terms of the functional values of monotonic mappings.

The analysis is based on the inequality presented in [37].

4.3.2 Main Results

For the monotonic non-decreasing functions f; g : [a; b]! R; the following notations

are presented:

F =
1

b� a [(t1 � a) f (a) + (t3 � t1) f (t2) + (b� t3) f (b)] ;

G =
1

b� a [(t1 � a) g (a) + (t3 � t1) g (t2) + (b� t3) g (b)] : (4.50)
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We de�ne the functional

S (f; g) = �F �G� 1

b� a

24 �F bZ
a

g (t) dt+ �G

bZ
a

f (t) dt

35
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A ; (4.51)

Next, we consider the functional

H (f; g) = f (x) g (x)� 1

b� a

24f (x) bZ
a

g (t) dt+ g (x)

bZ
a

f (t) dt

35
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A : (4.52)

We shall start with the following:

Theorem 4.10 Let f; g : [a; b] ! R be a monotonic non-decreasing functions on

[a; b] and t1; t2; t3 2 [a; b] be such that t1 � t2 � t3: Then�� �S (f; g)�� � 1

(b� a)2
(max ft1 � a; t2 � t1; t3 � t2; b� t3g)2 �

(f (b)� f (a)) (g (b)� g (a)) : (4.53)

Proof. Using the identities developed in [37] by S. S. Dragomir et al.,

�F � 1

b� a

bZ
a

f (t) dt =
1

b� a

bZ
a

s (t) df (t) ; (4.54)

�G� 1

b� a

bZ
a

g (t) dt =
1

b� a

bZ
a

s (t) dg (t) ; (4.55)

where

s (t) =

8<: t� t1 for t 2 [a; t2] ;

t� t3 for t 2 (t2; b]:
Multiplying (4.54) and (4.55), we have

�S (f; g) =
1

(b� a)2

0@ bZ
a

s (t) df (t)

1A0@ bZ
a

s (t) dg (t)

1A : (4.56)

By using the properties of modulus and applying Lemma 4.1 for p (t) = s (t) and

� (t) for f (t) and g (t) respectively, we get

�� �S (f; g)�� � 1

(b� a)2

0@ bZ
a

js (t)j df (t)

1A0@ bZ
a

js (t)j dg (t)

1A : (4.57)
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As in [37],

bZ
a

js (t)j df (t)

= � (t1 � a) f (a) + (t2 � t1) f (t2)� (t3 � t2) f (t2)

+ (b� t3) f (b) +
bZ
a

T (t) f (t) dt;

where

T (t) =

8<: sgn (t1 � t) for t 2 [a; t2];

sgn (t3 � t) for t 2 (t2; b]:

Since f : [a; b]! R is monotonic non-decreasing in [a; b] ; following the same direc-

tion as explained in [37], we have

bZ
a

js (t)j df (t) � max ft1 � a; t2 � t1; t3 � t2; b� t3g (f (b)� f (a)) :

In a similar manner,

bZ
a

js (t)j dg (t) � max ft1 � a; t2 � t1; t3 � t2; b� t3g (g (b)� g (a)) :

Consequently (4.57) takes the form,

�� �S (f; g)�� � 1

(b� a)2
(max ft1 � a; t2 � t1; t3 � t2; b� t3g)2 �

(f (b)� f (a)) (g (b)� g (a)) ;

which is the required inequality.

The following corollaries hold:

Corollary 4.4 Let f; g be de�ned as above in Theorem 4.10. Then, for all x 2

[a; b] ; we have the following:

��H (f; g)��
� 1

(b� a)2
�
1

2
(b� a) +

����x� a+ b2
�����2 �

(f (b)� f (a)) (g (b)� g (a)) ;

where H (f; g) is de�ned by (4.52).
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Proof. Set in Theorem 4.10, t1 = a; t2 = x; t3 = b.

Corollary 4.5 Let f; g be de�ned as above in Theorem 4.10. Then, for all x 2

[a; b] ; we have the following:������F 0
G

0 � 1

b� a

24F 0

bZ
a

g (t) dt+G
0

bZ
a

f (t) dt

35
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A������
� 1

(b� a)2
�
1

2
(b� a) +

����x� a+ b2
�����2 � (f (b)� f (a)) (g (b)� g (a)) ;

where

F
0
=

1

b� a [(x� a) f (a) + (b� x) f (b)] ;

G
0
=

1

b� a [(x� a) g (a) + (b� x) g (b)] :

Proof. Set in Theorem 4.10, t1 = t2 = t3 = x.

Corollary 4.6 Let f; g be de�ned as above in Theorem 4.10. Then, for all x 2�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1] ; we have the following:������F1G1 � 1

b� a

24F1 bZ
a

g (t) dt+G1

bZ
a

f (t) dt

35
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A������
� 1

(b� a)2
�
max

�
h
b� a
2
;
1

2
(1� h) (b� a) +

����x� a+ b2
������2 �

(f (b)� f (a)) (g (b)� g (a)) ; (4.58)

where

F1 =
h

2
(f (a) + f (b)) + (1� h) f (x) ;

G1 =
h

2
(g (a) + g (b)) + (1� h) g (x) : (4.59)

Proof. Choose in Theorem 4.10, t1 = a+ h b�a2 ; t2 = x; t3 = b� h
b�a
2
.

Remark 4.8 Consider the following result as a special cases of Corollary 4.6.
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(i) For h = 1; we obtain:

F2 =
f (a) + f (b)

2
;

G2 =
g (a) + g (b)

2
;

~S (f; g) = F2G2 �
1

b� a

24F2 bZ
a

g (t) dt+G2

bZ
a

f (t) dt

35
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A :
Therefore, (4.58), becomes��� ~S (f; g)��� � 1

4
(f (b)� f (a)) (g (b)� g (a)) : (4.60)

(ii) For h = 1
2
and x = a+b

2
; s (t) is de�ned as

s (t) =

8<: t� 3a+b
4
if t 2 [a; a+b

2
];

t� a+3b
4
if t 2 (a+b

2
; b]:

Moreover, for the monotonic non-decreasing functions f; g : [a; b]! R, with

F3 =
1

2

�
f (a) + f (b)

2
+ f

�
a+ b

2

��
;

G3 =
1

2

�
g (a) + g (b)

2
+ g

�
a+ b

2

��
;

the functional de�ned by (4.51) takes the form

~S (f; g) = F3G3 �
1

b� a

24F3 bZ
a

g (t) dt+G3

bZ
a

f (t) dt

35
+

0@ 1

b� a

bZ
a

f (t) dt

1A0@ 1

b� a

bZ
a

g (t) dt

1A :
Therefore, (4.58), becomes��� ~S (f; g)��� � 1

16
(f (b)� f (a)) (g (b)� g (a)) : (4.61)

Similarly, we can obtain some more product inequalities as special cases of

(4.58) for di¤erent values of h.
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Remark 4.9 It is important to mention that the estimates of product inequalities

for monotonic non-decreasing functions are merely addressed in the literature of

integral inequalities except a lower bound of the µCeby�ev functional for monotonic

non-decreasing functions was obtained by P. Cerone and S. S. Dragomir in [18].

It may also be noted that some variants of µCeby�ev and Grüss type inequalities for

monotonic non-decreasing functions can also be obtained from (4.54) and (4.55),

by using the approach of ([78], Remark 4.1).

We, now apply (4.60) to probability density functions as follows:

4.3.3 Applications for probability density functions

Let X; Y; G and H be as in Section 4.1.3. Then the following proposition holds:

Proposition 4.2 Let X; Y; F and H be de�ned as above. Then, the following

holds:�����14
�
1�

�
E (Y )� E (X)

b� a

��
� 1

b� a

�
b� E (X) + E (Y )

2

� 
1�

b� E(X)+E(Y )
2

b� a

!�����
� 1

4
: (4.62)

Proof. By choosing f = F and g = H in (4.60) and simplifying with the help

of (4.15)-(4.20), we get the required inequality.

4.4 On µCeby�ev-Grüss type inequalities for spherical shells

and balls in Lp [a; b] ; p > 1

4.4.1 Introduction

Recently, in [3], Anastassiou has presented µCeby�ev-Grüss type inequalities on RN

over spherical shells and balls based on the results of B. G. Pachpatte [79]. The main

motivation of this work is to give µCeby�ev-Grüss inequalities of Pachpatte type for

Lp [a; b], p > 1 and then to extend these results on n-dimensional Euclidean space

over spherical shells and balls by using the tools of [3].

Now we would restate the geometries de�ned in [3].
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De�nition 4.1 (n-Ball) Let Rn be the n-dimensional Euclidean space. Then, a

hyperball or n-ball of radius R > 0, centered at p denoted by Bn; is de�ned as:

Bn (p;R) = fx 2 Rn : kx� pk < Rg ;

where k:k is the Euclidean norm.

De�nition 4.2 (n � 1-Sphere or Hypersphere) In mathematics, an n � 1-Sphere

Sn�1 is a generalization of an ordinary sphere to arbitrary dimension. For any

natural number n, an n � 1-sphere of radius R is de�ned as the set of points in

n-dimensional Euclidean space which are at distance R from a central point, where

the radius R may be any positive real number. The n � 1-sphere of unit radius

centered at the origin is denoted by Sn�1 and is de�ned as:

Sn�1 := fx 2 Rn : kxk = 1g ;

where k:k is the Euclidean norm.

De�nition 4.3 (Spherical Shell) A spherical shell is a generalization of an annulus

to three dimensions. A spherical shell is therefore the region between two concentric

balls of di¤ering radii. Let 0 < R1 < R2; then a spherical shell A � Rn; n � 1 is

de�ned as:

A = Bn (0; R2)�Bn (0; R1):

De�nition 4.4 (Radial functions) Let F;G 2 X
�
A
�
. Then, F and G are radial if

F (x) = f (r) and G (x) = g (r) for f; g 2 X ([R1; R2]) and kxk = r; for R1 � r �

R2.

De�nition 4.5 (Hyperspherical Volume) The hyperdimensional volume of the space

which a (n� 1)-sphere encloses (the n-ball with radius R) is de�ned as:

Vn =

Z
nP
i=0

x2i�R
dx =

Z
Sn�1

d


Z R

0

rn�1dr

=
2�

n
2

�
�
n
2

�Rn
n
=

�
n
2Rn

�
�
n
2
+ 1
� ;

where � is the gamma function.

De�nition 4.6 (Surface area of unit n�1�Sphere) The surface area of unit n�1-

sphere Sn�1 is given by:

!n =

Z
Sn�1

d! =
2�

n
2

�
�
n
2

� :
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4.4.2 µCeby�ev-Grüss type inequality for Lp � spaces; p > 1

Let w : [a; b] ! [0;1) be a probability density function, that is, an integrable

function satisfying
R b
a
w (t) dt = 1 and W be the corresponding cumulative distrib-

ution function. Then, W (t) =
R t
a
w (x) dx; for t 2 [a; b] ; W (t) = 0 for t < a and

W (t) = 1 for t > b. Then, the Pecaric�s weighted extension of Montgomery identity

[82] is given as:

f (x) =

Z b

a

w (t) f (t) dt+

Z b

a

Pw (x; t) f
0
(t) dt;

where

Pw (x; t) =

8<: W (t) ; a � t � x

W (t)� 1; x < t � b:

The following results hold by using the weighted Montgomery identity and Hölder�s

integral inequality:

Theorem 4.11 Let f; g : [a; b]! R be di¤erentiable on [a; b] and f 0 ; g0 : [a; b]! R

be such that f
0
; g

0 2 Lp (a; b). Let w : [a; b]! [0;1) be an integrable function withR b
a
w (t) dt = 1. Then

jT (w; f; g)j �
f 0

p

g0
p

bZ
a

w (x)

0@ bZ
a

jPw (x; t)jq dt

1A
2
q

dx; (4.63)

for x 2 [a; b] ; where

T (w; f; g) =

bZ
a

w (x) f (x) g (x) dx�

0@ bZ
a

w (x) f (x) dx

1A0@ bZ
a

w (x) g (x) dx

1A
and Pw (x; t) and W (t) are de�ned as above.

Theorem 4.12 Let f; g and w be as in Theorem 4.11. Then, the following in-

equality holds:

jT (w; f; g)j

� 1

2

bZ
a

w (x)

�
jg (x)j

f 0
p
+ jf (x)j

g0
p

�0@ bZ
a

jPw (x; t)jq dt

1A
1
q

dx; (4.64)

where T (w; f; g) and Pw (x; t) are de�ned as above.
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We, now, extend the inequalities (4.63) and (4.64) for spherical shells and balls

as follows:

Let Sn�1 be the unit sphere in Rn. Then, for x 2 Rn � f0g ; x = r!; where

r > 0; ! 2 Sn�1. Thus, kxk = r. Let

w (s) =
nsn�1

Rn2 �Rn1
; (4.65)

for 0 < R1 < R2; s 2 [R1; R2] be the probability density function and

W (s) =

Z s

R1

w (�) d� =
sn �Rn1
Rn2 �Rn1

; (4.66)

be the corresponding cumulative distribution function. Let A be a spherical shell,

region between two concentric balls of radii R1 and R2. Let F;G be di¤erentiable

on A and f; g be di¤erentiable on [R1; R2]. Then, the weighted Peano kernel and

the weighted Montgomery identity for spherical shells and balls can be written as:

Pw (r; s) =

8<: W (s) ; R1 � s � r

W (t)� 1; r < s � R2;
(4.67)

f (r) =

Z R2

R1

�
nsn�1

Rn2 �Rn1

�
f (s) ds+

Z R2

R1

Pw (r; s) f
0
(s) ds; (4.68)

and the µCeby�ev functional is given as:

~

T (F;G) : =

R
A
F (x)G (x) dx

V ol (A)
� 1

(V ol (A))2

�Z
A

F (x) dx

��Z
A

G (x) dx

�
=

n

!n (Rn2 �Rn1 )

Z
A

F (x)G (x) dx

�
�

n

!n (Rn2 �Rn1 )

�2�Z
A

F (x) dx

��Z
A

G (x) dx

�
; (4.69)

where V ol(A) is the volume of spherical shell region A and by using the concept

that

1

!n

Z
A

F (x)G (x) dx =
1

!n

Z
Sn�1

�Z R2

R1

f (r) rn�1dr

�
d!

=

Z R2

R1

f (r) rn�1dr;

we can write:

~

T (F;G) =
n

Rn2 �Rn1

Z R2

R1

f (r) g (r) rn�1dr

�
�

n

Rn2 �Rn1

�2�Z R2

R1

f (r) dr

��Z R2

R1

g (r) dr

�
= T (w; f; g) ; (4.70)
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with w de�ned by (4.65).

Now, the following inequalities hold:

Theorem 4.13 Let f; g be di¤erentiable on [R1; R2] and f
0
; g

0 2 Lp ([R1; R2]) ; then

the following inequality holds:���� ~T (F;G)���� � f 0
p

g0
p

n

(Rn2 �Rn1 )
3

R2Z
R1

rn�1I2q (r) dr; (4.71)

where

Iq (r) =

0@ rZ
R1

(sn �Rn1 )
q ds+

R2Z
r

(Rn2 � sn)
q ds

1A
1
q

(4.72)

and
~

T (F;G) is de�ned by (4.70).

Proof. Applying (4.65)-(4.70) on Theorem 4.11, we get the required result.

Theorem 4.14 Let f; g be as in Theorem 4.13, then the following inequality holds:���� ~T (F;G)����
� n

2 (Rn2 �Rn1 )
2

R2Z
R1

rn�1
�
jg (r)j

f 0
p
+ jf (r)j

g0
p

�
Iq (r) dr; (4.73)

where Iq (r) is de�ned by (4.72) and
~

T (F;G) is de�ned by (4.70).

Proof. Applying (4.65)-(4.70) on Theorem 4.12, we get the required result.

Theorem 4.15 Let F;G be di¤erentiable on A and F
0
; G

0 2 Lp
�
A
�
. Let F;G be

the radial functions, then from Theorem 4.13, we have:���� ~T (F;G)���� � @F@r

p

@G@r

p

n

(Rn2 �Rn1 )
3

R2Z
R1

rn�1I2q (r) dr;

or ���� ~T (F;G)���� � @F@r

p

@G@r

p

1

V ol (A)

Z
A

H2
q (kxk) dx; (4.74)

where Iq (r) is de�ned by (4.72) and

Hq (kxk) =
1

Rn2 �Rn1

0@ rZ
R1

(sn �Rn1 )
q ds+

R2Z
r

(Rn2 � sn)
q ds

1A
1
q

(4.75)

and
~

T (F;G) is de�ned by (4.69).
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Theorem 4.16 Let F, G be as in Theorem 4.15, then from Theorem 4.14, we have:���� ~T (F;G)����
� 1

2V ol (A)

Z
A

"
jG (x)j

@F@r

p

+ jF (x)j
@G@r


p

#
Hq (kxk) dx; (4.76)

where Hq (kxk) is de�ned by (4.75) and
~

T (F;G) is de�ned by (4.69).

The inequalities (4.74) and (4.76) de�ned over spherical shell can be transferred

over a ball Bn (0; R) by taking R := R2 and R > R1 ! 0 and the results are stated

in the form of the following theorems:

Theorem 4.17 Let F;G be di¤erentiable on Bn (0; R) and F 0
; G

0 2 Lp
�
Bn (0; R)

�
.

Let F;G be the radial functions, then from Theorem 4.15, we have:�������
1

V ol (Bn (0; R))

Z
Bn(0;R)

F (x)G (x) dx� 1

(V ol (Bn (0; R)))2

Z
Bn(0;R)

F (x) dx

Z
Bn(0;R)

G (x) dx

�������
�
@F@r


p

@G@r

p

n

Rn

RZ
0

rn�1J2q (r) dr; (4.77)

where

Jq (r) =
1

Rn

0@ rnq+1

(nq + 1)
+

RZ
r

(Rn � sn)q ds

1A
1
q

; (4.78)

or �������
Z

Bn(0;R)

F (x)G (x) dx� 1

V ol (Bn (0; R))

Z
Bn(0;R)

F (x) dx

Z
Bn(0;R)

G (x) dx

�������
�
@F@r


p

@G@r

p

Z
Bn(0;R)

J2q (kxk) dx: (4.79)

Theorem 4.18 Let F, G be as in Theorem 4.17, then from Theorem 4.16, we have:�������
Z

Bn(0;R)

F (x)G (x) dx� 1

V ol (Bn (0; R))

Z
Bn(0;R)

F (x) dx

Z
Bn(0;R)

G (x) dx

�������
� 1

2

Z
Bn(0;R)

"
jG (x)j

@F@r

p

+ jF (x)j
@G@r


p

#
Jq (kxk) dx; (4.80)

where Jq (kxk) is de�ned by (4.78).
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We, now, give the inequalities in spherical shell when F, G are not radial func-

tions which are given in the form of the following theorems:

Theorem 4.19 Let F;G be di¤erentiable on A and F
0
; G

0 2 Lp
�
A
�
. Then, from

Theorem 4.11, we have:

1

V ol (A)

������
Z
A

F (x)G (x) dx� n

(Rn2 �Rn1 )

Z
Sn�1

0@ R2Z
R1

F (rw) dr

1A0@ R2Z
R1

G (rw) dr

1A dw
������

�
@F@r


p

@G@r

p

n

(Rn2 �Rn1 )
3

R2Z
R1

rn�1I2q (r) dr;

or ������
Z
A

F (x)G (x) dx� n

(Rn2 �Rn1 )

Z
Sn�1

0@ R2Z
R1

F (rw) dr

1A0@ R2Z
R1

G (rw) dr

1A dw
������

�
@F@r


p

@G@r

p

Z
A

H2
q (kxk) dx; (4.81)

where Iq (r) is de�ned by (4.72) and Hq (kxk) is de�ned by (4.75).

Theorem 4.20 Let F;G be di¤erentiable on A and F
0
; G

0 2 Lp
�
A
�
. Then, from

Theorem 4.12, we have:������
Z
A

F (x)G (x) dx� n

(Rn2 �Rn1 )

Z
Sn�1

0@ R2Z
R1

F (rw) dr

1A0@ R2Z
R1

G (rw) dr

1A dw
������

� 1

2

Z
A

"
jG (x)j

@F@r

p

+ jF (x)j
@G@r


p

#
Hq (kxk) dx; (4.82)

where Iq (r) is de�ned by (4.72) and Hq (kxk) is de�ned by (4.75).

The inequalities (4.81) and (4.82) de�ned over spherical shell can be transferred

over a ball Bn (0; R) by taking R := R2 and R > R1 ! 0 and the results are stated

in the form of the following theorems:

Theorem 4.21 Let F;G be di¤erentiable on Bn (0; R) and F 0
; G

0 2 Lp
�
Bn (0; R)

�
.

Then from Theorem 4.19, we have:�������
Z

Bn(0;R)

F (x)G (x) dx� n

Rn

Z
Sn�1

0@ RZ
0

F (rw) dr

1A0@ RZ
0

G (rw) dr

1A dw
�������
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�
@F@r


p

@G@r

p

Z
Bn(0;R)

J2q (kxk) dx; (4.83)

where Jq (kxk) is de�ned by (4.78).

Theorem 4.22 Let F;G be di¤erentiable on Bn (0; R) and F 0
; G

0 2 Lp
�
Bn (0; R)

�
.

Then from Theorem 4.20, we have:�������
Z

Bn(0;R)

F (x)G (x) dx� n

Rn

Z
Sn�1

0@ RZ
0

F (rw) dr

1A0@ RZ
0

G (rw) dr

1A dw
�������

� 1

2

Z
Bn(0;R)

"
jG (x)j

@F@r

p

+ jF (x)j
@G@r


p

#
Jq (kxk) dx; (4.84)

where Jq (kxk) is de�ned by (4.78).

4.5 Conclusion

In this chapter, we present some generalizations of product and µCeby�ev type in-

equalities by working with absolutely continuous functions whose derivatives belong

to usual Lebesgue spaces.

In Section 4.1 and 4.2 we have con�ned ourselves to obtain product inequalities

of µCeby�ev type in L1 and Lp-spaces for p > 1 by the use of generalized functionals.

In Section 4.1, the product inequalities for absolutely continuous functions whose

�rst derivatives belong to Lp-space are developed while in Section 4.2, µCeby�ev type

inequalities are obtained for twice di¤erentiable functions whose �rst derivatives

are absolutely continuous and second derivatives belong to L1-space are taken into

account. Applications for expectation of a continuous random variable are also

given in Section 4.1.

In Section 4.3, we have presented an integral inequality involving product of

two monotonic non-decreasing functions, thus providing a new estimation for these

types of inequalities in terms of the functional values of monotonic mappings. The

inequality is then applied to the probability density functions.

In Section 4.4, we have obtained an inequality of µCeby�ev-Grüss type for spher-

ical shells and balls by working in n�dimensional Euclidean space Rn; hence, in-

equalities of multivariate type in spherical coordinate system are established.

126



Chapter 5

Some Ostrowski type inequalities for Newton-

Cotes formulae

5.1 Some generalized error inequalities and applications

In this section, we present a family of four-point Ostrowski type inequality which is

a generalization of Gauss-two point, Simpson�s 3
8
and Lobatto four-point quadrature

rule for twice di¤erentiable mapping. Moreover, it is shown that the corresponding

optimal quadrature formula presents better estimate in the context of four-point

quadrature formulae of closed type. A uni�ed treatment of error inequalities for

di¤erent classes of function is also given.

5.1.1 Introduction

We de�ne

I (f) =

bZ
a

f (x) dx: (5.1)

The problem of approximating I (f) is usually referred to as numerical integra-

tion or quadrature (see [4]). Most numerical integration formulae are based on

de�ning the approximation by using polynomial or piecewise polynomial interpola-

tion. Formulae using such interpolation with evenly spaced nodes are referred to

as Newton-Cotes formulae. The Gaussian quadrature formulae, which are optimal

and converge rapidly by selecting the node points carefully that need not be equally

spaced, are investigated in [94].

In [28, 34, 81], the quadrature problem, in particular, the investigation of error
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bounds of Newton-Cotes formulae namely the mid-point, trapezoid and Simpson�s

rule have been carried out by the use of Peano kernel approach in terms of variety

of norms, from an inequality point of view.

The deduction of the optimal quadrature formulae in the sense of minimal error

bounds, has not received the right attention as long as the papers of N. Ujevíc

[99, 95, 96] and ([24], pp.153-166) have not appeared who used a new approach for

obtaining optimal two-point and three-point quadrature formulae of open as well as

closed type. Further, some error inequalities have also been presented by N. Ujevíc

to ensure the applications of these optimal quadrature formulae for di¤erent classes

of functions.

In this section, we present an approach similar to that of Ujevic�s [99] to present

some improvements and generalizations in this context.

Let us �rst formulate the main problem.

Consider

K (x; y; t) =

8>>><>>>:
1
2
(t� �)2 + �1; t 2 [a; x] ;

1
2
(t� �)2 + �1; t 2 (x; y) ;
1
2
(t� )2 + 1; t 2 [y; b] ;

(5.2)

as de�ned in [99], where x; y 2 [a+ h (b� a) ; b� h (b� a)] ; h 2
�
0; 1

2

�
; x < y and

�; �1; �; �1; ; 1 2 R are parameters which are required to be determined.

We know that the exact value of the remainder term of the integral
bR
a

K (x; y; t) f
00
(t) dt

may not be found, thus, we may proceed as������
bZ
a

K (x; y; t) f
00
(t) dt

������ � max
t2[a;b]

���f 00 (t)��� bZ
a

jK (x; y; t)j dt: (5.3)

The main aim of this section is to present a minimal estimation of the error bound

(5.3) by appropriately choosing the variables and parameters involved. Moreover, it

is worth-mentioning that the family of quadrature formulae thus obtained hereafter

is a generalization of that presented in [99].

5.1.2 A generalized optimal quadrature formula

Consider the above stated error inequality problem for a = �1; b = 1; so that

x; y 2 [�1 + 2h; 1� 2h]. We will try to �nd out an optimal quadrature formula of
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the form:

1Z
�1

f (t) dt� [hf (�1) + (1� h) f (x) + (1� h) f (y) + hf (1)]

=

1Z
�1

K (x; y; t) f
00
(t) dt; (5.4)

where K(x; y; t) is de�ned by (5.2) with a = �1; b = 1 and x; y 2 [�1 + 2h; 1� 2h]

with x < y; h 2
�
0; 1

2

�
.

The parameters �; a1; �; �1; ; 1 2 R involved in K (x; y; t) are required to be

determined in a way such that the representation (5.4) is obtained.

Integrating by parts right hand side of (5.4), we have:

1Z
�1

K (x; y; t) f
00
(t) dt

= �
�
1

2
(1 + �)2 + �1

�
f
0
(�1) +

�
1

2
(1� )2 + 1

�
f
0
(1)

+

�
1

2

�
(x� �)2 � (x� �)2

	
+ �1 � �1

�
f
0
(x)

+

�
1

2

�
(y � �)2 � (y � )2

	
+ �1 � 1

�
f
0
(y)

� (1 + �) f (�1)� (1� ) f (1) + (�� �) f (x) + (� � ) f (y)

+

1Z
�1

f (t) dt: (5.5)

For the representation (5.4), we require from (5.5),

1

2
(x� �)2 + �1 �

1

2
(x� �)2 � �1 = 0;

1

2
(y � �)2 + �1 �

1

2
(y � )2 � 1 = 0;

1

2
(1 + �)2 + �1 = 0;

1

2
(1� )2 + 1 = 0;

� �  = � (1� h) ; �� � = �(1� h);

1 + � = h; 1�  = h:

This gives through simple calculations:

� = � (1� h) ;  = (1� h) ; � = 0;
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1 = �1
2
h2; �1 = �

1

2
h2;

�1 =
1

2
� h+ (1� h)x

=
1

2
� h� (1� h) y:

Henceforth,

y = �x:

So, we have:

K (x; t) =

8>>><>>>:
1
2
(t+ (1� h))2 � 1

2
h2; t 2 [�1; x] ;

1
2
t2 + (1� h)x� h+ 1

2
; t 2 (x; y) ;

1
2
(t� (1� h))2 � 1

2
h2; t 2 [y; 1] :

(5.6)

We further see that������
1Z

�1

K (x; t) f
00
(t) dt

������ �
f 00

1

1Z
�1

jK (x; t)j dt: (5.7)

We are now required to �nd an x that minimizes
1R
�1
jK (x; t)j dt.

We next de�ne

G (x) =

1Z
�1

jK (x; t)j dt

=
1

2

xZ
�1

��(t+ (1� h))2 � h2�� dt+ yZ
x

����12t2 + (1� h)x� h+ 12
���� dt

+
1

2

1Z
y

��(t� (1� h))2 � h2�� dt:
and consider the problem

minimize G (x) ; x 2 [�1 + 2h; 1� 2h] and h 2
�
0;
1

2

�
:

Hence, we should like to �nd a global minimizer of G. Recall that a global minimizer

is a point x� that satis�es

G (x�) � G (x) ; for all x 2 [�1 + 2h; 1� 2h] and h 2
�
0;
1

2

�
:

We now consider the following cases:
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(i) Let x 2
h
� (1� 2h) ; h�

1
2

1�h

i
. Then by symmetry, we may consider

G1 (x) = �1
2

�1+2hZ
�1

�
(t+ (1� h))2 � h2

�
dt

+
1

2

xZ
�1+2h

�
(t+ (1� h))2 � h2

�
dt

+
1

2

�
p
2h�1�2(1�h)xZ

x

�
t2 + 2 (1� h)x� 2h+ 1

�
dt

�1
2

0Z
�
p
2h�1�2(1�h)x

�
t2 + 2 (1� h)x� 2h+ 1

�
dt

=
1

6
� 1
2
(1� h)x2 � 4

3
(1� h)

p
2h� 1� 2 (1� h)x x

+
4

3

�
h� 1

2

�p
2h� 1� 2 (1� h)x+ 4

3
h3 � h

2
: (5.8)

We may note that

G (x) = 2G1 (x) : (5.9)

Combining (5.8) and (5.9) with (5.4) and (5.7), we get:������
1Z

�1

f (t) dt� [hf (�1) + (1� h) f (x) + (1� h) f (�x) + hf (1)]

������
�

�
1

3
� (1� h)x2 � 8

3
(1� h)

p
2h� 1� 2 (1� h)x x

+
8

3

�
h� 1

2

�p
2h� 1� 2 (1� h)x+ 8

3
h3 � h

� f 00
1
: (5.10)

Moreover, simple calculations show that G
0
(x) = 0 for

x1;2 = �4 + 4h� 2
p
3� 6h+ 4h2:

It is not di¢ cult to �nd that

G
00

(x1) > 0 and G
00

(x2) < 0:

Thus, x1 is the local minimizer of G (x) for x 2
h
� (1� 2h) ; h�

1
2

1�h

i
. We have:

G1 (x1) =
52

3
h3 � 44h2 + 83

2
h� 83

6
+ 8 (1� h)2

p
4h2 � 6h+ 3
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+
2

3

�
8h2 � 14h+ 7

�q
8h2 � 14h+ 7� 4 (1� h)

p
4h2 � 6h+ 3

�8
3
(1� h)

q
8h2 � 14h+ 7� 4 (1� h)

p
4h2 � 6h+ 3

p
4h2 � 6h+ 3;

such that

G (x1) = 2G1 (x1) :

(ii) Next, we check for the point x3 =
h� 1

2

1�h . We �nd that min
h2[0; 12 ]

G1 (x1) <

min
h2[0; 12 ]

G1 (x3).

Thus, from the above considerations, we �nd that x� = �4+4h+2
p
3� 6h+ 4h2

is the global minima of G. Therefore, we get the following conclusion:

Theorem 5.1 Let I � R be an open interval such that [�1; 1] � I; and let f : I !

R be a twice di¤erentiable function such that f
00
is bounded and integrable. Then,

we have:Z 1

�1
f (t) dt =

h
hf (�1) + (1� h) f

�
�4 + 4h+ 2

p
3� 6h+ 4h2

�
+(1� h) f

�
4� 4h� 2

p
3� 6h+ 4h2

�
+ hf (1)

i
+R (f) ; (5.11)

where

jR (f)j � 24 (h)
f 00

1
; (5.12)

h 2
�
0; 1

2

�
and 4 (h) is de�ned as

4 (h) = 52

3
h3 � 44h2 + 83

2
h� 83

6
+ 8 (1� h)2

p
4h2 � 6h+ 3

+
2

3

�
8h2 � 14h+ 7

�q
8h2 � 14h+ 7� 4 (1� h)

p
4h2 � 6h+ 3

�8
3
(1� h)

q
8h2 � 14h+ 7� 4 (1� h)

p
4h2 � 6h+ 3

p
4h2 � 6h+ 3: (5.13)

Proof. From the above discussion, we �nd that (5.11) holds with

R (f) =

Z 1

�1
K
�
�4 + 4h+ 2

p
3� 6h+ 4h2; t

�
f
00
(t) dt;

and K (x; t) is given by (5.6) with y = �x. We further have

jR (f)j �
f 00

1

Z 1

�1

���K ��4 + 4h+ 2p3� 6h+ 4h2; t���� dt
= G

�
�4 + 4h+ 2

p
3� 6h+ 4h2

�f 00
1
;
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SinceG
�
�4 + 4h+ 2

p
3� 6h+ 4h2

�
= 2G1

�
�4 + 4h+ 2

p
3� 6h+ 4h2

�
, thus (5.12)

holds.

We would now like to mention here some special cases of (5.10):

Remark 5.1 As it has been mentioned in [99], we recapture the Gauss two-point

quadrature formula for h = 0 and x = �
p
3
3
.

Remark 5.2 It may be noted that for h = 1
6
and x = �

p
5
5
; we get Lobbato four-

point quadrature rule as follows:Z 1

�1
f (t) dt =

1

6

"
f (�1) + 5f

 
�
p
5

5

!
+ 5f

 p
5

5

!
+ f (1)

#
+R1 (f) ; (5.14)

where

jR1 (f)j � C1
f 00

1

and C1 = 1
81
+ 4

27

�p
�6 + 3

p
5
� �p

5� 2
�
� 0:0418:

Remark 5.3 For h = 1
4
and and x = �1

3
; we get 3

8
Simpson�s rule as follows:Z 1

�1
f (t) dt =

1

4

�
f (�1) + 3f

�
�1
3

�
+ 3f

�
1

3

�
+ f (1)

�
+R2 (f) ; (5.15)

where

jR2 (f)j � C2
f 00

1

and C2 = 1
24
� 0:0417:

Remark 5.4 Keeping in view the above special cases, (5.10) may be considered as

a generalization of Gauss two-point, Simpson�s 3
8
and Lobatto four-point quadrature

rule for twice di¤erentiable mappings.

Remark 5.5 For h = 1
5
; 4 (h) attains its minimum value.

Corollary 5.1 Let the assumptions of Theorem 5.1 hold. Then, we have the fol-

lowing optimal quadrature rule:Z 1

�1
f (t) dt =

1

5

�
f (�1) + 4f

�
�2
5

�
+ 4f

�
2

5

�
+ f (1)

�
+R3 (f) ; (5.16)
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jR3 (f)j � C3
f 00

1
;

where C3 = 14
375
� 0:0373:

Remark 5.6 The comparison of (5.14), (5.15) and (5.16) shows that the later

presents a much better estimate in the context of four-point quadrature rules of

closed type.

By considering the problem on the interval [a; b] ; the following theorem is obvi-

ous:

Theorem 5.2 Let I � R be an open interval such that [a; b] � I and let f : I ! R

be a twice di¤erentiable function such that f
00
is bounded and integrable. Then, we

have Z b

a

f (t) dt =
1

2
(b� a) [hf (a) + (1� h) f (x1)

+ (1� h) f (x2) + hf (b)] +R (f) ; (5.17)

where

x1 =
b� a
2
x� +

a+ b

2
; x2 = �

b� a
2
x� +

a+ b

2
; (5.18)

with

x� = �4 + 4h+ 2
p
3� 6h+ 4h2

and

jR (f)j � 1

4
4 (h) (b� a)3

f 00
1
; (5.19)

h 2
�
0; 1

2

�
and 4 (h) is as de�ned above.

5.1.3 Generalized error inequalities

From the basic properties of the Lp (a; b) spaces, for p = 1; 2;1; we know that

L2 (a; b) is a Hilbert space with the inner product de�ned as:

hf; gi2 =
bZ
a

f (t) g (t) dt:

We now de�ne X = (L2 (a; b) ; h:; :i2) : In the space X; the norm k:k2 is de�ned in

the usual manner as:

kfk2 =

0@ bZ
a

f
2

(t) dt

1A
1
2

:
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Let us also consider Y = (L2 (a; b) ; h:; :i) ; where the inner product h:; :i is de�ned

by

hf; gi = 1

b� a

bZ
a

f (t) g (t) dt;

with the corresponding norm k:k de�ned by

kfk =
p
hf; fi:

We know that the µCeby�ev functional is de�ned as

T (f; g) = hf; gi � hf; ei hg; ei ; (5.20)

where f; g 2 L2 (a; b) and e = 1 which satis�es the pre-Grüss inequality,

T 2 (f; g) � T (f; f)T (g; g) : (5.21)

Let us denote

� (f) = � (f ; a; b) =
p
(b� a)T (f; f); (5.22)

as de�ned in [99]. Moreover, the space L1 (a; b) is a Banach space with the norm

kfk1 =
bZ
a

jf (t)j dt;

and the space L1 (a; b) is also a Banach space with the norm

kfk1 = ess sup
t2[a;b]

jf (t)j :

So, if f 2 L1 (a; b) and g 2 L1 (a; b) ; then we have

jhf; gi2j � kfk1 kgk1 : (5.23)

Finally, we de�ne

J (f) = J (f ; a; b;h)

=

bZ
a

f (t) dt� 1
2
(b� a) [hf (a) + (1� h) f (x1)

+ (1� h) f (x2) + hf (b)] ; (5.24)

where x1 and x2 are given by (5.18).

We would also like to mention the following Lemma [98].
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Lemma 5.1 Let

f (t) =

8>>><>>>:
f1 (t) ; t 2 [a; x1] ;

f2 (t) ; t 2 [x1; x2] ;

f3 (t) ; t 2 [x2; b] ;

(5.25)

where a < x1 < x2 < b; f1 2 C1(a; x1); f2 2 C1(x1; x2); f3 2 C1(x2; b) and

f1(x1) = f2(x1); f2(x2) = f3(x2). If

sup
t2(a;x1)

jf
0
(t)j < 1;

sup
t2(x1;x2)

jf
0
(t)j < 1;

sup
t2(x2;b)

jf
0
(t)j < 1:

Then, the function f is an absolutely continuous function.

Theorem 5.3 Let f : [�1; 1]! R be a function such that f
0
2 L1 (�1; 1). If there

exists a real number 1; such that 1 � f
0
(t) ; t 2 [�1; 1] ; then

jJ (f ;�1; 1;h)j � 240 (h) (S � 1) ; (5.26)

and if there exists a real number �1; such that f
0
(t) � �1; t 2 [�1; 1] ; then

jJ (f ;�1; 1;h)j � 240 (h) (�1 � S) ; (5.27)

where J (f ;�1; 1;h) is de�ned by (5.24), S = f(1)�f(�1)
2

and h 2 [0; 1
2
]. If there exist

real numbers 1; �1; such that 1 � f
0
(t) � �1; t 2 [�1; 1] ; then

jJ (f ;�1; 1;h)j � 1

2
41 (h) (�1 � 1) : (5.28)

40 (h) and 41 (h) are de�ned as:

40 (h) = 2
p
4h2 � 6h+ 3� 3 (1� h) ;

41 (h) = 58h
2 � 98h+ 49� 28 (1� h)

p
4h2 � 6h+ 3: (5.29)

Proof. In order to prove (5.28), let us de�ne

p1 (t) =

8>>><>>>:
t+ 1� h; t 2 [�1; x] ;

t; t 2 (x; y);

t� (1� h) ; t 2 [y; 1];
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where x = �4 + 4h + 2
p
3� 6h+ 4h2 and y = �x. Note that since hp1; ei2 = 0,

thus D
p1; f

0E
2
= �J (f ;�1; 1;h) ;�

f
0
� �1 + 1

2
; p1

�
2

=
D
f
0
; p1

E
2
: (5.30)

From (5.23), �����f 0 � �1 + 12
; p1

�
2

���� �
f 0 � �1 + 12


1
kp1k1

� 1

2
41 (h) (�1 � 1) ; (5.31)

as f 0 � �1 + 12


1
� �1 � 1

2

and

kp1k1 = 58h2 � 98h+ 49� 28 (1� h)
p
4h2 � 6h+ 3:

From (5.30) and (5.31), it may be observed that (5.28) holds. Further, it can be

seen that ���Df 0 � 1; p1E
2

��� � kp1k1
f 0 � 1

1

= 240 (h) (S � 1) ;

since

kp1k1 = 2
p
4h2 � 6h+ 3� 3 (1� h)

and f 0 � 1
1
=

Z 1

�1

�
f
0
(t)� 1

�
dt

= f (1)� f (�1)� 21

= 2 (S � 1) :

Hence, (5.26) holds. In the similar manner, we can prove (5.27).

Remark 5.7 It may be noted that 40 (h) has its minimum value 0:396 at h =

0:259. In a similar way, it may be observed that 1
2
41 (h) attains its minimum value

0:1698 at h = 0:296.
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Theorem 5.4 Let f : [a; b] ! R be a function, such that f
0
2 L1 (a; b). If there

exists a real number 1; such that 1 � f
0
(t) ; t 2 [a; b] ; then

jJ (f ; a; b;h)j � 1

2
40 (h) (S � 1) (b� a)

2 ; (5.32)

and if there exists a real number �1; such that f
0
(t) � �1; t 2 [a; b] ; then

jJ (f ; a; b;h)j � 1

2
40 (h) (�1 � S) (b� a)2 ; (5.33)

where J (f ; a; b;h) is de�ned by (5.24) and S = f(a)�f(b)
(b�a) and h 2 [0; 1

2
]. If there exist

real numbers 1; �1; such that 1 � f
0
(t) � �1; t 2 [a; b] ; then

jJ (f ; a; b;h)j � 1

8
41 (h) (�1 � 1) (b� a)

2 : (5.34)

40 (h) and 41 (h) are as de�ned in (5.29).

Theorem 5.5 Let f : [�1; 1]! R be an absolutely continuous function, such that

f
0
2 L2 (�1; 1). Then

jJ (f ;�1; 1;h)j �
p
42 (h)�

�
f
0
;�1; 1

�
; (5.35)

where �
�
f
0
;�1; 1

�
is de�ned by (5.22) and

42 (h) = �56h3 + 154h2 � 146h+
146

3
� 28 (1� h)2

p
4h2 � 6h+ 3; (5.36)

for h 2 [0; 1
2
].

Proof. Let p1 be the same as de�ned above. We haveD
p1; f

0E
2
= �J (f ;�1; 1;h) ; (5.37)

since hp1; ei2 = 0, if [a; b] = [�1; 1]. Moreover, hf; gi = 1
2
hf; gi2 andD

p1; f
0E
= T

�
f
0
; p1

�
: (5.38)

From (5.21), it follows that

T
�
f
0
; p1

�
�

p
T (p1; p1)

q
T
�
f
0
; f

0�
=

1

2
kp1k2 �

�
f
0
;�1; 1

�
;

=
1

2

p
42 (h)�

�
f
0
;�1; 1

�
(5.39)

as

kp1k22 = �56h3 + 154h2 � 146h+
146

3
� 28 (1� h)2

p
4h2 � 6h+ 3: (5.40)

Using (5.37), (5.38), (5.39) and (5.40), inequality (5.35) is proved.
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Remark 5.8
p
42 (h) attains its minimum value 0:2799 at h = 0:2957.

Theorem 5.6 Let f : [a; b] ! R be an absolutely continuous function, such that

f
0
2 L2 (a; b). Then

jJ (f ; a; b;h)j � 1

2
p
2

p
42 (h)�

�
f
0
; a; b

�
(b� a)

3
2 ; (5.41)

where �
�
f
0
; a; b

�
is de�ned by (5.22) and 42 (h) is as de�ned above.

5.1.4 Applications in Numerical Integration

Let � = fx0 = a < x1 < ::: < xn = bg be a subdivision of the interval [a; b] ; such

that hi = xi+1 � xi = h = (b�a)
n
. From (5.24), we have:

J (f) = J (f ;xi; xi+1; �) =

xi+1Z
xi

f (t) dt� h
2
[�f (xi) + (1� �) f (x1i)

+ (1� �) f (x2i) + �f (xi+1)] ;

where

x1i =
h

2
x� +

xi + xi+1
2

; x2 = �
h

2
x� +

xi + xi+1
2

;

and

x� = �4 + 4� + 2
p
3� 6� + 4�2; � 2

�
0;
1

2

�
:

Summing up the above relation from 1 to n� 1; we get:

n�1X
i=0

J (f ;xi; xi+1; �) =

bZ
a

f (t) dt� h
2

n�1X
i=0

[�f (xi) + (1� �) f (x1i)

+ (1� �) f (x2i) + �f (xi+1)] ;

Let us denote

S (f ; a; b; �) =

n�1X
i=0

J (f ;xi; xi+1; �) : (5.42)

Theorem 5.7 Let the assumptions of Theorem 5.2 hold, then we have:

jS (f ; a; b; �)j � 1

4n2
4 (�)

f 00
1
(b� a)3 ;

where S (f ; a; b; �) is de�ned by (5.42), � 2
�
0; 1

2

�
and 4 (�) is de�ned by (5.9). �

is the uniform subdivision of [a; b].
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Theorem 5.8 Let the assumptions of Theorem 5.4 hold, then it follows

jS (f ; a; b; �)j � 1

8
41 (�)

�1 � 1
n

(b� a)2 ;

jS (f ; a; b; �)j � 1

2n
40 (�) (S � 1) (b� a)

2 ;

and if there exists a real number �1; such that f
0
(t) � �1; t 2 [a; b] ; then

jS (f ; a; b; �)j � 1

2n
40 (�) (�1 � S) (b� a)2 ;

where S (f ; a; b; �) is de�ned by (5.42), 40 (�), 41 (�) are de�ned by (5.29) and

S = f(a)�f(b)
(b�a) . � is the uniform subdivision of [a; b].

Theorem 5.9 Let the assumptions of Theorem 5.6 hold, then it follows that

jS (f ; a; b; �)j � (b� a)
3
2

2
p
2n

p
42 (�)�

�
f
0
�
;

where S (f ; a; b; �) is de�ned by (5.42), �
�
f
0�
is de�ned by (5.22) and 42 (�) is as

de�ned by (5.36). � is the uniform subdivision of [a; b].

Proof. Applying Theorem 5.6 on the interval [xi; xi+1],������
xi+1Z
xi

f (t) dt� h
2
[�f (xi) + (1� �) f (x1i) + (1� �) f (x2i) + �f (xi+1)]

������
� 1

2
p
2

p
42 (�)h

3
2

24 xi+1Z
xi

�
f
0
(t)
�2
dt� 1

h
(f (xi+1)� f (xi))2

35 1
2

:

Summing over i from 0 to n� 1;

jS (f ; a; b; �)j � 1

2
p
2

p
42 (�)h

3
2

n�1X
i=0

24 xi+1Z
xi

�
f
0
(t)
�2
dt� 1

h
(f (xi+1)� f (xi))2

35 1
2

:

Using Cauchy-Schwartz inequality and the relation h = (b� a) =n; we obtain the

required inequality:

jS (f ; a; b; �)j

� 1

2
p
2

p
42 (�)

(b� a)
3
2

n
3
2

n
1
2

"f 02
2
� n

b� a

n�1X
i=0

(f (xi+1)� f (xi))2
# 1
2

� 1

2
p
2

p
42 (�)

(b� a)
3
2

n

"f 02
2
� (f (b)� f (a))

2

b� a

# 1
2

:
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5.2 A generalized integral inequality generating Newton-

Cotes formulae of open and closed type

5.2.1 Introduction

In [50], Ming-How Hung et al. presented the following two-point open Newton-

Cotes quadrature formula of open type for mappings of bounded variation. The

result is given as follows:

Theorem 5.10 Let f (n�1) : [a; b]! R be a mapping of bounded variation on [a; b]

and n 2 f1; 2g. Then, we have the inequality:������
bZ
a

f (x) dx� b� a
2

[f (�a+ (1� �) b) + f ((1� �) a+ �b)]

������
� Kn (b� a)n

b_
a

�
f (n�1)

�
; (5.43)

where

K1 = max

�
1� �; �� 1

2

�
; K2 =

1

2
(1� �)2

and
bW
a

�
f (n�1)

�
denote the total variation of f (n�1) on the interval [a; b] and 1

2
�

� < 1.

Recently, in [55] Wenjun Liu presented some error inequalities for a quadrature

formula involving a parameter.

We, in the following subsection, present a two point Ostrowski type inequality, a

generalization of the results of [50] and [55]. Moreover, it can also generate Newton-

Cotes formulae of open as well as closed type for mappings of bounded variation.

Furthermore, we also present the estimates of the generalized integral inequality for

other classes of the function involved.

5.2.2 Main Results

We shall start with the following result:
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Theorem 5.11 Let f (n�1) : [a; b]! R be a mapping of bounded variation on [a; b]

and n 2 f1; 2g. Then, we have the inequality:������
bZ
a

f (t) dt� b� a
2

[f (�1) + f (�2)]

������
�Mn

b_
a

�
f (n�1)

�
; (5.44)

where

M1 = max

�
�1 � a;

a+ b

2
� �1; �2 �

a+ b

2
; b� �2

�
;

M2 =
1

2
max

(
(�1 � a)2 ;

�
�1 �

a+ b

2

�2
+ (b� a)

�
�1 �

3a+ b

4

�
;

(b� a)
�
3a+ b

4
� �1

��
(5.45)

and
bW
a

�
f (n�1)

�
denote the total variation of f (n�1) on the interval [a; b] and a �

�1 � �2 � b.

Proof. Let us de�ne:

K (�1; �2; t) =

8>>><>>>:
t� a; t 2 [a; �1)

t� a+b
2
; t 2 [�1; �2)

t� b; t 2 [�2; b] ;

where �1 and �2 are to be taken in such a way that a � �1 � �2 � b.

Consider the Reimann-Stieltjes integral

bZ
a

K (�1; �2; t) df (t) =

�1Z
a

(t� a) df (t) +
�2Z
�1

�
t� a+ b

2

�
df (t) +

bZ
�2

(t� b) df (t) :

Integrating by parts, we obtain:

bZ
a

K (�1; �2; t) df (t) =
b� a
2

(f (�1) + f (�2))�
bZ
a

f (t) dt: (5.46)

Similarly, if we de�ne:

K
0
(�1; �2; t) =

8>>><>>>:
1
2
(t� a)2 ; t 2 [a; �1)

1
2

�
t� a+b

2

�2
+ 1

2
(b� a)

�
�1 � 3a+b

4

�
; t 2 [�1; �2)

1
2
(t� b)2 ; t 2 [�2; b] :
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Then, from the de�nition of K
0
(�1; �2; t) and integration by parts of the Riemann-

Stieltjes integral it follows that:

bZ
a

K
0
(�1; �2; t) df

0
(t) = �

bZ
a

K (�1; �2; t) df (t) :

Now, by using Lemma 2.2 for p (x) = K (�1; �2; t) and � (x) = f (x) ; we get:������
bZ
a

f (t) dt� b� a
2

[f (�1) + f (�2)]

������
� sup

t2[a;b]
jK (�1; �2; t)j

b_
a

(f) : (5.47)

It can be easily calculated that

sup
t2[a;b]

jK (�1; �2; t)j = max
�
�1 � a;

a+ b

2
� �1; �2 �

a+ b

2
; b� �2

�
: (5.48)

Also, by using Lemma 2.2 for p (x) = K
0
(�1; �2; t) and � (x) = f

0
(x) ; we obtain:������

bZ
a

f (t) dt� b� a
2

[f (�1) + f (�2)]

������
� sup

t2[a;b]

���K 0
(�1; �2; t)

��� b_
a

�
f
0
�
: (5.49)

Calculating,

sup
t2[a;b]

���K 0
(�1; �2; t)

���
=

1

2
max

�
(�1 � a)2 ; (b� a)

�
�1 �

3a+ b

4

�
+

�
�1 �

a+ b

2

�2
; (b� a)

�
3a+ b

4
� �1

�)
(5.50)

Using (5.47)-(5.50), we obtain the required inequalities.

Corollary 5.2 Let f (n�1) : [a; b] ! R be a mapping of bounded variation on [a; b]

and n 2 f1; 2g. Then, we have the inequality:������
bZ
a

f (t) dt� b� a
2

[f (�1) + f (�2)]

������
� min

n2f1;2g

(
Mn

b_
a

�
f (n�1)

�)
; (5.51)

where M1 and M2 be de�ned by (5.45).
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Remark 5.9 If we choose in (5.44) �1 = �a + (1� �) b and �2 = (1� �) a+ �b;

then we get (5.43). It shows that (5.44) generalizes (5.43).

Remark 5.10 It may be noted that (5.51) can generate some Newton-Cotes for-

mulae as special cases which are given as follows:

(i) For �1 = a and �2 = b in (5.51), we obtain:������
bZ
a

f (t) dt� b� a
2

[f (a) + f (b)]

������
� min

n2f1;2g

(
Mn

b_
a

�
f (n�1)

�)
; (5.52)

where

M1 =
(b� a)
2

; M2 =
(b� a)2

8
:

(ii) For �1 = �2 = a+b
2
in (5.51), we obtain:������

bZ
a

f (t) dt� (b� a) f
�
a+ b

2

�������
� min

n2f1;2g

(
Mn

b_
a

�
f (n�1)

�)
; (5.53)

where

M1 =
(b� a)
2

; M2 =
(b� a)2

8
:

(iii) For �1 = 2a+b
3
and �2 = a+2b

3
in (5.51), we obtain:������

bZ
a

f (t) dt� (b� a)
2

�
f

�
2a+ b

3

�
+ f

�
a+ 2b

3

��������
� min

n2f1;2g

(
Mn

b_
a

�
f (n�1)

�)
; (5.54)

where

M1 =
(b� a)
3

; M2 =
(b� a)2

18
:
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(iv) For �1 = 3a+b
4
and �2 = a+3b

4
in (5.51), we obtain:������

bZ
a

f (t) dt� (b� a)
2

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

��������
� min

n2f1;2g

(
Mn

b_
a

�
f (n�1)

�)
; (5.55)

where

M1 =
(b� a)
4

; M2 =
(b� a)2

32
:

Corollary 5.3 Let f (n) exists and is integrable on [a; b] and for n 2 f1; 2g

f (n)
1
:=

bZ
a

��f (n) (t)�� dt <1:
Then, we have the inequality:������

bZ
a

f (t) dt� b� a
2

[f (�1) + f (�2)]

������
� min

n2f1;2g

�
Mn

f (n)
1

	
; (5.56)

where M1 and M2 be de�ned by (5.45).

Theorem 5.12 Let f (n�1)be Ln-Lipschitzian functions for n 2 f1; 2g. Then, we

have the inequality: ������
bZ
a

f (t) dt� b� a
2

[f (�1) + f (�2)]

������
� BnLn; (5.57)

where

B1 =
(b� a)2

8
+

�
�1 �

3a+ b

4

�2
+

�
�2 �

a+ 3b

4

�2
; (5.58)

and

B2 =

8>>><>>>:
1
3
(�1 � a)3 + 2

3
(b� a)

3
2
�
3a+b
4
� �1

� 3
2 ; �1 <

3a+b
4

1
3
(�1 � a)3

+2
3

�
a+b
2
� �1

� �
1
2
(�1 � a)2 + (b� a)

�
�1 � 3a+b

4

��
; �1 � 3a+b

4
;

(5.59)

provided that

�2 = (a+ b)� �1:
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Proof. Applying modulus and then by using Lemma 2.1 for g (t) = K (�1; �2; t)

and � (t) = f (t) on (5.46), we obtain:������b� a2 (f (�1) + f (�2))�
bZ
a

f (t) dt

������ � L1
bZ
a

jK (�1; �2; t)j dt: (5.60)

Simple calculation shows that:

bZ
a

jK (�1; �2; t)j dt

=
(b� a)2

8
+

�
�1 �

3a+ b

4

�2
+

�
�2 �

a+ 3b

4

�2
: (5.61)

In the similar way, applying Lemma 2.1 for g (t) = K
0
(�1; �2; t) and � (t) = f

0
(t) ;

we have:������b� a2 (f (�1) + f (�2))�
bZ
a

f (t) dt

������ � L2
bZ
a

���K 0
(�1; �2; t)

��� dt: (5.62)

Now, by the de�nition of K
0
(�1; �2; t) it follows that:

bZ
a

���K 0
(�1; �2; t)

��� dt
=

1

2

�1Z
a

(t� a)2 dt+ 1
2

bZ
�2

(t� b)2 dt

+
1

2

�2Z
�1

�����
�
t� a+ b

2

�2
+ (b� a)

�
�1 �

3a+ b

4

������ dt:
Consider

I =
1

2

�2Z
�1

�����
�
t� a+ b

2

�2
+ (b� a)

�
�1 �

3a+ b

4

������ dt:
Here two cases arise:

Case 1. When �1 > 3a+b
4
. Then,

I =
1

2

�2Z
�1

 �
t� a+ b

2

�2
+ (b� a)

�
�1 �

3a+ b

4

�!
dt:
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Hence,
bZ
a

���K 0
(�1; �2; t)

��� dt
=

1

3
(�1 � a)3

+
2

3

�
a+ b

2
� �1

��
1

2
(�1 � a)2 + (b� a)

�
�1 �

3a+ b

4

��
: (5.63)

Case 2. When �1 < 3a+b
4
. Then,

I = �1
2

a+b+
p
(b�a)(3a+b�4�1)

2Z
�1

 �
t� a+ b

2

�2
+ (b� a)

�
�1 �

3a+ b

4

�!
dt

+
1

2

�2Z
a+b+

p
(b�a)(3a+b�4�1)

2

 �
t� a+ b

2

�2
+ (b� a)

�
�1 �

3a+ b

4

�!
dt

Hence,
bZ
a

���K 0
(�1; �2; t)

��� dt
=

1

3
(�1 � a)3 +

1

12
(b� a)

3
2 (3a+ b� 4�1)

3
2 : (5.64)

Therefore, from (5.60)-(5.64), we get the required inequalities.

Corollary 5.4 Let f (n�1) 2 Cn [a; b] for n 2 f1; 2g ; then we have:������
bZ
a

f (t) dt� b� a
2

[f (�1) + f (�2)]

������
� Bn

f (n)1 ; (5.65)

where B1 and B2 are de�ned by (5.59) andf (n)1 = sup
t2[a;b]

jf (t)j <1:

Remark 5.11 For �1 = 3a+b
4
and �2 = a+3b

4
; n = 2 in (5.57) and (5.59), then we

get: ������
bZ
a

f (t) dt� b� a
2

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

��������
� 1

96
L2 (b� a)3 ; (5.66)

which is a more generalized form of the two-point quadrature formula presented in

([55], Corollary 6).
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5.3 Conclusion

By the use of Ostrowski type inequalities, we, in this chapter, have presented esti-

mates for Newton-Cotes formulae.

In Section 5.1, a four-point generalized optimal quadrature rule is obtained

which gives better error bound than the Simpson�s 3
8
and Lobatto type quadrature

rules. The function involved is twice di¤erentiable with bounded second derivative.

In Section 5.2, we have taken into account construction of one-point and two-

point Newton-Cotes formulae of open and closed type for functions of bounded

variations and for Lipschitzian functions. The inequalities are obtained for �rst and

twice di¤erentiable mappings. These inequalities generalize the results obtained in

[50] and [55]. Remark 5.9 and 5.11 reveal this fact.

Later, in chapter 8, it has also been shown that such specially derived quadrature

rules in the sense of can be applied to obtain iterative algorithms for solving non-

linear equations.
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Chapter 6

Weighted Ostrowski inequality for a con-

tinuous random variable

In this chapter, motivated and inspired by the results of ([36], Chapter 7), [10]

and [33] (see also[8], Chapter 1), we have obtained some weighted Ostrowski type

inequalities for a continuous random variable.

6.1 Weighted Ostrowski type inequality for a random vari-

able whose probability density function belongs to L1[a; b]

6.1.1 Introduction

The main aim of this section is to develop weighted Ostrowski type inequality for

continuous random variables whose probability density functions are in L1 [a; b].

An application for a beta random variable is also given.

6.1.2 Main Results

Let the weight ! : [a; b]! [0;1) be non-negative, integrable and

bZ
a

! (t) dt <1:

The domain of ! is �nite and ! may vanish at boundary points. We denote the

zero moment as

m(a; b) =

bZ
a

!(t)dt:
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We also know that expectation of any function � (X) of the random variable X is

given by

E [� (X)] =

bZ
a

� (t) dF (t) : (6.1)

Taking � (X) =
R
! (X) dX as taken in [85], then from (6.1) and integration by

parts, we have:

EW = E

�Z
! (X) dX

�

=

bZ
a

�Z
! (t) dt

�
dF (t)

= W (b)�
bZ
a

! (t)F (t) dt; (6.2)

where

W (b) =

�Z
! (t)

�
t=b

:

Also, we de�ne

Ma;x =

xZ
a

m (a; t) dt; Mx;b =

bZ
x

m (a; t) dt;

M
0

a;x =

xZ
a

m (t; b) dt; M
0

x;b =

bZ
x

m (t; b) dt;

Ma;b = Ma;x +Mx;b =

bZ
a

m (a; t) dt;

M
0

a;b = M
0

a;x +M
0

x;b =

bZ
a

m (t; b) dt;

Ma;b +M
0

a;b =

bZ
a

m (a; b) dt: (6.3)

Then the following theorem holds:

Theorem 6.1 Let X be a continuous random variable with probability density func-

tion f : [a; b] � R ! R+ and with the cumulative distribution function F (x) =

Pr(X � x). If f 2 L1 [a; b] and kf k1 := sup
t2(a;b)

jf (t)j < 1, then we have the
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inequality: ����Pr (X � x)� W (b)� EW
m (a; b)

���� � kfk1
m (a; b)

�
Ma;x +M

0

x;b

�
; (6.4)

or equivalently,����1� Pr (X � x)� W (b)� EW
m (a; b)

���� � kfk1
m (a; b)

�
Ma;x +M

0

x;b

�
;

where

Ma;x =

xZ
a

m (a; t) dt;

M
0

x;b =

bZ
x

m (t; b) dt;

as de�ned above for all x 2 [a; b].

Proof. Consider the kernel pw : [a; b]
2 ! R (see [36], Chapter 7) given by:

pw (x; t) =

8>><>>:
tR
a

! (u) du; if t 2 [a; x]
tR
b

! (u) du; if t 2 (x; b]:

Then, the Riemann-Stieltjes integral
bR
a

pw (x; t) dF (t) exists for any x 2 [a; b] and

the following identity holds:

bZ
a

pw (x; t) dF (t) = m (a; b)F (x)�
bZ
a

! (t)F (t) dt: (6.5)

Using (6.2) and (6.5), we get,

m (a; b)F (x) + EW �W (b) =

bZ
a

pw (x; t) dF (t) : (6.6)

As shown in [10], if p : [a; b]! R is Riemann integrable on [a; b] and � : [a; b]! R

is L-Lipschitzian (with Lipschitz constant L), then������
bZ
a

p (x) d� (x)

������ � L
bZ
a

jp (x)j dx: (6.7)

Since, for any x; y 2 [a; b]

jF (x)� F (y)j �

������
yZ
x

f (t) dt

������ � kfk1 jx� yj :
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Then, by using (6.7), we obtain:������
bZ
a

pw (x; t) dF (t)

������
� kfk1

bZ
a

jpw (x; t)j dt

= kfk1

0@ xZ
a

0@ tZ
a

w (u) du

1A dt+ bZ
x

0@ bZ
t

w (u) du

1A dt
1A

= kfk1

0@ xZ
a

m (a; t) dt+

bZ
x

m (t; b) dt

1A ;
implies ������

bZ
a

pw (x; t) dF (t)

������ � kfk1
�
Ma;x +M

0

x;b

�
; (6.8)

where

m (a; t) =

tZ
a

w (u) du; Ma;x =

bZ
a

m (a; t) dt;

m (t; b) =

bZ
t

w (u) du; M
0

x;b =

bZ
a

m (t; b) dt:

From (6.6) and (6.8), we have (6.4) and the second inequality follows directly from

(6.4) by using

Pr (X � x) = 1� Pr (X � x) :

Remark 6.1 Choosing ! (t) = 1 in (6.4), we have the classical Ostrowski inequality

for random variables whose probability density function belongs to L1 [a; b]. In this

case, we have

m (a; b) =

bZ
a

! (t) dt =

bZ
a

dt = (b� a) ;

and

Ma;x +M
0

x;b =

xZ
a

0@ tZ
a

du

1A dt+ bZ
x

0@ bZ
t

du

1A dt
= (b� a)2

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
:
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Thus, (6.4) reduces to classical Ostrowski inequality����Pr(X � x)� b� E(X)
b� a

���� �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kfk1 ;

for all x 2 [a; b].

Corollary 6.1 Under the assumptions of Theorem 6.1, we have the double inequal-

ity:

W (b)�M 0

a;b kfk1 � EW � W (b)�m (a; b) +Ma;b kfk1 : (6.9)

Proof. Choosing x = a in (6.4), we obtain:

jW (b)� EW j �M
0

a;b kfk1 :

This implies

W (b)� EW �M 0

a;b kfk1 ;

or

W (b)�M 0

a;b kfk1 � EW ;

which proves left side of the inequality in (6.9).

Similarly, choosing x = b in (6.4), we have:����1� W (b)� EW
m (a; b)

���� � kfk1
m (a; b)

Ma;b;

which gives

m (a; b)�W (b) + EW �Ma;b kfk1 ;

or

EW � W (b)�m (a; b) +Ma;b kfk1 ;

which proves right side of the inequality (6.9).

Remark 6.2 Choosing ! (t) = 1 in (6.9) gives us the inequality

b� 1
2
(b� a)2 kfk1 � E (X) � a+

1

2
(b� a)2 kfk1 ;

which was proved in [10] as Corollary 2.2.
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Remark 6.3 Let us de�ne

F! (x) =

xZ
a

! (t) f (t) dt;

F! (y) =

yZ
a

! (t) f (t) dt:

It can be easily seen that

F! (b)� F! (a) =
bZ
a

! (t) f (t) dt;

implies
yZ
x

F
0

! (t) dt =

yZ
x

! (t) f (t) dt;

which further implies
bZ
a

F
0

! (t) dt =

bZ
a

! (t) f (t) dt:

Now since F! (a) = 0. We, therefore have:

F! (b) =

bZ
a

! (t) f (t) dt

� sup
t2[a;b]

jf (t)j
bZ
a

! (t) dt

= kfk1m (a; b) ;

implies

kfk1 �
F! (b)

m (a; b)
:

We assume that kfk1 is not so large, say

kfk1 �
2F! (b)

m (a; b)
; (6.10)

then

EW � W (b)�M 0

a;b kfk1

� W (b)� 2F! (b)

m (a; b)
M

0

a;b;
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and

EW � W (b)�m (a; b) +Ma;b kfk1

� W (b)�m (a; b) + 2F! (b)

m (a; b)
Ma;b:

Thus

W (b)� 2F! (b)

m (a; b)
M

0

a;b � EW � W (b)�m (a; b) + 2F! (b)

m (a; b)
Ma;b: (6.11)

We observe that the inequality

W (b)�M 0

a;b kfk1 � EW � W (b)�m (a; b) +Ma;b kfk1 ;

is sharper than the inequality (6.11), when (6.10) holds.

Remark 6.4 Choosing ! (t) = 1 in (6.11) gives us the inequalities (2.8) and (2.9)

in [10].

Corollary 6.2 With the above assumptions, we have:

�M 0

a;b

 
kfk1 �

W (b)�W (a)

2M
0
a;b

!
� EW �

W (a) +W (b)

2

�Ma;b

�
kfk1 �

W (b)�W (a)

2Ma;b

�
: (6.12)

Also ����EW � W (a) +W (b)

2

���� �Ma;b

�
kfk1 �

W (b)�W (a)

2Ma;b

�
; (6.13)

when

M
0
(a; b) =M (a; b) : (6.14)

Proof. From the inequality (6.9), we have

W (b)�W (a)

2
�M 0

a;b kfk1 � EW �
W (a) +W (b)

2

� W (b)�W (a)

2
�m (a; b) +Ma;b kfk1 ;

implies

W (b)�W (a)

2
�M 0

a;b kfk1 � EW �
W (a) +W (b)

2

� W (b)�W (a)

2
�m (a; b) +Ma;b kfk1

� �W (b)�W (a)

2
+Ma;b kfk1 ;
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as m (a; b) =
bR
a

! (u) du = W (b)�W (a).

This gives (6.12). Moreover, if (6.14) holds then����EW � W (a) +W (b)

2

���� �Ma;b

�
kfk1 �

W (b)�W (a)

2Ma;b

�
:

This corollary helps in �nding a su¢ cient condition in terms of kfk1, for the

expectation EW to be close to the point W (a)+W (b)
2

.

Corollary 6.3 With the above assumptions, we have:

�M 0

a;b

 
kfk1 �

W (b)� a+b
2

M
0
a;b

!
� EW �

a+ b

2

�Ma;b

 
kfk1 �

W (b)� a+b
2

Ma;b

!
; (6.15)

if

m (a; b) = 2W (b)� (a+ b) :

Also, if (6.14) holds then����EW � a+ b2
���� �Ma;b

 
kfk1 �

W (b)� a+b
2

Ma;b

!
: (6.16)

Proof. From the inequality (6.9), we have

W (b)� a+ b
2

�M 0

a;b kfk1 � EW �
a+ b

2

� W (b)� a+ b
2

�m (a; b) +Ma;b kfk1 ;

implies

�M 0

a;b

 
kfk1 �

W (b)� a+b
2

M
0
a;b

!
� EW �

a+ b

2

� Ma;b

 
kfk1 +

W (b)� a+b
2
�m (a; b)

Ma;b

!

� Ma;b

 
kfk1 �

W (b)� a+b
2

Ma;b

!
;

if m (a; b) = 2W (b)� (a+ b).

This further gives����EW � a+ b2
���� �Ma;b

 
kfk1 �

W (b)� a+b
2

Ma;b

!
;
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when

Ma;b =M
0

a;b:

This corollary helps in �nding a condition in terms of kfk1, for the expectation

EW to be close to the midpoint a+b
2
of the interval [a; b].

Remark 6.5 If we choose ! (t) = 1 in (6.13) or (6.16), then we get the inequality

(2.10) in [10].

Remark 6.6 It may be observed that for " > 0; if

kfk1 �
"

Ma;b

�
W (b)� a+b

2
�m (a; b)

Ma;b

;

then

EW �
a+ b

2
� ":

Moreover, for " > 0

EW �
a+ b

2
� �";

if

kfk1 �
"

M
0
a;b

+
W (b)� a+b

2

M
0
a;b

:

Obviously the two de�nitions of kfk1 coincides when

M
0

a;b = Ma;b;

m (a; b) = 2W (b)� (a+ b) ;

and therefore with these conditions����EW � a+ b2
���� � ":

Corollary 6.4 Let X and f be de�ned as above, then����Pr�X � a+ b

2

�
� W (b)�W (a)

2m (a; b)

����
� kfk1

m (a; b)

�
Ma;a+b

2
+M

0
a+b
2
;b

�
+

1

m (a; b)

����EW � W (a) +W (b)

2

����
� kfk1

m(a; b)

�
Ma;b +Ma;a+b

2
+M

0
a+b
2
;b

�
� W (b)�W (a)

2m(a; b)
; (6.17)

if (6.14) holds.
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Proof. If we choose x = a+b
2
in (2.4), then we have����Pr�X � a+ b

2

�
� W (b)� EW

m (a; b)

���� � kfk1
m (a; b)

�
Ma;a+b

2
+M

0
a+b
2
;b

�
:

Thus, the cited inequality can be written as:����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)
+

1

m (a; b)

�
EW �

W (a) +W (b)

2

�����
� kfk1
m(a; b)

�
Ma;a+b

2
+M

0
a+b
2
;b

�
: (6.18)

Using triangular inequality,����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)

����
=

����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)
+

1

m(a; b)
(EW �

W (a) +W (b

2
)

� 1

m(a; b)
(EW �

W (a) +W (b)

2
)

����
�
����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)
+

1

m(a; b)
(EW �

W (a) +W (b

2
)

����
+

���� 1

m(a; b)
(EW �

W (a) +W (b)

2
)

����
Using (6.18) in the above inequality, we get the required inequality:����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)

����
� kfk1

m(a; b)

�
Ma;a+b

2
+M

0
a+b
2
;b

�
+

1

m(a; b)

����EW � W (a) +W (b

2

����
� kfk1

m(a; b)

�
Ma;b +Ma;a+b

2
+M

0
a+b
2
;b

�
� W (b)�W (a)

2m(a; b)
;

if (6.14) holds.

Remark 6.7 A similar result holds for Pr(X � a+b
2
).

Remark 6.8 If we assume that f is continuous on (a; b), then F is di¤erentiable

on (a; b) and we get in view of (6.4)-(6.6), a weighted Ostowski inequality (see [36],

Chapter 7): ������F (x)� 1

m(a; b)

bZ
a

!(t)F (t)dt

������
� kfk1

m (a; b)
(Ma;x +Mx;b) ;

for all x 2 [a; b]:
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6.1.3 Applications for a Beta Random Variable

A beta random variableX with parameter (p; q) has the probability density function

f(x; p; q) =
xp�1(1� x)q�1

�(p; q)
; 0 < x < 1; (6.19)

where


 = f(p; q) : p; q � 1g and �(p; q) =
1Z
0

tp�1(1� t)q�1dt;

and

EWB =
1

�(p; q)

1Z
0

�Z
!(t)dt

�
tp�1(1� t)q�1dt: (6.20)

We observe that

kf(x; p; q)k1 = sup
0<x<1

�
xp�1(1� x)q�1

�(p; q)

�
:

Assume that p; q � 1;then we �nd that

df(x; p; q)

dx
=
xp�2(1� x)q�2

� (p; q)
[�(p+ q � 2)x+ (p� 1)] :

We further observe that for p; q > 1, df
dx
= 0 if and only if x = x0 =

p�1
p+q�2 . We,

therefore, have df
dx
> 0 on (0; x0) and

df
dx
< 0 on (x0; 1). Thus, we have:

kf(x; p; q)k1 = kf(x0; p; q)k1

=
1

�(p; q)

�
(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

�
:

Proposition 6.1 Let ! and F be as in Theorem 6.1 and X be a random variable

with parameters (p; q); p; q � 1. Then, we have the inequalities:����Pr(X � x)� W (1)� EWB

m(0; 1)

����
� 1

�(p; q)m(0; 1)

(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

h
M0;x +M

0

x;1

i
;

or equivalently, ����1� Pr(X � x)� W (1)� EWB

m(0; 1)

����
� 1

�(p; q)m(0; 1)

(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

h
M0;x +M

0

x;1

i
;
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for all x 2 [0; 1]; where EWB is given by (6.20) and

M0;x =

xZ
0

0@ tZ
0

! (u) du

1A dt;
M

0

x;1 =

1Z
x

0@ 1Z
t

! (u) du

1A dt;
and

W (1) =

Z
!(t)dt j

t=1

:

In particular, we have:����Pr(X � 1

2
)� W (1)� EWB

m(0; 1)

����
� 1

�(p; q)m(0; 1)

(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

h
M0; 1

2
+M

0
1
2
;1

i
;

or equivalently, ����1� Pr(X � 1

2
)� W (1)� EWB

m(0; 1)

����
� 1

�(p; q)m(0; 1)

(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

h
M0; 1

2
+M

0
1
2
;1

i
:

6.2 Weighted Ostrowski type inequality for a random vari-

able whose probability density function belongs to Lp[a; b];

p > 1

6.2.1 Introduction

The main aim of this section is to develop weighted Ostrowski type inequality for

random variables whose probability density functions are in Lp [a; b] ; p > 1. An

application for a beta random variable is also given.

6.2.2 Main Results

Let X be a continuous random variable with probability density function f : [a; b] �

R ! R+ and with cumulative distribution function F (x) = Pr(X � x). Also, let

f 2 Lp[a; b]. The weighted norm in Lp(a; b) is de�ned as kfkp =
�

bR
a

jf(t)jp dt
� 1

p

.
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Let the weight ! : [a; b]! [0;1) be as de�ned in Section 6.1.2 and let us de�ne

mq(a; b) =

0@ bZ
a

j! (t)jq dt

1A
1
q

: (6.21)

The expectation of any function � (X) of the random variable X is de�ned by (6.1).

Also, we de�ne

Qa;x (x) =

xZ
a

mq (t; x) dt; Qx;b (x) =

bZ
x

mq (x; t) dt;

Qa;b (x) = Qa;x (x) +Qx;b (x) =

bZ
a

jmq (t; x)j dt: (6.22)

Then, the following inequality for random variable holds:

Theorem 6.2 Let X; !; f and F be as de�ned above. Then, if f 2 Lp [a; b] ; p > 1,

then we have the inequality:����Pr (X � x)� W (b)� EW
m(a; b)

����
� 1

m(a; b)
max
t2[a;b]

! (t) kfkp [Qa;x (x) +Qx;b (x)] ; (6.23)

where

Qa;x (x) =

xZ
a

mq (t; x) dt;

Qx;b (x) =

bZ
x

mq (x; t) dt;

for all x 2 [a; b] and 1
p
+ 1

q
= 1.

Proof. Now

F (x) =

xZ
a

!(u)f(u)du; F (t) =

tZ
a

!(u)f(u)du:

This gives

F (x)� F (t) =

xZ
a

!(u)f(u)du�
tZ
a

!(u)f(u)du

= �

0@ aZ
x

!(u)f(u)du+

tZ
a

!(u)f(u)du

1A
= �

tZ
x

!(u)f(u)du;
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implies

jF (x)� F (t)j =

������
tZ
x

!(u)f(u)du

������
�

������
tZ

x

j! (u)jq du

������
1
q
������
tZ
x

jf(u)jp du

������
1
p

�

������
tZ

x

j! (u)jq du

������
1
q

kfkp ; (6.24)

for all x 2 [a; b]; p > 1; 1
p
+ 1

q
= 1.

Now using (6.24), we obtain:

jF (x)� F (t)j!(t) � !(t)

������
tZ

x

j! (u)jq du

������
1
q

kfkp :

Integrating with respect to t over [a; b]; we have:

bZ
a

jF (x)� F (t)j!(t)dt

� kfkp

bZ
a

!(t)

������
tZ

x

j! (u)jq du

������
1
q

dt

= kfkp

264 xZ
a

!(t)

0@ xZ
t

j! (u)jq du

1A 1
q

dt+

bZ
x

!(t)

0@ tZ
x

j! (u)jq du

1A
1
q

dt

375

= kfkp

264 xZ
a

!(t)

0@ xZ
t

j! (u)jq du

1A 1
q

dt+

bZ
x

!(t)

0@ tZ
x

j! (u)jq du

1A
1
q

dt

375
� kfkp

264 sup
t2[a;x]

! (t)

xZ
a

0@ xZ
t

j! (u)jq du

1A 1
q

dt+ sup
t2(x;b]

!(t)

bZ
x

0@ tZ
x

j! (u)jq du

1A
1
q

dt

375
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� max

 
sup
t2[a;x]

! (t) ; sup
t2(x;b]

!(t)

!
kfkp

�

264 xZ
a

0@ xZ
t

j! (u)jq du

1A 1
q

dt+

bZ
x

0@ tZ
x

j! (u)jq du

1A
1
q

dt

375
= max

t2[a;b]
! (t) kfkp

24 xZ
a

mq (t; x) dt+

bZ
x

mq (x; t) dt

35
= max

t2[a;b]
! (t) kfkp [Qa;x (x) +Qx;b (x)] ; (6.25)

where Qa;x (x) and Qx;b (x) are de�ned by (6.22).

Consider
bZ
a

(F (x)� F (t))!(t)dt

= F (x)

bZ
a

!(t)dt�
bZ
a

!(t)F (t)dt

= m(a; b)F (x)�
bZ
a

!(t)F (t)dt:

This implies

1

m(a; b)

bZ
a

(F (x)� F (t))!(t)dt = F (x)� 1

m(a; b)

bZ
a

!(t)F (t)dt;

or ������F (x)� 1

m(a; b)

bZ
a

!(t)F (t)dt

������ � 1

m(a; b)

bZ
a

jF (x)� F (t)j!(t)dt: (6.26)

Using (6.2) and (6.25) in (6.26), we get:����Pr(X � x)� W (b)� EW
m(a; b)

����
� 1

m(a; b)
max
t2[a;b]

! (t) kfkp [Qa;x (x) +Qx;b (x)] ;

and the theorem is completely proved.

Remark 6.9 A similar inequality can be deduced for Pr(X � x).

Corollary 6.5 Under the above assumptions, we have the double inequality:

W (b)� max
t2[a;b]

! (t) kfkpQa;b (a) � EW
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� W (b)�m(a; b) + max
t2[a;b]

! (t) kfkpQa;b (b) ; (6.27)

where

Qa;b (a) =

bZ
a

mq (a; t) dt;

Qa;b (b) =

bZ
a

mq (t; b) dt:

Proof. Choose x = a in (6.23), to get:�����W (b)� EWm(a; b)

���� � maxt2[a;b] ! (t)

m(a; b)
kfkpQa;b (a) :

This gives

W (b)� max
t2[a;b]

! (t) kfkpQa;b (a) � EW ;

which is equivalent to the �rst inequality in (2.9).

Also, by choosing x = b in (6.23), we get:����1� W (b)� EWm(a; b)

���� � max
t2[a;b]

! (t)

m(a; b)
kfkpQa;b (b) ;

or ����m(a; b)�W (b) + EWm(a; b)

���� � max
t2[a;b]

! (t)

m(a; b)
kfkpQa;b (b) :

This gives

EW � W (b)�m(a; b) + max
t2[a;b]

! (t) kfkpQa;b (b) ;

which is the right hand side of the inequality (6.27).

Remark 6.10 Choosing !(t) = 1; in (6.27) gives us the inequality which was

proved in [33]:

b� q

q + 1
kfkp (b� a)

1
q
+1 � E(X) � a+ q

q + 1
kfkp (b� a)

1
q
+1:

Remark 6.11 Let us de�ne

F!(x) =

xZ
a

!(t)f(t)dt; F!(y) =

yZ
a

!(t)f(t)dt:

It can be easily seen that

F!(b) =

bZ
a

!(t)f(t)dt �

0@ bZ
a

j! (t)jq dt

1A
1
q

kfkp ;
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which gives

kfkp �
F!(b)

mq(a; b)
:

If we assume that kfkp is not too large, i.e., say

kfkp �
q + 1

q

F!(b)

mq(a; b)
; (6.28)

then

EW � W (b)� max
t2[a;b]

! (t) kfkpQa;b (a)

� W (b)� q + 1
q

�
max
t2[a;b]

! (t)

�
F!(b)

mq(a; b)
Qa;b (a) ;

and

EW � W (b)�m (a; b) + max
t2[a;b]

! (t) kfkpQa;b (b)

� W (b)�m (a; b) + q + 1
q

�
max
t2[a;b]

! (t)

�
F!(b)

mq(a; b)
Qa;b (b) :

Thus,

W (b)� q + 1
q

�
max
t2[a;b]

! (t)

�
F!(b)

mq(a; b)
Qa;b (a) � EW

� W (b)�m (a; b) + q + 1
q

�
max
t2[a;b]

! (t)

�
F!(b)

mq(a; b)
Qa;b (b) : (6.29)

We observe that the inequality

W (b)� max
t2[a;b]

! (t) kfkpQa;b (a)

� EW

� W (b)�m(a; b) + max
t2[a;b]

! (t) kfkpQa;b (b) ;

is sharper than the inequality (6.29), when (6.28) holds.

Remark 6.12 Choosing ! (t) = 1; in (6.28) gives us the condition mentioned in

[33].
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Corollary 6.6 Under the above assumptions, we have the inequality:

�
�
max
t2[a;b]

! (t)

�
Qa;b (a)

0BB@kfkp � W (b)�W (a)

2

�
max
t2[a;b]

! (t)

�
Qa;b (a)

1CCA
� EW �

W (a) +W (b)

2

�
�
max
t2[a;b]

! (t)

�
Qa;b (b)

0BB@kfkp � W (b)�W (a)

2

�
max
t2[a;b]

! (t)

�
Qa;b (a)

1CCA : (6.30)

Moreover, ����EW � W (a) +W (b)

2

����
� max

t2[a;b]
! (t)Qa;b (a)

2664kfkp � W (b)�W (a)

2

�
max
t2[a;b]

! (t)

�
Qa;b (a)

3775 ; (6.31)

provided that

Qa;b (a) = Qa;b (b) : (6.32)

Proof. From inequality (6.27), we have:

W (b)�W (a)
2

� max
t2[a;b]

! (t) kfkpQa;b (a)

� EW �
W (a) +W (b)

2

� W (b)�W (a)
2

�m(a; b) + max
t2[a;b]

! (t) kfkpQa;b (b) ;

implies

�
�
max
t2[a;b]

! (t)

�
Qa;b (a)

0BB@kfkp � W (b)�W (a)

2

�
max
t2[a;b]

! (t)

�
Qa;b (a)

1CCA
� EW �

W (a) +W (b)

2

�
�
max
t2[a;b]

! (t)

�
Qa;b (b)

0BB@kfkp � W (b)�W (a)

2

�
max
t2[a;b]

! (t)

�
Qa;b (b)

1CCA ;
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since,

m (a; b) =W (b)�W (a) :

Also, ����EW � W (a) +W (b)

2

����
�

�
max
t2[a;b]

! (t)

�
Qa;b (a)

0BB@kfkp � W (b)�W (a)

2

�
max
t2[a;b]

! (t)

�
Qa;b (a)

1CCA ;
if (6.32) holds.

This corollary helps in �nding a condition in terms of kfkp, for the expectation

EW (X) to be close to the point
W (a)+W (b)

2
and this completes the proof.

Corollary 6.7 With the above assumptions, we have:

�
�
max
t2[a;b]

! (t)

�
Qa;b (a)

0BB@kfkp � W (b)� a+b
2�

max
t2[a;b]

! (t)

�
Qa;b (a)

1CCA
� EW �

a+ b

2

�
�
max
t2[a;b]

! (t)

�
Qa;b (b)

0BB@kfkp � W (b)� a+b
2�

max
t2[a;b]

! (t)

�
Qa;b (b)

1CCA ; (6.33)

if

m (a; b) = 2W (b)� (a+ b) :

Also, if (6.32) holds then����EW � a+ b2
����

�
�
max
t2[a;b]

! (t)

�
Qa;b (a)

0BB@kfkp � W (b)� a+b
2�

max
t2[a;b]

! (t)

�
Qa;b (a)

1CCA : (6.34)

Proof. From the inequality (6.27), we have

W (b)� a+ b
2

� max
t2[a;b]

! (t) kfkpQa;b (a) � EW �
a+ b

2

� W (b)� a+ b
2

�m (a; b) + max
t2[a;b]

! (t) kfkpQa;b (b) ;
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implies

� max
t2[a;b]

! (t)Qa;b (a)

0@kfkp � W (b)� a+b
2

max
t2[a;b]

! (t)Qa;b (a)

1A
� EW �

a+ b

2

� max
t2[a;b]

! (t)Qa;b (b)

0@kfkp + W (b)� a+b
2
�m (a; b)

max
t2[a;b]

! (t)Qa;b (b)

1A
� max

t2[a;b]
! (t)Qa;b (b)

0@kfkp � W (b)� a+b
2

max
t2[a;b]

! (t)Qa;b (b)

1A ;
if m (a; b) = 2W (b)� (a+ b). This further gives

����EW � a+ b2
���� � max

t2[a;b]
! (t)Qa;b (a)

0@kfkp � W (b)� a+b
2

max
t2[a;b]

! (t)Qa;b (a)

1A ;
when

Qa;b (a) = Qa;b (b) :

This corollary helps in �nding a su¢ cient condition in terms of kfkp, for the expec-

tation EW to be close to the midpoint a+b
2
of the interval [a; b].

Remark 6.13 If we choose ! (t) = 1 in (6.31) and (6.34), then we get the inequal-

ity proved in [33].

Remark 6.14 It may be observed that for " > 0; if

kfkp �
"

max
t2[a;b]

! (t)Qa;b (b)
�
W (b)� a+b

2
�m (a; b)

max
t2[a;b]

! (t)Qa;b (b)
;

then

EW �
a+ b

2
� ":

Moreover, for " > 0

EW �
a+ b

2
� �";

if

kfkp �
"

max
t2[a;b]

! (t)Qa;b (a)
+

W (b)� a+b
2

max
t2[a;b]

! (t)Qa;b (a)
:
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Obviously the two de�nitions of kfkp coincides when

Qa;b (a) = Qa;b (b) ;

m (a; b) = 2W (b)� (a+ b) ;

and therefore with these conditions����EW � a+ b2
���� � ":

Corollary 6.8 Let X and f be de�ned as above, then����Pr�X � a+ b

2

�
� W (b)�W (a)

2m (a; b)

����
�

kfkp
m (a; b)

max
t2[a;b]

! (t)Qa;b

�
a+ b

2

�
+

1

m(a; b)

����EW � W (a) +W (b

2

����
�

kfkp
m(a; b)

max
t2[a;b]

! (t)

�
Qa;b

�
a+ b

2

�
+Qa;b (a)

�
� W (b)�W (a)

2m(a; b)
; (6.35)

provided that (6.32) holds.

Proof. If we choose x = a+b
2
in (6.23), then we have����Pr�X � a+ b

2

�
� W (b)� EW (X)

m (a; b)

����
�

kfkp
m (a; b)

max
t2[a;b]

! (t)

�
Qa;a+b

2

�
a+ b

2

�
+Qa+b

2
;b

�
a+ b

2

��
=

kfkp
m (a; b)

max
t2[a;b]

! (t)Qa;b

�
a+ b

2

�
:

Thus, the cited inequality can be written as:����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)
+

1

m (a; b)

�
EW (X)�

W (a) +W (b)

2

�����
�

kfkp
m (a; b)

max
t2[a;b]

! (t)Qa;b

�
a+ b

2

�
: (6.36)

Using triangular inequality,����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)

����
=

����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)
+

1

m(a; b)
(EW (X)�

W (a) +W (b

2
)

� 1

m(a; b)
(EW (X)�

W (a) +W (b)

2
)

����
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�
����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)
+

1

m(a; b)
(EW (X)�

W (a) +W (b

2
)

����
+

���� 1

m(a; b)
(EW (X)�

W (a) +W (b)

2
)

����
Using (6.36) in the above inequality, we get the required inequality:����Pr(X � a+ b

2
)� W (b)�W (a)

2m(a; b)

����
�

kfkp
m (a; b)

max
t2[a;b]

! (t)Qa;b

�
a+ b

2

�
+

1

m(a; b)

����EW (X)� W (a) +W (b

2

����
�

kfkp
m(a; b)

max
t2[a;b]

! (t)

�
Qa;b

�
a+ b

2

�
+Qa;b (a)

�
� W (b)�W (a)

2m(a; b)
;

if (6.32) holds.

Remark 6.15 A similar result also holds for Pr
�
X � a+b

2

�
and the details are omit-

ted.

6.2.3 Application for a Beta Random Variable

A beta random variableX with parameter (s; t) has the probability density function

f(x; s; t) =
xs�1(1� x)t�1

�(s; t)
; 0 < x < 1;

where


 = f(s; t) : s; t � 1g and �(s; t) =
1Z
0

xs�1(1� x)t�1dx:

We observe that for p > 1;

kf(x; s; t)kp =
1

�(s; t)

0@ 1Z
0

xp(s�1)(1� x)p(t�1)dx

1A
1
p

=
1

�(s; t)

0@ 1Z
0

xp(s�1)+�1(1� x)p(t�1)+1�1dx

1A
1
p

=
1

�(s; t)
[� (p(s� 1) + 1; p(t� 1) + 1)]

1
p ; (6.37)

provided p(s�1)+1; p(t�1)+1 > 0, namely s > 1� 1
p
and t > 1� 1

p
. Moreover,

EWB =
1

�(s; t)

1Z
0

�Z
!(x)dx

�
xs�1(1� x)t�1dx: (6.38)

The following proposition holds:
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Proposition 6.2 Let ! and F be as de�ned in Theorem 6.2 andX be a beta random

variable with parameters (s; t); s > 1� 1
p
; t > 1� 1

p
. Then, we have the inequalities:����Pr(X � x)� W (1)� EWB

m(0; 1)

����
� 1

m(0; 1)

max
t2[0;1]

!(t)

�(s; t)

� [� (p(s� 1) + 1; p(t� 1) + 1)]
1
p [Q0;x (x) +Qx;1 (x)] ;

for all x 2 [0; 1]; where EWB is de�ned by (6.38) and

Q0;x (x) =

xZ
0

mq (t; x) dt;

Qx;1 (x) =

1Z
x

mq (x; t) dt;

and

W (1) =

�Z
!(t)dt

�
t=1

In particular, we have:����Pr�X � 1

2

�
� W (1)� EWB

m(0; 1)

����
� 1

m(0; 1)

max
t2[0;1]

!(t)

�(s; t)
[� (p(s� 1) + 1; p(t� 1) + 1)]

1
p

�
Q0; 1

2

�
1

2

�
+Q 1

2
;1

�
1

2

��
;

where W (1) and EWB are de�ned as above and

Q0; 1
2

�
1

2

�
=

1
2Z
0

mq

�
t;
1

2

�
dt;

Q 1
2
;1

�
1

2

�
=

1Z
1
2

mq

�
1

2
; t

�
dt:

6.3 Conclusion

In this chapter, some weighted Ostrowski type inequalities for a random variable

have been obtained whose probability density functions belong to fLp [a; b] ; p =1;

p > 1g. The inequalities obtained in this chapter recapture the inequalities of

Ostrowski type for random variables given in [10] and [33]. Moreover, it may also
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be noted that these inequalities are also applicable to obtain expectations of random

variables de�ned on in�nite intervals in contrast to the previous results of this type.

The inequalities for generalized beta random variables are also presented.
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Chapter 7

Applications of Ostrowski type inequali-

ties for probability density functions

7.1 A generalized Ostrowski type inequality for a random

variable whose probability density function belongs to

L1[a; b]

We establish here an inequality of Ostrowski type for a continuous random variable

whose probability density function belongs to L1[a; b], in terms of the cumulative

distribution function and expectation. The inequality is then applied to generalized

beta random variable.

7.1.1 Introduction

In [10], N. S. Barnett and S. S. Dragomir established the following version of Os-

trowski type inequality for cumulative and probability distribution functions.

Theorem 7.1 Let X be a continuous random variable with probability density func-

tion f : [a; b] � R! R+ and with cumulative distribution function F (x) = Pr(X �

x). If f 2 L1 [a; b] andkf k1 := sup
t2[a;b]

jf (t)j <1; then we have the inequality:

����Pr(X � x)� b� E(X)
b� a

����
�

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kfk1 ; (7.1)
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for all x 2 [a; b].

Equivalently, ����Pr(X � x)� E(X)� a
b� a

����
�

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kfk1 : (7.2)

The constant 1
4
in (7.1) and (7.2) is sharp.

In the following subsection, we establish a generalized Ostrowski type inequality

for cumulative distribution function and expectation of a random variable. Appli-

cations for the generalized beta distribution are also given.

7.1.2 Main Results

The following theorem holds.

Theorem 7.2 Let X and F be as de�ned above. Let f 2 L1 [a; b] and put kfk1 =

sup
t2[a;b]

f (t) <1.Then, we have the inequality:

����(1� h) Pr(X � x) + h
2
� b� E(X)

b� a

����
�

241
4

�
h2 + (1� h)2

�
+

 
x� a+b

2

b� a

!235 (b� a) kfk1 ; (7.3)

or equivalently, ����(1� h) Pr(X � x) + h
2
� E(X)� a

b� a

����
�

241
4

�
h2 + (1� h)2

�
+

 
x� a+b

2

b� a

!235 (b� a) kfk1 ; (7.4)

for all x 2 [a+ h b�a
2
; b� h b�a

2
] and h 2 [0; 1].

Proof. As de�ned in [34], consider the kernel p : [a; b]2 �! R given by

p(x; t) =

8<: t�
�
a+ h b�a

2

�
; if t 2 [a; x]

t�
�
b� h b�a

2

�
; if t 2 (x; b]:
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Then, the Riemann-Stieltjes integral
bR
a

p (x; t) dF (t) exists for any x 2 [a+h b�a
2
; b�

h b�a
2
] and the following identity holds:

bZ
a

p(x; t)dF (t) =

xZ
a

�
t�
�
a+ h

b� a
2

��
dF (t) +

bZ
x

�
t�
�
b� hb� a

2

��
dF (t)

=

�
t�
�
a+ h

b� a
2

��
F (t)

x

j
a

�
xZ
a

F (t)dt

+

�
t�
�
b� hb� a

2

�
F (t)

�
b

j
x

�
bZ
x

F (t)dt

= (b� a)
�
(1� h)F (x) + h

2

�
�

bZ
a

F (t)dt: (7.5)

Further, we have

E(X) =

bZ
a

tdF (t) = tF (t)
b

j
a

�
bZ
a

F (t)dt

= b�
bZ
a

F (t)dt;

implies
bZ
a

F (t)dt = b� E(X): (7.6)

Using (7.5) and (7.6), we get the identity

bZ
a

p(x; t)dF (t) = (b� a)
�
(1� h)F (x) + h

2

�
+ E(X)� b: (7.7)

As shown in [10]; if p : [a; b]2 ! R is Riemann integrable on [a; b] and � : [a; b]! R

is L-Lipschitzian (Lipschitzian with the constant L), then we have����Z b

a

p (x) d� (x)

���� � L Z b

a

jp (x)j dx: (7.8)
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Applying (7.8) for the mapping p (x; :) and the function F (:) ; we get����Z b

a

p (x; t) dF (t)

����
� kfk1

Z b

a

jp (x; t)j dt

= kfk1

24 xZ
a

����t� �a+ hb� a2
����� dt+

bZ
x

����t� �b� hb� a2
����� dt

35
= kfk1

264 a+h b�a
2Z

a

�
a+ h

b� a
2

� t
�
dt+

xZ
a+h b�a

2

�
t�
�
a+ h

b� a
2

��
dt

+

b�h b�a
2Z

x

�
b� hb� a

2
� t
�
dt+

bZ
b�h b�a

2

�
t�
�
b� hb� a

2

��
dt

375
= kfk1 (b� a)

2

241
4

�
h2 + (1� h)2

�
+

 
x� a+b

2

b� a

!235 ;
for all x 2

�
a+ h b�a

2
; b� h b�a

2

�
.

Finally, by the identity (7.7) we deduce for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
;����(1� h)F (x) + h2 � b� E (X)b� a

����
�

241
4

�
h2 + (1� h)2

�
+

 
x� a+b

2

b� a

!235 (b� a) kfk1 ;
which proves (7.3).

Also, since

Pr (X � x) = 1� Pr (X � x) ;

the inequality (7.4) is obtained.

Remark 7.1 For h = 0 in (7.3) and (7.4), we recapture (7.1) and (7.2). Moreover,

as

h2 + (1� h)2 � 1; for all h 2 [0; 1];

therefore, (7.3) and (7.4) gives better estimates than (7.1) and (7.2).

We now give some corollaries of Theorem 7.2 for the expectations of the variable

X.
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Corollary 7.1 Under the above assumptions, we have the double inequality:

b� h
2
(b� a)� 1

2
M (b� a)2 kfk1

� E (X)

� a+
h

2
(b� a) + 1

2
M (b� a)2 kfk1 ; (7.9)

where

M= h2 � h+ 1; (7.10)

for h 2 [0; 1].

Proof. It is known that

a � E (X) � b:

If x = a in (7.3), we obtain����h2 � b� E (X)b� a

���� � 1

2
M (b� a) kfk ;

where M is as de�ned above and

b� h
2
(b� a)� 1

2
M (b� a)2 kfk

� E (X)

� b� h
2
(b� a) + 1

2
M (b� a)2 kfk : (7.11)

The left hand estimate of the inequality (7.11) is equivalent to �rst inequality in

(7.9).

Also, if x = b in (7.3)����E (X)� ab� a � h
2

���� � 1

2
M (b� a) kfk1 ;

which reduces to

a+
h

2
(b� a)� 1

2
M (b� a)2 kfk1

� E (X)

� a+ h
2
(b� a) + 1

2
M (b� a)2 kfk1 : (7.12)

The right hand side of the inequality (7.12) proves the second inequality of (7.9).

177



Remark 7.2 As for the probability density function f associated with random vari-

able X

1 =

bZ
a

f (t) dt;

implies

kfk1 �
1

b� a:

If we suppose that f is not too large and

kfk1 �
2� h

M (b� a) ; (7.13)

where M is de�ned by (7.10) and h 2 [0; 1].Then from the double inequality (7.9) it

can be veri�ed that

a+
h

2
(b� a) + 1

2
M (b� a)2 kfk1 � b;

and

b� h
2
(b� a)� 1

2
M (b� a)2 kfk1 � a;

when (7.13) holds. It shows that (7.9) gives a much tighter estimate of the expected

value of the random variable X.

Corollary 7.2 Under the above assumptions, we have:����E (X)� a+ b2
���� � 1

2
(b� a)2

�
M kfk1 �

1� h
b� a

�
: (7.14)

Proof. From the inequality (7.9),

�1
2
(b� a)2

�
M kfk1 �

1� h
b� a

�
� E (X)� a+ b

2

� 1

2
(b� a)2

�
M kfk1 �

1� h
b� a

�
;

which is exactly (7.14).

This corollary helps in �nding a condition, in terms of kfk1 ; for the expectation

E (X) to be close to the midpoint of the interval, a+b
2
.

Corollary 7.3 Let X and f be as above and " > 0. If

kfk1 �
(1� h)
M (b� a) +

2"

M (b� a)2
; (7.15)
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then ����E (X)� a+ b2
���� � "

The following corollary of Theorem 7.2 also holds.

Corollary 7.4 Let X and F be as above, then����(1� h) Pr�X � a+ b

2

�
� 1
2
(1� h)

����
� 1

4

�
h2 + (1� h)2

�
(b� a) kfk1 +

1

b� a

����E (X)� a+ b2
����

�
�
M �1

4

�
(b� a) kfk1 �

1

2
(1� h) : (7.16)

Proof. If we choose x = a+b
2
in (7.3), then we get����(1� h) Pr�X � a+ b

2

�
+
h

2
� b� E (X)

b� a

����
� 1

2

�
M �1

2

�
(b� a) kfk1 ;

which may be rewritten in the following form����(1� h) Pr�X � a+ b

2

�
+
h

2
� 1
2
+

1

b� a

�
E (X)� a+ b

2

�����
� 1

2

�
M �1

2

�
(b� a) kfk1 :

Using the triangular inequality, we get����(1� h) Pr�X � a+ b

2

�
+
h

2
� 1
2
+

1

b� a

�
E (X)� a+ b

2

�
� 1

b� a

�
E (X)� a+ b

2

�����
�

����(1� h) Pr�X � a+ b

2

�
+
h

2
� 1
2
+

1

b� a

�
E (X)� a+ b

2

�����
+

1

b� a

����E (X)� a+ b2
����

� 1

2

�
M �1

2

�
(b� a) kfk1 +

1

b� a

����E (X)� a+ b2
����

�
�
M �1

4

�
(b� a) kfk1 �

1

2
(1� h) ;

which gives the desired result.

A similar inequality holds for

Pr

�
X � a+ b

2

�
:
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Corollary 7.5 Let X and F be as above, then����E (X)� a+ b2
����

� 1

2

�
M �1

2

�
(b� a)2 kfk1

+(b� a)
����Pr�X � a+ b

2

�
� 1
2
(1� h)

���� : (7.17)

Following the above corollary the proof is obvious and the details are omitted.

Remark 7.3 If we assume that f is continuous on [a; b] ; then F is di¤erentiable

on (a; b) ; and we get������(1� h)F (x) + h2 � 1

b� a

bZ
a

F (t) dt

������
�

241
4

�
h2 + (1� h)2

�
+

 
x� a+b

2

b� a

!235 (b� a) kfk1 : (7.18)

Using the identity (7.6), we recapture (7.3) and (7.4) for random variables whose

probability density function are continuous on [a; b].

7.1.3 Applications for Beta Random Variable

If X is a beta random variable with parameters �3 > �1; �4 > �1 and for �2 > 0

and any �1; the generalized beta random variable

Y = �1 + �2X;

is said to have a generalized beta distribution [51] and the probability density func-

tion of the generalized beta distribution of beta random variable is given as:

f (x) =

8<:
(x��1)�3 (�1+�2�x)�4

�(�3+1;�4+1)�
(�3+�4+1)
2

; for �1 < x < �1 + �2

0; otherwise

where � (l;m) is the beta function with l; m > 0 and is de�ned as

� (l;m) =

1Z
0

xl�1 (1� x)m�1 dx:
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For p; q > 0 and h 2 [0; 1); we choose,

�1 =
h

2
;

�2 = (1� h) ;

�3 = p� 1;

�4 = q � 1:

Then, the probability density function associated with generalized beta random

variable

Y =
h

2
+ (1� h)X;

takes the form

f (x) =

8<:
(x�h

2 )
p�1
(1�h

2
�x)

q�1

�(p;q)(1�h)p+q�1 ; h
2
< x < 1� h

2

0; otherwise.
(7.19)

Now,

E (Y ) =

1�h
2Z

h
2

xf (x) dx

= (1� h) p

p+ q
+
h

2
: (7.20)

We observe that for p < 1

kf(x; p; q)k1 = sup
h
2
<x<1�h

2

"�
x� h

2

�p�1 �
1� h

2
� x
�q�1

� (p; q) (1� h)p+q�1

#
:

Assume that p; q > 1, then we �nd that

df (x; p; q)

dx
=

�
x� h

2

�p�2 �
1� h

2
� x
�q�2

(1� h)p+q�1 � (p; q)
��

(p� 1) + h
2
(q � p)� (p+ q � 2)x

�
:

We further observe that for p; q > 1, df
dx
= 0 if and only if x = x0 =

(p�1)+h
2
(q�p)

p+q�2 .

We therefore have df
dx
> 0 on (h

2
; x0) and

df
dx
< 0 on (x0; 1 � h

2
). Consequently, we

see that

kf(x; p; q)k1 = kf(x0; p; q)k1

=
1

(1� h) �(p; q)

�
(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

�
: (7.21)

Then, by Theorem 7.2, we may state the following.
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Proposition 7.1 Let X be a beta random variable with parameters (p; q). Then,

for generalized beta random variable:

Y =
h

2
+ (1� h)X;

we have the inequality ����Pr (Y � x)� q

p+ q

����
� 1

(1� h)2 �(p; q)

�
(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

�
�"

1

4

�
h2 + (1� h)2

�
+

�
x� 1

2

�2#
; (7.22)

for all x 2
�
h
2
; 1� h

2

�
.

In particular,����Pr�Y � 1

2

�
� q

p+ q

����
� 1

4 (1� h)2 �(p; q)
�
h2 + (1� h)2

� �(p� 1)p�1(q � 1)q�1
(p+ q � 2)p+q�2

�
: (7.23)

7.2 A generalized Ostrowski type inequality for a random

variable whose probability density function belongs to

Lp[a; b]; p > 1.

7.2.1 Introduction

In [33], S. S. Dragomir, N. S. Barnett and S. Wang developed Ostrowski�s type in-

equality for a random variable whose probability density function belongs to Lp[a; b]

in terms of the cumulative distribution function and expectation. The inequality is

given in the form of the following theorem:

Theorem 7.3 Let X be a continuous random variable with the probability density

function f : [a; b] � R ! R+ and with cumulative distribution function F (x) =
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Pr(X � x). If f 2 Lp [a; b] ; p > 1; then, we have the inequality:����Pr(X � x)� b� E(X)
b� a

����
� q

q + 1
kfkp (b� a)

1
q

"�
x� a
b� a

� 1+q
q

+

�
b� x
b� a

� 1+q
q

#
� q

1 + q
kfkp (b� a)

1
q ; (7.24)

for all x 2 [a; b]; where 1
p
+ 1

q
= 1.

In [106], we can �nd the following theorem:

Theorem 7.4 Let f : [a; b] ! R be continuous, di¤erentiable on [a; b] and f
0 2

Lp (a; b) for some p > 1. Then������(b� a)
�
(1� h) f (x) + hf (a) + f (b)

2

�
�

bZ
a

f (t) dt

������
� 1

(q + 1)
1
q

"
2

�
h (b� a)

2

�q+1
+

�
x� a� h (b� a)

2

�q+1

+

�
b� x� h (b� a)

2

�q+1# 1
q f 0

p
; (7.25)

where q = p
p�1 ; h 2 [0; 1] and a+ h

b�a
2
� x < b� h b�a

2
.

The main aim of this section is to develop an Ostrowski type inequality for

random variables whose probability density functions are in Lp [a; b] based on (7.25).

An application for a generalized beta random variable is also given.

7.2.2 Main Results

The following theorem holds:

Theorem 7.5 Let X and F be as de�ned above. Then from Theorem 7.4, we have������(1� h)F (x) + h2 � 1

b� a

bZ
a

F (t) dt

������
� 1

(b� a) (q + 1)
1
q

"
2

�
h (b� a)

2

�q+1
+

�
x� a� h (b� a)

2

�q+1

+

�
b� x� h (b� a)

2

�q+1# 1
q

kfkp ; (7.26)
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where f is the probability distribution function associated with the cumulative dis-

tribution function F .

Equivalently,����(1� h) Pr(X � x) + h
2
� b� E(X)

b� a

����
� 1

(b� a) (q + 1)
1
q

"
2

�
h (b� a)

2

�q+1
+

�
x� a� h (b� a)

2

�q+1

+

�
b� x� h (b� a)

2

�q+1# 1
q

kfkp ; (7.27)

for all x 2 [a+ h b�a
2
; b� h b�a

2
] and h 2 [0; 1].

Proof. Proof is obvious. Hence, the details are omitted.

We now give some corollaries of the above theorem for the expectations of the

variable X.

Corollary 7.6 Under the above assumptions, we have the double inequality

b� h
2
(b� a)� 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp

� E (X)

� a+
h

2
(b� a) + 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp ; (7.28)

for h 2 [0; 1] and

M (q; h) =
 �

h

2

�q+1
(2� (�1)q) +

�
1� h

2

�q+1! 1
q

: (7.29)

Proof. It is known that

a � E (X) � b:

If x = a in (7.27), we obtain����h2 � b� E (X)b� a

���� � �b� aq + 1

� 1
q

M (q; h) kfkp ;

implies

b� h
2
(b� a)� 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp

� E (X)
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� b� h
2
(b� a) + 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp : (7.30)

The left hand estimate of the inequality (7.30) is equivalent to �rst inequality in

(7.28).

Also, if x = b in (7.27)����E (X)� ab� a � h
2

���� � �b� aq + 1

� 1
q

M (q; h) kfkp ;

which reduces to

a+
h

2
(b� a)� 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp

� E (X)

� a+ h
2
(b� a) + 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp : (7.31)

The right hand side of the inequality (7.31) proves the second inequality of (7.28).

Remark 7.4 As for the probability density function f associated with the random

variable X

1 =

bZ
a

f (t) dt;

implies

kfkp �
1

(b� a)
1
q

:

If we suppose that f is not too large and

kfkp �
(q + 1)

1
q
�
1� h

2

�
(b� a)

1
q M (q; h)

: (7.32)

Then from the double inequality (7.28) it can be veri�ed that

a+
h

2
(b� a) + 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp � b;

and

b� h
2
(b� a)� 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp � a;

when (7.32) holds. It shows that (7.28) gives a much tighter estimate of the expected

value of the random variable X.
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Corollary 7.7 With the above assumptions, we have:����E (X)� a+ b2
���� � (b� a)

"�
b� a
q + 1

� 1
q

M (q; h) kfkp �
1� h
2

#
; (7.33)

where M (q; h) is de�ned by (7.29).

Proof. From the inequality (7.28),

1

2
(b� a) (1� h)� 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp

� E (X)� a+ b
2

� �1
2
(b� a) (1� h) + 1

(q + 1)
1
q

M (q; h) (b� a)1+
1
q kfkp

which is exactly (7.33).

This corollary helps in �nding a condition, in terms of kfkp ; for the expectation

E (X) to be close to the midpoint of the interval,a+b
2
.

Corollary 7.8 Let X and f be as above and " > 0. If

kfkp �
(1� h) (q + 1)

1
q

2 M (q; h) (b� a)
1
q

+
(q + 1)

1
q "

M (q; h) (b� a)1+
1
q

; (7.34)

then ����E (X)� a+ b2
���� � "

The following corollary of Theorem 7.5 also holds.

Corollary 7.9 Let X and F be as above, then����(1� h) Pr�X � a+ b

2

�
� 1
2
(1� h)

����
� 1

2

�
hq+1 + (1� h)q+1

� 1
q

�
b� a
q + 1

� 1
q

kfkp

+

�
b� a
q + 1

� 1
q

M (q; h) kfkp �
1

2
(1� h) : (7.35)

Proof. If we choose x = a+b
2
in (7.27), then we get����(1� h) Pr�X � a+ b

2

�
+
h

2
� b� E (X)

b� a

����
� 1

2

�
hq+1 + (1� h)q+1

� 1
q

�
b� a
q + 1

� 1
q

kfkp ;
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which may be rewritten in the following form����(1� h) Pr�X � a+ b

2

�
+
h

2
� 1
2
+

1

b� a

�
E (X)� a+ b

2

�����
� 1

2

�
hq+1 + (1� h)q+1

� 1
q

�
b� a
q + 1

� 1
q

kfkp :

Using the triangular inequality, we get����(1� h) Pr�X � a+ b

2

�
+
h

2
� 1
2
+

1

b� a

�
E (X)� a+ b

2

�
� 1

b� a

�
E (X)� a+ b

2

�����
�

����(1� h) Pr�X � a+ b

2

�
+
h

2
� 1
2
+

1

b� a

�
E (X)� a+ b

2

�����
+

1

b� a

����E (X)� a+ b2
����

gives the desired result.

A similar inequality holds for

Pr

�
X � a+ b

2

�
:

Moreover, the following applications of Theorem 7.5 hold:

7.2.3 Applications for Generalized Beta Random Variable

If X be as in Section 7.1.3, then by using (7.19), we have:

kfkp =
1

(1� h)1�
1
p � (s; t)

�
1
p (p (s� 1) + 1; p (t� 1) + 1) ; (7.36)

provided

s > 1� 1
p
;

t > 1� 1
p
;

for p > 1. Then, by Theorem 7.5, we may state the following.

Proposition 7.2 Let X be a beta random variable with parameters (s; t). Then,

for generalized beta random variable:

Y =
h

2
+ (1� h)X;

187



we have the inequality����Pr (Y � x)� t

s+ t

����
� 1

(1� h)2�
1
p � (s; t)

 
2
�
h
2

�q+1
+
�
x� h

2

�q+1
+
�
1� x� h

2

�q+1
q + 1

! 1
q

�

�
1
p (p (s� 1) + 1; p (t� 1) + 1) ; (7.37)

for all x 2
�
h
2
; 1� h

2

�
.

In particular, ����Pr�Y � 1

2

�
� t

s+ t

����
� 1

2 (1� h)2�
1
p � (s; t)

 
hq+1 + (1� h)q+1

q + 1

! 1
q

��
1
p (p (s� 1) + 1; p (t� 1) + 1) : (7.38)

Remark 7.5 For h = 0 in (7.37), we have the inequality����Pr (X � x)� t

s+ t

����
�

 
xq+1 + (1� x)q+1

q + 1

! 1
q
�
1
p (p (s� 1) + 1; p (t� 1) + 1)

� (s; t)
; (7.39)

for all x 2 [0; 1] ; and particularly,����Pr�X � 1

2

�
� t

s+ t

����
� 1

2 (q + 1)
1
q

�
1
p (p (s� 1) + 1; p (t� 1) + 1)

� (s; t)
: (7.40)

It is interesting to compare these two inequalities with the results of Proposition

3.1 in [33]. Actually, we, in here, have sharpened and improved the previous results.

7.3 Conclusion

In this chapter, Ostrowski type inequalities are applied to obtain various tight

bounds for the random variables de�ned on a �nite interval whose probability den-

sity functions belong to fLp [a; b] : p =1; p > 1g. Moreover, as it has been shown

in Remark 7.2 and 7.4 that some tighter estimates of the expectation of a random
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variable have been obtained. The inequalities obtained are then applied to a gen-

eralized beta random variable to get some new and generalized estimates in this

context. Moreover, Remark 7.5 also re�ects that we have improved some previous

inequalities of [33] for a beta random variable.
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Chapter 8

Applications of Ostrowski type inequali-

ties to iterative methods

Let us consider the equation

f (x) = 0; (8.1)

where f is a real valued univariate non-linear function.

Locating zeros of such functions has been given much attention from several

decades due to its importance in applied sciences. Newton�s method is the most

widely used quadratically convergent iterative method in solving such problems;

yet in the recent past many other e¢ cient iterative methods for solving non-linear

equations have appeared in the literature by the use of Taylor�s series, interpolating

polynomials, decomposition techniques and quadrature formulae. The books and

research papers [14, 6, 25] provide an extensive amount of literature in the context

of Newton�s method, its variants and modi�cations.

The connection of quadrature formulae and iterative methods has already been

established by S. Weerakoon and T. G. I. Fernando in [105] by using the inde�nite

integral representation of Newton�s method [26] to obtain quadrature based iterative

methods. The trend continued with the publication of the papers by G. Nedzhibov

[67], V. I. Hasanov et al. [48] and M. Frontini and E. Sormani [43, 44]. However,

this domain is addressed only for classical quadrature rules e.g., trapezoid, mid-

point, Simpson�s, etc. N. Ujevíc in [102, 103], however, adopted a quite di¤erent

approach by using specially derived quadrature rule, infact the equivalence of two

quadrature rules to re-establish this connection and to obtain quadrature based

iterative predictor-corrector type methods for solving non-linear equations.
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The applications of mathematical inequalities, particularly inequalities of Ostrowski-

Grüss and µCeby�ev type have already been explored by S. S. Dragomir, N. S. Bar-

nett, P. Cerone, Th. M. Rassias and S. Wang, etc., in Numerical integration, Special

means and Probability theory, see e.g., [8, 36, 39, 40]. We, however, by using the

approach of S. Weerakoon and T. G. I. Fernando [105] give some new applications of

such inequalities to obtain iterative methods for solving non-linear equations. We,

thus, establish the fact that the specially derived quadrature rules developed in the

sense of inequalities may be applied to develop many other iterative methods.

8.1 A generalized family of quadrature based iterative meth-

ods

8.1.1 Introduction

In this section, we present a family of iterative methods for solving non-linear equa-

tions as an application of integral inequalities. Thus, we give a new application of

such inequalities other than their natural applications in Numerical integration and

Special means. Moreover, it is shown that the family of two-step iterative meth-

ods thus established has third-order convergence and it recaptures many previously

presented quadrature based iterative methods.

8.1.2 A generalized family of two-step Iterative methods

Consider the following family of quadrature rules derived in the sense of inequalities

in Section 3.4:

Theorem 8.1 Let f : I ! R; where I � R is an interval, be mapping di¤erentiable

in the interior Int I of I, and let a; b 2 Int I; a < b. If there exists some constants

;� 2 R; such that  � f 0 (t) � �; 8 t 2 [a; b] and f 0 2 L1 (a; b) ; then we have:������(1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f(t)dt

������
� 1

2

�
1� h2

�
(b� a)(S � ) (8.2)
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and ������(1� h)
�
f(x)�

�
x� a+ b

2

�
f
0
(x)

�
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f(t)dt

������
� 1

2

�
1� h2

�
(b� a)(�� S) (8.3)

where S = f(b)�f(a)
b�a ; x 2

�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].

Moreover, in Section 3.1, we have derived the following inequality:

Theorem 8.2 Let f : [a; b] ! R be an absolutely continuous function whose �rst

derivative f
0 2 L2 (a; b). Then, we have the inequality:������(1� h)
�
f (x)� f (b)� f (a)

b� a

�
x� a+ b

2

��
+ h

f (a) + f (b)

2
� 1

b� a

bZ
a

f (t) dt

������
�

"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h)

�
x� a+ b

2

�2# 1
2

�

"
1

b� a

f 02
2
�
�
f (b)� f (a)

b� a

�2# 1
2

;

� 1

2
(�� )

"
(b� a)2

12

�
3h2 � 3h+ 1

�
+ h (1� h)

�
x� a+ b

2

�2# 1
2

;

if  � f 0 (t) � � almost everywhere t on [a; b] ; (8.4)

for all x 2
�
a+ h b�a

2
; b� h b�a

2

�
and h 2 [0; 1].

Remark 8.1 It may be noted that for x = a+b
2
and for h 2 [0; 1] the left hand sides

of (2.1), (2.2) and (2.3) give the following family of quadrature rule:

bZ
a

f (t) dt = (b� a)
�
(1� h) f

�
a+ b

2

�
+ h

f (a) + f (b)

2

�
+R (f) ; (8.5)

which is a combination of mid-point and trapezoid rule.

We proceed with the inde�nite integral representation of Newton�s method [26]:

f (x) = f (xn) +

xZ
xn

f
0
(t) dt: (8.6)
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Now approximating the integral in (8.6) with the quadrature rule (8.5), we obtain:

xZ
xn

f
0
(t) dt = (x� xn)

�
(1� h) f 0

�
xn + x

2

�
+ h

f
0
(xn) + f

0
(x)

2

�
: (8.7)

Using the approximation (8.7) in (8.6) implies

�2f (xn) = (x� xn)
�
2 (1� h) f 0

�
xn + x

2

�
+ h

�
f
0
(xn) + f

0
(x)
��

which �nally results into the following implicit method:

x = xn �
2f (xn)

2 (1� h) f 0
�
xn+x
2

�
+ h (f 0 (xn) + f

0 (x))
:

This implies

xn+1 = xn �
2f (xn)

2 (1� h) f 0
�
xn+yn
2

�
+ h (f 0 (xn) + f

0 (yn))
; (8.8)

where yn is some explicit method.

If we choose yn as Newton�s method in (8.8), then we have the following two-step

method:

xn+1 = xn �
2f (xn)

2 (1� h) f 0
�
xn+yn
2

�
+ h (f 0 (xn) + f

0 (yn))
;

yn = xn �
f (xn)

f 0 (xn)
; (8.9)

or

yn = xn �
f (xn)

f 0 (xn)
; (8.10)

zn = xn �
f (xn)

2f 0 (xn)
; (8.11)

xn+1 = xn �
2f (xn)

2 (1� h) f 0 (zn) + h (f 0 (xn) + f 0 (yn))
: (8.12)

We, now, compute the order of convergence of algorithm (8.9) using Maple 7.0

and is given in the form of the following theorem:

Theorem 8.3 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm (8.9) is cubically convergent for all h 2 [0; 1].
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Proof. Let w be a simple zero of f and xn = w + en with an error en. By

Taylor�s expansion, we have:

f(xn) = f
0
(w)

�
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n

�
+O(e7n) (8.13)

f
0
(xn) = f

0
(w)

�
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n

�
+O(e6n); (8.14)

where

ck =

�
1

k!

�
f (k)(w)

f 0(w)
; k = 2; 3; :::and en = xn � w: (8.15)

Using (8.14) and (8.13), we have

f(xn)

f 0(xn)
= en � c2e2n + 2

�
c22 � c3

�
e3n +

�
7c2c3 � 3c4 � 4c32

�
e4n +O(e

5
n): (8.16)

Using (8.16) in (8.10), we obtain

yn = w + c2e
2
n +

�
�2c22 + 2c3

�
e3n �

�
7c2c3 � 4c32 � 3c4

�
e4n

+O
�
e5n
�
: (8.17)

Expanding f(yn) by Taylor�s series about w;we have:

f(yn) = f
0
(w)

�
c2e

2
n + 2(c3 � c22)e3n + (�7c2c3 + 3c4 + 5c32)e4n

�
+O

�
e5n
�
: (8.18)

By Taylor�s series, we have

f
0
(yn) = f

0
(w) (1 + 2c22e

2
n +

�
�4c32 + 4c2c3

�
e3n

+(�11c3c22 + 8c
4
2 + 6c2c4)e

4
n) +O(e

5
n): (8.19)

Using (8.16) in (8.11), we thus have

zn = w +
1

2
en +

1

2
c2e

2
n +

�
�c22 + c3

�
e3n

+

�
3

2
c4 �

7

2
c2c3 + 2c

3
2

�
e4n +O

�
e5n
�
: (8.20)

Expanding f(zn) by Taylor�s series about w;we have:

f(zn) = f
0
(w) (

1

2
en +

3

4
c2e

2
n +

�
�1
2
c22 +

9

8
c3

�
e3n

+

�
5

4
c32 �

17

8
c2c3 +

25

16
c4

�
e4n

+

�
�3c42 +

57

8
c3c

2
2 �

9

4
c23 �

13

4
c2c4 +

65

32
c5

�
e5n)

+O(e6n): (8.21)
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By Taylor�s series, we have

f
0
(zn) = f

0
(w)(1 + c2en +

�
c22 +

3

4
c3

�
e2n + (�2c32 +

7

2
c2c3 +

1

2
c4)e

3
n

+

�
9

2
c2c4 + c

4
2 �

37

4
c22c3 + 3c

2
3 +

5

16
c5

�
e4n)

+O
�
e5n
�
: (8.22)

Using (8.14), (8.19) and (8.22) in

2f(xn)

2 (1� h) f 0 (zn) + h (f 0 (xn) + f 0 (yn))

= en + (
1

4
(1� 3h) c3 � c22)e3n

+(3c32 +
3

4
(3h� 5) c2c3 +

1

2
(1� 3h) c4)e4n

+O
�
e5n
�
: (8.23)

Therefore, by using (8.23) in (8.12), we have:

xn+1 = w + (c
2
2 �

1

4
(1� 3h) c3)e3n +O

�
e4n
�
:

Hence, we obtain:

en+1 = (c
2
2 �

1

4
(1� 3h) c3)e3n +O

�
e4n
�
:

Thus, we observe that the method is cubically convergent for all h 2 [0; 1].

Remark 8.2 It is clear from Theorem 8.3 that algorithm (8.9) is cubically conver-

gent and

1. For h = 1; it recaptures the trapezoid Newton�s method given by S. Weerakoon

and T. G. I. Fernando in [105].

2. For h = 0; it recaptures the midpoint Newton�s method given by A. Y. Özban

in [72] and by Frontini et al. in [43].

3. For h = 1
3
; it recaptures the Simpson Newton�s method given by V. I. Hasanov

et. al. in [48].

4. For h = 1
2
; it recaptures the averaged trapezoid midpoint Newton�s method

given by G. Nedzhibov in [67].
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Remark 8.3 The computational e¢ ciency of the algorithm (8.9) is less than the

computational e¢ ciency of the Newton�s method except for the cases for which h =

0 and h = 1. However, the implicit method (8.8) can be used in combination

with the other known methods to increase the convergence order and computational

e¢ ciency.

8.2 Applications of error inequalities to iterative methods

8.2.1 Introduction

In this section, we, by the use of quadrature rule developed in Section 5.1 in the

sense of error inequalities present some two-step and three-step iterative algorithms

for solving non-linear equations. The two-step algorithms and their derivation are

given in Section 8.2.2 followed by their convergence analysis in Section 8.2.3. The

three-step iterative algorithms are suggested in Section 8.2.4 with their convergence

analysis in Section 8.2.5. It is proved that the new algorithms are of three, four,

six and eighth order. In Section 8.2.6, several numerical examples are given to

ensure that the new algorithms are comparable with the existing methods. The

comparisons have been carried out with the respective known methods of cubic,

fourth, sixth and seventh order.

8.2.2 Two-step Iterative Methods

Consider the following family of quadrature rules in the sense of error inequalities

derived in Section 5.1:

Theorem 8.4 Let I � R be an open interval such that [a; b] � I and let f : I ! R

be a twice di¤erentiable function such that f
00
is bounded and integrable. Then, we

have:

bZ
a

f (t) dt =
1

2
(b� a) [hf (a) + (1� h) f (x1)

+ (1� h) f (x2) + hf (b)] +R (f) ; (8.24)
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with

x1 =
b� a
2
x� +

a+ b

2
; x2 = �

b� a
2
x� +

a+ b

2
;

x� = �4 + 4h+ 2
p
3� 6h+ 4h2; (8.25)

and

jR (f)j � 1

4
4 (h) (b� a)3

f 00
1
; (8.26)

h 2
�
0; 1

2

�
and 4 (h) is de�ned as:

4 (h) = 52

3
h3 � 44h2 + 83

2
h+

83

6
+ 8 (1� h)2

p
4h2 � 6h+ 3

+
2

3

�
8h2 � 14h+ 7

�q
8h2 � 14h+ 7� 4 (1� h)

p
4h2 � 6h+ 3

�8
3
(1� h)

q
8h2 � 14h+ 7� 4 (1� h)

p
4h2 � 6h+ 3

p
4h2 � 6h+ 3: (8.27)

Remark 8.4 For h = 1
5
; 4 (h) attains its minimum value and the corresponding

quadrature rule is as follows:

bZ
a

f (t) dt =
1

10
(b� a)

�
f (a) + 4f

�
7a+ 3b

10

�

+4f

�
3a+ 7b

10

�
+ f (b)

�
+R (f) ; (8.28)

and

jR (f)j � C (b� a)3
f 00

1
;

where C = 7
1500

� 0:00467:

We proceed with the inde�nite integral representation of Newton�s method [26]:

f (x) = f (xn) +

xZ
xn

f
0
(t) dt: (8.29)

Now approximating the integral in (8.29) with the quadrature rule (8.28), we obtain:

xZ
xn

f
0
(t) dt =

1

10
(x� xn)

�
f
0
(xn) + 4f

0
�
7xn + 3x

10

�

+4f
0
�
3xn + 7x

10

�
+ f

0
(x)

�
: (8.30)
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Using the approximation (8.30) in (8.29) implies

�10f (xn) = (x� xn)
�
f
0
(xn) + 4f

0
�
7xn + 3x

10

�
+4f

0
�
3xn + 7x

10

�
+ f

0
(x)

�
;

which �nally results into the following implicit method:

x = xn �
10f (xn)

f 0 (xn) + 4f
0 �7xn+3x

10

�
+ 4f 0

�
3xn+7x
10

�
+ f 0 (x)

:

This implies

xn+1 = xn �
10f (xn)

f 0 (xn) + 4f
0 �7xn+3yn

10

�
+ 4f 0

�
3xn+7yn

10

�
+ f 0 (yn)

; (8.31)

where yn is some explicit method.

If we choose yn as Newton�s method in (8.31), then we have the following two-

step method:

xn+1 = xn �
10f (xn)

f 0 (xn) + 4f
0 �7xn+3yn

10

�
+ 4f 0

�
3xn+7yn

10

�
+ f 0 (yn)

;

yn = xn �
f (xn)

f 0 (xn)
;

or

xn+1 = xn �
10f (xn)

f 0 (xn) + 4f
0 (hn) + 4f

0 (zn) + f
0 (yn)

;

zn = xn �
7f (xn)

10f 0 (xn)
;

hn = xn �
3f (xn)

10f 0 (xn)
;

yn = xn �
f (xn)

f 0 (xn)
: (8.32)

Next, we, compute the order of convergence of algorithm (8.32) using Maple 7.0

and give it in the form of the following theorem:

Theorem 8.5 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm (8.32) is cubically convergent and the error equation is given by

en+1 =

�
c22 �

1

250
c3

�
e3n +O

�
e4n
�
:
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Remark 8.5 It is clear from Theorem 8.5 that algorithm (8.32) is cubically conver-

gent. Moreover, it may be observed that the computational e¢ ciency of algorithm

(8.32) is less than the Newton�s method. Therefore, some reduction or decompo-

sition techniques may further be applied on algorithm (8.32) to obtain some new

computationally e¢ cient two-step and three-step variants of algorithm (8.32).

We, however, now suggest the following reductions of two step iterative algo-

rithm (8.32) to increase the computational e¢ ciency.

Algorithm 1. For a given initial guess x0; �nd the approximate solution of

(8.1) by:

hn = xn �
3f (xn)

10f 0 (xn)
; (8.33)

xn+1 = xn �
10f (xn)

Af 0 (xn) +Bf
0 (hn)

: (8.34)

Algorithm 2. For a given initial guess x0; �nd the approximate solution of

(8.1) by:

zn = xn �
7f (xn)

10f 0 (xn)
; (8.35)

xn+1 = xn �
10f (xn)

Af 0 (xn) +Bf
0 (zn)

: (8.36)

Algorithm 3. For a given initial guess x0; �nd the approximate solution of

(8.1) by:

yn = xn �
f (xn)

f 0 (xn)
; (8.37)

hn = xn �
3f (xn)

10f 0 (xn)
; (8.38)

xn+1 = yn �
10f (yn)

Af 0 (xn) +Bf
0 (hn)

: (8.39)

Algorithm 4. For a given initial guess x0; �nd the approximate solution of

(8.1) by:

yn = xn �
f (xn)

f 0 (xn)
; (8.40)

zn = xn �
7f (xn)

10f 0 (xn)
; (8.41)

xn+1 = yn �
10f (yn)

Af 0 (xn) +Bf
0 (zn)

: (8.42)

We now compute the convergence orders of the above suggested algorithms using

Maple 7.0.
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8.2.3 Convergence Analysis of Two-step Iterative methods

Theorem 8.6 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 1 is cubically convergent for A = �20
3
and B = 50

3
.

Proof. Let w be a simple zero of f and xn = w + en with an error en. By

Taylor�s expansion, we have:

f(xn) = f
0
(w)

�
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n

�
+O(e7n): (8.43)

f
0
(xn) = f

0
(w)

�
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c65e

5
n

�
+O(e6n); (8.44)

where

ck =

�
1

k!

�
f (k)(w)

f 0(w)
; k = 2; 3; :::; and en = xn � w: (8.45)

Using (8:43) and (8:44); we have

f(xn)

f 0(xn)
= en � c2e2n + 2

�
c22 � c3

�
e3n +

�
7c2c3 � 3c4 � 4c32

�
e4n +O(e

5
n): (8.46)

Using (8:46) in (8:33); we thus have

hn = w +
7

10
en +

3

10
c2e

2
n +

�
�3
5
c22 +

3

5
c3

�
e3n

+

�
9

10
c4 �

21

10
c2c3 +

6

5
c32�

�
e4n +O

�
e5n
�

(8.47)

Expanding f(hn) by Taylor�s series about w;we have:

f(hn) = f
0
(w)(

7

10
en +

79

100
c2e

2
n +

1

50
(
943

20
c3 � 9c22)e3n

+
1

20
(�819

50
c2c3 +

11401

500
c4 + 9c

3
2)e

4
n) +O

�
e5n
�
: (8.48)

By Taylor�s series, we have

f
0
(hn) = f

0
(w) (1 +

7

5
c2en +

�
3

5
c22 +

147

100
c3

�
e2n

+
1

5

�
�6c32 +

123

10
c2c3 +

343

50
c4

�
e3n

+
1

5

�
12c42 �

129

4
c3c

2
2 +

63

5
c23 +

891

50
c2c4 +

2401

400
c5

�
e4n)

+O(e5n): (8.49)
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Using (8:43), (8:44) and (8:49); we have:

10f(xn)

Af 0(xn) +Bf
0(hn)

=
10

A+B
en �

2 (5A+ 2B)

(A+B)2
c2e

2
n

+
1

10
(4
�
50A2 � 40AB �B2

�
c22

�(A+B)(200A+ 47B)c3)e3n +O
�
e4n
�
: (8.50)

Therefore, by using (8:50) in (8:34), we have

xn+1 = w +

�
1� 10

A+B

�
en +

2 (5A+ 2B)

(A+B)2
c2e

2
n

� 1
10
(4
�
50A2 � 40AB �B2

�
c22

�(A+B)(200A+ 47B)c3)e3n +O
�
e4n
�
:

For A = �20
3
and B = 50

3
; we obtain:

en+1 =

�
c22 �

11

20
c3

�
e3n +O

�
e4n
�
:

Thus, we observe that the method is cubically convergent.

For A = �20
3
and B = 50

3
; algorithm 1 takes the following form:

Algorithm 1 (FM1). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

hn = xn �
3f (xn)

10f 0 (xn)
;

xn+1 = xn �
3f (xn)

5f 0 (hn)� 2f 0 (xn)
: (8.51)

Similarly, we can compute the convergence orders of algorithm 2 to algorithm 4

using Maple 7.0 and are given in the form of the following Theorem 8.7 to Theorem

8.9:

Theorem 8.7 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 2 is cubically convergent for A = 20
7
and B = 50

7
and the error equation

is given by

en+1 =

�
c22 +

1

20
c3

�
e3n +O

�
e4n
�
:

Thus, for A = 20
7
and B = 50

7
; algorithm 2 takes the following form:
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Algorithm 2 (FM2). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

zn = xn �
7f (xn)

10f 0 (xn)
;

xn+1 = xn �
7f (xn)

5f 0 (zn) + 2f
0 (xn)

: (8.52)

Theorem 8.8 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 3 has fourth order convergence for A = �70
3
and B = 100

3
and the error

equation is given by

en+1 =

�
c32 �

21

10
c2c3

�
e4n +O

�
e5n
�
:

Thus, for A = �70
3
and B = 100

3
; algorithm 3 takes the following form:

Algorithm 3 (FM3). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

yn = xn �
f (xn)

f 0 (xn)
;

hn = xn �
3f (xn)

10f 0 (xn)
;

xn+1 = yn �
3f (yn)

10f 0 (hn)� 7f 0 (xn)
: (8.53)

Theorem 8.9 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 4 has fourth order convergence for A = �30
7
and B = 100

7
and the error

equation is given by

en+1 =

�
c32 �

9

10
c2c3

�
e4n +O

�
e5n
�
:

Thus, for A = �30
7
and B = 100

7
; algorithm 4 takes the following form:

Algorithm 4 (FM4). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

yn = xn �
f (xn)

f 0 (xn)
;

zn = xn �
7f (xn)

10f 0 (xn)
;

xn+1 = yn �
7f (yn)

10f 0 (zn)� 3f 0 (xn)
: (8.54)
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8.2.4 Three Step iterative methods

We now suggest some three-step iterative algorithms based on algorithm 1, 2, 3 and

4.

Algorithm 5 (FM5). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

yn = xn �
f (xn)

f 0 (xn)
; (8.55)

hn = yn �
3f (yn)

10f 0 (yn)
; (8.56)

xn+1 = yn �
3f (yn)

5f 0 (hn)� 2f 0 (yn)
: (8.57)

Algorithm 6 (FM6). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

yn = xn �
f (xn)

f 0 (xn)
; (8.58)

zn = yn �
7f (yn)

10f 0 (yn)
; (8.59)

xn+1 = yn �
7f (yn)

5f 0 (zn) + 2f
0 (yn)

: (8.60)

Algorithm 7 (FM7). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

yn = xn �
f (xn)

f 0 (xn)
; (8.61)

zn = yn �
f (yn)

f 0 (yn)
; (8.62)

hn = yn �
3f (yn)

10f 0 (yn)
; (8.63)

xn+1 = zn �
3f (zn)

10f 0 (hn)� 7f 0 (yn)
: (8.64)

Algorithm 8 (FM8). For a given initial guess x0; �nd the approximate solu-

tion of (8.1) by:

yn = xn �
f (xn)

f 0 (xn)
; (8.65)

zn = yn �
f (yn)

f 0 (yn)
; (8.66)

hn = yn �
7f (yn)

10f 0 (yn)
; (8.67)

xn+1 = zn �
7f (zn)

10f 0 (kn)� 3f 0 (yn)
: (8.68)
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8.2.5 Convergence Analysis of Three-step Iterative Methods

Theorem 8.10 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 5 has sixth order convergence.

Proof. Let w be a simple zero of f and xn = w + en with an error en. By

Taylor�s expansion, we have:

f(xn) = f
0
(w)

�
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n

�
+O(e7n); (8.69)

f
0
(xn) = f

0
(w)

�
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c65e

5
n

�
+O(e6n); (8.70)

where

ck =

�
1

k!

�
f (k)(w)

f 0(w)
; k = 2; 3; :::and en = xn � w: (8.71)

Using (8:69) and (8:70); we have

f(xn)

f 0(xn)
= en � c2e2n + 2

�
c22 � c3

�
e3n +

�
7c2c3 � 3c4 � 4c32

�
e4n +O(e

5
n): (8.72)

Using (8:72) in (8:55); we obtain

yn = w + c2e
2
n +

�
�2c22 + 2c3

�
e3n �

�
7c2c3 � 4c32 � 3c4

�
e4n

+O
�
e5n
�
: (8.73)

Expanding f(yn) by Taylor�s series about w;we have:

f(yn) = f(w) + c2e
2
n + 2(c3 � c22)e3n + (�7c2c3 + 3c4 + 5c32)e4n +O

�
e5n
�
: (8.74)

By Taylor�s series, we have

f
0
(yn) = f

0
(w) (1 + 2c22e

2
n +

�
�4c32 + 4c2c3

�
e3n

+(�11c3c22 + 8c
4
2 + 6c2c4)e

4
n) +O(e

5
n): (8.75)

Using (8:74) and (8:75); we have

f(yn)

f 0(yn)
= en � c2e2n + 2

�
c22 � c3

�
e3n +

�
7c2c3 � 3c4 � 4c32

�
e4n +O(e

5
n): (8.76)

Using (8:76) in (8:56); we thus have

hn = w +
7

10
c2e

2
n +

�
�7
5
c22 +

7

5
c3

�
e3n

+

�
21

10
c4 �

49

10
c2c3 +

31

10
c32

�
e4n +O

�
e5n
�
: (8.77)

204



Expanding f(hn) by Taylor�s series about w;we have:

f(hn) = f
0
(w) (

7

10
c2e

2
n +

�
�7
5
c22 +

7

5
c3

�
e3n

+
1

10

�
359

10
c32 � 49c2c3 + 21c4

�
e4n

+

�
�219
25
c42 +

429

25
c3c

2
2 �

21

5
c23 � 7c2c4 +

14

5
c5

�
e5n)

+O(e6n): (8.78)

By Taylor�s series, we have

f
0
(hn) = f

0
(w)(1 +

7

5
c22e

2
n �

14

5
(c32 � c2c3)e3n

+
1

5

�
31c42 + 21c2c4 �

833

20
c22c3

�
e4n

+

�
�68
5
c52 +

613

25
c32c3 � 14c22c4 �

63

25
c2c

2
3 +

28

5
c2c5

�
e5n)

+O
�
e6n
�
: (8.79)

Using (8:74), (8:75) and (8:79) in

3f(yn)

5f 0(hn)� 2f 0(yn)
= c2e

2
n + (2c3 � 2c22)e3n + (4c32 + 3c4 � 7c2c3)e4n

+(�6c23 � 8c42 + 20c3c22 � 10c2c4 + 4c5)e5n

+O
�
e6n
�
: (8.80)

Therefore, by using (8:80) in (8:57); we have

xn+1 = w + (c
5
2 �

11

20
c3c

3
2)e

6
n +O

�
e7n
�
:

Hence, we obtain

en+1 = (c
5
2 �

11

20
c3c

3
2)e

6
n +O

�
e7n
�
:

Thus, we observe that the method has sixth order convergence.

Similarly, we can compute the convergence orders of algorithm 6 to algorithm 8

and are given in the form of the following Theorem 8.11 to Theorem 8.13:

Theorem 8.11 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 6 has sixth order convergence and the error equation is given by

en+1 = (c
5
2 +

1

20
c3c

3
2)e

6
n +O

�
e7n
�
:
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Theorem 8.12 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 7 has eighth order convergence and the error equation is given by

en+1 = (126c72 �
3671

10
c3c

5
2 + 174c4c

4
2 + (199c

2
3 � 50c5)c32 +

(�105c4c3 + 6c6)c22 + (30c33 + 2c24 + 2c7)c2

+9c4c5 + 9c3c6 � 33c23c4)e8n +O
�
e9n
�
:

Theorem 8.13 Let w 2 I be a simple zero of su¢ ciently di¤erentiable function

f : I v R ! R for an open interval I. If x0 is su¢ ciently close to w; then the

algorithm 8 has eighth order convergence and the error equation is given by

en+1 = (126c72 �
3659

10
c3c

5
2 + 174c4c

4
2 + (199c

2
3 � 50c5)c32 +

(�105c4c3 + 6c6)c22 + (30c33 + 2c24 + 2c7)c2

+9c4c5 + 9c3c6 � 33c23c4)e8n +O
�
e9n
�
:

8.2.6 Numerical Examples

In this subsection, we now consider some numerical examples to demonstrate the

performance of the newly developed iterative methods. The methods being chosen

for numerical comparison are some of the e¢ cient methods developed in the recent

past. All the computations for the above mentioned methods, are performed using

Maple 7 with 128 digits precision and " = 10�15 is taken as tolerance. The following

criteria is used for estimating the zeros:

(i) � = jxn+1 � xnj < "

(ii) jf (xn)j < "

Thus for convergence criteria, it is required that the distance between two con-

secutive iterates be less than 10�15. x0 represents the initial guess, and w, the

exact zero of the non-linear function f (x). In all the tables, the columns below

each method represents the number of iterations required to �nd the approximate

solution of the respective functions.

The following examples are used for comparison, most of which are taken from

[54, 105, 68].
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Examples Exact Zero

f1 (x) = x
2 � ex � 3x+ 2; w = :2575302854398607604553673049

f2 (x) = x
3
+ 4x2 � 15; w = 1:631980805566063517522106445

f3 (x) = ln(x); w = 1

f4 (x) = sin (x)� 10�x; w = 3:140869666785039238259944749

f5 (x) = (x� 1)6 � 1; w = 2

f6 (x) = xe
x2 � sin2 (x) + 3 cos (x) + 5; w = �1:20764782713091892700941675

f7 (x) = e
�x
+ cos(x); w = 1:746139530408012417650703089

f8 (x) = x
3 � 10; w = 2:154434690031883721759293566

f9 (x) = e
x2+7x�30�1; w = 3

f10 (x) = cos (x)� x; w = :7390851332151606416553120876

f11 (x) =
1
x
� 1; w = 1

f12 (x) = x
2 � 10 cos (x) ; w = �1:3793645942220308253915879

f13 (x) = sin (x)� x
2
; w = 1:895494267033980947144035738

f14 (x) = sin
2 (x)� x2 + 1; w = 1:404491648215341226035086817

f15 (x) = 10xe
�x2 � 1; w = 1:679630610428449940674920338

Table 8.1: Numerical Examples

In Table 8.2, we compare the classical Newton�s method (CN), the Weerakoon-

Fernando method (WF) [105], the midpoint method (MM) [43]; the method of

H. H. H. Homeier (HM) [49]; the method of J. Kou et al. (KLW) [53] and the

newly developed cubically convergent two-step methods, FM1 and FM2. All these

methods except Newton�s method are cubically convergent. D stands for divergent.

f (x) x0 CN WF MM HM KLW FM1 FM2

f1 2:0 6 5 4 5 5 4 4

3:0 7 5 5 5 6 5 5

f2 0:8 7 5 5 4 6 5 5

2:5 6 5 4 4 5 4 4

f3 3:0 D D 5 5 5 5 6

5:5 D D 7 7 D 5 D
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f (x) x0 CN WF MM HM KLW FM1 FM2

f4 3:0 4 4 4 4 4 4 3

3:5 4 4 4 4 4 4 3

f5 2:5 8 6 6 5 6 5 6

3:0 10 7 6 6 7 6 7

f6 0:0 72 Fails D 14 D 27 D

�2:0 9 6 6 6 6 6 6

f7 1:6 5 4 4 4 4 4 3

2:0 5 4 4 4 4 4 4

f8 2:5 6 4 4 4 4 4 4

3:0 6 5 5 4 5 4 5

f9 3:25 9 7 6 6 6 6 6

3:5 9 9 9 8 8 9 9

f10 3:0 7 10 5 6 6 5 5

3:5 19 9 6 D D 5 8

f11 2:1 Fails D 6 5 5 5 7

3:0 Fails Fails D Fails 7 7 7

f12 0:3 8 5 5 5 6 5 4

�1:0 5 4 4 4 4 4 4

f13 1:5 6 5 5 5 6 5 4

3:5 6 4 4 4 5 4 4

f14 1:8 6 4 4 4 5 4 4

1:1 6 5 4 4 5 4 4

f15 1:3 6 4 4 4 5 4 4

1:7 5 3 3 3 3 3 3

Table 8.2: Comparison of Cubically Convergent Iterative Methods

In Table 8.3, we compare the classical Newton�s method (CN), the method of

M. A. Noor et al. (NA) [68], the method of J. F. Traub (MT) [93]; the Ostrowski�s

method (OM) [71] and the newly developed fourth order convergent two-step meth-

ods, FM3 and FM4. All these methods except Newton�s method are fourth-order

convergent.
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f (x) x0 CN NA MT OM FM3 FM4

f1 0:9 4 4 3 3 3 3

2:0 6 4 4 4 5 4

f2 0:8 7 5 4 4 4 4

2:0 6 4 4 4 4 4

f3 0:7 6 4 4 3 4 3

1:2 5 4 3 3 3 3

f4 3:0 4 3 3 3 3 3

3:5 4 3 3 3 3 3

f5 2:5 7 4 4 4 4 4

3:5 8 5 5 5 4 5

f6 �1:2 6 4 4 3 4 3

�2:0 9 6 5 5 5 5

f7 1:0 5 4 3 3 3 3

2:0 5 3 3 3 3 3

f8 0:5 11 7 6 6 5 6

1:5 7 4 4 4 4 4

f9 3:2 8 5 5 5 4 5

3:5 13 8 7 6 5 7

f10 0:5 5 3 3 3 3 3

2:0 5 4 3 3 4 3

f11 0:8 6 4 4 Fails 4 3

1:2 6 4 4 Fails 4 3

f12 0:3 8 5 5 4 5 4

�1:0 5 4 3 4 4 4

f13 2:0 5 3 3 3 3 3

3:5 6 5 4 4 4 4

f14 �1:0 7 4 4 4 4 4

1:1 6 4 4 4 4 4

f15 1:3 6 4 4 4 4 4

1:7 5 3 3 3 3 3

Table 8.3: Comparison of Fourth-order Convergent Iterative Methods
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In Table 8.4, we compare the method of M. Grau (MG) [45], a sixth order variant

of Ostrowski�s method, the seventh order convergent J. Kou method (KM) [54], the

newly developed three-step sixth order convergent algorithms, FM5 and FM6 and

the eighth order convergent algorithms, FM7 and FM8.

f (x) x0 MG KM FM5 FM6 FM7 FM8

f1 0:9 3 3 3 3 2 2

2:0 4 4 3 3 3 3

f2 0:8 4 4 4 4 3 3

2:0 3 3 3 3 3 3

f3 0:7 3 3 3 3 3 3

1:2 3 3 3 3 3 3

f4 3:0 3 3 3 3 2 2

3:5 3 3 3 3 3 3

f5 2:5 3 3 3 3 3 3

3:5 4 4 4 4 3 3

f6 �1:2 3 2 3 3 2 2

�1:0 3 3 3 3 3 3

f7 1:7 3 3 3 3 2 2

2:0 3 3 3 3 3 3

f8 0:5 5 14 5 5 5 5

1:5 3 3 3 3 3 3

f9 3:2 4 4 4 4 4 4

3:5 6 5 6 6 4 5

f10 0:5 3 3 3 3 3 3

1:0 3 3 3 3 3 3

f11 0:8 3 Fails 3 3 3 3

1:2 Fails 2 3 3 3 3
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f (x) x0 MG KM FM5 FM6 FM7 FM8

f12 0:3 4 5 4 4 4 4

�1:4 3 2 3 2 2 2

f13 1:0 Fails 7 6 5 4 6

2:0 3 3 3 3 3 3

f14 1:1 3 3 3 3 3 3

1:6 3 3 3 3 3 3

f15 1:0 3 3 3 3 3 3

1:8 4 3 3 3 3 3

Table 8.4: Comparison of Higher Order Convergent Iterative Methods

New algorithms are tested for almost all types of non-linear functions, poly-

nomials and transcendental functions. Table 8.2 shows that if the initial guess is

far from the exact root then the newly developed cubically convergent methods

specially FM1 converges while most of the existing methods diverge or fail to con-

verge. Tables 8.3 and 8.4 show that the new fourth order, sixth order and eighth

order convergent methods namely FM3, FM4, FM5, FM6, FM7 and FM8 are at

least comparable with the existing methods of respective orders and in some cases

perform better than the existing methods. It can be further noted that the algo-

rithms FM3 and FM4 are free from second derivative in contrast to other recently

developed fourth order convergent methods [92]. Moreover, the computational e¢ -

ciency of all the methods derived in this section is either equal or greater than the

computational e¢ ciency of Newton�s method.

8.3 Conclusion

We, in this chapter, have established the fact that the specially derived quadrature

rules developed in the sense of inequalities may be applied to develop many other

iterative methods. Moreover, the presented iterative methods are extendable to the

system of non-linear equations. The iterative algorithms obtained in this chapter

are of cubic, fourth, sixth and eighth order and are computationally e¢ cient in

comparison with other known algorithms of this type.
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Chapter 9

Concluding Remarks

9.1 Critical Analysis

By analyzing the Ostrowski type inequalities obtained in this dissertation, the fol-

lowing concluding aspects of this dissertation are highlighted:

1. The insertion of an arbitrary parameter, hence modifying the Peano kernels

in this manner can improve the bounds.

2. The bounds are presented for �rst and twice di¤erentiable functions which are

more applicable in the cases where higher derivatives do not exists.

3. The bounds are also obtained for functions of bounded variation, Lipschitzian

functions and for Euclidean norm which enlarges the applicability of the re-

sults.

4. The results obtained in here can also give estimates for three-point inequalities

in contrast to the existing inequalities of corresponding domains.

5. The bounds are obtained by using Grüss and Pre-Grüss inequalities which pro-

vide more accurate approximations, since the bounds are expressed in terms

of the oscillation of a function rather than its sup norm that is usually not as

tight.

6. The composite quadrature rules mainly involve an arbitrary point. The con-

cept is useful in the sense when the data is given at discrete points and is not

uniform.
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7. The results are also obtained for shells, spheres and balls by moving in the

n-dimensional Euclidean space Rn.

8. More re�ned bounds are obtained for the expectation of random variables

de�ned on �nite as well as on in�nite intervals.

9. The results obtained are applied to special means to show their applicability

towards obtaining direct relationship of these means.

10. Estimates for the beta random variables are provided as applications of the

inequalities presented.

11. Applicability of the obtained inequalities towards constructing some quadra-

ture based iterative methods for solving non-linear equation is also shown.

9.2 Future Extensions

The outcomes of this dissertation may further be extended:

� To obtain Ostrowski type inequalities for n-di¤erentiable functions.

� To present multivariate analogues of the inequalities, extending to inequalities

involving double integrals or more than one independent variable.

� To obtain weighted versions of the inequalities.

� To obtain the inequalities in other environments such as for linear spaces.

� To obtain fractional Ostrowski type inequalities.

� The inequalities may also be extended to time scale domains.

9.3 Research Publications

The following research material has been published in some international journals

from the thesis:

� [111] is based on the results obtained in Section 2.1.

� [107] is based on the results presented in Section 2.3
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� The results presented in Section 3.1 have been published in [113].

� The results of Section 3.2 have been published in [87].

� The results from Section 3.3 have been published in [88].

� The results presented in Section 3.4 are published in [91].

� [109] is based on the results presented in Section 4.1.

� [114] covers the work of Section 4.2.

� The results presented in Section 4.3 have been publication in [112].

� The work of Section 5.1 has been published in [110].

� The work presented in Section 7.1 has been published in [89].

� Section 7.2 has been published in [90].

� [108] presents the results of Section 8.1.

The �nal versions of the research papers may slightly vary from the original

version in terms of presentation and bibliography.
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[95] N. UjeviĆ. Error inequalities for a quadrature formula of open type. Revista

Colombiana de Matemáticas 37, 93�105 (2003).
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