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In the last few decades, the field of mathematical inequalities has proved to be

an extensively applicable field. It is applicable in the following manner:

e Integral inequalities play an important role in several other branches of math-

ematics and statistics with reference to its applications.

e The elementary inequalities are proved to be helpful in the development of

many other branches of mathematics.

The development of inequalities has been established with the publication of the
books by G. H. Hardy, J. E. Littlewood and G. Polya [47] in 1934, E. F. Beckenbach
and R. Bellman [13] in 1961 and by D. S. Mitrinovi¢, J. E. Pecari¢ and A. M. Fink
[64] & [65] in 1991. The publication of later has resulted to bring forward some
new integral inequalities involving functions with bounded derivatives that measure
bounds on the deviation of functional value from its mean value namely, Ostrowski
inequality [69]. The books by D. S. Mitrinovi¢, J. E. Pecari¢ and A. M. Fink have
also brought to focus integral inequalities which establish a connection between the
integral of the product of two functions and the product of the integrals of the two

functions namely, inequalities of Griiss [46] and Cebysev type (see [64], p. 297).
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These type of inequalities are of supreme importance because they have immediate
applications in Numerical integration, Probability theory, Information theory and
Integral operator theory. The monographs presented by S. S. Dragomir and Th.
M. Rassias [36] in 2002 and by N. S. Barnett, P. Cerone and S. S. Dragomir [§]
in 2004 can well justify this statement. In these monographs, separate aspects of
applications of inequalities of Ostrowski-Griiss and Cebysev type were established.

The main aim of this dissertation is to address the domains of establishing
inequalities of Ostrowski-Griiss and Cebysev type and their applications in Statis-
tics, Numerical integration and Non-linear analysis. The tools that are used are
Peano kernel approach, the most classical and extensively used approach in devel-
oping such integral inequalities, Lebesgue and Riemann-Stieltjes integrals, Lebesgue
spaces, Korkine’s identity [52], the classical Cebysev functional, Pre-Griiss and Pre-
Cebysev inequalities proved in [60].

This dissertation presents some generalized Ostrowski type inequalities. These
inequalities are being presented for nearly all types of functions i.e., for higher
differentiable functions, bounded functions, absolutely continuous functions, (I, L)-
Lipschitzian functions, monotonic functions and functions of bounded variations.
The inequalities are then applied to composite quadrature rules, special means,
probability density functions, expectation of a random variable, beta random vari-
able and to construct iterative methods for solving non-linear equations.

The generalizations to the inequalities are obtained by introducing arbitrary
parameters in the Peano kernels involved. The parameters can be so adjusted to
recapture the previous results as well as to obtain some new estimates of such
inequalities.

The Ostrowski type inequalities for twice differentiable functions have been ex-
tensively addressed by N. S. Barnett et al. and Zheng Liu in [9] and [59]. We have
presented some perturbed inequalities of Ostrowski type in L, (a,b), p > 1,p = o0
which generalize and refine the results of [9] and [59].

In the past few years, Ostrowski type inequalities are developed for functions
in higher spaces i.e., for L-Lipschitzian functions and (I, L)-Lipschitzian functions.
We, in here, have obtained Ostrowski type inequality for n- differentiable (I, L)-

Lipschitzian functions, a generalizations of such inequalities for L-Lipschitzian func-
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tions and ([, L)-Lipschitzian functions.

The first inequality of Ostrowski-Griiss type was presented by S. S. Dragomir
and S. Wang in [39]. In this dissertation, some improved and generalized Ostrowski-
Griiss type inequalities are further generalized for the first and twice differentiable
functions in Ly (a,b). Some generalizations of Ostrowski-Griiss type inequality in
terms of upper and lower bounds of the first and twice differentiable functions are
also given. The inequalities are then applied to probability density functions, special
means, generalized beta random variable and composite quadrature rules.

In the recent past, many researchers have used Cebysev type functionals to
obtain some new product inequalities of Ostrowski-, Cebysev-, and Griiss type. We,
in here, have also taken into account this domain to present some generalizations
and improvements of such inequalities. The generalizations are obtained for first
differentiable absolutely continuous functions with first derivatives in L, (a,b), p >
1 and for twice differentiable functions in L, (a,b). A product inequality is also
given for monotonic non-decreasing functions. The inequalities are then applied to
the expectation of a random variable.

In [3], G. A. Anastassiou has extended Cebysev-Griiss type inequalities on RV
over spherical shells and balls. We have extended this inequality for n-dimensional
Euclidean space over spherical shells and balls on L, [a,b], p > 1.

Some weighted Ostrowski type inequalities for a random variable whose proba-
bility density functions belong to {L,, (a,b),p = oo, p > 1} are presented as weighted
extensions of the results of [10] and [33]. Ostrowski type inequalities are also applied
to obtain various tight bounds for the random variables defined on a finite intervals
whose probability density functions belong to {L, (a,b) ,p = co,p > 1}.

This dissertation also describes the applications of specially derived Ostrowski
type inequalities to obtain some two-step and three-step iterative methods for solv-
ing non-linear equations.

Some Ostrowski type inequalities for Newton-Cotes formulae are also presented
in a generalized or optimal manner to obtain one-point, two-point and four-point
Newton-Cotes formulae of open as well as closed type.

The results presented here extend various inequalities of Ostrowski type upto

their year of publication.
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Chapter 1

Introduction

G. H. HARDY, J. E. LITTLEWOOD and G. POLYA in their book titled "IN-
EQUALITIES", in the preface to the first edition of 1934, say:

". ., Historical and bibliographical questions are particularly troublesome in
a subject like this, which has applications in every part of mathematics but has
never been developed systematically. It is often really difficult to trace the origin
of a familiar inequality. It is quite likely to occur first as an auxiliary proposition,
often without explicit statement, in a memoir on geometry or astronomy; it may
have been rediscovered. Many years later, by half a dozen different authors; and
no accessible statement of it may be quite complete... . We have done our best
to be accurate and have given all references we can, but we have never under-
taken systematic bibliographical research. We follow the common practice, when
a particular inequality is habitually associated with a particular mathematician’s
name; we speak of the inequalities of Schwartz, Holder and Jensen, though all these
inequalities can be traced further back; . . . "

In 1938, a Ukrainian mathematician Alexander Markowich Ostrowski (1893-
1986) discovered an inequality through his paper [69]. Since then this inequality is
stated after the name of A. Ostrowski as Ostrowski inequality. Following the subse-
quent idea of general and particular inequalities as given by A. M. Fink in his essay
"On history of inequalities", this is a particular inequality which holds for a class
of functions with bounded derivatives. This inequality is recalled and addressed
several times in many books and research papers in view of its generalizations and

refinements, yet we would say that a comprehensive overview is still required to

follow the course of its advancements systematically.



We, in the following section would attempt to bring to light the history and

advancements of Ostrowski Inequality.

1.1 Ostrowski type inequalities- a historical overview

Inequalities have proved to be an exalted and applicable tool for the development
of many branches of Mathematics. It’s importance has increased noticeably during
the past few decades and it is now dealt as an independent branch of Mathemat-
ics. Many research groups are working to create an awareness of the theory of
inequalities and their applicability in sciences, e.g., Research Group of Mathemat-
ical Inequalities and Applications (RGMIA). This field is active and experiencing
a tremendous boost with the passage of time in theory as well as in applications.
One element that particularly intensifies its importance is its applications in var-
ious fields. Uptill now, a vast number of research papers and books have been
dedicated to inequalities and their numerous applications. The theory being pre-
sented through this literature has not only brought forward some new results but
it would also be helpful in creating new insights in the years to come.

This subject paved its way towards attracting attention since the publication of
the classical books by G. H. Hardy, J. E. Littlewood and G. Polya [47] (1934), E.
F. Beckenbach and R. Bellman [13] (1961), D. S. Mitrinovi¢ [66] (1970) and by D.
S. Mitrinovi¢, J. E. Pecari¢ and A. M. Fink [64] (1991). These monographs covered
comprehensive literature of the classical and new inequalities upto their year of
publication followed by a series of monographs by G. V. Milovanovi¢ [41] and B. G.
Pachpatte [75] and by D. Bainov and P. Simeonov [7] on Integral inequalities and
their applications.

Integral inequalities that establish bounds on the physical quantities are of
supreme importance in the sense that these types of inequalities are not only useful
in nonlinear analysis, numerical integration, approximation theory, probability the-
ory, stochastic analysis, statistics, information theory, and integral operator theory
but also have applications in the areas of physics, technology and biological sciences.

Among this type, there are many inequalities measuring the deviation of the
average of a function over an interval from a linear combination of the values of

the function and some of its derivatives. A chapter namely, "Integral inequality



involving functions with bounded derivatives" on similar type of inequalities was
presented by D. S. Mitrinovi¢ et al. [65] (1991) in their book which had drawn
the attention of the research world towards a special domain of the theory of in-
equalities “Ostrowski Inequality” which estimates the deviation of the values of a
function from its mean value. The chapter was based on the classical papers by A.
Ostrowski [69], G. V. Milovanovi¢ and J. E. Pecari¢ [62] and A. M. Fink [42]. These
research papers had in the true sense laid down the foundation stone of the further
development of Ostrowski type inequalities which would be defined in the sequel.

Ostrowski type inequalities add up to the literature of inequalities in the sense
that they have immediate applications in Numerical Integration and Probability
Theory. In 1998, S. S. Dragomir and S. Wang [40] presented a new proof to the
classical Ostrowski’s inequality and for the first time applied it to the estimation
of error bounds for some special means and for some numerical quadrature rules.
It is with the same viewpoint, the two monographs [36, 8] were written in 2002
and 2004 by the members of RGMIA to present some selected results on Ostrowski
type inequalities and their applications. In [36], one may find results for univariate
and multivariate real functions and their natural applications in the error analysis
of numerical quadrature for both simple and multiple integrals as well as for the
Riemann-Stieltjes integral and the intention of [8] was to establish applications in
Probability Theory & Statistics by obtaining various tight bounds for the expec-
tation, variance and moments of continuous random variables defined over a finite
interval as an evident application of Ostrowski type inequalities.

In the last few years, the researchers, in an attempt of obtaining sharp bounds
of this inequality in terms of variety of Lebesgue spaces involving, at most, the
first derivative have been able to construct some new inequalities, for example,
inequalities of Ostrowski-Griiss type, Ostrowski-Cebysev type, etc. The key role in
obtaining these inequalities has been played by Peano kernels, Holder’s inequality,
Griiss inequality, Cebysev functional, Korkine’s identity, pre-Griiss inequality and
pre-Cebysev inequality.

Historically, the first step was taken by S. S. Dragomir and S. Wang [39] in 1997
to construct an inequality of Ostrowski-Griiss type- a perturbed version of Ostrowski

inequality by the use of Griiss inequality. This domain was then addressed by many



authors in the coming years, for example, in 1999 P. Cerone et al. [21] extended this
inequality for twice differentiable mappings, in 2000 M. Mati¢ et al. [61] generalized
and improved this inequality for n-differentiable mappings which was improved by
N. S. Barnett et al. [12] by the use of CebySev functional and later in 2001 by
X. L. Cheng in his paper [23]. Recently, a number of authors have worked to
obtain tighter estimates of this inequality by the use of Euler type and generalized
Euler type identities. These identities are also used to develop some higher order
Ostrowski type inequalities and some efficient quadrature rules of Gauss-Legendre
type. The Gauss type quadrature rules have also been developed in the research
papers [99, 95, 96] by N. Ujevi¢. N. Ujevi¢, however, has obtained these quadrature
rules as a consequence of constructing optimal quadrature rules by minimizing their
error bound in the sense of inequalities.

Another inequality of Ostrowski type was constructed by connecting Ostrowski
inequality with an inequality due to P. L. Cebysev (see [64], p. 297). This in-
equality is named in literature as Ostrowski-Cebysev type inequality. These type
of inequalities have also been developed by applying certain convexity assumptions
on the underlying function.

An obvious extension towards the generalization of Ostrowski type inequalities
was to use weighted integrals, hence giving rise to weighted Ostrowski type inequal-
ities. The weighted version of Ostrowski inequality was first presented in 1983 by J.
E. Pecari¢ and B. Savi¢ in ([84], Teorema 8, p. 190) which was rediscovered in ([35],
Theorem 2.1) in 1999. D. S. Mitrinovi¢ et al. [65] have reported a weighted multi-
dimensional analogue of the Ostrowski inequality in the first partial derivatives of
the mapping. In [36], a chapter namely "Product inequalities and weighted quadra-
ture" had been devoted to report the further advancements of weighted Ostrowski
type inequalities.

An evident step towards the generalization of Ostrowski inequality was to give
its multi-dimensional analogue. As mentioned above in [65], D. S. Mitrinovi¢ et al.
have reported a weighted multi-dimensional version of the Ostrowski inequality in
the first partial derivatives of the mapping involved. However, an optimal upper
bound on the deviation of a multi-dimensional function from its averages i.e., a

multivariate Ostrowski inequality was presented by G. A. Anastassiou [1] in 1997



as a generalization to classical Ostrowski inequality. In 1998, N. S. Barnett and S.
S. Dragomir [11] gave an Ostrowski type inequality for double integrals while an
n-dimensional analogue of Ostrowski inequality was established by S. S. Dragomir
et al. [32] in 1999 for mappings of Holder type. Furthermore, B. G. Pachpatte in
2000, in his article [73] presented an Ostrowski type inequality for three independent
variables. Later, in 2001, B. G. Pachpatte had given an Ostrowski type inequality
for two independent variables [74]. This topic was revisited by G. A. Anastassiou
in 2002 in [2]. This domain was also addressed in view of Ostrowski-Griiss type
inequalities by N. Ujevi¢ in 2003 in [104]. Recently, in [3], G. A. Anastassiou has
presented Cebysev-Griiss type inequalities on RY over spherical shells and balls
which are inequalities of multivariate type in spherical coordinate system.

It is impossible to list all the work dealing with the estimates of Ostrowski
type inequalities due to its wide range of generalizations, extensions and varia-
tions. Moreover, such estimates are considered not only on Lebesgue spaces but
also for functions that are of bounded variation, convex, Holder continuous and
Lipschitzian or absolutely continuous and for differentiable function of higher or-
der. Results related to Ostrowski type Inequalities for twice differentiable mappings
with derivatives in different Lebesgue spaces Ly[a,b] (1 < p < 00) are discussed in
[9].

The books and research papers mentioned above provide an extensive amount of
literature on Ostrowski type inequalities which may be helpful for new researchers

in exploring noteworthy results of this field.

1.2 Some significant results

We would now like to state and summarize some significant results, concepts of this

area and some fundamental inequalities of our interest. We start with the following:

1.2.1 Ostrowski Inequality

In 1938, A. Ostrowski has proved an inequality involving function with bounded
derivative which was named as Ostrowski inequality [69] (see also [65] p. 468). The

result is given as follows:



Theorem 1.1 Let f: I C R — R be a differentiable function on (a,b) and let, on
b), !f/ (z)] < M. Then, for every x € [a,b],

1 a+b
1) dt| < Z+L] (b—a)

, (1.1)

(b—a)’

The constant % 1s sharp in the sense that it cannot be replaced by a smaller one.

The interpretation of Ostrowski inequality can be described in two ways as
follows:

1. Estimation of deviation of functional value from its Average value.

2. The estimate of approximating area under the curve by a rectangle.

G. V. Milovanovi¢ and J. E. Pecari¢ [62] (see inequalities also [65], pp. 468-469)

proved:

Theorem 1.2 Let f (x) ben (> 1) times differentiable function such that | f™ (z)| <
M for x € (a,b). Then, for every x € [a,b]

%(f(z)Jrn: ) [ rwa

M (z—a)"" +(b—2)""

= n(n+1)! b—a ’ (1.2)
where Fy, is defined by
F, = F(finiz,a,b)
=k @)= 0)f - S () (@ - ) )

k! b—a

A. M. Fink [42] generalized the above result as:

Theorem 1.3 Let f™~Y (t) be absolutely continuous on [a,b] with f™ € L, (a,b)

then
- <f<x>+n2‘iFk> [ rwa
< K(npa)||f™], (1.4)
where
K (npa) = @ + O] B((n—1)p +1,p +1)7, (15)

b—a



if 1 <p<ooand
(n—1)"""max {(z —a)", (b—2)"}

K(n,l,x) = nnn' b—a )

where B (z,vy) is the beta function.

For p > 1, these are best possible in the sense that for each x there is an
f for which equality holds. For p = 1, equality holds for no function. The
proof of this theorem follows by applying Holder’s inequality on the remainder

T

Gy (e =) ) (1) dt

1.2.2 Peano Kernel

Let f (z) have a continuous (n + 1) st derivative in [a, b] and let a linear functional
F (f) of f be approximated by a linear functional E (f) such that E (f) vanishes

when f is any polynomial of degree n or less. Then,

b
E(f) = / FOD (1) K (1) dt

where

and
. (x—=0)", >t
(aj - t)+ =
0, T <t.
The notations FE, means the linear functional E is applied to the z variable in
its argument [(z — ¢)"]. The function K (t) is called Peano kernel for the linear

functional F. It is also called an efficient function for FE.

1.2.3 Cebysev Functional

For two measurable functions f, ¢ : [a,b] — R, define the functional,

b

T(f.g:0.0) /f L /f i @),

’ (1.6)

which in literature is called the Cebysev functional, provided the integrals in (1.6)

exist.



1.2.4 Griiss inequality
In [46], G. Griiss proved:

Theorem 1.4 Let f and g be two functions defined and integrable on [a, b]. Further,
let

e<f(z)<o, v<g(zx) <T, (1.7)

for each x € [a,b], where v, ¢,v,T are given real constants. Then,

IT(f,9)| <= (0—¢) (T —7), (1.8)

A

where the constant i 1s the best possible.

1.2.5 Pre-Griiss inequality

The following Pre-Griiss inequality was established by M. Mati¢ et al. in [60].
Theorem 1.5 Let g, h : [a,b] — R be two integrable functions. If

a<g(t) <A, (1.9)

for allt € [a,b] for some constants o and A, then

1T (9.1)] < 5 (A —0) /T (i ). (1.10)

The proof follows by combining Griiss inequality with
T%(9,h) < T (9,9) T (h, 1), (1.11)

which is valid (see [83], p. 209). In [36], the term premature Griiss inequality was
used for pre-Griiss inequality that the result was obtained by not fully completing
the proof of the Griiss inequality. It has been further mentioned that the premature

Griiss inequality is completed if one of the functions, g or h, is explicitly known.

1.2.6 Cebysev Inequality

In ([64], p. 297), it has been stated that the first conversion of the Cebysev inequality
is due to P. L. Cebysev. In 1882, he proved that:



Theorem 1.6 Let f and g be absolutely continuous functions on [a,b] and if f

and g are the functions bounded on [a,b]. Then

1
T(f,0)] < 75 (b a)

(NN i

1s valid with equality if and only if fl and g/ are constants.

1.2.7 Pre-Cebysev Inequality

The following Pre-Cebysev inequality was proved by M. Mati¢ et al. in [60].

Theorem 1.7 Let g be absolutely continuous functions on [a,b] and g and h are
integrable on [a,b], then

wwwﬂsgﬁw—agﬁp )|V T ). (1.13)

The proof follows by combining Cebysev inequality with
T%(9,h) < T (9,9) T (h, 1), (1.14)

which is valid (see [83], p. 209). In ([8], Remark 60) it has been stated that the
Pre-Cebysev inequality provides better estimates than would be obtained using the

classical Cebysev inequality.

1.2.8 Cebysev-Griiss type Inequality

In 1970, A. Ostrowski [70] proved the following combination of Cebysev and Griiss

inequalities:

Theorem 1.8 Let f : [a,b] — R be integrable on [a,b] with —oo < m < f < M <

oo and let g be absolutely continuous function on [a,b] and g € Lo (a,b). Then

!

1

T (f 9) < 3

(1.15)

(b= a) (M = m) g

o0

1.2.9 Ostrowski-Griiss type inequality

In 1997, S. S. Dragomir and S. Wang [39], by the use of the Griiss inequality proved
the following Ostrowski- Griiss type integral inequality.



Theorem 1.9 Let f : [ — R, where I C R is an interval, be a mapping differ-
entiable in the interior I° of I, and let a,b € I° with a < b. If v < f/ (r) < T,

x € |a,b] for some constants v, € R, then

b_a/f na- L (o4 7)

< a1, (1.16)

for all x € [a,b).

1.2.10 Mid-point Inequality

The classical midpoint inequality states that

b-a 550 - [ F0d] < 5 0o

where the mapping f : [a,b] — R is assumed to be twice continuously differentiable

, (1.17)

on the interval (a,b) and the second derivative be bounded on (a,b) , that is,

= sup ’f ‘

o te(a,b)

1.2.11 Trapezoid Inequality

The classical trapezoid inequality states that

(b;a)[ /f g%(b—a) |

where the mapping f : [a,b] — R is assumed to be twice continuously differentiable

"

f

, (1.18)

oo

on the interval (a,b) and the second derivative be bounded on (a,b) , that is,

1.2.12 Simpson’s Inequality

= sup ’f ‘

0 te(a,b)

The following inequality is known in literature as Simpson’s inequality:

bga @ (50) ) —/bf(t)dt

9 b= (1.19)

= 2880
10



where the mapping f : [a,b] — R is assumed to be four times continuously differ-
entiable on the interval (a,b) and the fourth derivative be bounded on (a,b), that
is,

Hf(4)Hoo = sup }f(4) (t)} < 0.

te(a,b)

1.2.13 Korkine’s Identity

The Korkine’s identity (see [52]) & ([64], p. 296) is defined as

b b b

bia/f(t)g(t)dt—bia/f(t)dtbia/g(t)dt
1 b b
= ma/a/(f(t>_f<8))(g(t)_g(8)>dtd87 (1.20)

provided that f, g : [a,b] — R are measurable and all the involved integrals exist.

1.2.14 Diaz-Metcalf inequality

The Diaz-Metcalf inequality presented by J. B. Diaz and F. T. Metcalf in [27] or
(see [65], p. 83) is stated as:

Theorem 1.10 If f is continuously differentiable on (a,b) and suppose f(t;) =
f(t2) fora <ty <ty <b, then

/ U0 — ()P
< %max{(tl—af,(b—tg)z,(t2;t1)2}/ab(f/(x)>2da:. (1.21)

1.2.15 Special Means

Let us recall the following means:

(a) The Arithmetic Mean
b
A= Ala,b) = %;a,b >0,
(b) The Geometric Mean

G:G(mb):\/%; a,b>0.

11



The Harmonic Mean

H=H(a,b) = +—; a,b>0.
a Ty
(d) The Logarithmic Mean
a, ifa=5
L =L(a,b) = ; a,b>0.
lnz:?na’ lfa'%b
(e) The Identric Mean
a, if a =
I =1I(a,b) = N\ ;a,b> 0.
L(Z)7T e,
(f) The p-logarithmic Mean
(.h) a, ifa=2>5
L, = Ly(a,b) = 1
ppt+1_gpt+l | p .
[GEMwJ’ ifa 70,

where p € R\ {-1,0}, a,b > 0.

The following inequality holds in literature:

H<G<L<I<A.

It is also known that L, is monotonically increasing over p € R and Ly = I and

L ,=L.

12



1.3 Objective of the Thesis

The problem of generalization /extension of integral inequalities that present bounds
on the physical quantities i.e., inequalities of Ostrowski-Griiss and Cebysev type is

aimed to be overseen in this thesis in the following manner:

1. By estimating some more bounds on the deviations through other norms while
the classical approach refers to the supremum norm i.e., for functions with

bounded derivatives.

2. By estimating bounds on the deviations in terms of higher differentiable func-
tions while the classical inequalities were assumed to involve first differentiable

functions only.

3. Consideration of random variables, therefore, generating obvious applications

of these inequalities in probability theory.

4. Consideration of special means with reference to its applications in finding

direct relations of these means.

5. By switching to multiplicative framework, hence, developing some new mul-

tivariate and product inequalities of Ostrowski, Griiss and Cebysev type.

6. By directing towards other classes of functions; for functions that are of:
bounded variation, monotonic and lipschitzian or absolutely continuous, hence,
paving way to move in larger domains, for example, from absolutely continu-
ous functions to function of bounded variation and from Lipschitzian functions

to (I, L)-Lipschitzian functions.

7. By defining such integral inequalities in Euclidean domain i.e., moving from

intervals to rectangles, shells, balls and spheres.

8. The deduction of the optimal error bound for such inequalities under the

assumptions under consideration.

9. Extending the variations of Ostrowski-Griiss and Cebysev inequalities; hence,
working on to obtain some more inequalities of Ostrowski-Griiss, Ostrowski-

Cebysev and Cebysev-Griiss type.

13



10. Presenting new applications of these inequalities in non-linear analysis, i.e.,
construction of quadrature based iterative methods for solving non-linear

equations in single variable.

This dissertation is oriented towards generalizing some results on Ostrowski type
inequalities keeping in view the above mentioned goals. The directions in which the
generalized versions of Ostrowski type inequalities are intended to be used are its
applications in numerical integration and special means, applications to cumulative
distribution functions, expectations for random variables and some new applications

in solving non-linear equations will also be given.

1.4 Thesis Overview

The dissertation presents some generalization of the Ostrowski type inequality and
its applications. To obtain these generalizations, the approach being taken into
account is to modify the Peano kernel involved by introducing arbitrary parameters
or by introducing weight functions.

The dissertation comprises nine chapters.

Chapter 2 covers the generalization of Ostrowski type inequalities for twice
differentiable functions in the domain of usual Lebesgue spaces L, (a,b), p = 00, 1,
p > 1. It also incorporates generalized Ostrowski type inequalities for n-times differ-
entiable and (I, L)- Lipschitzian mappings. Applications of the obtained inequalities
in numerical integration and special means are also presented.

In Section 2.1, a general form of integral inequality of Ostrowski type for twice
differentiable function whose first derivative is absolutely continuous and second
derivative is bounded is presented. In Section 2.2, some perturbed generalizations of
inequalities of Ostrowski type involving functions whose first derivative is absolutely
continuous and second derivative belongs to L, (a,b), p = 1,00, p > 1 are presented.
Section 2.3 contains a generalized Ostrowski type inequality for (I, L) Lipschitzian
mappings. Applications to composite quadrature rules are also given.

Chapter 3 includes some extensions of Ostrowski-Griiss type inequalities for
first and twice differentiable functions and their applications to quadrature rules,

special means, probability density functions and beta random variable.

14



In Section 3.1, an Ostrowski-Griiss type inequality involving functions whose
first derivative belongs to Ls (a, b) is obtained. In Section 3.2, a generalized Ostrowski-
Griiss type inequality for twice differentiable function in terms of lower and upper
bound of the second derivative is established. Later, in Section 3.3, a similar in-
equality is obtained with second derivative in Ls (a, b). In Section 3.4, the estimates
of first inequality of Ostrowski-Griiss type are presented in terms of the upper and
lower bounds of the first derivative and later in terms of the Euclidean norm of
second derivative by using Diaz-Metcalf inequality.

Chapter 4 presents some generalized product inequalities of Ostrowski-Cebysev
type and their applications for the expectation of a random variable. It also includes
Cebysev-Griiss type inequality for spherical shells and balls calculated by using
spherical coordinate system in the sense of multivariate inequalities.

In Section 4.1, a product inequality of Cebysev type is obtained for functions
which are absolutely continuous with first derivatives in L, (a,b), p > 1. In Sec-
tion 4.2, some product inequalities of Cebysev type have been developed for twice
differentiable functions whose first derivatives are absolutely continuous and sec-
ond derivatives belong to L., (a,b). In Section 4.3, an integral inequality involving
the product of two functions and its applications to probability density functions
is presented. Section 4.4 presents extension of Cebysev-Griiss type inequalities for
L,la,b], p > 1 on n-dimensional Euclidean space over spherical shells and balls,
thus, obtaining multivariate inequalities of Cebysev-Griiss type are obtained by
working in R".

Chapter 5 incorporates some Ostrowski type inequalities for Newton-Cotes
formulae in an optimal or generalized manner. The error inequalities thus ob-
tained generate one-point, two-point and four-point Newton-Cotes formulae as spe-
cial cases.

In Section 5.1, a family of four-point quadrature rule of closed type is developed
which recaptures Gauss two-point, Simpson’s g and Lobatto four-point quadrature
rule with error bounds in terms of twice differentiable functions. The optimal
case is also addressed. In Section 5.2, a two-point quadrature rule is developed for
functions of bounded variations and for L-Lipschitzian functions which can generate

Newton-Cotes formulae of open as well as closed type as special cases.

15



Chapter 6 comprises some weighted Ostrowski type inequalities for a random
variable whose probability density functions belongs to the usual Lebesgue spaces
Lyla,b], p = 00,1, p > 1 which generalize some previous results by including
weighted integrals.

In Section 6.1, some weighted Ostrowski type inequalities for probability den-
sity functions, expectation of a random variable and for beta random variable are
obtained. The estimates are presented in terms of the .|| -norm of the proba-
bility density function. In Section 6.2, some weighted Ostrowski type inequalities
are developed for a random variable whose probability density function belong to
Lyla,b],p>1.

Chapter 7 describes applications of Ostrowski type inequalities to probability
density function, expectation of a random variable and generalized beta random
variable. The inequalities obtained in this chapter are improvements of some pre-
vious inequalities of this domain.

Chapter 8 contains some new applications of Ostrowski type inequalities in
constructing iterative algorithms for solving non-linear equations. Some generalized
and computationally efficient iterative algorithms are presented in this chapter.

Chapter 9 takes into account a critical analysis of the generalizations and

improvements obtained in this dissertation and some future extensions.
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Chapter 2

Generalization of Ostrowski type inequal-

ities for differentiable mappings

We, in this chapter, present some Ostrowski type inequalities for twice differentiable

functions.

2.1 A generalized integral inequality for twice differentiable

mappings

In this section, a general form of integral inequality of Ostrowski type for twice
differentiable mappings whose second derivatives are bounded and first derivatives
are absolutely continuous is established. The generalized integral inequality points
some better bounds than some already presented bounds. The inequality is then

applied to numerical integration and special means.

2.1.1 Introduction

In recent years, a number of authors have worked on the generalizations of Os-
trowski’s inequality. For example, this topic is considered in [34, 59, 61, 100].

In [22], P. Cerone, S. S. Dragomir and J. Roumeliotis, established an integral
inequality of Ostrowski type for mappings with bounded second derivatives. A
similar inequality has been established by S. S. Dragomir and N. S. Barnett in [31].
In [38], S. S. Dragomir and A. Sofo, pointed out an integral inequality of Ostrowski
type similar in a sense to that of [22] or [31]. However, this inequality contains a

minor mistake. The corrected version [63] of the inequality is given in the form of

17



the following theorem:
Theorem CDR. Let g : [a,b] — R be a mapping whose first derivative is
absolutely continuous on [a, b] and assume that the second derivative g” € Ly (a,b).

Then, we have the inequality

b

Jota =3 0= (s + L) - ) (- 25 o)

1
~\3

for all x € [a, b].

"

<

xr —

9

a+b> (b—a)’
+ ;
2 48

The main aim of this section is to point out a generalization of (2.1). It turns

out that this generalization can give better results than the estimations based on
(2.1).
2.1.2 Main Results

We establish here a general form of integral inequality (2.1) and apply it to numerical
integration and special means. The inequality is given in the form of the following

theorem:

Theorem 2.1 Let g : [a,b] — R be a mapping whose first derivative is absolutely
continuous on |a,b] and assume that the second derivative gu € Ly (a,b). Then, we

have the inequality

(b i a) 79(t)dt — % [(1 —h)g(z)+ (1+h) (M)

R e (LRI ||

2
1 F‘ a+br
T — +

w(b—a) |3 2

"

< |ls

18



or equivalently,

, 3 N3
m[%‘x—a;b‘ +(b48a> U (h)|, (2.3)
for all x € [a+ h%5% b — h%4],
where W (h) = (1 — h) [2(1 —h)* —1] +2h, h € [0,1].
Proof. Let us start with the following integral identity,
b
fl@) = o= [ba/} Dt — o (f )+f@4
. b
+(b—a) A= /p(x,t)f (t)dt
This implies
(-0 i) = @_a/f () + £ ()
— p(m, Bf (t)dt, (2.4)

a

for all z € [a+ h%5%,b— h’5%], h € [0,1] provided f is absolutely continuos on [a, b]
and the kernel p : [a,b]? — R defined in [34] is given by:

p(x’t){t(cwrhb 4), if t € la,x]

2
2

t—(b—n%%), if te (zb.

A simple proof using the integration by parts can be found in [34]. We choose in

(2.4,
)= (2= “57) )

2

19



to get

+7 ! 7]?(90,15) {9/ (t) + (t - ; b) g”(t)] dt. (2.5)

Integrating by parts, we have

7 (t_ a—;b) g (H)dt = (b—a) (Q(a) ;g(b)) B 79@)(#. 26)

Also,

/p($’t)gl(t)dt =(1-h)(b—a)g(z) + B ; -

(9(a)+g(b)) — /g(t)dt. (2.7)

Using (2.6) and (2.7) in (2.5), we get:

or

R (R I

20



for all z € [a+ h%%, b — h%%]. This implies

< sma 0|5l 0] a 29

Obviously, we have

b
a+bl|
[twolle- 232 |5 o) a
b

" b
< 5| [ wworle- 452 (29)
where
‘gu = sup ‘g”(t)) < 0.
00 te(a,b)
Also,

b
I:/|p(w,t)| ‘t— a;b‘dt

or
g b b / b b

—a a—+ —a a+

I_/‘t—(a—l—h . )Ht— ! 'dt+/'t—(b—h . )Ht— :

We have two cases:

.

(2.10)

a) For z € [a + hb_T“, “Tij] , we obtain:

I = / (a+hb;a—t)<a;b—t)dt
[ el

S}




a+b

+7<b—hb;“—t>(“$b—t>dt
-0(t- 5 @
< I ( 50 (=457

After some simple calculations, we obtain

I:;(a;b—x>3+(b_a)3 [3h+2(1—h)’—1],

24

for all z € [a—i—h—,“T“’].

b) For z € [QTervb — hb_Ta} , we take

a—i—hb*?“

b—a a+b
= —t —t|dt
r [ (et ()

for all z € [%2,b— h%52].

22
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Using (2.9), (2.10) (2.11) and (2.12) in (2.8), we obtain

i a5 Ja=ng - an (L9520)

e (s= 55" ) g @ -2 (d 0 -d @)
: 2H<ZN_°Z) [g‘ S [3’”‘”(1—’”3—1}]7
AN

for all z € [a + h%%, b — h22],

where ¥ (h) = 3h+2(1—h)’ -1,
= (1-h)[20—-h)* 1] +2h, he[0,1].

Remark 2.1 Choosing h =0 in (2.3) gives us the inequality (2.1).

Remark 2.2 In (2.1), if we investigate the estimates for the end points x = a,
x = b and the midpoint x = “T“’, we find that the midpoint gives us the best estimate,
so that from inequality (2.3), we have:

b

[ st = C5 g (“57)

U (h). (2.13)

o 48
Remark 2.3 If we investigate ¥ (h) for different values of h € [0,1], we find that

6
U(h) <1, forO<h< 10 (2.14)

and it is minimum for h = 35.Thus, for the specified range of h as mentioned in
(2.14), our result gives us better estimate than as given in [22] i.e.,

U (h) 1 6
— < — h < —.
18 <48,f0r0< < 10

23



The special cases of (2.13) are given in the form of following remark.

Remark 2.4 (i) Choosing h = 35 in the inequality (2.13) gives us the best esti-

mate:

b

Jotar = C2 1052+ 5 )+ a0) - F0- ) (50 -4 (@)]

a

293

Sy 3H H 2.15
= Sa000 C V9 |l (2.15)
which has a better estimate than the three-point quadrature inequalities pre-

sented in [9] and [59] for ||.||,, norm

(13) If we choose h = 1 in the inequality (2.13), we get a perturbed trapezoid
inequality as follows:

b

Nl C s B CIURYAC)

(b—a)’
Y

(2.16)

< o]
which has a better estimate than the perturbed trapezoid inequalities presented
in [9] and [59] for ||.||,, norm.

2.1.3 Applications in Numerical Integration

We may use the inequality (2.2), to get the estimates of composite quadrature rules

with smaller error than that which may be obtained by the classical results.

Theorem 2.2 Let [, :a =29 < 11 < -+ < Tp_1 < T, = b be a partition of the
interval [a,b], h; = x4 —x;, 0 € [0, 1], xi+5% <& <z —5%, i=0,---,n—1,

then

b
/g<t> dt = (g, 9 I, €,8) + R(g,g + 1. £.5),

where

[aary

n—

S(g,g/,ln,f,d) — % {(1 —8)g(E) +(1+0) <9(xz') +g(x¢+1)>

=0

—(1-9) (fi - M) g, (&) — ghi (g, (Tis1) — g (%))] h; (2.17)



and

R(g,g,fmﬁﬁ)‘
[n—1 3
d 1 T; + Tit1 h;
< Slsle - 2501 4 e
_‘gmio(?)& 2 Tl O]
[, n—1 3 n—1
" 1 Ti + Tig1 v (4) 3
_ - L he 2.1
‘g ~ |34 & > | T as Zi_oz ! (2.18)

where U (8) = (1 —0) [2(1 —68)* — 1] +25, 6 € [0,1].

Proof. Applying inequality (2.12) on ¢; € [x, + 5%, Tiy1 — O %] and summing

over i from 0 to n — 1 and using triangular inequality, we get (2.18). m

Remark 2.5 Choosing 6 = 0 gives us as a special case [38], the corrected version

of estimates of composite quadrature rules.

Corollary 2.1 For ¢, = %, (1=0,---n—1), then we have the following

quadrature rule:

S(9.9 1. 9)
_ %:[(1 —8)g (%) +(1+0) (g (=) L (mi“))
—gh,- (9 (@ie) =g ()17 (2.19)
and
)R(g,g/,]n,d)‘ ‘ Zh 5elo,1]. (2.20)

Remark 2.6 (i) If we choose d =0 in (2.19) and (2.20), (i =0,---n — 1), then

. —%Z[ (mtze) sl ate] ooy

1=
H "

) < = 3 2.22
R(g. 1) < 1 Zh (222

and

It may be noted that s (g,1,) is an arithmetic mean of the midpoint and trape-

zoidal quadrature rules.

25



(i) If we choose § = 3 in (2.19) and (2.20), (i =0,---n—1), then

n—1
/ 1 T, +x; 13
g h) = 553 [ (e ) + 9 @)+ g(oien)|
3 ’ /
_%i:o [9 (Tit1) — g (l’z)} h (2.23)
and
R( 293 Zh (2.24)

which is a perturbed composite three point quadmture inequality of Stmpson’s

type.
(1ii) If we choose § =1 in (2.19) and (2.20), (i =0,---n —
, 1nfl
i=0
n—1
1 ’ ’
2 [9 (Tit1) — g (1)
8 i=0

and

R(g,I,)

, n—1
E 3
g h’z )
oo T
=0

which 1s a perturbed composite trapezoid inequality.

2.1.4 Applications for some Special Means

The inequality (2.2) may be written as

(1—h) (L+h) (g(a)+g(b)
0B -2 (00
g —a)’

< (bcﬁl o= A+ L0 (h)]’

where W (h) = (1 —h) [2(1 — h)* —1] +2h, h€[0,1].

26
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Choosing h = 0 gives us as a special case, the corrected version of the inequality

in [38] as follows:

N | =

"

< g

1

lz — A(a, b)) + (b—a)

[mm+(ﬂ@gﬁ@§—4x—Amw»;uﬂ—bia]mwa

= ] . (2.28)

We may now apply (2.27), to deduce some inequalities for special means using some

particular mappings. The results of the special means are therefore as follows:

Example 1 Consider g(t) =1Int, g : (0,00) — R, then

b

. ! - / o(t)dt
9(a) + g0
2

! !

g () =g (a)

and

"

9

From (2.27), we have:

‘(1 —h)Inz+ (1+h)InG(a,b) — (1 - h) (1 _ A(a,b))

= sup
00 te(ab

I o] - &

InI(a,b),

InG(a,b),
b—a

G?%(a,b)

a?

x
(b—a)® 1
h —2In1(a,b
T Gy (@)
2 1 5 (b—a)’
< = [———z—-A — :
from which we obtain the estimate at the centre v = “T*b = A(a,b), so that
(b—a)® 1
(1—h)InA(a,b)+ (14 h)InG(a,b) + h 1 @—ZIHI(a,b)
(b—a)’
2402 v ()
or , )
AG=h)GQ+h) (b—a) 1 (b—a)
<
ln ( IE > Gy | S 2 YW




from which we obtain the best estimate if we choose h = f—o,that s

AtGio ) 3(b—a)? 1 293 )
1 < b—a)’.
n( 2 ) T e = 120002 Y

For h =0, we have

Iln A(a,b) +InG(a,b) —2InI(a,b)|
(b—a)
24a?

Example 2 Consider g(z) = 1,9 : (0,00) — (0,00), then

b

bia / o)t = L(a,b)

o@) o) Afab)
2 G(a.b)’
J -9 @ = =

and

"

9

o' 0]l =
= sup |lg = —.
00 te(a,b) a?

From (2.27), we have
(14+h) A(a,b) (1 —h) A(a,b)
| 2G?(a, b) 2z (2 B )
(b—a)? 1
4 H(a,b)G?(a,b)

1 3 (b—a)2
(m|x—A(a,b)| + 15 \I/(h)>

and the estimate at the centre point v = “TH’ = A(a,b), so that

—h

— L (a,b)

2

S_
CLS

(1+h) A(a,b) (1—h)  (b—a)’ 1 .
—h —L b
22 (ab) | 24(ab) 1 H(ab) G (@ b) (a.0)
(b—a)”
= 2403 (R,
which becomes best by choosing h = 1% in the above inequality,
2
13 A(a,b) N 7 _3(b—a) 1 L Yab)
20G?%(a,b)  20A(a,b) 40  H(a,b)G?(a,b)

293 )
< 2P )2,
< 20008 0%
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Also for h =0, we have

Ala, b) 1 . (b—a)’
— < 7
32 t Ay F @Y =
Example 3 Consider g(t) = t*, g : (0,00) — (0,00), where p € R\{—1,0} then
fora<b
. b
i [attde = Lyab)
g(a)—zf—g(b) = A(a, V),
g (0) =g (a) = p(p—1)(b—a)Ly75(a,b)
and

|| p<p1>{ v dpe o)
o0 aP if p € (—00,2]\{—1,0}.

From (2.27), we obtain

‘Mxp—l [(1— (1+h)
2

p)x + pA(a,b)] +

Ala®, b?)

(b—a)”
8

—h p (p - 1) Li:g(aa b) - Lg(aa b)

< oo~ DI dy(a.b) (ﬁ o Apf+ e (h)) ,

where
_9 .
5 (ab) = { bP if p € [2,00)
ap—2 pr € <_OO72]\{_170}
At © = “T’Lb = A(a,b), we get
(1—="nh) AP(a,b) (14 h)
‘ 2 T
(b—a)
8

A(a?, )

—h p (p - 1) Lgi(% b) - LZ(CM b)

(b—a)’

< [p(p —1)| dp(a,b) 3

U (h)

|(1 —h) AP(a,b) + (1 + h) A(a?, V")

—h@p (p— 1) L2=2(a,b) — 212(a,b)

(b—a)”

< p(p —1)[dp(a,b) 51

U (h).
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3

which gives us the best estimate at h = 1,

7 13
LoaAp 2 Ala?
1OA (a,b) + 10A(a ,0P)

(b—a)’

-3
10

p (p - 1) Lg:g(a7 b) - QLZ(CL, b)

293 (b — a)®

Moreover, at h =0

|AP(a,b) + A(a?,bP) — 2LE(a,b)|
(b af
24

< |p(p —1)[6p(a,b)

2.2 Some new perturbed Ostrowski type inequalities

In this section, some new perturbed Ostrowski type inequalities are presented by
working with twice differentiable functions whose first derivatives are absolutely
continuous and the second derivatives belong to {L; (a,b) : i = 00, 1,p}, p > 1, the
usual Lebesgue spaces which refine and generalize some previous inequalities of this

domain.

2.2.1 Introduction

Recently, in [59], Zheng Liu established some more Ostrowski type inequalities for
twice differentiable mappings.

In this section, we present some new perturbed Ostrowski type inequalities for
twice differentiable mappings which generalize and refine the inequalities presented
in [19, 20, 22, 38] and ([9], Theorem 20). The inequalities presented in [38] and ([9],
Theorem 20), however, contained minor mistakes. The corrected versions [63, 86]

of the inequalities are given in the form of the following theorems:

Theorem 2.3 Let g : [a,b] — R be a mapping whose first derivative is absolutely

continuous on |a,b] and assume that the second derivative g” € Ly (a,b). Then, we
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have the inequality

b

[a0ar= 300 o+ LOTL0 - (o2 228) § )

a

(b—a)® 1 a+bl|’ ‘
< 2y —
= ( s 3" 2

for all x € [a,b].

, (2.29)

o0

Theorem 2.4 Let g : [a,b] — R be a mapping whose first derivative is absolutely
continuous on |a,b. If we assume that the second derivative g” €L,(a,b),1<p<
00, then we have the inequality:

b

/g<t>dt—1<b—a> R (S ]

lb—a %
_2

(

p

Q=

[B(q+1,¢q+ 1)+ By, (g+1,g+ 1)+ ¥, (¢g+1,q+ 1)<,
or x € atb

X d Uy (2.30)

B¢+ 1,q+1)+ ¥, (¢+1,g+1)+ B, (¢+1,g+1)]7,

for x € (“T*b,b],

Q=

\

where % + % =1, p>1, ¢>1, and B(.,.) is the Beta function of Fuler given by

1
B(l,s) = /t“ (1—t)*"dt, I, s>0.
0

Moreover,
B, (l,s) = /tll (1— Lt
0

is the incomplete Beta function,

/tl L+,
0

18 a real positive valued integral,

2 _
T = %7 1'2:1—331,

r3 = IL‘l—l, {L‘4:2—I1,
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and

1

9

I, - (f

g () ]p dt> "

If g” € Ly (a,b), then

gOdt = o)+ XOTI0 - (o) g ) - )

Se—

where

"

9

W=/

Moreover, the special cases of the inequalities presented in the following subsec-

g (t)) dt) .

tion are comparable with those presented in [59] and in some cases present some

new and better estimations.

2.2.2 Main Results

The following theorem holds:

Theorem 2.5 Let f : [a,b] — R be a differentiable mapping whose first deriva-
tive is absolutely continuous on [a,b] and assume that the second derivative f* €
L,(a,b),1<p<oo. Then, we have the inequality:

b

/f(t)dt—(b—a)[(l—2h)f(fv)+h(f(a)+f(b))

a

- (o= F0) F @)+ G o0 (50 - £ @)
< E(p,a,h) H )| (2.32)
for all x € [a,b] and h € [0,1], where
E (p,x,h)
= ; [2R27FY (b — a)* ™ + (v —a — h (b— a))™™
2(2q + 1)
b (b—z—h(b—a)H), (2.33)
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ifp>1, quwith%—k%:landforp:l

E(l,x,h){ if%b__h)>ib—a)+|x—“7“’\} : 2

Proof. Let us define the piece-wise continuous mapping K (., .; h) : [a, b]2 — R

for h € [0,1] as:

K (z,t;h) = {

Integrating by parts, we obtain

IAN A

h<j
(2.34)
h<l1.

IAN A

(t—a—h(b—a))®, iftela ]

(2.35)
(t—b+h(b—a))®, ifte (b

NI N

b
/K (z,t;h) f (t)dt

b

_ /(t—a—g(b—a)) fu(t)dt_i_/(t—b—l—f;(b—a)) () dt

a x

= =m0 (o= 50) 0+ G - 0f (50— 1 @)

b

(U= 2h) (b—a) f () — h(b—a) <f<a>+f<b>>+/f<t>da (2.36)

a

which results into the following integral identity:

b

/f(t)dt:<1—2h><b—a>f<x>+h<b—a><f<a>+f<b>>

a

—(1—2h) (b—a) (az—a;_b> f (@)

b
—%(b—a)Q ( F o) - f (a)> + / K (z,t:h) £ (1) dt. (2.37)

Applying modulus on both sides of (2.36), we get

/f(t)dt—(b—a)[(1—2h)f($)+h(f(a)+f(b))

- (o= ) @]+ S o-a2 (F 0 - 1 @)
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= /K(x,t; h) () dt]| . (2.38)

For fixed x, by applying Holder’s inequality on the right hand side of (2.38) for
§+%:1withp>1, q > 1, we obtain

b
/f(t)dt—(b—a)[(1—2h)f($)+h(f(a)+f(b))

- (o= 150 £ @)+ i 0= (F 0 - 1 @)

(/ K (2, 5 h)lth) : (2.39)

Now simple calculation leads to

S

<|s

b

/ K (o, B)P dt

1
— = [op2atl(p_ g)%t! —a—h(b—a)¥t?

+(b—z—h(b—a)>]. (2.40)

Using (2.40) in (2.39), we get the required inequality (2.32) with E (p, z, h) defined
by (2.33).

For p =1, (2.38) gives

/f(t)dt—(b—a)[(1—2h)f($)+h(f(a)+f(b))

e (a0 F @)+ G o-af (0 - 1 @)

< sup |K (z,t;h))| ‘ rd (2.41)
t€la,b] 1
and it can be easily calculated that
LIL—p)(b—a)+ |z —2t]]®, 0<h<?i
sup |K (z,t;h)| = i G=h) i )+ il X - 2 (2.42)
t€[a,b] §h2 (b — (Z) , 5 < h<l1.

Combining (2.41) and (2.42), completes the proof for 1 <p < oco. m

We now state the inequality (2.32) explicitly for p = oo in the form of the

following theorem:
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Theorem 2.6 Let f be as in Theorem 2.5, then

(t)dt — (b —a)[(1 = 2h) f (z) + h(f (a) + [ ()

- (o= ) @]+ S o- a2 (F - 1 @)

< [(b;f)?) (1—6h+120%) + (b;“) (1 - 2h) ( a+b>

Remark 2.7 By choosing h =0 in (2.43), we get the inequality

/bf(t)dt—(b—a) @ (- "50) F @)

. [(b;4a)3 %(b_ )(x_a+b)

which is exactly ([22], Theorem 2.1). Thus, Theorem 2.6 is a generalization of ([22],
Theorem 2.1).

Il e

T "

Remark 2.8 By choosing h = ; in (2.43), we get the inequality

jf(t)dt—@ R N (= AT

2

b 0= (1 -1 (@)

(bg—;)gJ&(b—a) (m a+b>

It can be observed that the left hand side of (2.45) is a perturbation of left hand side
of inequality (2.29). Moreover, (2.45) provides better estimations than (2.29) for

<

Il 229

“T”Lb. Therefore, (2.45) can be regarded as its refinement.

rT =
Corollary 2.2 Let f be as in Theorem 2.5, then the following holds:

(t)dt — (b - a) [u_gh)f(a;b

)+h<f<a>+f<b>>

h2

o 0-a? (10— 1 @)

(b—a)3 2 ”
< S (—-en 12 |11 (2.46)

for all h € ]0,1].
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Proof. Putting z = %2 in (2.43), we get the desired inequality (2.46). m

The following special cases of (2.46) hold:

Remark 2.9 (i) For h = 0, (2.46) recaptures the classical midpoint inequality

jf(t)dt(baw(“;b)

as follows

< Sl 2
(ii) For h =%, (2.46) gives
b 2
[rwa-252 @ ron+ S5 (50 - 1 @)
P ;4@) H 7. (2.48)

which is a perturbed trapezoid inequality and it is not difficult to see that it
18 better than the classical trapezoid inequality. Moreover, it is also better
than the perturbed trapezoid inequalities presented in [22] and [59] for ' €
Ly (a,b).

(iii) For h =1, (2.46) gives

/b roa- L2 (rw o () e r0) + P (0 - @)

"

(b—a)’ ‘
96

which is a new perturbed averaged trapezoid-midpoint rule and it is better than

<

f

: (2.49)

o

the simple average midpoint-trapezoid inequality presented in [38] and [59] for
" € Lo (a,b).

(iv) For h =g, (2.46) gives

/bf(t)dt— 02 (r@ear () 1) + P (0 - @)

"

_ (b—a)?”
- 72

f

, (2.50)

o0
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which is a new perturbed variant of Simpson’s inequality for twice differentiable
function f. Howewver, the simple Simpson’s inequality established in [59] for

f" € Lo (a,b) is better than (2.50).

Corollary 2.3 Let f be as in Theorem 2.5, then we have a family of perturbed

trapezoid inequality as follows:

2

/abf(t)dt—b_a(f(@>+f(b))+ oot (hQ_'”_) <f,(b)_fl(a)>‘

(b=

(1 —3h+3h?

)f”“oo , (2.51)

for all h € [0, 1].

Proof. The inequality (2.51) can be easily obtained by choosing z = a and z = b
in (2.43), summing up the resultant inequalities, using the triangular inequality and

dividing them by 2. m

Remark 2.10 [t may be observed that (2.20) can presents some better perturbed

trapezoid inequalities as compared to the classical trapezoid rule for the range (l — 13, % + %\/3)

276
of h.
The explicit representation of the inequality (2.32) for p = 2 is given as:

Corollary 2.4 Let f be as in Theorem 2.5, then

/f(t)dt—<b—a>[(1—2h>f<x>+h<f<a>+f<b>>

- (o= ) @]+ S o- a2 (F - 1 @)

(b—a)® | 1 . o1 s [z -’
< 5 %(3% +(1—2h))+§(1—2h) <b_a>
+(1—2h) <xb__aa7> Hf“2 (2.52)

for all x € |a,b] and h € [0, 1].
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Remark 2.11 By choosing h = 0 in (2.52), we get the inequality

b

[1oa-0-a|tw-(«-5) 1 @)

a

1
B 5 _ ath 2 _ atb 41 2
< (b a>2 i_|_l x—z + z 2
2 80 2 b—a b—a

which is exactly ([19], Corollary 2.2). Thus, (2.52) is a generalization of ([19],
Corollary 2.2).

f

o (253)

Remark 2.12 By choosing h = i in (2.52), we get the inequality

jf(t)dt—@ R G AT

2

b 0= (70~ 1 @)

2
<(b—a)g 1 +i x — udb +1 x — ot ‘
- 2 1280 16 b—a b—a

It can be observed that the left hand side of (2.54) is a perturbation of left hand side
of inequality (2.30). Moreover, (2.54) is better than inequality ([9], Corollary 11)

for x = “T*b Therefore, (2.54) can comparatively present better estimations than

([9], Corollary 11).

(2.54)

Corollary 2.5 Let f be as in Theorem 2.5, then the following holds:

/bf<t>dt—<b—a> =27 (U57) s @)+ o)

- af (10— @)

(b—a)?
8v/5

"

<

(320° + (1 — 2h)5)%

f

2.55
9 ? ( )
for all h € [0, 1].

Proof. Putting z = %2 in (2.52), we get the desired inequality (2.55). =
The following special cases of (2.55) hold:
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Remark 2.13 (i) For h = 0 in (2.55), we recapture the following midpoint in-

jf(t)dt(ba)f(a;b)

equality for f' € Ly (a,b)

(b—a)? || .
< S ', (2.56)
(1) For h =3, (2.55) gives
[roa-L22 @ ron+ S5 (10 -1 @)
(b—a)? | .
<k A, (2.57)

which is a perturbed trapezoid inequality and it is not difficult to see that (2.57)
is comparable with the best bound of inequality of this type established in [19]
and [59].

(i1i) For h = 1, (2.55) gives

/b roa- 20 (rw o () e r0) P (0 - @)

< (b—a)g "

~ 325

which is a new perturbed averaged trapezoid-midpoint rule for f € Lo (a,b)

f (2.58)

)
2

and is better than the simple average midpoint-trapezoid inequality presented

in [59].

(iv) For h =g, (2.55) gives

ff(t)dt—u(fm)Hf(“‘;”) o)+ P (0 - @)

6

11 5
b—a)?
72\/55( )

which is a new perturbed variant of Simpson’s inequality for twice differentiable

"

<

f

. (2.59)

function f for " € Ly (a,b) and is better than the simple Simpson’s inequality
presented in [59].
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Corollary 2.6 Let f be as in Theorem 2.5, then we have a family of perturbed

trapezoid inequality

/abf(t)

(b—a)
\/_
for all h € [0, 1].

"G+ S (o)) (F 0 - s <a>)‘

5
2 ”

(k5 + (1 — h)7)?

<

f

. (2.60)

Proof. The inequality (2.60) can be easily obtained by choosing z = aand z = b
in (2.52), summing up the resultant inequalities, using the triangular inequality and
dividing them by 2. m

The following special cases of perturbed Ostrowski type inequality (2.32) for
p =1 hold:

Remark 2.14 By choosing h = 0 in (2.32) and (2.34), we get the inequality

b
a + b ’
[ioa-0-a|tw-(a-5) 1 @)
1{b—a 2
< =
- 2 2
which is exactly ([20], Theorem 2.1). Thus, the inequality (2.32) together with
(2.34) generalizes ([20], Theorem 2.1).

a+b

. (2.61)

xr —

) .

Remark 2.15 By choosing h = 1 in (2.32) and (2.34), we get the inequality

a5 i SO0 (022) )

(2.62)

b5 0= (5 ) -1 @)
1 {b—a ‘x a+b

<3 |l
=2 4 ]

It can be observed that the left hand side of (2. 62) is a perturbation of left hand side
of inequality (2.31). Moreover, (2.62) is better than (2.31) for x = “t2. Therefore,

(2.62) can comparatively present better and refined estimations than (2.31).
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Corollary 2.7 Let f be as in Theorem 2.5, then the following holds:

/bf(t)dt—(b—a) -2 f (“50) ehi @+ o)

<{ G’ (1 _opy? 0 <

for all h €10, 1].

g (2.63)

Proof. Putting z = 22 in (2.32) and (2.34), we get the desired inequality
(2.63). =

Remark 2.16 (i) By choosing h = 0 in (2.63), we recapture the midpoint in-

equality for f' € Ly (a,b) as follows

b

[ia-w-as (5"

a

< (6—80,)2 Hf

- (2.64)

(i4) By choosing h =1 in (2.63), we get

b

[roa-L20 (1@ o (“5) s )+ O (F 0 - 1 @)

<O,

(2.65)
which is a new perturbed average trapezoid-midpoint rule with f € Ly (a,b).

(i1i) By choosing h = & in (2.63), we obtain

/b roa- 5 (rwrar () s w) + O (0 - @)

72

<O

(2.66)
which is a new perturbed variant of Simpson’s inequality for twice differentiable
function f with f" € Ly (a,b).
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Corollary 2.8 Let f be as in Theorem 2.5, then we have a family of perturbed

trapezoid inequality

[roa-"3 @ ron+ 5 (12 =n+3) <f’(b)_f/(a)>‘

< (b—a/)2 H "
- 2

1 h2 7%<

for all h € ]0,1].

Proof. The inequality (2.67) can be easily obtained by choosing z = aand z = b
in (2.32) and (2.34), summing up the resultant inequalities, using the triangular

inequality and dividing them by 2. =

Remark 2.17 For h = % in (2.67), we have the following perturbed trapezoid in-

equality:

b
[rwa-52 @+ ron+ S5 (0 -1 @)

< (b—8a)2 Hfu

which has been obtained in [17].

(2.68)

)
1

2.2.3 Applications in Numerical Integration

We may use Theorem 2.5 to get the estimates of composite quadrature rules with
smaller error than that which may be obtained by the classical results.

Let I, :a =20 <21 < -+ < X1 < T, = b be a division of the interval
la,b], hy = i1 —x;, 0 € [0,1], 2, < (; < xi41,79=0,--- ,n— 1, be a sequence of

intermediate points, then the following theorems hold:

Theorem 2.7 Let f : [a,b] — R be a differentiable mapping whose first deriva-
tive is absolutely continuous on [a,b] and assume that the second derivative f* €
Ly (a,b). Then, we have the following quadrature formula:

b

/ F() dt = A f 1 C8) + Ra(f f 210 C.0)

a
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where

n—1
AU f 10y G, 0) = (1= 20) > hif +6Zh () + f (zi41))
i=0

—(1—20) Zh ( m) [ (&), (2.69)

and the remainder satisfies the estimation:
1
1—60+126%) ) h}
RETEEREE)S

(]_ — 2(5 x; + Tit+1
+ 5 ZZO:}%‘ (Cz’ T ) ] ’ (2.70)

"

Ri(f.f nCo)| < |1

for all 6 € [0,1].

Proof. Applying inequality (2.43) on (; € [x;,xi+1] (i =0,...,n — 1) and sum-

ming over ¢ from 0 to n — 1 and using triangular inequality, we get (2.70). m

Theorem 2.8 Let f : [a,b] — R be a differentiable mapping whose first deriva-
tive is absolutely continuous on [a,b] and assume that the second derivative f* €
L,(a,b), p> 1. Then, we have the following quadrature formula:

b

/ F() dt = A(f S 10 C.8) &+ Rolf. f 210 C.0)

a

where
A(fof Ty C8) = (1=26) Y haf (G + 63 b (F (w2) + f (2i11))
=0 1=0

—(1-25) Zh ( M)f (),

and the remainder satisfies the estimation:

n—1
O e A DN Ca T
p 2 2Q+ q =0
+ (¢ — i — Shi)*
+ (i1 — ¢ — 5hz‘)2q+1)] ., (2.711)

for all § € [0,1].
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Proof. Applying inequalities (2.32) and (2.33) on (; € [z, z;41] (i =0,...,n — 1)
and summing over i from 0 to n — 1 and using triangular inequality, we get (2.71).

Theorem 2.9 Let f : [a,b] — R be a differentiable mapping whose first deriva-
tive is absolutely continuous on [a,b] and assume that the second derivative f €
Li(a,b), p> 1. Then, we have the following quadrature formula:

b

/}u>ﬁ=Ame@¢®+mujﬁmg®

a

where

n—1
A(faf a-[TLan(S) (1 _25)2 +6Zh xz _I'f xl-i-l))
=0

n—1
Ti+Tip1) [/
—(1-29 hi|(;, — —— ),
)Y @z ) F @
and the remainder satisfies the estimation:

Ro(f, 10 C.0)

H% _5‘7)(]1) + SUPj—q,... n—1 ‘Cz - %I]Q,

,,,,,

o
IN
o> >

[u— [

- §Hf Hl %521]2 (m’ (2'72)

N =
IA

where v (h) = max {h;|i = 0,....,n — 1}.

Proof. Applying inequalities (2.32) and (2.34) on (; € [z, zi41] (1 =0,...,n — 1)
and summing over ¢ from 0 to n — 1 and using triangular inequality, we get (2.72).

Theorem 2.10 Let f : [a,b] — R be a differentiable mapping whose first deriva-
tive is absolutely continuous on [a,b] and assume that the second derivative f* €
Lo (a,b). Then, we have the following quadrature formula:

b

/}a>ﬁ=AUJlmg®+R4nﬁh@ﬁx

a

where
n—1
A(faf a[naC75> (1 _26)2 +5Zh -fz +f szrl))
=0
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—= 2 o (6 - ) £ )
=0

and the remainder satisfies the estimation:

Ra(f,f 10, C0)| <

[ (326° + (1 — 26)° Zh5
1 3 T + Tig1 ?
+5 (1 20) Zh?’( —*)

T+ ok
+ (1 — 26) Zhl (gz —“)] . (2.713)

for all § € [0,1].

Proof. Applying inequality (2.52) on (; € [z, z;41] (i =0,...,n — 1) and sum-

ming over ¢ from 0 to n — 1 and using triangular inequality, we get (2.73). m

2.3 A generalization of Ostrowski type inequality for (/, L)
Lipschitzian mappings

In this section, we present an Ostrowski type inequality for n-times differentiable

(I, L)—Lipschitzian functions. The presented inequality is a generalization of Os-

trowski inequality for L—Lipschitzian and (I, L)—Lipschitzian functions and recap-

tures many previous results as special cases.

2.3.1 Introduction

In [30], S. S. Dragomir obtained Ostrowski’s integral inequality for Lipschitzian

mappings as follows:
Theorem 2.11 Let u : [a,b] — R be L-Lipschitzian mapping on |a,b] i.e
ju(z) —u(y)| < Llz—y|, forallz€lab].

Then, we have the inequality:

b

/u(t) dt— (b—a)u(@)| <L %+ (ﬂ;_?) (b—a), (2.74)

a

for all x € [a,b]. The constant } is the best possible one.
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In [15], P. Cerone and S. S. Dragomir obtained three point inequalities of Os-
towski and Griiss type in usual Lebesgue spaces and for Lipschitzian, monotonic
and mappings of bounded total variation. They further generalized the inequalities
obtained in [15] for n-differentiable function f, where f € L, (a,b), p > 1 in [16].
Three-point inequality of Ostrowski type for L-Lipschitzian function obtained in
[15] is stated below:

Theorem 2.12 Let f : [a,b] — R be L-Lipschitzian on [a,b]. Then, the following
inequality holds:

b

/f(t) dt — [(a(z) —a) f (a) + (B (x) — o (2)) f () + (b= B (2)) [ (b)]

a

+(a(w)—a;x)2+<B($)—x;b>2}, (2.75)
where o [a,2] — R and B : (2,5 — R.

Some special cases of Theorem 2.12 may also be considered for choice of a ()
and 3 (z) as given in [15]. It may also be noted that (2.75) is a generalization of
(2.74) for a(z) = a and [ (x) = b.

In some recent papers [58, 57|, Zheng Liu has obtained inequalities of Ostrowski
and Griiss type for (I, L)-Lipschitzian mappings. Ostrowski type inequality obtained
by Liu in [57] for (I, L)-Lipschitzian function is stated as follows:

Theorem 2.13 Let f : [a,b] — R be (I, L)-Lipschitzian on [a,b]. Then, for all

x € [a,b], we have:

ey o



'hs—o (2.77)

- 2 2
and ,
3 (e[ @+0-a)f @)+ -0 0]~ [ o)
gb;“V;“ x—a;ﬂ]@—s% (2.78)
where S = f(bg: (@

In this section, we give a generalization of Theorem 2.11, Theorem 2.12 and
Theorem 2.13 for n—times differentiable (I, L)-Lipschitzian functions.
For the sake of convenience, we re-state some definitions, lemmas and identities

which are intended to be used to obtain our desired generalization.

Definition 2.1 The function f : [a,b] — R is said to be L-Lipschitzian on [a,b],
if for some L >0 and all x,y € |a,b],
[f () = f ()l < Llz—yl.
Definition 2.2 The function f : [a,b] — R is said to be (I, L)-Lipschitzian on [a, b]
if
[(zg —x1) < f(22) = f(21) S L (02 —71) fora <z <9 <D,
where |, L € R with | < L.

Remark 2.18 [t may be noted that a (1, L)-Lipschitzian function is a L-Lipschitzian

function forl = —L.
The following known lemmas are useful in the sequel.

Lemma 2.1 (see [15]) Let g,v:[a,b] — R be such that g is Riemann integrable on
la,b] and v is L-Lipschitzian on [a,b]. Then,

b

Q/MﬂM@)SL/IMWﬁ,

a

where v is L-Lipschitzian if it satisfies
jv(z) —v (| < Llz—yl,
for all x,y € [a,b].
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Lemma 2.2 (see [15]) Let g,v : [a,b] — R be such that g is continuous and v is of
b
bounded variation on [a,b]. Then, the Riemann-Stieltjes integral [ g (t)dv (t) exists

and 1s such that
b

/ g dv(B)] < sup g1\ @)

tE(a,b]

b
where \/ (v) is the total variation of v on [a,b].

Moreover, we will also use the following identity but from Riemann-Stieltjes

point of view:

Theorem 2.14 (see [16]) Let f : [a,b] — R be a mapping such that f"~V is
absolutely continuous on [a,b] with « : [a,b] — [a,b] and B : |a,b] — [a,b], a(z) <

x < B (x), then for all x € |a,b], the following identity holds:

(1" [ Katat) S0 @ de = [ @)=Y 5 [Rale) £ @)+ S (o)

(2.79)
where the kernel K, : [a,b]> — R is given by
=, b€ fa,a]
K, (z,t) = (2.80)
UBEDT ¢ e (2, 0],
Ry (x) = (B(x) — )" + (-1)" ' (z — a (2))" (2.81)

and

Sk (2) = (a(z) = a)" f*7V (@) + (=) (0= B ()" F& (0). (2.82)

2.3.2 Main Results

Theorem 2.15 Let f : [a,b] — R be a n-times differentiable function and let
f@=Y be (1, L)-Lipschitzian function. Let o : [a,b] — [a,b] and B : [a,b] — |a,b],

a(x) <x < p(x). Then, for all x € [a,b], we have:

[ rwa- C D (=30 L R @) 75 @)+ s )
; k=1
L+1
S R+ R )|
< W), (2:83)
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J k=1
L+1
> et () P
< =(b—a) (D" =) M" (z) (2.84)
and
[roa-T2 ey =3 L R 4 @)+ S @)
2 k=1 "
L+1
- (xR, (x) + Py (a:))]
<~ (b —a) (L—-D" ") M" (), (2.85)
with
Ri(x) = (B(x)—2)" +(-1)"" (= —a(@)",
Pi(x) = (a(2)—a) a+ (=1)"" (b5 (2))"D,
Sky (@) = (a(@)=a)* [V (a) + (=1 (b= (2)" f5V (b)),
@) = ooy 0@ -0 + @ —a(@)
+(B (@) =2)" (b= B @)
M (z) = max{a(x)—a,z—a(z),z—F(z),b—F(z)} (2.86)
and (n—1) (n—1)
w1 _ STV () = [0V (a)
Dl = — (2.87)
Proof. Let us consider kernel defined by (2.80)
(=o@) 4 ¢ [a, 2]
K, (z,t) =
w, t € (x,bl.
Let
9 (1) = 10 () - E (288)

It may be observed that the function g™~ (¢) is M-Lipschitzian on [a,b] with
b
M = 1. So, the Riemann-Stieltjes integral [ K, (z,t)dg™ ) (¢) exists and we
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have by applying integration by parts formula for Riemann-Stieltjes integral:

b
n

(" [ Kaedg® )= g0t = 30 1 [Ruele) g (@) + Siy ()],

" - (2.89)
where
Ry (x) = (B(x) =) + (1) (z — a (2))"
and
Sg () = (@ (x) —a)* ¢" V(@) + (=1)" " (b= B ()" ¢" ) (b) . (2.90)
From Lemma 2.1, we have
/ K, () dg™D ()] < LT_Z / K,y (2, 1)] d. (2.91)
As calculated in [16],
b
1 n+1 n+1
[ @l = s @ -0+ - a @)
+(B(x) =)+ (b= B ()]
= Qn(2). (2.92)
So, from (2.89), (2.91) and (2.92), we obtain:
b n
Jo@rd=3 4 (R )6 @) + S ()]
< ?Qn (7). (2.93)

Consequently, substituting (2.88) in (2.93), we get the required inequality (2.83).
Next, let

d" V(@) = f )
Ay = (@) — Lt (2.94)

It may be observed that ¢" " (¢) and ¢{" " (t) are functions of bounded variations

on [a,b] and

V(o) = £ 0= £ @) 1),

V() = Le—a) = [/ ®) - " (@) (2.95)



b
So, the Riemann-Stieltjes integrals fK z,t)dg" "V (t) and fK 2, 1) dgS" ™V (1)
exist and we have by applying mtegratlon by parts formula for Riemann-Stieltjes

integral:

(~1)" / Ko (,8) dgi"™ () = / g0yt~ 3" o [Re@) " () + i ()]

(2.96)
and
b b n
(0" [ Kaedg ™ 0 = [g 0t =3 5 [Re@) g™ ) + St (0]
’ ’ . (2.97)
where
Ry (x) = (B(2) — )" + (=1)" " (w — a (2))",
and
Sk.gr (T)
= (@) —a) g (@) + ()-8 ) g" (),
Sk.ga (7)
= (a(@)—a) gi" (@) + (- (b - B @) gV (1) (2.98)

From Lemma 2.2, we have

t€(a,b]

b
[ Kale0dg ™ 0] < max Km0V (67).

[ Kt agy @] < mox | 0]V (o577) (2.99)

tela,b]

As calculated in [16], we have:

max |I, (2, 8)] = (max{a 2) — 0,0~ ax) 2 = B (x) b~ B ()))"
- %M”(m). (2.100)

So, from (2.95), (2.

2.96), (2.97), (2.99) and (2.100), we obtain:
[ow- > = [Re@) o (@) + S ()]
il —

< —(b=a) (D" =1) M (2) (2.101)
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and

Jowde=Y 4 [Fe@ g™ @)+ Su (0]

< —(b—a)(L-D"")M"(z), (2.102)

where
FOD () = FD (a)
b—a '

By substituting (2.95) in (2.101) and (2.102), we get the required inequalities (2.84)
and (2.85). m

Dn—l _

Corollary 2.9 Let f be as in Theorem 2.15. Then, for all x € [a,b], we have:

4
k=1

/f(t)dt_ (b2 _aQ) (L+l) _Z% [(1 —h)krk (:U) f(kfl) ($>

+hksk7f (x) — L;L l (x (1-— h)k . (1) + hFpy, (w))} ‘
L—1
< 3 o 1)!H (h) G (z), (2.103)
/ v — a? "1
[roa-C2 2w Sla-0tnw i@
+hksk7f (x) — L;L l (m (1-— h)k . () + hFpy, (x))] ‘
< (b;—,“) (D" = 1) v" () (2.104)
and
/ (b* — a?) — 1 k (k—1)
[ty (L +0) =3 5 [0 = )t (a) 60 ()
2 k=1
HhEsy g () — L; l (x (1= h)* ry (@) + hFpy (:c))} ’
< O - %) (L— D" )" (x), (2.105)
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with

) ()
pr(x) = (w—a)a+ (=D (-2,
s () = (@=a) fE D (a) + (=) o —2)" fEV ),
G(z) = (@—a)"™" + (-,
1 1 b—a a-+b
o = [bop- 3] [ 22
H(h) = h"' (1 —h)", (2.106)

and D" is defined by (2.87).
Proof. By choosing,
a(r) = hx+(1—-nh)a,
f(x) = hx+(1—h)D,
in (2.83), (2.84), (2.85) and (2.86), readily produces the required inequalities. m

Remark 2.19 [t may be noted that forn =1, a(x) =a, f(x) =bandl = —L in
(2.83), (2.74) is obtained.

Remark 2.20 It may be noted that for n = 1 and | = —L in (2.83), (2.75) is

obtained.

Remark 2.21 It may be noted that for n = 1 and h = % in (2.103), (2.104),

(2.105) and (2.106), the inequalities (2.76), (2.77) and (2.78) are recaptured.

2.3.3 Applications in Numerical Integration

We may use Corollary 2.9 to get the estimates of composite quadrature rules with
smaller error than that which may be obtained by the classical results.

Let I, :a=x9 <21 <+ < ZTpy1 < T, = b be a division of the interval [a, b]
let ( = (CO, s Cm_l) be a sequence of intermediate points where (; € [z}, ;1] for

7=0,1,...,m — 1, then the following theorem hold:
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Theorem 2.16 Let f be as in Theorem 2.15. Then, we have the following quadra-
ture formula:

b

/f (t) dt = Am,n(f7 Im> C? 5) + Rm,n,l(f7 [ma Ca 5)7

a

where
A f I ) mX;ZO U {0 (6) 14 ()
o (AL (@) + (1) BEFED (0500)
L+l -

B (-0t ) G+ ot () b -

(I+L)» (25,,—23) (2107

J

.Jkl»—t
I
=)

and

Aj = (-, Bj=xjp — (5, hy= A+ By =151 — 1

7

% (gj) == Bjk + (—1>k_1 Af, Pr (gj) = Aij + (—1)k_1 B;-C[L’j_;,_l,
for 7 =0,....m — 1 and the remainder satisfies the estimation:
L—1 -
H(6) ) (A7 4 By, (2.108)

=0

< [
|Rm,n,1(f> ImvCa 5)’ — 2(n+ 1)!

H(6) =6""+ (1—06)"",

for all 6 € [0,1].

Proof. Applying inequality (2.103) on ¢; € [zj,z;41] (j=0,...,m —1) and

summing over j from 0 to m — 1 and using triangular inequality, we get (2.108). m

Theorem 2.17 Let f be as in Theorem 2.15. Then, we have the following quadra-
ture formula:

b

/f (t) dt = Am,n(f7 Im> C? 5) + Rm,n,2(f7 [ma Ca 5)7

a

where
B m—ln—l(_l)k B . (h-1)
ApanFi I 0) = DO = {1 =) e (¢) £ (¢))
j=0 i=0 ’



_¥ (=0 (¢)) ¢ + 3" (Cj))}

and

Aj = (= Bj=wjn = hy=Aj+ By =31 — 15,

e (G) = B+ (=DM AY p(¢)) = Abay 4+ (-1 Bl

for 7 =0,....m — 1 and the remainder satisfies the estimation:

L5 —1)\"
Ronalf TG0 < 20 |n! 2D (00 1) - 00 (a) < 10— )
x (U <2h) + max |G - % >n (2.109)

v(h)={hilj=0,...,m—1},

for all § € [0,1].

Proof. Applying inequality (2.104) on ¢; € [zj,z;41] (j =0,....,m —1) and

summing over j from 0 to m — 1 and using triangular inequality, we get (2.109). m

2.4 Conclusion

In this chapter, by the use of modified Peano kernels, some Ostrowski type in-
equalities depending on the second derivatives are highlighted. Ostrowski type
inequalities for twice differentiable functions have been extensively addressed in the
research papers [9] and [59]. We, in here, have presented some generalizations and
improvements of the inequalities presented in [9] and [59].

In Section 2.1, we have presented a generalization (2.2) of the inequality (2.1)
obtained in [38] (or see [9], Section 7) for twice differentiable functions whose first
derivatives are absolutely continuous and second derivatives belong to L (a, b) by
introducing a parameter h € [0,1]. From Remark 2.3, it is clear that (2.2) can
present some better estimates for a specified range of i than (2.1). This general-
ization also results in obtaining a three-point inequality for a specific value of h as
mentioned in Remark 2.4. The three-point inequality thus obtained has a better
bound than the three-point inequalities presented in [9] and [59] for |||, — norm.
Remark 2.4 also shows that the perturbed trapezoid inequality that can be ob-
tained from (2.2) is better than the perturbed inequalities presented in [9] and [59]
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of perturbed trapezoid type for ||.|| ., — norm. The inequality is then applied for a
partition of the interval [a,b] to obtain some composite quadrature rules. The in-
equality is also applied to special means by properly choosing the function involved
to get some direct relationships between different means.

In Section 2.2, some generalizations and refinements of the inequalities of Os-
trowski type for twice differentiable functions are given in the sense of perturbations
by introducing perturbed versions of inequalities of midpoint, trapezoid, Simpson’s
and averaged trapezoid-midpoint type which refines the results of [19, 20, 22, 3§]
and (][9], Theorem 20). The Remark 2.7-2.17 justify our claim. The corresponding
composite quadrature rules are obtained in Section 2.2.3.

In Section 2.3, a generalization of Ostrowski type inequality is presented for
(I, L)-Lipschitzian functions which not only extends some Ostrowski type inequali-
ties L-Lipschitzian mappings to an higher space of (I, L)-Lipschitzian mappings but
also generalizes some Ostrowski type inequalities for (I, L)-Lipschitzian mappings.
Remark 2.19, 2.20 and 2.21 justify this fact. Applications for composite quadrature

rules are also given in Section 2.3.3.
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Chapter 3

Some Generalized Ostrowski-Griiss type

inequalities

The integral inequality that measures the deviation of the integral of the product
of two functions and the product of the integrals is known in the literature as the
Griiss inequality. The inequality is stated in the form of Theorem 1.4.

In 1997, S. S. Dragomir and S. Wang [39], by the use of the Griiss inequality
proved the following Ostrowski-Griiss type integral inequality:

Theorem 3.1 Let f : [ — R, where I C R is an interval, be a mapping differ-
entiable in the interior I° of I, and let a,b € I° with a < b. Ify < f (r) < T,

x € |a,b] for some constants v, € R, then

f@»—g%gjfﬁﬁﬁ—iggig@(x_ggﬁ)

< a9, (3.1)
for all x € [a,b).

This inequality provides a relation between Ostrowski inequality [69] and the
Griiss inequality [64].
We, in this chapter present some extensions of the inequality (3.1) for first and

twice differentiable functions.
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3.1 A generalization of Ostrowski-Griiss type inequality for

first differentiable mappings

In this section, we improve and further generalize some Ostrowski-Griiss type in-
equalities involving first differentiable functions and apply them to probability den-

sity functions, generalized beta random variable and special means.

3.1.1 Introduction

In 2000, M. Mati¢, J. E. Pecari¢ and N. Ujevi¢ [61], by the use of pre-Griiss in-

equality improved the factor of the right membership of (3.1) with ﬁg as follows:

Theorem 3.2 Let f : I — R, where I C R is an interval, be a mapping differ-
entiable in the interior I° of I, and let a,b € I° with a < b. Ify < f (x) < T,
x € |a,b] for some constants v,I" € R, then
b
1 f () — f(a) a+b
f) -5 [foa- T (o

1
< BT N0-a), (3:2)

for all x € [a,b).

In 2000, N. S. Barnett et al.[12], by the use of Cebysev functional, improved the
Matié¢-Pecari¢-Ujevié result by providing first membership of the right side of (3.2)

in terms of Euclidean norm as follows:

Theorem 3.3 Let f : [a,b] — R be an absolutely continuous function whose deriv-

ative fl € Ly [a,b]. Then we have the inequality

f(x)—ﬁ/bf@)dt—WQ‘aTM)

!

< b [l ()]

1
< —_T=)(b—a),
< r-ne-o
if v< fl (t) < T for almost everywhere t on [a,b] (3.3)

for all x € [a,b).
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Also in [12], we can find the pre-Griiss inequality as

T (f,9) <T(f. /)T (9.9),

where f,g € Ly[a,b] and T (f, g) is the Cebysev functional as defined above.
In the following subsection, we give a generalization of (3.3) and then apply it to

probability density functions, generalized beta random variable and special means.

3.1.2 Main Results

Theorem 3.4 Let f : [a,b] — R be an absolutely continuous function whose first

derivative fl € Ly (a,b). Then, we have the inequality

1o [f(x)_M(x_aTwﬂ +hf(a)+f(b)_bia/bf(t)dt

b—a 2

1
2

< (bI;)Q(3h2—3h+1)+h(1—h)<x—“;b)Q X
L (o
< %(F—y) [%(3h2—3h+1)+h(1—h)(x—a;by N

if v< f/ (t) < T almost everywhere t on |a, b (3.4)
forallz € [a+h%5% b—h2] and h € [0,1].

Proof. We consider the kernel as defined in [34] p : [a, 5" — R

we obtain

b b
— [ [ -p@s) (£ 0~ f ) dras. (3.5)



pe)f Ot == 7@+ [

bia/bp(:c,t)dt—@_h) (x_a;—b)

1 /f/ (t)dt:M,

o>

| | —
S
@\@

and

b—a b—a

then by (3.5) we get the following identity:

(1—h) {f(x)_f(bg)):i:(a) <x—a_2|—b)}+hf<a);f(b)—bia/f(t)dt

1
2(b—a)’

[ [ et -p@s) (5 0~ f () dtas. (3.6

for all z € [a+ h%5%, b — h%2] and h € [0,1].

Using the Cauchy-Bunyakowski-Schwartz inequality for double integrals,we may

write
s | e n-re ) (£ 0 f @)
b b %
< (2 e B p(x,s>>2dtds)
X (2(bla)2//<fl ) —f (s)>2dtds) . (3.7)
However,

1 b b 2
2(b_a)2a/a/(P(ﬂfat)—p(x,s)) dtds
b

b 2
L > (z,t) dt — L/ (z,t)dt
el G . | P

a

3

1 [(m—(a+hb7“))3+(b—hb7“—x)

h3 (b —a)®
b—a

3 + 12

(1= n)? <x—“;b)z. (3.8)
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In addition, simple calculations show that

(= (ot5)) (5t )

_ (b—a)(l—h)[ﬁ%(:c—a;b) +(1_h>4(b_a)] (3.9)

and

ﬁ/ / (5 @)= f () deas

1 H e <M>2 (3.10)

b—a 2 b—a

Using (3.6)-(3.10), we deduce the first inequality.

Moreover, if v < f, (t) < T almost everywhere t on (a,b), then, by using Griiss

inequality, we have

b 2
o<1 (f'(t)>2dt— L/f'(t)dt <
“b—-a b—a -

which proves the last inequality of (3.4). m

Remark 3.1 Since
3h =3h+1<1, Vhel01].

1

and is minimum for h = 3.

Thus, (3.4) shows an overall improvement in the inequality obtained by Barnett

et al. [12].
The following remark contains some special cases of (3.4):

Remark 3.2 (i) For h=1, i.e., v = 2 (3.4) gives

N LU

a

=

(b—a | 1 2 (fO) = f@)]
= o3 [b_a\ _(T)] |
1 2
< 4—\/§(F—7)(b—a)
if v< f, (t) < T almost everywhere t on |a,b], (3.11)

which s trapezoid inequality.
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(it) For h =0 and x = £, (3.4) gives

w—@f<a;f)—;f@wu

S - (]

(L =) (b—a)’

[un

IA

1
43
if v<f (t) <T almost everywhere t on [a,b],
which is maid-point inequality.

(iii) For h =1 and x = £, (3.4) gives

a atb
‘“)+in2)+fw) i [ fa

b
a

1

2_(ﬂ2:5m5127

if v < f/ (t) < T almost everywhere t on [a,b],

’

IN

(b—a)| 1
44/3 [b—a‘

(L =) (b—a)’

IN

which is an averaged mid-point and trapezoid inequality.
(iv) For h=1% and v = “£, (3.4) gives

b

a atb
(b_a)f( ) +4f (%) + f(b) _/f(t)dt

6

a
1

b [t (=]

Lr-no-a,

IN

IN

if v < fl (t) < T almost everywhere t on (a,b),

(3.12)

(3.13)

(3.14)

/

which is a variant of Simpson’s inequality for first differentiable function f, f

15 integrable and there exist constants v,I' € R such that v < fl (t)<I,te

(a,b).
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3.1.3 Application for Probability Density Functions

Let X be a continuous random variable having the probability density function

f :la,b] — R, and the cumulative distribution function F : [a, b] — [0, 1], i.e.,

C |a,b],

f b b
F(:c):/f(t)dt,:ce[aJrh za,b—h 2“

and
b

E@ﬁz/tﬂwﬁ

a

is the expectation of the random variable X on the interval [a,b]. Then, we may

have the following.

Theorem 3.5 Under the above assumptions and if the probability density function

belongs to Ly [a,b], then we have the inequality

‘(1—h) lF(x)—bl (x—“+b>]+ﬁ—im‘

—a 2 2 b—a

1 [i(3h2—3h+1)+h(1—h) (x—a+b>2

1
2

~ b—all2 2 .

[((b—a) | £I2 - 1]7,

(M—=m) |1 ., a+b\’
< - 7| — — — —
< S0 a 12(3h 3h+1)+h(1—h) (= 5 :
if m < f <M almost everywhere on [a,b], (3.15)

for all x € [a+hb_7“,b—hb_7“].
Proof. Put in (3.4), f = F to get (3.15). =

Corollary 3.1 Under the above assumptions, we have

a+b h  b—E(X)
_ < 5 3
’(1 h)Pr(X— 2 >+2 b—a
| 1 :
< (3K —3h+1)%[(b— > —1]7,
S ) [0 1113~ 1]
< 5 (=3 ) QL —m) < f <M as above. (3.10)
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3.1.4 Applications for generalized beta random variable

If X is a beta random variable with parameters g5 > —1, 8, > —1 and for 3, > 0

and any [3;, the generalized beta random variable

Y :Bl _I_ﬁZXa

is said to have a generalized beta distribution [51] and the probability density func-

tion of the generalized beta distribution of beta random variable is given as

f(x) =

(z—P1)"3 (B, +B8y—x)"4

B(By+1,8,+1)85 3P4

0,

for 8, <z < B, + B,

otherwise,

where 3 (I, m) is the beta function with [, m > 0 and is defined as

1

B (l,m) = /acl_l (1—2)" " dx.

0

For p, ¢ > 0 and h € [0,1), we choose,

5
By
B3
By

_ h
= 27
= p_]-a

Then, the probability density function associated with generalized beta random

variable

takes the form

Now,

h
Y=3+01-hX

h h
§<.CL'<1—§

otherwise.

(3.17)



and

If Gipa)ls =

1
G q)ﬁ (2p—1,2¢—1). (3.18)

Then, by Theorem 3.5, we may state the following:

Proposition 3.1 Let X be a beta random variable with parameters (p,q). Then for

generalized beta random variable
h
Y = 3 +(1-h)X,

we have the inequality

‘FMYS@—x+ﬂ—5%E

[NIES

1

< [12 (3h* —=3h+1) +h(1—h) (x—%)QI X

B2p—1,20—1) = (1= h) & (p.q)]?
(1—h)2B(p,q)

: (3.19)

for all x [%,1—%].

In particular, for r = % in (8.19), we have:

1 q
P(ve) -
1 2 l[6(21)_1:2(]_1)—(1—h)62(p’q)]%
< ——= (3h* —=3h+1)2 _ .
2¢§( ) (1—=h)23(p.q)

3.1.5 Applications for Special Means

Example 4 Consider the mapping f (z) = 2P, p € R \ {—1,0}. Then

=
b_a

bf@ﬁ::Lymw
— [ (a)

a
f)—f L
T h—a pLﬁ_l,
P
ﬂwgf@ :‘lgmzAMKW
and
1 /12 1 b, 2 2 2(p-1)
b—aHf 2:b—a/a f@) dt= L2(p71)‘
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Therefore, (3.4) takes the form

(1= h) [#” = pLj7y (@ — A(a,b))] +hA (a?,0") — L]

2

2
< ||[( ) (3h2 —=3h+1) + h(1—h)(z - A)?| x
[ngjg - L% 1)] i (3.20)

Choose x = A in (3.20), to get

(1 — h) AP (a,b) + hA (a?,VF) — LP|

(b—a) 2 21 2-1)] 2
= 2—\/5(% —3h+1)% |y ![ 2p-1) ~ L1 ] )
which is minimum for h = % Moreover for h =1,
|A (@) - L2|
(b—a)

a) -1 212
>~ 2\/— | |[ 2(p—1) Lp—l }

Example 5 Consider the mapping f (v) = 1 (:v € [a +hbse b — hb_—“} c (0, oo))

x’

Then,
b
B 1
= 7
fB) —f@) _ 1
b—a G?’
fl+f) A
2 G?’
_ad?+ab+ 0’
N 3a3b3
and

bia/‘f/ (o) d - (W)?Z (2;3;?2'

Therefore, (3.4) becomes

'(1—h)[1+$(I—A)]+h%—%‘

< (bz;b)z (3h% = 3h +1) + h (1 — h) (x — A)? ’
(b—a)

V3G

X

(3.21)
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Choosing x = A in (8.21),
1 A 1
'(l_h)ZHL@_E’
_ (-ap
- 6G3

If we choose x = L in (3.21), we get

(352 — 3h+1)7.

A 1
G? L

‘(1—;1)%“%—1)——/1

12 8
(b—a)
V3G3

Example 6 Consider the mapping f () = Inxz, (x € [a + hb’Ta, b— hb’T"] c (0, oo))
Then

< [M(3h2—3h+1)+h(1—h)(L—A)2

b

1
b_a/f(t)dt ~ Il

fO) - f@ 1
b—a L’

F @)+ 7 ()
2

and

1

b—a

Thus, (3.4) takes the form
z(=hGh T — A‘

lnf—(l—h)

N

(b—a)’

< [T (3h2 = 3h+1) + h(1 —h) (z — A)*| x

2 2\3
%. (3.22)
Forx = A,

A=) Gh

—
(b—a) (302 — 3h + 1)? (L2 — G?)?

- 23 LG
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which for h = 1, takes the form

G
1H7‘
(b—a) (L* - C*)
2v/3LG
Also, choosing x = I, we get
G" I—A
S
(b—a)’ (oo 2|
< 5 (3h* =3h+1) +h(1—h)(I —A)"| x
(22— )’
LG '

3.2 A generalized Ostrowski-Griiss type inequality for twice
differentiable bounded mappings and applications
In this section, a generalized Ostrowski-Griiss type inequality for twice differen-

tiable mappings in terms of the upper and lower bounds of the second derivative is

established. The inequality is applied to numerical integration.

3.2.1 Introduction

In [39], S. S. Dragomir and S. Wang proved the following Ostrowski type inequal-
ity in terms of lower and upper bounds of the first derivative which is known as
Ostrowski-Griiss type inequality. In [9], S. S. Dragomir and N. S. Barnett, proved
the following inequality:

Theorem 3.6 Let f : [a,b] — R be continuous on [a,b] and twice differentiable

on (a,b) and where the second derivative f" : (a,b) — R satisfies the condition,
o< f(x)<®, forall x € (a,b),

then,
f'(b) = f(a)

(b—a)2+%(x_a+b)2




r , (3.23)

for all x € [a,b).

In the following subsection, we establish a more general form of (3.23) and apply

the result to numerical integration.

3.2.2 Main Results

Theorem 3.7 Let f : [a,b] — R be a continuous mapping on |a,b], and twice dif-

ferentiable on (a,b) with second derivative f* : (a,b) — R satisfying the condition:

b—h—

" b— b—
e<f (z) <9, forall:ve{a—l—h a4 a}.

It follows that,

- [10) - (2= 252) @] + L0

Lan (x_ a+b)2_ (3h - gib—a)?] <f’<62:£'<a>>

b
1
[
<

5@ [j0-a0-n)+

for all x € [a+ h%5% b — h%2] and h € [0,1].

a+b

xr —

r , (3.24)

Proof. The proof uses the following identity:

b

/f(t)dt = (b—a)(1—h) fx) = (b—a)(1-h) <l’—a+b) f ()

a

@+ r o) - O (F ) - f )

2
+/K(x,t) 17 () dt, (3.25)

for all z € [a+ h%52, b — h%%], where the kernel K : [a,b]* — R is defined by

K(x,t){ %[t_(



This is a particular form of the identity given in ([36], page 67, Theorem 28).
Observe that the Kernel K satisfies the estimation

L(b—nt50) —x};, € la+ hi52, wb) 3.26)
3lr—(a+n%54)]", v e [520—n%].

0 < K(z,t) < {

Applying Griiss inequality for the mappings f~ (.) and K (z,.) we get,

b b b
1 " 1 1 "
b_a/K(x,t)f (t)dt—b_a/K(x,t)dtb_a/f (1) dt

a

1 (b ht) o), 2
< S (P—p)x i
: {%[w(wh%“)]

IS

+

St S
oS

w|\

Q

|®

o

N—r

Observe that,

h3 (b —a)®
L —a)

50 (3.28)

Using (3.28) in (3.27), we get




Also, by using identity (3.25), the above inequality reduces to,

(1=h) {f(:):) - (az— Hb) f (g;)} RAOLSAO)

l(l—h) (x_ a+b>22 (3h12)4(ba)22 (f’(bl)):g'(a))

2 2
l[(b—hb’T‘I)—x]Q, x € [a+ h%2e, o)

b
1
—b_a/f(t)dt
27 2

1
< —(@-p)xq ?
4 {%[f(aJrhbT“)]gvfﬁe[“T*babhbT“]-

Since,

+

max{[(b_h?)_x]2’ [I_(a;hb_Ta)F}
[ Hlemn o o ciasne
Lz —(a+h52))°, o[22 b—hbe],
but on the other hand,

max{[(b—hb—?a)—xf [m—<a+hb—7a>12}

’ 2

_ %B(b—a)(l—h)—l—(x—a;b)r,

inequality (3.24) is proved. m

Remark 3.3 For h =0 in (5.24), we obtain (3.23).

Corollary 3.2 If f is as in Theorem 3.7, then we have the following perturbed
madpoint inequality:

a+by o fla)+[f(b)

(1= ) f(2) + n
SEIE2Y (10 - @) - 2 [ 1o
< @9 (a1 -h), (3.29)
giving,
O O () - ) - [ s
< 5 @—p) (-, (3.30)
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for h =0.
Remark 3.4 The classical midpoint inequality states that

a—l—b 1
I b_a/f < i (b—ay

1"

(3.31)

o0

Ifo—p <3

in the classical midpoint inequality (3.31). A sufficient condition for ® — ¢ <

f’ o, » then the estimation provided by (3.29) is better than estimation

f”” to be true is 0 < o < ®. Indeed, if 0 < o < P, then ® — ¢ < Hf”Hoo <
Il

§
5 |
3

Corollary 3.3 Let f be as in Theorem 3.7, then,

f(a) : fb) (0 1—2a> (F o) -1 @) - / F(0)dt

< 312 (®— o) B2 (b—a)?. (3.32)

Proof. Put z = a and x = b in (3.24) and use the triangle inequality. =

Corollary 3.4 Let f be as in Theorem 3.7, then we have the following perturbed

trapezoid inequality:

fla)+f) (b—a) /. , .
2 T2 (fw%—fMQ—b_a/f@ﬁ
= 3i2 (@=¢)(b=a). (3.33)

Proof. Put h=11n (3.32). m

Remark 3.5 The classical trapezoid inequality states that

S0 L froa < fo-arlr].

2
If we assume that ® —p < 3

, then the estimation provided by (3.32) is better

than the estimation in the classical trapezoid inequality (3.34).
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3.2.3 Applications in Numerical Integration

Let I, :a =29 <27 < - < xp1 < x, = b be a division of the interval [a,b],
& € |x + 5%,%“ — 5%], (1=0,1,--- ,n—1) a sequence of intermediate points
and h; := x;11 —x;, (1=0,1,--- ,n—1). Then, we have the following composite

quadrature rule:

Theorem 3.8 Let f be as in Theorem 3.7, then we have the following quadrature

formula:
b

[ £t = 4 (£.5 168) 4 R (£.F 1n6.5)

a

where

n—1
A(f 1 T 0) = (1-9) > (€

- (-2 fe
1=0

MS’” <f )+ <x@-+l>)

n—1 2
DY (@ - Z‘”l’“)
1=0

_W} (f' (is1) — f (:1:1)>

and the remainder R <f, f/, I,,¢&, 5) satisfies the estimation:

R (f.0 1.6.9))|
! N, [=0) 2+ 2 |]
BTN o (I
1 n—1
2 3
<= (@—9)(1-0) >_h
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Proof. Applying Theorem 3.7 on the interval [z;, z;,1] (i =0,--- ,n — 1) gives:
-0 e 1 (5~ 22 g o (L0228 )

i i+1 ? o —1)h; !
JEDICEE —%l (F @) - f

Tit1

—/f(t)dt

!

+ (x:))

IN

IN

as

Tit Tin §(1—5)%forallz'e{(),l,...,n—l}

for any choice ¢; of the intermediate points.
Summing the above inequalities over ¢ from 0 to n — 1, and using the generalized

triangle inequality, we get the desired estimation (3.37). m

Corollary 3.5 The following perturbed midpoint rule holds:

b

[ f@de=ar (5.7 5) + Ru (£.41,).

a

where

M(f 1 0 = Zh f<x2+x”1> 24Zh2( (wis) = ' (z))  (3.39)

and the remainder term Ry (f, f',1,) satisfies the estimation:

Rui(f.f 1)

< — 3 :
_32c1> @Zh (3.39)

Corollary 3.6 The following perturbed trapezoid rule holds:

/ab f@)yde =T (. 1) + Rr (£.£ 1) (3.40)
where
T <f> f [n> - nzlhlf () +2f (Tiy1) _ 1_12"21}%2 (f, (ig1) — f (@)) (3.41)
=0 i=0
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and the remainder term Rr (f, f, In) satisfies the estimation:

(7.0

<s@-9) Y H (3.42)

Remark 3.6 Note that the above mentioned perturbed midpoint formula (3.28) and
perturbed trapezoid formula (3.41) can offer better approximations of the integral

b
[ f(x)dx for general classes of mappings as discussed in Remarks 3.4 and 3.5.

3.3 A generalization of Ostrowski-Griiss type inequality for

twice differentiable mappings in Euclidean norm

In this section, we improve and further generalize Ostrowski-Griiss type inequality
involving twice differentiable functions. Some applications for probability density
function and generalized beta random variable are also given.

3.3.1 Introduction

The Ostrowski-Griiss type inequality for first differentiable mappings has been ex-
tended by P. Cerone, S. S. Dragomir and J. Roumeliotis for twice differentiable

mappings in [21] and the inequality is stated in the form of following theorem:

Theorem 3.9 Let f: I — R, where I C R is an interval. Suppose that f is twice
differentiable in the interior I° of I, and let a,b € I° with a < b. If

y< f (x) LT,

for some constants v,I" € R, then

_ ( s b) /(@) - bf@?f(t)dt

| (3.43)

<

xr —

0= 30-0+

for all x € [a, b].
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In 2000, M. Mati¢, J. Pecari¢ and N. Ujevi¢ [61], by the use of pre-Griiss in-

equality improved Theorem 3.9 as follows:

Theorem 3.10 Let the assumptions of Theorem 3.9 hold, then for all € [a,b],

we have
(b—a)® 1 a+b\>\ F () - f(a)
'f(xH( 24 +§<x_ 2 )) b—a
b
_(aj_a;—b)ff(x)_bia/f(t)dt
(F_V)l 2
< 6—\/3\/12“55, (3.44)
where
l:b;aandfzx—a;—b.

This result has been further improved by X. L. Cheng in [23] as follows:

Theorem 3.11 Let the assumptions of Theorem 8.9 hold. Then for all x € [a,b],

we have
'f@) s <<b S L (e a;bf) Fo) -0
(-0 r <x>—biab/f<t>dt
< (T2 —17,)G(a,b,2), (3.45)
where
(w (@ -a) (o - 2) - 2)]
G o) +(g(b—a)2+(x—“7“’)2>2), a<w<1(2+b),

3

2 b\ 2\ 2
it (B —ay+ (@ —2)")
Further, in [61] we can find the special cases of (3.44) i.e., midpoint and trapezoid

inequalities in the form of following corollary:

Corollary 3.7 Let the assumptions of Theorem 3.9 hold. Then

b
H(*5) g e-a(fo-rw) -1 [roa
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<M= b-a’. (3.46)
Also,
@+ 7)1 7 1
MBS (f -1 @) - = [ 1w
1 2
<=0, (3.47)

Moreover, in [101], a sharp Simpson’s inequality for absolutely continuous func-

tions with derivatives, which belong to L, (a,b) was given as follows:

Theorem 3.12 Let f : [a,b] — R be an absolutely continuous function, whose

derivative f/ € Ly (a,b). Then

S r@var (50) £ —/bf(t)dt

2 (f)—f <a>>2] N (3.48)

2 b—a

The inequality is sharp in the sense that the constant % cannot be replaced by a

smaller one.

We know that for two mappings f,g : [a,b] — R, the Cebysev functional is
denoted by T'(f,g) and is defined as:

— [10swa- i [10a = [s0a.

provided that f, g and fg are integrable on [a, b].

T(fg) =

Also in [61], we can find the pre-Griiss inequality as

T*(f,9) <T(f. /)T (9.9),

where f,g € Ly[a,b] and T (f, g) is the Cebysev functional as defined above.

Moreover, we will use the Korkine’s identity (see [52]) which is defined as

b b

F@ygtd - [ = g

o>

| | —
s
Se—_



provided that f, g : [a,b] — R are measurable and all the involved integrals exists.
In the following subsection, we improve and further generalize, by the use of
Cebysev functional, the M. Mati¢ et al. [61] results by providing first membership
of the right side of (3.44) in terms of Euclidean norm. The bound in (3.44) is given in
terms of functions whose derivatives are bounded whereas the right membership of
the new inequality is in terms of larger class of absolutely continuous functions whose
second derivative f* € L (a,b) which enlarges the applicability of the underlying
quadrature rules. Some applications for probability density function and generalized

beta random variable are also given.

3.3.2 Main Results

Theorem 3.13 Let f : [a,b] — R be a mapping whose first derivative is absolutely

continuous and the second derivative f” € Ly (a,b). Then we have the inequality

-0 |10~ (o= ) 7 @] +n L0

_ li(sh—n(b—a)?—%(l—h) <x—a‘2”))

f () = f (a)
b—a

24

b
1
i [T

2
1 x— 4L
< (b—a)l|—(4-1 15h%) + — (2 — 1— 2
< (b—a) 2880( 5h + 5h)+24( 3h) ( h)( b_a>
4% ’ ’ 2 3
1 x— 4t Logf> (LB =f )\ |
+Zh<1_h)<b—a> [b—a / 2_( b—a >
< l(r—y)(b—aﬁ L(4—15h+15h2)
- 2 2880
1
2 4| 2
1 T — o 1 T — P
—(2-3h)(1— 2 ~h(l- 2
+24( 3h)( h)<b—a> +4h< h)<b—a ’
if v < f(t) <T, almost everywhere t on [a,b], (3.49)

forallz € [a+h%5% b—h2] and h € [0,1].
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Proof. We defined in Section 3.2.1, the following kernel K : [a,b]* — R

Using Korkine’s identity for K and f”, we obtain

b

b b
bia/K(a;,t)f"(t)dt—bia/K(x,t)dtbia/f”(t)dt

_ Z(bia)z / / (K (e.t) = K (2.9)) (£ (1) £ (s) ) deds,  (3.50)

for all z € [a+h%5% b—h%2] and h € [0,1]. Further in Section 3.2.1, we have

developed the following identities:

1
b—a

/ K (o) ' (8)dt

_ ! 7f<t>dt—§<f<a>+f<b>>—<1—h> 1@ (250 7 @)

b—a

+ 2 0—a) (£ 1)~ F (@)

/K(l',t)dt:2—14(3h2_3h+1) (b—a)2+%(1_h) (x_a;_b) |

a

1
b—a

and

Then, by (3.50), we get

= [a-a-n |10~ (- 5 @] - § 0@+ o)
+ i(?)h—l)(b—a)Z—%(l—h) (x— a;b)Q ! (bl),:f;(a)
- o / / (K (@.8) = K (2,5)) (£ ()~ £ (3)) dhds, (351)

for all z € [a+ h%5%,b— h%%] and h € [0, 1].
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Using the Cauchy-Bunyakowski-Schwartz inequality for double integrals, we may

write
s | 0= K@) (5 0= 1 () des
b b 1
< (st ] [ -sicoras)
X (ﬁ//(f () - f (S))2dtds) . (3.52)
However, o
2(b—a) // (z,1) (x,5))* dtds
bla/K(xtdt( a/bet ), (3.53)
b 2
(bla/m,wdt)
= (b—a)* {5;6 (1 — 6h + 15h* — 18h* + 9h*)
1 ) N o o [T — 42 !
+ﬂ(1—4h+6h — 3h%) <ﬁ) +1(1_h) ( — ) ]
(3.54)
and

bia/b[(?(x,t)dt
[ (o) (o)

+16h5(b—a) }

Taking t = z — £, we have

h—
:c—(a+h a> = t—i—l

2

a

b—nl= (1—h)(b—a)—t.

(1—=n)(b—a),

—Tr =

N | —



Thus,

(a:— (a+hb_Ta)>5+ (b—hb_Ta—x)5
_ (t+%(1—h)(b—a)>5+(%(1—h)(b—a)—t>5.

For real numbers A and B, we have
A4 B° = (A+ B) [ (A% + B%)" — (AB)? - AB (A + B?)].
Now,if A=t+3(1—h)(b—a), B=3(1—h)(b—a)—t, then
1 2 1 2
A2+ B? = <t+§(1—h)(b—a)) +(§(1—h)(b—a)—t)

2 (b —a)2
e W2
2
1

=R (b —ap - ¢

A+B = (1—=h)(b—a).
Thus,

(= (ot5)) (5t )

- saom o [yt hoo (22 (22)]

Therefore,
b
L / K (z,t)dt
x
b—a ’

1
= —(b—a)' {0 (1 — 5h +10h* — 10A° + 5h%)

1 _a+b .CE—aT—H)ZL
oo () oo (52)] ew

Using (3.54) and (3.55) in (3.53), we get

ﬁ//(mx,t)_mx,s))zdtds

4| 1 2 1 2 [F aTer 2

1 9:—“7“) !
+Zh(1—h)( ba)]. (3.56)

AB =




Moreover,

=2 / / (£ ()= 1" () deas

2_<M)2' (3.57)

- biaH ”

2 b—a

Using (3.51)—(3.53), (3.56)—(3.57), we deduce the first inequality.
Moreover, if v < f” (t) < T almost everywhere ¢ on (a,b), then, by using Griiss

inequality, we have

ong/f Hdt - | — /f SE(F—V)Q,

which proves the last inequality of (3.49). m

Remark 3.7 (i) We can get the best estimation from (3.49), only when x = %£°

1.€.,
a+b fla)+f) 1 2 [ () = f (a)
‘(1 h)f( 5 )—i—h 5 24(3/1 1) (b—a) —_
. b
—b_a/f(t dt
’ ’ 2 %
1 2 o\ 1 (f (b)_f (a))
< ——(b— 4—15h+15h 2 e - -7
- 24\/3( @) ( [ b—a
1 9 !
< ——(I'- b— 4 — 15h 4+ 15h7) 2,
< ma TN )
if v < f (t) <T, almost everywhere t on [a,b] . (3.58)
As
4 —15h +150% < 4, YV h €[0,1].
and is minimum for h = %, implies
1 1 1
4 —15h +15h%)> < ——.
48\/_( ) < T 2445

Thus (3.49) shows an overall improvement of the inequality obtained by M.
Matic et al. [61].

82



(it) For h=1, i.e., v = %, (8.49) gives

'—f<a>+f<b> ~ ) ()~ @) - /bf<t>dt

2 12 b—a
1 J e (L0 -F @]
= 12\/3(1)—@) [b—a‘ 2_< b—a )]
1 2
if v< f” (t) < T, almost everywhere t on [a,b], (3.59)

which is perturbed trapezoid inequality (corrected trapezoid rule)and it is not

difficult to see that it is better than the simple trapezoid inequality.

(iii) For h =0 and v = £, (3.49) gives

b
H(*57) + g e-a (o1 @) -1, [ 1o

1 2| L P (£ O -F @)
= 12\/5(19—@) [b—aHf 2_( b—a )]
1 2
< M(F—V)(b—a) :
if v < f (t)<T, almost everywhere t on [a,b], (3.60)

which s perturbed mid-point inequality.

(iv) For h =13 and v = “2, (3.49) gives

fa)+2f () +10) 1, (-1 @) - ! /f(t)dt

4 48 b—a
L e[ e (£® - F @Y
STV A [b—a“ _(T)] ’
1 2
if v < f'(t) <T, almost everywhere t on [a,b], (3.61)

which is a linear combination of Trapezoid and Mid-point rule.
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(v) For h=1% and v = “£, (3.49) gives

TOESCIES DNy "

6 b—a
! (e (FO-F @]
= o [b_a(f ‘(T)] /
1 2
if v < f(t) <T, almost everywhere t on [a,b], (3.62)

which is a variant of Simpson’s inequality for twice differentiable function
f, f” is integrable and there exist constants v, T € R such that v < f" (t) <T,
t € (a,b).

The estimations (3.58), (3.59), (3.60), (3.61) and (3.62) are expressed in terms
of second derivative of the integrand which are useful when the higher derivatives
of f do not exist or are very large at some points in the domain. Moreover, the
three-point quadrature rule (3.61) which is a linear combination of Trapezoid and
Mid-point rule, offers better estimations than the simple three-point Simpson’s rule

(3.62).

. . . 1
Remark 3.8 In [61], the result corresponding to (3.59) was given, but with o
in place of our factor ﬁg showing an improvement of factor 4—11 as it can be seen
from (3.47). Also in [23], (3.59) was given with a factor of ﬁg which shows that
(3.59) also offers better estimation than as given in [23]. Moreover, we have also

been able to present bounds for three-point quadrature rules as given in and (3.61)

where (3.61) is a extension of (3.49) for twice differentiable mappings.

3.3.3 Application in Numerical integration

Let I, :a=29 <21 < -+ <xyp_1 <z, = b be adivision of the interval [a,b] and
hi=xi41—x;, =h= (b;rf), t=0,---,n—1, then we have the following quadrature
formula:

Theorem 3.14 Let I,, be the subdivision of the interval [a,b] and let the assump-
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tions of Theorem 3.13 hold. Then,

/b [ty — (-0 hZ[ ( n *;iﬂf’ @)}

n—1 ) Tixq 2 , ,
214h2 30 — 1) —%(1— )(é}—xl+ s ) ] (f (Tiv1) — f (%))

* 2

=

n 1

52 xz +f xH—l)]

=

5 XA Ti4 2

<b;“) [2880 — 150 + 156?) +i(2—35) (1 —5); (TQ)

1
+Zit1 412 b—a
n

_5(1_5)2<%

7=

z— nz_l (f, (Tiy1) — f/ (:cz)>2] 5'

Proof. Apply inequality (3.49) on the interval [x;, x;11],7 =0, - ;n—1 to get,
[ roa-a-anlse- (6= 5 r €

1 1 itz | [ ,
+ ﬂhZ (30 —1) — 3 (1-=19) (51 _2 +2x +1) ] (f (Tiy1) — f (%))

S [f () + f ()]

I

Njot

< h

4 2
L (4—155+1552)+i(2—35)(1—5) Tt
2880 24 h

=) (?)] U(f”u))%(f'@iﬂ)hf'(:vz)f] |

foralli=0,--- ,n—1.

N

Summing over ¢ from 0 to n—1, using triangular inequality and Cauchy-Schwartz

discrete inequality, we get,

F(f,f 10, 6,0)
< Zl /f f)dt —(1-9 [f(i)— (@—%)f’(si)]
24h2 (30 — 1) — % (1-4) (gi - %)1 (f’ (2i1) = f (x@-))
05 1 () + )
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. n—1 ) 1 £ _ xi+§i+1
< h2 4—-1 1 2 — 1-— > 2
< h 3 2880( 50 + 156%) + 24( 36) (1 —9) -
nE 2\ 2
1 £‘_I¢+wz‘+1
Z5(1 = 2 2
+45( ) ( - )
NN
n—1 Ti41 2 2
" 2 f (mz ) f (ajl)
AS || [ () a2l
i=0 b
) 1 ) 1 n—1 . {L‘Z+£El+1
< h*|——(4—150 + 150 2 —30) (
< I ggp (1190 1507) + 5 ( )2

n— 1( . Z+xz+1>4 2 [h‘ f” nz:1< mHl ,(xl)>2]
=0 1=0

Thus, we get the required result.

M

Remark 3.9 Note that if we choose § = 3, &, = "L then we get the quadrature

rule which is a linear combination of midpoint rule and trapezoid rule and it offers

the best estimate.

3.3.4 Application for Probability Density Functions

Let X be a random variable having the probability density function f : [a,b] — R,

and the cumulative distribution function F : [a,b] — [0,1], i.e

b—a

x b_
:/f(t)dt,;ce[ﬁh 2“,b—h | Clab].

Then, we may have the following:

Theorem 3.15 Under the above assumptions and if the probability density function
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f belongs to Lo |a,b], then we have the inequality

-0 [ - (-1 rw)] + 5 - 5 EE

1 , 1 a+b\’
—[ﬁ(%—l)(b—a) —5(1—h)(az— ; )

f ) = [(a)
b—a

9 1 9 1 r — ot
< (b—a) 2880(4—15h+15h) 24(2—3h)(1—h) b_;

1 N e (10— 1@
+Z_lh(1_h)<b—a> [b—a 2_< b—a >]

(b—a)® (M —m)

D=

!

1 T — &b
< 4 —15h + 15h%) + — (2 — bh + 3h*) | ——2
< Ot o)+ ) ()

42
1 r — ot
“h(l—h =
=y >( b_@)] ,
if m<f <M, almost everywhere on [a,b], (3.63)

forallz € [a+h%5% b—h2] and h € [0,1].
Proof. Put in (3.49), f = F to get (3.63). =

Corollary 3.8 Under the above assumptions, we have

a-mer( fﬁ)%—”ﬁﬁf)—(3h2;1><b—a><f<b>—f<a>>\
o HOETIONIE
< 4\/_(4—15h+15h) (b—a) [b_& ( r— )]
1 2
< 48\/_(M m)(4—15h+15h) (b—a)?,
if m<f <M, almost everywhere on [a,b] . (3.64)

3.3.5 Application for generalized beta random variable

If X is a beta random variable with parameters 85 > —1, 8, > —1 and for 3, > 0

and any [3;, the generalized beta random variable

Y =6, + 8,X
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is said to have a generalized beta distribution [51] and the probability density func-

tion of the generalized beta distribution of beta random variable is,

(z—51)3 (B +By—x)"4
f(z)= B(B3+1,84+1)gY 3P4 for 8, <x < B, + B,

0, otherwise,

where [ (I,m) is the beta function with [, m > 0 and is defined as

1

B (l,m) = /ml_l (1—x)" " da.

0

For p, ¢ > 0 and h € [0,1), we choose,

h
Bl = §>
52 - (1_h)7
ﬁ3 = p_]-a
By = q— 1L

Then, the probability density function associated with generalized beta random

variable

Y:ng(l—h)X,

takes the form

)0y

0, otherwise.

Now,

R S
= (1=h) =+ 5.
df(w;p,q) _ (I—%)p_Q (1_%_x)q—2 )
dx (1 _ h)p+q—1 6 (p, q)
(p—l)—(p—Q)g—(erq—z)x :
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and

2 1 N
(5P, Q)H2 = IR [(P=1)°B(2p—32¢-1)

+(@-1)%82p—1,2¢-3)

—2(p—1)(¢—1)8(2p—2,29 - 2)].

’

f

Then, by Theorem 3.14, we may state the following:

Proposition 3.2 Let X be a beta random variable with parameters (p,q). Then,

for generalized beta random variable
h
Y = 5 +(1—-h)X,
we have the inequality

- [Py <o) - (o= 3) £ - 4]

P+q

- [i(gh_l)—%(l—h) (m—%) ] (f(l)—f(O))|
1 1 2
< (l—h)%ﬁ(p,q) {2880 (4 — 15h + 15h%) +

i(z—shm—h) (x—%>2+%h(1—h) (x—%>4] «
(p—1)°B(2p—3,2¢— 1)+ (¢—1)°B(2p — 1,2 — 3)
—2(p—-1)(¢—1)8(2p—2,29—2)

A=W (a) (F (1) — £ ()] (3.65)

for all x € [%,1—%].

3.4 New Estimates for first the inequality of Ostrowski-

Griiss type and applications in numerical integration

In this section, some error bounds for the first inequalities of Ostrowski-Griiss type
are obtained. These bounds provide some new and better estimates. Applications

in numerical integration are also given.
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3.4.1 Introduction

In [97], N. Ujevi¢ gave the following estimation of first inequality of Osrowski-Griiss

type derived by S. S. Dragomir and S. Wang in [39].

Theorem 3.16 Let f : I — R, where I C R is an interval, be a differentiable
mapping in the interior Int I of I, and let a,b € Int I,a < b. If there exists
constants v, € R such that v < f (t) < T,V t € [a,b] and f € L, (a,b), then we

have
b
rw- (o= ) O L i) <250 -0, (o)
and
fug—( —“;b)f“;:ZW) - [rwal <Pt w-s). @
where S = f(bl)): @)

The main aim of this section is to point out better estimations of (3.66), (3.67)
and to apply them in numerical integration. Some mid-point inequalities and cor-

rected trapezoid inequalities are also given.

3.4.2 Main Results
We prove the following result:

Theorem 3.17 Let f : I — R, where I C R is an interval, be mapping differen-
tiable in the interior Int I of I, and let a,b € Int I, a < b. If there exists some
constants v,T € R, such that vy < f (t) < T,V t € [a,b] and f € Ly (a,b), then we

have
b

=1 |~ (o= 252 ) Fo)| 4 HOT L L

2 2 b—a

<-(1-h})b-a)S—7) (3.68)

and




(1-r%) (b—a) T -259), (3.69)

l\DI»—l

where S = f(b;:f(a), x € [ hbT,b — hb_T“] and h € [0, 1].

Proof. Let us consider the mapping p(.,.) : [a,b]> — R given by
t—(a+n%9), ifte
p(z,t) = ( b2 ) 7 a,2] (3.70)
t—(b—hi5e), ifte (ab],

where z € [a 4+ h%5%, b — h%5%] and h € [0, 1].
Integrating by parts, we successively have

b b

o f W= - ny @)+ OO - fswd @
Moreover,
i ) /p(x, t)dt = (1 —h) (x S ;— b) (3.72)
and ,
ﬁ / f(t)ydt = f'(x). (3.73)

From (3.71), (3.72) and (3.73), we have
a : a b
e ( V7P IVICES ICRE iy e
) ) af()dt-

b
1 /
/p t)dt — — 2/p(x,t dt/ t (3.74)

We denote

1 y p 1 ’
o) / f () (p(:c,t) “ -9 / p(z, s)ds) dt. (3.75)

If C' € R is an arbitrary constant, then we also have

Indeed




If we choose C' =~ in (3.76)

implies
b
1
|R.(z)] < sup |p(z,1) /p T, 5)
(b_ )te[a b]
b
x/‘f’(t)—v)dt
Since ,
(1= 1) (b-a)
su r,t) — p(x, s)ds| =
te[al,)b] Pl ) (b—@)/ (2.5) 2
and as

b
[lr @ -ala=s-»0-a

From (3.78), (3.79) and (3.80), we have

(1 — 12 (b—a)
| Ry ()] < 9

Next, we choose C' =T in (3.76)

implies
1 o
Rl < G plet) — / Pz, 5)ds
b
x/‘(f’(t)—r)‘dt
and as ,
/) ‘dt (L —S)(b—a),
from (3.79), (3.82) and (3 83), we have
Ry < L2 CZD )

This completes the proof. m
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Remark 3.10 For h = 0 in Theorem 3.17, we recapture the results of Theorem
3.16.

Corollary 3.9 Let f be as in Theorem 3.17, then we have the inequalities:

flath'5") +J6-h'5") [ (@)+f ()

[(1=h) ; ;
_(1—h)4(b—a) (f,(b_hb;a) _f,(a+hb;a)>
—@i;7ﬂwﬁ
< LECa g (3.84)
and
|ﬂ_mf®+h%%;fw—“f> Mﬁw;f@
_(1—h)4(b a) (f,(b_hb Qa)_f,(a+hb;a>>
—@%;7ﬂﬂﬁ
< (1_h2;(b_“> (L - S), (3.85)
where h € [0, 1].

Proof. Putting in (3.68) z = a + hb’T“ and z = b — hb’T“ and then using the
triangular inequality on the summoned of the two inequalities, we get the required

inequality (3.84), and by the same substitution in (3.69), we can get (3.85). =

Remark 3.11 If we choose in (3.84) and (3.85), h = 0, then we have the following
perturbed trapezoid inequalities which are better than as we can have from (3.66)

and (3.67).

(S—1), (3.86)
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and

—~
S
~—

< Yir-9). (3.87)

Remark 3.12 If we choose in (3.76) C' = %, h =0 and x = a, then x = b and

the summoned of the two inequalities is divided by 2, we get:
b
fla)+f0) (b—a) . / 1 /
. = (FO -7 @) - [fwa|  (388)

a

Q
~—

< (b; (T —7).

Remark 3.13 If we put h = 0, x = %2 in (3.68) and (3.69) and add the results

2

we have the midpoint inequality as:

a+b 1 (b—a)

O3 = s [ rwar] < C7w - ), (3.59)

Remark 3.14 If we put h = 1, v = %5 in (5.68) and (3.69) and add the results

we have the Simpson’s inequality as:

1 a + b 2
s lr@r At o) - /f <2p-a@r-7. (G0
Remark 3.15 If we put h = 1, x = 2t in (3.68) and (3.69) and add the results

we have the averaged midpoint trapezoid inequality as:

L[ atb  f(a)+f(b) 1
é{f( )t 2 ]_b—a

We now present a result of Ly (a,b).

b
/ FH)dt] < 1%“’ —a)(T =), (391)

a

Theorem 3.18 Let f: I — R, where I C R is an interval, be continuously twice
differentiable mapping in the interior Int I of I, with f// € Ly(a,b), and let a,b €

Int I, a < b, then we have

=m0 - (- ) @] +nl OO L e

(b _ a>1/2
m

9 1/2
x[h(l—h)(x—a;b>+(b12a> (h3+(1—h)3)] ‘
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for all x € [a,b).
Proof. From (3.74) and (3.75), we get

a+b

Rufo) = (1= 1) [70) = (2= 252) £ )|+ n TS0 2 a]f(t)dt-

a

(3.93)
If we choose C = f'(%“E2) in (3.76) and use the Cauchy-Schwarz inequality, then

we get

IR()

b

o
1/2
— {/ (ro-r (45) 4
b b 2 2
: { J (s fe) dt] | a0

a

dt

IN

a+b ‘

IN

a+b

By using the Diaz-Metcalf inequality (see Theorem 1.10) for t; = to = 422, we get

T

2

1 g (3.95)
We have
b L 2
[ (p(x,t)dt — = [p(x,s)ds) dt
b 2 X b 2
= [p (x,t)dt — b—a) ([p(x,s)ds) dt,
where
/p @ dr = I;) (W% + (1= h)’]
(1= h)(b—a) (x— “;b)
and




Also

b 2

b
1
/ (x,t)dt — b_a)/p(x,s)ds dt

a

(b—a)

= O aenana-no-a («-50) L o)

With the help of (3.93), (3.94), (3.95) and (3.96) we get the required inequality. m

3.4.3 Applications in Numerical Integration

Let I, :a = 29 < 1 < 29 < .o.. < Tp_1 < T, = b be the division of the
interval [a,b], & € [z; 4+ 0%, 2z, — 6%] (i = 1,2,3....n — 1). We have the following

quadrature formula:

Theorem 3.19 Let f be as in Theorem 3.17, then for every partition I,, of [a,b] and

for every intermediate point vector & = (SO, &y ens fnfl) , satisfying &; € [:c, + 5%, Tit1 —

(1=0,1,...,n—1), § € [0,1], then we have the following

/ Fdt— A7 6.6 1)| < 5 (1- ) Z RE(Si—)  (397)

and a h
/f tydt — A'(f, f 6,6, 1,) g%(1—52)n§h§(r—s,-) (3.98)

where h
A(f8.61) = (1-9) @ hif (&) —;O h ( &~ “%) f( @-))
53 L i) 5.99)

i=0
for all &, € [x; + (5%,%“ — (5%], d € [0,1] and S; = w, h; == xiq —
T, (’L = O, = 1)

Proof. Apply Theorem 3.17 on the interval [z;, z;11], §; € [x; + (5%, Tiy1 — (5%}

where h; := x4, —x;, (1 =0,...,n—1) to get

[ sa- -9 mice) - m( 6= S5 pe)
_5 hzf(xl) +2f (%‘H),
< @h?(& -)
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and

R A e A
_s hif(xi) +2f ($i+1)’
< (1%52)1%2@ ~ 5.

Summing over ¢ from 0 to n — 1, we get and using the generalization triangle

inequality we have deduced the desired estimations (3.97) and (3.98). m

3.5 Conclusion

In this chapter, we have presented some generalizations of Ostrowski-Griiss type
inequality for first and twice differentiable functions in Euclidean norm and for
bounded functions. Since the bound in Ostrowski-Griiss inequality can be ap-
plied for absolutely continuous mappings whose first derivative is bounded, the
new inequalities can also be applied for the larger classes of absolutely continuous
mappings whose first or second derivatives are in Ly (a, b).

In Section 3.1, the generalized Ostrowski-Griiss type inequality (3.4) has an ad-
vantage on (3.3) obtained in [12] in a way that it not only recaptures the special
cases associated with (3.3) but can also present three-point inequalities of averaged
trapezoid and Simpson’s type. It also has applications in special means, for prob-
ability density functions, expectation of a random variable X and generalized beta
random variable.

In Section 3.2, we have presented a generalization of Ostrowski-Griiss type in-
equality for twice differentiable with second derivative bounded obtained in ([9],
Section 5). Remark 3.4 and 3.5 show that the estimates of perturbed mid-point
and trapezoid inequalities presented in here are better than the classical estimates
for these inequalities.

Section 3.3 is concerned with a new generalization Of Ostrowski’s integral in-
equality that can be developed from Pre-Griiss and Griiss inequality. We have
improved the Mati¢-Pecari¢-Ujevic [61] result by providing a better bound for the
first membership of Ostrowski-Griiss type inequality for twice differentiable func-

tions. As special cases tighter bounds for mid-point,trapezoid, averaged trapezoid
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and Simpson’s quadrature rules are also obtained and are shown to be better than
the these quadrature rules presented in [61] and [23].

In Section 3.4, we have presented a generalization of Ostrowski-Griiss type in-
equalities obtained in [97] for bounded first derivatives. The inequalities (3.68) and
(3.69) are more applicable than the first inequality of Osrowski-Griiss type derived
by S. S. Dragomir and S. Wang in [39] and the inequalities (3.66) and (3.67) ob-
tained in [97] because they can be applied for functions whose first derivative is
either bounded above or bounded below. Moreover, as special cases we can also get
the estimated for three-point inequalities in our case. A generalized version is also
obtained for higher class of functions with f* € Ls (a,b) by using the Diaz-Metcalf

inequality.
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Chapter 4

Some product inequalities of Ostrowski,

Cebysev and Griiss type

For two measurable functions f, g : [a,b] — R, define the functional,

b

T(f.g:0.) ——/f ) d _a/f i o),

a

which in literature is called the Cebysev functional, provided the involved integrals

exists.
Moreover, in 1882 P. L. Cebysev (see [64], p. 297) proved that, if f', ¢ €
Ly [a,b], then
Il

In the recent past, Cebysev functional has remained an area of special interest for

(b—a)?

T (. 9:0.5)| < o5
many researchers and has yielded many variants and generalizations in the field of
inequalities. It has also played a key role in obtaining some new inequalities of
Ostrowski type, for example, Ostrowski-Griiss type, Ostrowski-Cebysev type, etc.
The research papers [97, 76] cover a comprehensive literature on the generalizations
of Cebysev functional and its associated bounds.

We, in this chapter, present some extensions of product Cebysev type inequalities

for first and twice differentiable functions.
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4.1 A note on the generalization of some new CebySev type

inequalities

In this section, we present a generalized Cebysev type inequality for absolutely
continuous functions whose derivatives belong to L, (a,b), p > 1. Applications for
probability density functions are also given.

4.1.1 Introduction

In [80], B. G. Pachpatte presented the following Cebysev type inequality for p-norm:

Theorem 4.1 Let f, g : [a,b] — R be absolutely continuous functions whose deriv-

atives f/, gl € L,(a,b), p>1 then

[P (C,D, f.g)] < (b_la)QM3 f , g g (4.1)
where
L[ f(a)+ f(b) a+b
o [l ().
_ 1lg(a)+g(d) a+b
o)
o @D -0
3(g+1)64
wz’thé%—%:land
b !
1711, = (/ If(t)lpdt) <
P(avﬂafag) = O‘ﬂ_bia /g dt—{—ﬁ/f
1
+ b_a/f a/g(t)dt , (4.2)

a and [ are real constants.

Recently, in [56], Zheng Liu presented the following generalization of (4.1):
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Theorem 4.2 Let the assumptions of Theorem 4.1 hold, then for any 6 € [0,1],

1P T80, 19) < g |1 o] (43)
where
My —-9q+1;i£2;;z)q+l(b-a)*“
and
r = JU@+ ol+a-0f ().
B0 = glal@+a®l+ -0 ("5").

In the following subsection, we obtain a generalization of the inequalities (4.1),
(4.3) and apply them to probability density functions.
4.1.2 Main Results

For suitable functions f,g : [a,b] — R and h € [0,1], we present the following

notations:

(w—QfW%+®—@f@v7

b—a

o= (1= 1) £ o)+

(x—a)g(a)+(b—$)9(b)) ' (4.4)

B = (L= ) g ) 41 R

and P («a, 3, f,g) is as defined above in (4.2).
The following result holds:

Theorem 4.3 Let the assumptions of Theorem 4.1 hold, then for any h € [0,1]

and z € la,b], we have:

’P (Fh,x; Ah,xa f7 g)’

1 2 ’ ’
< — M7 4.5
—w—wzh“f el (4.5)
where T'y, . and Ay, are as defined by (4.4) and
1
My = ——[h" + (1 =)™ [(z — )™ + (b —2)"]. (4.6)

Cg+1
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Proof. We define the function

v = ] 1w te o),
U ke — (=R, te (2,0,

Then, we obtain the following identities:

b b
1 1 /
Doy [ FOd = o [k £ @ (4.7)
1 ab 1 ab
Ah@—b_a/g(t)dt = b_a/k(sc,t;h)g’(t)dt. (4.8)

Multiplying the left and right hand side of (4.7) and (4.8), we get,

P(Fhﬁm,Ah,m,f,g)—(b_la)2 (/k(mth ) (/kxth d)

implies
P (T B S 9)| = ¢ (/k ()| £ (1)] d ) (/m,t;h)\g’(t))dt)-
(4.9)
Thus, by using the Holder’s integral inequality:
| (thaAhx’f g>|
b ’
< (/k z,t; h) th) (/ f (t)pdt)
b—a
b @ /b v
(/k(m,t; h)|th> (/ J (t)(pdt)
_ (/k z,t: ) th) ‘ (4.10)
b—a

From the definition of k (x,t; h) , it follows that

1

= [pat? A x_aqﬂ _Iqul‘ '
(q+1)[h + (1 =h)"[( T (b—2)T] . (4.11)

b
[ty -

By using (4.10)-(4.11), (4.5) follows. m
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Remark 4.1 Forzxz = “T“’, h

50 (4.5), (4.1) is recaptured.

Remark 4.2 For z = “t in (4.5), (4.3) is recaptured.

We, now, state a special case of Theorem 4.3 in the form of the following corol-
lary:

Corollary 4.1 Let the assumptions of Theorem 4.1 hold, then

)P <F1’%"‘b7 AL"‘T‘HN fs g)‘

1 2 ’ ’
< —M"1, 4.12
_(b—a)2 L%b f pg » ( )
where
1
M ogop = —— (b—a)?™! 4.1
1,# 249 (C] + 1) ( a) ) ( 3)
and
_ fla)+f(b)
Iy at6 = ————7,
4 2
Ay on = M. (4.14)

We, now apply (4.12) to probability density functions as follows:

4.1.3 Applications for Probability Density Functions

Let X be a continuous random variable with the probability density function f :
la,b] — R, and the expectation of X is given by

b

E(X):/tf(t)dt.

(4.15)
The cumulative distribution function F' is given as:
Fla) = / £ () dt, (4.16)

for = € [a, b)].
Moreover, let Y be another continuous variable with the probability density
function A : [a,b] — R, and the expectation of Y is given by

b

E(Y):/th(t)dt.

a

(4.17)
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The cumulative distribution function H is given as:

H(y) = / h () dt, (4.18)

for y € [a,b] . Then,

Fa)+F(@®) 1
. = 3 (4.19)
and
b
/H(y)dy = b-E(Y),
’ H(a) = 0, H(b) =1,
H (a) + H (b) 1
; - 5 (4.20)

Proposition 4.1 Let X, Y, F and H be defined as above. Then, the following

holds:
(o (FmE)) (o B (oo
<! (Z;l) 11, 121, (4.21)

Proof. By choosing f = F and ¢ = H in (4.12)-(4.14) and simplifying with the
help of (4.15)-(4.20), we get the required inequality. m

Remark 4.3 Ifin (4.21), we choose F' = H, then we have:
1 1
2 b—a
1 (b—a\
—a q
< 3 1211, (4.22)
2\qg+1

which 1s known in literature as "trapezoid inequality” for cumulative distribution

functions (see [36], p. 34 for f = H).

(0= B (X))
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4.2 Some new CebySev type inequalities

In this section, some new Cebysev type inequalities have been developed by working
with functions whose first derivatives are absolutely continuous and the second
derivatives belong to the usual Lebesgue space L_ (a,b). A unified treatment of the

special cases is also given.

4.2.1 Introduction

In [77], B. G. Pachpatte presented the following Cebysev type inequality via trape-

zoid like rules:

Theorem 4.4 Let f,g : [a,b] — R be differentiable functions so that f/, g, are

absolutely continuous on |a,b], then

_ -0

P(Raso)| < P |7 - 15ed] L]

g” — [gl;a,b} H , (4.23)

e}

where

ICES ORI URT8 F

2 12
~ (@)+g() (b—a)y"
¢ =" 2g ST [g’a’b]’

and

Pty = ap- ;o [gwarss [roa

b—a
b ' ab
T b%/f(t)dt bia/g(t)dt ,
o] - L

Recently, in [56] Zheng Liu has presented the following generalization of (4.23):

Theorem 4.5 Let the assumptions of Theorem 4.4 hold, then for any 6 € [0,1],

‘P <F9,A9,f79>‘ <(b-a)'r (9)‘

1 I s e

where



and

0 a+b
r = Sl@+ ol a-07("57),
B0 = glal@+g®]+ -0 (“5")
T, — F”i 1-360)(b—a) f,a,b},
Ay = Aﬁiu—ge)(b—a)?[g;a,b]

In the following subsection, by following an approach similar to that of [56] and

[77], we present some new Cebysev type inequalities.

4.2.2 Main Results

For suitable functions f,g : [a,b] — R and h € [0,1], we present the following

notations:
Tro=3@2= 07 @)= (1-n) (2= 30) /@
h((z=a)f(a)+(b—2)f(b)
+§( b—a )’
51 =5 =9 - (1= 1) (2= “52) ¢ @
h ((z—a)g(a)+(b—2)g(b)
+§( b—a )’

(1—h)° (x—a+b)f (x)—%<<b_m) ! (b?):ix_a) / <a>>,
Lm_(1_h>g<x>+h(@—“)9(“2_*;5’”)9(5))
(l_h)Q(x_a;b)m)_% <b_$)g(bi_f_a)g(a))7
T = Too+ 32— 30) [£30,0] 0~ 0 A ),
th th+i(2_3h) :g/;aab} (b—a)2A(x),

Hyo = Hyo + % (3h2 — 3h +1) [f'; a, b} (b—a)*A(z)
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and

Lhe =Ly, + % (3h2 —3h + 1) [g’; a, b} (b— a)2 A(z),

A(z) = % + (””g_?) (4.25)

and [ f/; a, b} is defined as above.

where

Theorem 4.6 Let the assumptions of Theorem 4.4 hold, then for any h € [0,1],

|P (Th,aza Sh,:m fv g)|
1

<) 0-a* A2 @) |1 =[] o - [giat]| o @20
16 0 0
where A (x), Ty, and Sy, are defined as above and
w(h) =2h* —3h +2. (4.27)
Proof. We define the kernel
, Lt—a)t—-01Q—-h)a—ha), t€la, ],
K oy = FE A= =Ra—a), 1o
$(t—=0)(t —hz—(1—h)b), te (2,
Through simple calculations it can be shown that
. b
o [f0a-Ti = 1(F . a), (4.25)
. b
b_a/g(t)dt—Shﬂ; = I(g,g;a,b), (4.29)
where ,
’ ” 1 , ” ’
1(f . ab) = o [ K wan {5 0= [a] e
Multiplying the left and right hand side of (4.28) and (4.29), we get:
P(Th,w75h7w7f7g) =1 <f 7f ;a’vb) I (g » g ;a’7b> )
implies
[P (Tha Sns f29)| = |1 (£ 1 0.0) || (9297500 (4:30)
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Following an approach similar to [77], we calculate

b

(4.32)

(s r5a0)| < bi@/‘K’(w,t;h)) 1) = |f 00| at
’ b
< bia’f” (t) — [fl;a,b”’oo/)[(' (:B,t;h)‘dt. (4.31)
In a similar manner,
b
‘I (gl,g”;a,bﬂ < ﬁ’g” (t) — [g/;a,b]Hoo/’K' (x,t; h)‘dt.

a

From the definition of K (z,t;h), it follows that

b
1

a

b_a/‘K' (o, 1)t = 0 (1) (b~ 0)* A (1)

where A (z) and w (h) are defined by (4.25) and (4.27).
By using (4.30)-(4.31) and (4.26) follows. =

The following corollary of Theorem 4.6 holds:

(4.33)

Corollary 4.2 Let the assumptions of Theorem 4.4 hold, then for any h € [0,1],

1
S — —a)?
< ga01 (Wb —a)
where
Tm%b =
and
Sh,a+b =

w (h) is defined by (4.27).

‘P <Th7“T+baSh7%rb7fag>’

A LALU| N T |

[e.e]

3e-nf(5) U@ o)
+% (2 — 3h) [f,;a,b} (b— a)?
32-0g () + @0
+% (2-3h) g 3a,b] (b= a)’.
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Remark 4.4 It may observed that for x = “T“), the kernel defined in Theorem 4.6

takes the following form.:

 latb Lt—a)(t—(a+h%52)), te o],
K k) =
( 2 ! ) T@E—=0b)(t— (b—h%52)), te (=20

We will now consider the following special cases of the above corollary:

The following special cases of Corollary 4.2 hold:
Remark 4.5 (i) For h =0, (4.34) takes the form:

‘P(To,%ﬂ)ﬁo?%b,f’g)‘

S T T N |
with
T, o =/ (a;b) + i [f';a,b] (b — a)?
and

. a+b 1 ’. 2
So,agb—g( 5 )—l—ﬂ[g,a,b}(b—a).
(i) For h =1, (4.84) takes the form:

‘P<T1,a7+b,51,a7+b,fag>’

1

<
- 2304

(b a)*|

(e

g// - [gl;a, b} H : (4.36)

[e.o]

where

1o =1 (@2 (5) 1 1w) - g [Fiat] - o

and

(i4i) For h =2, (4.34) takes the form.:

3

‘P (TQ,@),S%,a;b,fyg)‘

1 4
< (h—
S

Pl - el e

[e.e]

109



where

T, o = : (f (a) +4f (“;b) +f(b)>
h S,y op = é (9 (a) +4g (GTM) +g(b)) .

It may also be noted that w (h) is minimum for h = \%

Theorem 4.7 Let the assumptions of Theorem 4.4 hold, then for any h € [0,1],

‘P (Hh,xa Lh,x; f7 g)’
<

() (- a) 22 (@) |1 = [£20.0]|_|

where A (x), Hp, and Ly, are as defined above and

i g” — [gl; a, b} Hoo : (4.38)

n(h) = 3h* — 3h + 1. (4.39)

Proof. We define the kernel

(t—(1—h)a—hz)?, telaz],

1
Kl(xatah>: 2
Lt —hr—(1-h)b)?*, te (2.

Through simple calculations, it can be shown that

bia/abf(t)dt—Hh,a: = J(f/,f”;a,b), (4.40)

1 b
b—a J,

gt)dt —Lp, = J <g/,g”;a,b> , (4.41)

where

"

b
’ " 1 ’
J(f,f,d,b)—m/[(l(l',t,h){f (t)_[f7a7b]}dt
Multiplying the left and right hand side of (4.40) and (4.41), we get:
P(-Hh,I?Lh,mvf?g) =J <f Jf ;a7b> J (g » g ;a7b) .
This implies

P (Hias Lnas £29) = | (£ 5 5a)| |7 (o9 50.0) | (442)
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By following an approach similar to [77], we calculate
. b
(7 fan)| < o Km0 - [£a)|a
—a

1
b—a

"

7 ) - [f’;a,b]Hoo/ug (. h)|dt. (4.43)

IN

In a similar manner,
b
g (t)— [g;a, b}H /yKl (z,t; h)| dt. (4.44)

a

150 00)

b—a

From the definition of K; (x,t;h), it follows that

ﬁ/m (. )] dt = 2 (h) (b~ 0)? A (2), (4.45)

where A (z) and 7 (h) are defined by (4.25) and (4.39).
Therefore (4.38) follows directly from (4.42)-(4.45). m
The following corollary of Theorem 4.7 holds:

Corollary 4.3 Let the assumptions of Theorem 4.5 hold, then for any h € [0,1],

P (Hyese Ly e, £9)|

<o W o-a |7 = [Frad]||_|lo - [g5at]| . @)
where
Hyp == (“52) 4 5@+ £0) + 55 01-30) 6 - 0 [£0.8].
and

a+b
2

)5 @@+ 90+ 5 (=30 00 [5a].

Lh,a;b:(l_h)9< 9

n (h) is defined by (4.39).

Remark 4.6 It may observed that for x = “T“), the kernel defined in Theorem 4.7

takes the following form:

G O I
1 —a v -
2 Lt —(b—h%2))?, t e (42,0,

2
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The following special cases of Corollary 4.3 hold:

Remark 4.7 (i) For h =0, (4.46) takes the form:

1
< —
— 576

with

‘P (Ho,aT"'baLo7aT‘*‘l’>f7 g)’

(b—a)’

[l - e

Ho =1 ("57) 4 3 [£ 0] 0

and

2

(e o]

_ a)2

+0 17
Lw;b:g(a >+—[g;a,b](b—a)2.

2 24

(1) For h =1, (4.46) takes the form:

P (H, e, L ess. f9),

1 4
< (- ‘
SR

where
1
Hoapp =5
and
1
Ll,aTb ~ 9 (9

(f @+ 5 0) - 35 [£5a.)

el o= losanlll

o)

(b—a)’

(@) +9(8) — =5 [g0.8] (0 - )

12

(4.47)

(4.48)

[g/; a, b} (b—a)®.

1 " / " /
SQEWWHf—VMM‘g—b;
where
a+b ’ 9
Hyep = (1@ +26 (“50) +10) - 5 [Frat] 0=
and
a+b
Lo =1 (s@+20 (F0) +a) - &

It may also be noted that n (h) is minimum for h = 3

1
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4.3 An integral inequality involving product of monotonic

functions and applications

In this section, an integral inequality involving the product of two monotonic non-
decreasing functions have been developed. Moreover, using the underlying assump-

tions, we have also presented some special cases.

4.3.1 Introduction

Ostrowski type inequalities have been developed for different types of functions,
namely absolutely continuous function, function of bounded variation and monotonic
function, etc. In [29], S. S. Dragomir established the following Ostrowski’s inequal-

ity for monotonic mappings:

Theorem 4.8 Let f : [a,b] — R be a monotonic non-decreasing mapping on |a, b].

Then for all x € |a,b], we have the following inequality:

fa) -y [ foa

b
< g Re- @)@+ [snit-a) fdry.
< @) (F @)~ F@)+b—2) (70— F @],
< %Jr%](f(b)—f(a))-

The constant % 18 the best possible one.
In [37], S. S. Dragomir et al. generalized the above theorem as follows:

Theorem 4.9 Let f : [a,b] — R be a monotonic non-decreasing mapping on |a, b]
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and tq,ts,t3 € [a,b] be such that t; <ty < t3. Then

b
/ f(@)de — (b — a) F (a) + (s — t2) £ () + (b— ts) £ (B)

< (b—tg)f(b)+(2t2—t1—tg)f(tg)—(t1—a)f(a)+/T(:c)f(a:)dx

< (b—=t3) (f(b) = f(ts)) + (ta —t2) (f (t3) — [ (t2))
+(ta —t1) (f (t2) — f (t1)) + (1 — a) (f (t1) — f (a))

< max{t; —a,ty —ti,t3 —t2,b—t3} (f (b) — f(a)),

where

sgn (t; — ) for x € [a,ty],
T (z) =
sgn (tg — x) for x € [ta,b] .

The following known lemmas is useful in the sequel.

Lemma 4.1 (see [15]) Let p, v € [a,b] — R be such that p is Riemann integrable
on [a,b] and v is monotonic non-decreasing on [a,b]. Then

b

/p<t>dv<t> s/|p<t>\dv<t>.

a

In the following subsection, we present an integral inequality involving product
of two monotonic non-decreasing functions, thus providing a new estimation for
these type of inequalities in terms of the functional values of monotonic mappings.

The analysis is based on the inequality presented in [37].

4.3.2 Main Results

For the monotonic non-decreasing functions f, g : [a,b] — R, the following notations

are presented:

F oo ((t—a) f @)+ (ts—ta) [ (t) + (b—ts) F (B)],

b—a
[(t1 —a)g(a)+ (ts —t1) g (t2) + (b —t3) g (b)] . (4.50)

1
b—a

Ql
I
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We define the functional

b b
S(f,g) = Fé—bia [F/g(t)dt—l—G/f(t)dt]

4 (bla/f(t)dt) (bla/g(t)dt), (4.51)

Next, we consider the functional

H(f.9) = f(x)g(w)bla[f(x)/g(t)dt+9(I)/f(t)dt}

(o)

We shall start with the following:

Theorem 4.10 Let f,g : [a,b] — R be a monotonic non-decreasing functions on

la,b] and tq,ts,t3 € [a,b] be such that t; <ty < t3. Then

1S(f,9)] < 0 _1a)2 (max {t; — a,ty — ty,t3 — o, b — t3})* x
(f (b) = f(a)) (g () —g(a)). (4.53)
Proof. Using the identities developed in [37] by S. S. Dragomir et al.,
b b
F—bia/f(t)dt _ bia/s(t)df(t), (4.54)
b b
G—bia/g(t)dt _ bia/s(t)dg(t), (4.55)

where

t—t, fortela,tsy,
s(t){ ! la, 2]

t—tg for t € (tg,b]
Multiplying (4.54) and (4.55), we have

5(4.0)= 5o ( [swa <t>) ( [ stdg (t>> S )

a

By using the properties of modulus and applying Lemma 4.1 for p (t) = s(t) and
v (t) for f(t) and g (t) respectively, we get

5(1.9)] < (/ Oldf )(/ )l dg (t ) (457)
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As in [37],

b
/MM#@
_ a_ (ty —a) f(a) + (ta — t1) f (ta) — (t3 — ta2) f (t2)

+®—Mf@+/T@f®ﬁ

a

where

T (1) = { sgn (t; —t) for t € [a,ts],
sgn (ts —t) for t € (ts,b].

Since f : [a,b] — R is monotonic non-decreasing in [a, b] , following the same direc-

tion as explained in [37], we have

/|s(t)|df (t) < max {t, — a,ts — t1,ts — ta,b— 3} (f () — f (a)).

In a similar manner,

/|s(t)| dg (t) < max{t; — a,ty — t1,t3 — ta, b —t3} (g (b) — g (a)).

Consequently (4.57) takes the form,

|S(fa9)‘ < (maX{tl—a,tz—t17t3—t2,b—t3})2><

1
(b—a)”
(f (b) = f(a)) (g (b) — g(a)),
which is the required inequality. =

The following corollaries hold:

Corollary 4.4 Let f,g be defined as above in Theorem 4.10. Then, for all x €

[a,b], we have the following:

17 (f.9)]

1 1 a+b
(f(b) = f(a)) (g (b) — g(a)),

rx

where H (f, g) is defined by (4.52).
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Proof. Set in Theorem 4.10, ¢t = a,ts =2, t3=0. m

Corollary 4.5 Let f,g be defined as above in Theorem 4.10. Then, for all x €
[a,b] , we have the following:

[/b dt+G/f()dt}
)

(s

T

11 a+b[]?
T i e IUCEN OO
where
P bia[(:U—a)f(a)-i-(b_a?)f(b)],
g bia[(x—a)g(a)—l—(b—x)g(b)]-

Proof. Set in Theorem 4.10, ¢t =ty =t3=z. m

Corollary 4.6 Let f,g be defined as above in Theorem 4.10. Then, for all x €
[a + hb_T“, b— hb_Ta] and h € [0,1], we have the following:

b b
Flc;l_bL [Fl/g(t)dtJrGl/f(t)dt]

a

() (e

(max{hb;a ;( —h)(b—a)+

_a+b 2><
T

s
(F ) = £ @) (9 0) ~ 9 (@), (1.58)
where
Fio= S )+ FO)+0-h)f @),
G = 2 (gla) +g )+ (1 h)g (). (4.59)

Proof. Choose in Theorem 4.10, t; = a + hb_Ta, to=x, t3=0— hb_Ta. [

Remark 4.8 Consider the following result as a special cases of Corollary 4.6.
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(1) For h =1, we obtain:

P - 010
g(0)+9()
GQ = T7

S(f,9) FZGQ—[ /bg dt+G2/ )dt]

{eaoo) o)

Therefore, (4.58), becomes
5(£.9)| < (7 ®) = T (@) (9(®) ~ (). (4.60)

(it) For h =1 and x = %, s(t) is defined as

2
{t%we[a,%b],

0= t—at3b it e (b p)
4 2 7

Moreover, for the monotonic non-decreasing functions f, g : [a,b] — R, with

b L[f@EI0 ()]

2 2 2
6 - L[r@e® (220

the functional defined by (4.51) takes the form

$(f.9) = Fgag—ng/bg dt+G3/ )dt]
(¢t o) (2 frow)

Therefore, (4.58), becomes
5.9 < 5 B) = 1 (@) (9 (b) ~ g (a)). (461)

Sitmilarly, we can obtain some more product inequalities as special cases of

(4.58) for different values of h.
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Remark 4.9 It is important to mention that the estimates of product inequalities
for monotonic non-decreasing functions are merely addressed in the literature of
integral inequalities except a lower bound of the Cebysev functional for monotonic
non-decreasing functions was obtained by P. Cerone and S. S. Dragomir in [18].
It may also be noted that some variants of Cebysev and Griiss type inequalities for
monotonic non-decreasing functions can also be obtained from (4.54) and (4.55),

by using the approach of ([78], Remark 4.1).

We, now apply (4.60) to probability density functions as follows:

4.3.3 Applications for probability density functions

Let X, Y, G and H be as in Section 4.1.3. Then the following proposition holds:

Proposition 4.2 Let X, Y, F' and H be defined as above. Then, the following
holds:

3(1_ (E(Yl)):fm» _bi& <b_E(X)—2FE(Y)) (1_$>|

. (4.62)

<

N

Proof. By choosing f = F and g = H in (4.60) and simplifying with the help
of (4.15)-(4.20), we get the required inequality. m

4.4 On Cebysev-Griiss type inequalities for spherical shells
and balls in L, [a,b], p > 1

4.4.1 Introduction

Recently, in [3], Anastassiou has presented Cebysev-Griiss type inequalities on RY
over spherical shells and balls based on the results of B. G. Pachpatte [79]. The main
motivation of this work is to give Cebysev-Griiss inequalities of Pachpatte type for
L,a,b], p> 1 and then to extend these results on n-dimensional Euclidean space
over spherical shells and balls by using the tools of [3].

Now we would restate the geometries defined in [3].
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Definition 4.1 (n-Ball) Let R™ be the n-dimensional Euclidean space. Then, a

hyperball or n-ball of radius R > 0, centered at p denoted by B", is defined as:
B"(p,R) ={z eR": |z — p| <R},
where ||.|| is the Euclidean norm.

Definition 4.2 (n — 1-Sphere or Hypersphere) In mathematics, an n — 1-Sphere
S*=1 is a generalization of an ordinary sphere to arbitrary dimension. For any
natural number n, an n — 1-sphere of radius R is defined as the set of points in
n-dimensional Fuclidean space which are at distance R from a central point, where
the radius R may be any positive real number. The n — 1-sphere of unit radius

centered at the origin is denoted by S™' and is defined as:
S li={z e R": ||z] =1},
where ||.|| is the Euclidean norm.

Definition 4.3 (Spherical Shell) A spherical shell is a generalization of an annulus
to three dimensions. A spherical shell is therefore the region between two concentric
balls of differing radii. Let 0 < Ry < Rs, then a spherical shell A CR" n > 1 s
defined as:

A=B"(0,Ry) — B" (0, Ry).

Definition 4.4 (Radial functions) Let F,G € X (ﬁ) Then, F and G are radial if
F(x)= f(r) and G(x) = g(r) for f,g € X ([R1, Ra]) and ||z|| = r, for Ry <71 <
Rs.

Definition 4.5 (Hyperspherical Volume) The hyperdimensional volume of the space
which a (n — 1)-sphere encloses (the n-ball with radius R) is defined as:

R
V, = /n dx—/ dQ/ r"dr
> 22<R Sn—1 0

=0

272 E_ 7z R™
L) n T(5+1)

where I' is the gamma function.

Definition 4.6 (Surface area of unit n—1—Sphere) The surface area of unit n—1-

sphere S™~1 is given by:




4.4.2 Cebysev-Griiss type inequality for L, — spaces, p > 1

Let w : [a,b] — [0,00) be a probability density function, that is, an integrable
function satisfying fab w (t)dt =1 and W be the corresponding cumulative distrib-
ution function. Then, W (t) = fatw (x)dzx, for t € [a,b], W (t) = 0 for ¢t < a and
W (t) =1 for t > b. Then, the Pecaric’s weighted extension of Montgomery identity

[82] is given as:

where
W (t), a<t<zx

Wiit)—1, z<t<b.

P, (x,t) =

The following results hold by using the weighted Montgomery identity and Holder’s

integral inequality:

Theorem 4.11 Let f,g: [a,b] — R be differentiable on [a,b] and f',g : [a,b] — R
be such that f', g € L, (a,b). Let w: [a,b] — [0,00) be an integrable function with
f;w (t)dt = 1. Then

2
b b q

Tl < |7 o] [e@ | [1P@ord) d e
for x € [a,b], where
b b b
7w, f.9)= [wie) f@g@de— | [w@ fdn )| | [w@owd

and P, (z,t) and W (t) are defined as above.

Theorem 4.12 Let f, g and w be as in Theorem 4.11. Then, the following in-
equality holds:
T (w, [, 9)|

q

p] /b Py (,0)|%dt | dz,  (4.64)

s%jw@ﬁmmﬁv

a

@l o

where T (w, f, g) and P, (x,t) are defined as above.
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We, now, extend the inequalities (4.63) and (4.64) for spherical shells and balls
as follows:
Let S"~! be the unit sphere in R". Then, for z € R" — {0}, x = rw, where

r>0,we S" . Thus, ||z]| =r. Let

nsnfl
e — 4.65
w(s) = (4.65)
for 0 < Ry < Ra, s € [Ry, Ry be the probability density function and
s s" — R"
Wi(s)= / w(r)dr = ——-, (4.66)
Ry R2 - Rl

be the corresponding cumulative distribution function. Let A be a spherical shell,
region between two concentric balls of radii R; and R,. Let I, G be differentiable
on A and f, g be differentiable on [R;, Ry]. Then, the weighted Peano kernel and
the weighted Montgomery identity for spherical shells and balls can be written as:

W(s), R <s<r
P, (r,s) = (4.67)
W(t)—l, r<s< R,

F(r) = /R R <%) £(s)ds + /R R Po(rs) f (s)ds,  (4.68)

and the Cebysev functional is given as:

TG ZIAF%?A(; Mm_(Vozl(A)f (/AF (”’)dx) (/AG(*W)

n

_ m/AF(m)G(x)dx

_ (my ( /A F(z) dx) ( /A G (x) d:c>, (4.69)

where Vol(A) is the volume of spherical shell region A and by using the concept

that

L [ roycwd = & Snl( " (r)r”ldr> de

Wn JAa Wp Ry

Ro

= (r) r"tdr,
Ry

we can write:
TEG) = — " [ g )
7 Rg - R? R1
n 2 Ro R2
e = f(rdr)(/ grdr)
() ([, 1) ([ o0
— T(w f.g), (4.70)
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with w defined by (4.65).

Now, the following inequalities hold:

Theorem 4.13 Let f, g be differentiable on [Ry, Ry) and f',g € L, ([R1, Ry)), then

the following inequality holds:
Ro
n n—172
r" L (r) dr, (4.71)

v (R = RY)* )

o) <|r] s

p

where
Ro

I,(r)= (R/ (s" — RY)ds + / (Ry — s™)1 ds) (4.72)
1 T
and T (F,G) is defined by (4.70).
Proof. Applying (4.65)-(4.70) on Theorem 4.11, we get the required result. m

Theorem 4.14 Let f, g be as in Theorem 4.13, then the following inequality holds:

T(F, G)’
< T R/ @gmr |7, +1r e } I,(r)dr,  (473)

where 1, (r) is defined by (4.72) and T (F, G) is defined by (4.70).
Proof. Applying (4.65)-(4.70) on Theorem 4.12, we get the required result. m

Theorem 4.15 Let F,G be differentiable on A and F',G' € L, (X) Let F,G be

the radial functions, then from Theorem 4.13, we have:

Ry
‘T(F,G)‘SHa—F 906G ) n 3/r”—11§<r)dr,
or ||, 1l o, (Ry — RY) P
or
: oF|| ||oG|| 1
<= =] —— 2 .
‘T(F,G)’ < H o | |7 pvol<A)/Hq(||x||)dx, (4.74)
A

where 1, (r) is defined by (4.72) and

r Ry q
1
H,(|z|) = =——= (R/ (s" — RY)ds + / (Ry — s™)? ds) (4.75)
Ry — Ry
and T (F,G) is defined by (4.69).
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Theorem 4.16 Let F, G be as in Theorem 4.15, then from Theorem 4.1/, we have:

T(.6)

)| H, (||=]]) dz, (4.76)

1
= 2ol (4) A/

where Hy (||x]|) is defined by (4.75) and T (F,G) is defined by (4.69).

Gl |5

o

The inequalities (4.74) and (4.76) defined over spherical shell can be transferred
over a ball B" (0, R) by taking R := Ry and R > R; — 0 and the results are stated

in the form of the following theorems:

Theorem 4.17 Let F,G be differentiable on B" (0, R) and F',G' € L, <B” (0, R))
Let F, G be the radial functions, then from Theorem 4.15, we have:

1 1
F(2)C (z) do — F(z)d G (2)d
Vol (B (0, R)) / (#) G (@) dz (Vol (B (0, R)))? / () d / () de
B (0,R) B"(0,R) B(0,R)
R
D120y g 4.77)
R q(r) r? (
where )
R q
o) = [ R" — s")id 4.78
R e AT I (4.78)
or
1
/F(a:)G(x)da:—vol(Bnm,R)) / F () da / G (2) dz
n(0,R) B"(0,R) B"(0,R)
OF
< ||= 2 . )
<[5 [ e (479
B"(0,R)

Theorem 4.18 Let F, G be as in Theorem 4.17, then from Theorem 4.16, we have:

/F(x)G(x)dx—vol(Bi(OR)) / F (2)dz / G (z)dz

n(0,R) B"(0,R) B"(0,R)

, |G
<= )|
B"(0,R)

where J, (||z||) is defined by (4.78).

G5 + Alelde, (450)

(\]
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We, now, give the inequalities in spherical shell when F, G are not radial func-

tions which are given in the form of the following theorems:

Theorem 4.19 Let F,G be differentiable on A and F',G € L, (Z) Then, from

Theorem 4.11, we have:

Voll(A) A/F()G()dx_ Ry — RY) /(ﬂ/ rw) )(ﬂ/ rw) )
H = an) R/ U2 (r) dr,

g )
It

where 1, (r) is defined by (4.72) and H, (||x||) is defined by (4.75).

or

HZ (||]|) dz, (4.81)

Theorem 4.20 Let F,G be differentiable on A and F',G € L, (Z) Then, from

Theorem 4.12, we have:

o ) o)
</

where 1, (r) is defined by (4.72) and H, (||x||) is defined by (4.75).

F(x)| Hy ([|=[]) d, (4.82)

G \H

o

The inequalities (4.81) and (4.82) defined over spherical shell can be transferred
over a ball B" (0, R) by taking R := Ry and R > R; — 0 and the results are stated

in the form of the following theorems:

Theorem 4.21 Let F, G be differentiable on B (0, R) and F',G' € L, (B” (0, R))
Then from Theorem 4.19, we have:

/F(x)G(x)dx—% (/RF(rw)dr) (fG(rw)dr)dw

™ (0,R) 0
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or oG
< || 2= il
— || or or

/ J2 (||=) de, (4.83)

)

where J, (||x||) is defined by (4.78).

Theorem 4.22 Let F, G be differentiable on B" (0, R) and F',G' € L, (B” (0, R))
Then from Theorem 4.20, we have:

/F(x)G(:c)dx—%/ fF(rw)dr /RG(rw)dr dw

"(0,R)

: |
< =
-2
B (0,R)
where J, (||x||) is defined by (4.78).

n—1

Jo(lelyde,  (484)

Gl |5

re |5

p

4.5 Conclusion

In this chapter, we present some generalizations of product and Cebysev type in-
equalities by working with absolutely continuous functions whose derivatives belong
to usual Lebesgue spaces.

In Section 4.1 and 4.2 we have confined ourselves to obtain product inequalities
of Cebysev type in L, and L,-spaces for p > 1 by the use of generalized functionals.
In Section 4.1, the product inequalities for absolutely continuous functions whose
first derivatives belong to L,-space are developed while in Section 4.2, Cebysev type
inequalities are obtained for twice differentiable functions whose first derivatives
are absolutely continuous and second derivatives belong to L..-space are taken into
account. Applications for expectation of a continuous random variable are also
given in Section 4.1.

In Section 4.3, we have presented an integral inequality involving product of
two monotonic non-decreasing functions, thus providing a new estimation for these
types of inequalities in terms of the functional values of monotonic mappings. The
inequality is then applied to the probability density functions.

In Section 4.4, we have obtained an inequality of Cebysev-Griiss type for spher-
ical shells and balls by working in n—dimensional Euclidean space R™, hence, in-

equalities of multivariate type in spherical coordinate system are established.
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Chapter 5

Some Ostrowski type inequalities for Newton-

Cotes formulae

5.1 Some generalized error inequalities and applications

In this section, we present a family of four-point Ostrowski type inequality which is
a generalization of Gauss-two point, Simpson’s g and Lobatto four-point quadrature
rule for twice differentiable mapping. Moreover, it is shown that the corresponding
optimal quadrature formula presents better estimate in the context of four-point
quadrature formulae of closed type. A unified treatment of error inequalities for

different classes of function is also given.

5.1.1 Introduction
We define

b
1) = [ f@)s (5.1)

The problem of approximating I (f) is usually referred to as numerical integra-
tion or quadrature (see [4]). Most numerical integration formulae are based on
defining the approximation by using polynomial or piecewise polynomial interpola-
tion. Formulae using such interpolation with evenly spaced nodes are referred to
as Newton-Cotes formulae. The Gaussian quadrature formulae, which are optimal
and converge rapidly by selecting the node points carefully that need not be equally
spaced, are investigated in [94].

In [28, 34, 81], the quadrature problem, in particular, the investigation of error
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bounds of Newton-Cotes formulae namely the mid-point, trapezoid and Simpson’s
rule have been carried out by the use of Peano kernel approach in terms of variety
of norms, from an inequality point of view.

The deduction of the optimal quadrature formulae in the sense of minimal error
bounds, has not received the right attention as long as the papers of N. Ujevic
[99, 95, 96] and ([24], pp.153-166) have not appeared who used a new approach for
obtaining optimal two-point and three-point quadrature formulae of open as well as
closed type. Further, some error inequalities have also been presented by N. Ujevic¢
to ensure the applications of these optimal quadrature formulae for different classes
of functions.

In this section, we present an approach similar to that of Ujevic’s [99] to present
some improvements and generalizations in this context.

Let us first formulate the main problem.

Consider
(t—0) +on, t€ o],

(t=B) + By, te(y), (5.2)
%( _7)2—1—717 te [yab]7
as defined in [99], where x,y € [a+ h(b—a),b—h(b—a)], h € [0 1], x <y and

2

1
2
1
2

K (z,y,t) =

a, ai, B, By, 7, 71 € R are parameters which are required to be determined.
b "
We know that the exact value of the remainder term of the integral [ K (z,y,t) f (t)dt
may not be found, thus, we may proceed as

/ K (e, () di| < mae |17 (1) / K (2,9, 1) dt. (5.3)

T t€[a,b]

The main aim of this section is to present a minimal estimation of the error bound
(5.3) by appropriately choosing the variables and parameters involved. Moreover, it
is worth-mentioning that the family of quadrature formulae thus obtained hereafter

is a generalization of that presented in [99].

5.1.2 A generalized optimal quadrature formula

Consider the above stated error inequality problem for a = —1, b = 1, so that

x,y € [-1+ 2h,1 — 2h]. We will try to find out an optimal quadrature formula of
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the form:

/f@ﬁ#—wfbw+(r—Mf@)HI—Mf@)Hﬁﬂﬂ

= /K(x,y,t) £ () dt, (5.4)

where K (x,y,t) is defined by (5.2) witha = —1,b=1and x,y € [-1 + 2h, 1 — 2h]
with z <y, h € [O,%}.

The parameters «,aq, 5, 51,7,7; € R involved in K (x,y,t) are required to be
determined in a way such that the representation (5.4) is obtained.

Integrating by parts right hand side of (5.4), we have:

/ K (z,9.0) f' (£) dt

!’ !

0+ [ya=t ] £

(1 +a)2+a1} f

r
DO | —

T m—af—m—ﬁfywn—ﬂjf@»

N | —

N | —
+ -~ —

+

= (

(y—ﬁ)Q—(y—v)Q}Jrﬁl—%] f ()
) f(=1) = Q=) f)+(a=8)f(x)+(B—-7)f(y)

—_

(t) dt. (5.5)

| +
H\H
~

For the representation (5.4), we require from (5.5),

1 1
5([['—04)24‘041_5(37_6)2_51:07
1 1
§(y—6)2+61—§(y—7)2—%=0,

1 1

51+ +ar=0, S (1-9)"+7 =0,

6_7:_(1_}070‘_6:_(1_}1’)7
l1+a=h,1—~v=h.

This gives through simple calculations:

a=—(1=h), y=(1—h), =0,
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1 1
= ——}2 S
71 9 aq 9"

1
1
= ——h—(1—-nh
5 ( )y
Henceforth,
y=—I

So, we have:

L+ —h)? =12 te[-1,q],
K (z,t) = %t2+(1—h)x—h+%,t€(x,y),
%(t_(l_h))2_%h2’ te[y71]

We further see that

/K(:c,t) @) dt| < Hf”Hoo/|K(a;,t)|dt.

1
We are now required to find an = that minimizes [ |K (z,t)|dt.
-1
We next define

Glz) = /|K(x,t)|dt

T Yy
1 1 1

— 5/\(H(1—h))2—h2\cht+/‘§t2+(1—h):1:—h+5 dt
—1 T

1
1
+§/ |(t — (1= h))* — B?| dt.
y
and consider the problem

1
minimize G (z), © € [-1+2h,1 —2h] and h € [0, 5} :

Hence, we should like to find a global minimizer of G. Recall that a global minimizer

is a point x* that satisfies

2

G(z") <G(z), forall x € [-1+2h,1—2h] and h € {0,1]

We now consider the following cases:
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1
(1) Let z € |— (1 —2h), }i ,?L} Then by symmetry, we may consider

) —1+2h
Gi(a) = —5 / ((t+ (1 —h))* = n?) dt
-1
1 r 2 2
t5 [ (A =h)"—h?)dt
—142h
—y/2h—1-2(1—h)z
+% Q/ (P+2(1—h)z—2n+1)dt
) 0
- ‘/ (2+2(1—h)z—2h+1)dt
—\/2h—1-2(1-h)z
11 , 4
= -y 0-h-ca h)V2h—1-2(1—h)zz
4 1 4 3 h
+§( _§>¢%f¢—2u—mx+§h—§. (5.8)
We may note that
G (x) =2G (x). (5.9)

Combining (5.8) and (5.9) with (5.4) and (5.7), we get:

/f(t)dt— [ (~1) + (1= h) f (£) + (L= h) f (~2) + hf (1)

<i[%—ﬂ—hﬂ:—§1— )V2h—1-2(1-h)ra

1
+§<h—§>v@h—1—2a—hyw+%ﬁ—h“

"

f (5.10)

o0

Moreover, simple calculations show that G (x) =0 for

w19 = —A+ 4h £+ 2v/3 = 6h + 4h2.

It is not difficult to find that

" 1"

G (z1) >0and G (z2) <0.

Thus, x; is the local minimizer of G (z) for x € |— (1 — 2h), }I %L We have:

52 83 83
GmmyzgﬁtAM? —h—€+80—m 4h% — 6h + 3
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2
+3 (8h* — 14h 4 7) \/8h2—14h+7—4(1—h)\/4h2—6h+3

—2(1 —h) \/8h2 — 14h 4+ 7 —4(1 — h) V4h2 — 6h + 3v/4h% — 6h + 3,
such that
G (371) = 2G1 (.1'1) .
(7i) Next, we check for the point z3 = }i:}% We find that min G;(z1) <

hel0.3]
min_ Gy (z3).
he[oé]

Thus, from the above considerations, we find that 2* = —4+4h+2v/3 — 6h + 4h?

is the global minima of GG. Therefore, we get the following conclusion:

Theorem 5.1 Let I C R be an open interval such that [—1,1) C I, and let f : [ —

R be a twice differentiable function such that f” s bounded and integrable. Then,

we have:
Crar - [hf (~1)+ (1= h) f (—4+4h+2v3 = 6h + 4?)
: + (=) f (4= 4h—2V3=6h+ 42) + f (1))
+R(f), (5.11)
where

R(f) <20 (k) [
h € [0,1] and A (h) is defined as

2
A(h):%h3—44h2+82—3h—%+8(1—h)2 4h? — 6h +3

, (5.12)

[e.o]

2
+3 (8h* — 14h +7) \/8h2—14h+7—4(1—h)\/4h2—6h+3

8
—S(1-h) \/8h? = 14h 47— 4(1— h) VAR — 6h + 3VARZ —Gh + 3.  (5.13)
Proof. From the above discussion, we find that (5.11) holds with
1 "
R(f) = / K <—4+4h+2\/3 - 6h+4h2,t> f (),
-1
and K (z,t) is given by (5.6) with y = —x. We further have
" 1
IR(f)| < Hf / ‘K <—4+4h+2\/3—6h+4h2,t)‘dt
/1
= G(-a+an+2v3-ch+aw) | [

?
o0
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Since G (—4 + 4h + 2v/3 — 6h + 4h?) = 2G; (—4 + 4h + 2V/3 — 6h + 4h?), thus (5.12)
holds. m

We would now like to mention here some special cases of (5.10):

Remark 5.1 As it has been mentioned in [99], we recapture the Gauss two-point

quadrature formula for h =0 and x = _\/?g.

Remark 5.2 It may be noted that for h = % and r = —\/?5, we get Lobbato four-

point quadrature rule as follows:
| s = glrnss (—?) +5f (?) +1 )
+R1(f), (5.14)

where

"

f

and Cy = & + 4 (V=6+3V5) (V5 - 2) ~ 0.0418

G

o0

Remark 5.3 For h = ;11 and and x = —%, we get g Sitmpson’s rule as follows:
! 1 1 1
f@dt = S\ f () +3f (=5 ) +3f (3 )+ /(1)
1 4 3 3
+R (), (5.15)
where
EAGIESA TSN

and Cy = 57 ~ 0.0417.

Remark 5.4 Keeping in view the above special cases, (5.10) may be considered as

3

5 and Lobatto four-point quadrature

a generalization of Gauss two-point, Simpson’ s

rule for twice differentiable mappings.
Remark 5.5 For h = 3, A(h) attains its minimum value.

Corollary 5.1 Let the assumptions of Theorem 5.1 hold. Then, we have the fol-

lowing optimal quadrature rule:
! 1 2 2
rwa = glren+a (-2)var (2)+rw)
-1
+R3(f), (5.16)
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|Rs (f)] < Cs

"
F
o0

where C3 = % ~ 0.0373.

Remark 5.6 The comparison of (5.14), (5.15) and (5.16) shows that the later
presents a much better estimate in the context of four-point quadrature rules of

closed type.

By considering the problem on the interval [a, b] , the following theorem is obvi-

ous:

Theorem 5.2 Let I C R be an open interval such that [a,b] C I and let f: 1 — R

be a twice differentiable function such that fN 1s bounded and integrable. Then, we

have
b
[ it = Se-ahi @+ 0= @)
+ (1 =h) f(x2) + hf O)] + R(f), (5.17)
where
b—a , a+b _ b—a . a+b
x1:2x—|—2,x2— 230—1-2, (5.18)
with
¥ =—4+4h +2v3 — 6h + 4h?
and

"

, (5.19)

o0

R < 30 0) (60— a) |7

h € [0,1] and A (h) is as defined above.

5.1.3 Generalized error inequalities

From the basic properties of the L, (a,b) spaces, for p = 1,2, 00, we know that

Ly (a,b) is a Hilbert space with the inner product defined as:

We now define X = (Ls (a,b),(.,.),). In the space X, the norm ||.||, is defined in

the usual manner as:

b 3
1£l, = /ﬁ (tydt | .
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Let us also consider Y = (Ls (a,b),(.,.)), where the inner product (.,.) is defined
by

() = = [ £ 0@

with the corresponding norm ||.|| defined by

IFIF= /F, 1)

We know that the Cebysev functional is defined as

T(f,9)=(f,9)—(f.e){g,e), (5.20)

where f,g € L, (a,b) and e = 1 which satisfies the pre-Griiss inequality,

T?(f,9) <T(f. /)T (g.9)- (5.21)

Let us denote

o(f)=0(fia.b)=/(b—a)T(f f), (5.22)

as defined in [99]. Moreover, the space L, (a,b) is a Banach space with the norm

b
11 = [ 1r o),
and the space L_ (a,b) is also a Banach space with the norm

[flloe = ess sup [f ()]

t€[a,b]

So, if f € L, (a,b) and g € L, (a,b), then we have

[(F:9)ol < W11 N9l - (5.23)

Finally, we define

J(f) = J(f;a,b;:h)

b

_ /f(t)dt_%(b—a)[hf(a)ﬂl—h)f(ml)

+ (1 =h) f(22) +hf ()], (5.24)

where x; and x5 are given by (5.18).

We would also like to mention the following Lemma [98].
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Lemma 5.1 Let
fi(t), telam],
F®)=9 fo(t), t€lry, s, (5.25)
fs(t), t € [z, 0],
where a < 1, < 3y < b, fi € Cla,x1), fo € CYxy,22), f3 € CYx2,b) and
fi(z1) = fa(21), fo(w2) = fa(x2). If

sup [f (£)] < oo,
te(a,z1)

sup |f ()] < oo,
tE(Il,IQ)

sup |f (B)] < oo
te(xa,b)

Then, the function f is an absolutely continuous function.

Theorem 5.3 Let f: [-1,1] — R be a function such that f/ € Ly (—1,1). If there

exists a real number 7, such that v, < f/ (t), te[—1,1], then

T (fi =L 1 h)[ < 280 (h) (S = 71) (5.26)
and if there exists a real number I'y, such that fl (t) <TI'y, te[-1,1], then

[J(f;i =L 1L;h)| <280 (h) (T'h = 5), (5.27)

where J (f; —1,1; h) is defined by (5.24), S = JOIED gpd h € 0, %] If there exist

2
real numbers v, I'1, such that v, < f/ (t) <T4q, te|-1,1], then

(=L B < S A () (T =) (5.25)
Ao (h) and 2y (h) are defined as:
Ao (h) =2v4h? —6h+3—3(1 —h),
A (h) = 58h* — 98h + 49 — 28 (1 — h) V4h2? — 6h + 3. (5.29)
Proof. In order to prove (5.28), let us define

t+1—h, te[-1,2],
pi(t) =1 t, te (v,y),
t—(1—h), tely1],
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where © = —4 + 4h 4+ 2v/3 — 6h + 4h? and y = —x. Note that since (p;,e), = 0,
thus

<p1,f/>2 = —J(f;-1,1;h),
<f'—F1;71,p1>2 = <f',p1>2. (5.30)

From (5.23),

Ot r +

(F =D | < Hf S,
2 [e’s)
< §A1 (h) (T1 = 1), (5.31)
as
F1+’Y1 Fl Ii—m
f 2 - 2

and

|p1|l, = 58h* — 98h + 49 — 28 (1 — h) V4h% — 6h + 3.

From (5.30) and (5.31), it may be observed that (5.28) holds. Further, it can be

seen that
(f =mm) | < Il | £ =),
= 200 (h) (S —71),
since
Ip1]l,, = 2V4h% —6h + 3 (1—nh)
and

Hf - N
1

/ ) d

f) = F(-1 )—2%
2(5=m)-

Hence, (5.26) holds. In the similar manner, we can prove (5.27). =

Remark 5.7 It may be noted that /o (h) has its minimum value 0.396 at h =
0.259. In a similar way, it may be observed that %Al (h) attains its minimum value

0.1698 at h = 0.296.
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Theorem 5.4 Let f : [a,b] — R be a function, such that f, € Ly (a,b). If there

exists a real number v, such that v, < fl (t),t € la,b], then
1
7 (frabi )| < 52 () (S —70) (b~ a)?, (5.32)
and if there exists a real number I'y, such that f/ (t) <T4, tela,bl, then

T (f0, b )] < 525 () (T = 8) (b~ ) (533

where J (f;a,b; h) is defined by (5.24) and S = f(‘(lg:j)(b) and h € [0, %] If there exist

real numbers v, I'1, such that v, < fl (t) <Ty, t €la,bl, then
1
[T (50,6 )] < 20 (R) (D1 = 71) (b= )" (5:34)

N (h) and Ay (h) are as defined in (5.29).

Theorem 5.5 Let f: [—1,1] — R be an absolutely continuous function, such that
f € Ly(~1,1). Then
(=1 15m)] < /By (o (£5-1,1), (5.35)
where o (f/; -1, 1) is defined by (5.22) and
146

Ny (h) = —56h° + 154h* — 146h + — 280 - h)>V4h? —6h+3,  (5.36)
for h € [0,1].

Proof. Let p; be the same as defined above. We have

<p1,f,>2 =—J(f;-L1;h), (5.37)
since (p1,e), = 0, if [a,b] = [—1,1]. Moreover, (f,g) = 3 (f, g), and
(.S )y=T(f ;). (5.38)

From (5.21), it follows that
T(f ,p1> < T (p1,p1) T(f/»f/)
1 ’
= 5 ||p1||20 (f 7_17 1) )
1 )
= VB2 (o (f 1, 1) (5.39)
as
9 3 5 146 9
Ipall3 = =56k + 154k — 146h + —= — 28 (L= h)* VAR —6h +3.  (5.40)
Using (5.37), (5.38), (5.39) and (5.40), inequality (5.35) is proved. =
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Remark 5.8 /A, (h) attains its minimum value 0.2799 at h = 0.2957.

Theorem 5.6 Let f : [a,b] — R be an absolutely continuous function, such that

fl € Ly (a,b). Then

1 / 3
T (b)) < 5=/ Ba (R <f;a,b) (b—a)?, (5.41)

where o (fl; a, b) is defined by (5.22) and Ao (h) is as defined above.

5.1.4 Applications in Numerical Integration

Let m = {x9p =a <z, < ... <z, = b} be a subdivision of the interval [a,b], such
that h; = x;.1 —x; = h = (b;—“) From (5.24), we have:

Ti+1

) = I Fswrinid) = [ F@ =567 @)+ (0= f o)
F (1= 8) f (a2) + 07 )]

where

h T+ T h T+ T
+1 i i+1
T, = —o" + — a5 o L2 = ——x" + -

2 2

and

¥ =—4+46 +2V3 —60+46°% € {oﬂ

Summing up the above relation from 1 to n — 1, we get:

n—1 b h n—1
ST (fimainiid) = [ £ @®de =5 367 () + (1) f (@)
i=0 1=0

(1= 6) f () + O (ssa)]

Let us denote
n—1

S(fra,b;0) = J (fiwi,wi4156). (5.42)

=0

Theorem 5.7 Let the assumptions of Theorem 5.2 hold, then we have:

1
S (fia,b:0) < 75 A0)|

1 ®-a?,

where S (f;a,b;9) is defined by (5.42), 0 € [0, %] and A (9) is defined by (5.9). «

is the uniform subdivision of |a,b|.
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Theorem 5.8 Let the assumptions of Theorem 5.4 hold, then it follows

15 (fa,b:0)] < g0 (6) (b~ a)?
n

1S (F:0,5:0)] < 500 (6) (S — 1) (b~ a)”

and if there exists a real number Ty, such that f' (t) < Ty, t € [a,b], then

S (f.b:0)] < 580 () (T = 8) (b 0)?,

where S (f;a,b;0) is defined by (5.42), Do (), 21 (0) are defined by (5.29) and
o H@-f0)

- T is the uniform subdivision of [a, b].

Theorem 5.9 Let the assumptions of Theorem 5.6 hold, then it follows that

s (a0 < C2 VB (1)),

where S (f;a,b;0) is defined by (5.42), o (f') is defined by (5.22) and D5 (9) is as
defined by (5.36). w is the uniform subdivision of [a,b].

Tit+1

Proof. Applying Theorem 5.6 on the interval [z;, z;11],

f(t)dt - g [0f (i) + (1 = 0) f (z1) + (1 = 6) [ (v2) + 0.f (wiv1)]

< VRO [ / (f'(t))th%(f(mm)f(xi)f] -

Summing over ¢ from 0 to n — 1,

1S (f;0,b;0)] < 2—;5\/&2 G [

| () - - s m»?} }
Using Cauchy-Schwartz inequality andm;he relation h = (b — a) /n, we obtain the
required inequality:
1S (f;a,b;0)]
< s VEROT ;;ﬁn% [Hf’ ) - f(W] 5
< Lymmisy [H e EOES <a>>2] 5

140



5.2 A generalized integral inequality generating Newton-

Cotes formulae of open and closed type

5.2.1 Introduction

In [50], Ming-How Hung et al. presented the following two-point open Newton-
Cotes quadrature formula of open type for mappings of bounded variation. The

result is given as follows:

Theorem 5.10 Let f"V : [a,b] — R be a mapping of bounded variation on [a, b]
and n € {1,2}. Then, we have the inequality:

b

/f(m)dx—b;a[f(aa+(1—a)b)+f((1—a)a+ab)]

a

b

K, (b—a)"\/ (f" ") (5.43)
where
1 1 )
K; = max 1—oz,oz—§ ’KQ:Q(l_Q)

b
and \/ (f™~V) denote the total variation of f"~Y on the interval [a,b] and 3 <

a
a < 1.

Recently, in [55] Wenjun Liu presented some error inequalities for a quadrature
formula involving a parameter.

We, in the following subsection, present a two point Ostrowski type inequality, a
generalization of the results of [50] and [55]. Moreover, it can also generate Newton-
Cotes formulae of open as well as closed type for mappings of bounded variation.
Furthermore, we also present the estimates of the generalized integral inequality for

other classes of the function involved.

5.2.2 Main Results

We shall start with the following result:
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Theorem 5.11 Let fV : [a,b] — R be a mapping of bounded variation on [a,b]
and n € {1,2}. Then, we have the inequality:

2
b
<M\ (FY), (5.44)
where
b b
Mlzmax{ozl—a,a+ Oél,Oég—a—'— ,b—oz2},
2 2
1 b\> 3a+0b
M, = —max{(al—a) ,(al—a;— ) +(b—a) (ozl— a;— >,

(b—a) <3a: . al) } (5.45)

and \/ (f("’l)) denote the total variation of f™~Y on the interval [a,b] and a <

Proof. Let us define:

t—a, te€a,ay)
K (o, a9, ) = — “TH’, t € [ag, )
t—0b, te[ag,b},

where a; and as are to be taken in such a way that a < a; < as <b.

Consider the Reimann-Stieltjes integral

| (a1, o, t) df (t) = al(t—a)df(t)+ [ t— L2 ap ) + b(t—b)df(t).
K ‘2”’

Integrating by parts, we obtain:

b
b—a

[ K (@astyar ) ="5" (Fla) + Flaa) - [F0de. (540)

a

Similarly, if we define:

%(t_a)27 te [G,Oq)
K (o, 00,1) = %(t—‘%by—i-%(b—a) (o —32L) |t e o, o)
Lt —0b)?, t € Jag,b].
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Then, from the definition of K (a1, ay,t) and integration by parts of the Riemann-
Stieltjes integral it follows that:

/K’ (o, 0, 1) df (1) = —/K(al,ag,t) af (1),

Now, by using Lemma 2.2 for p () = K (a3, ae,t) and v (x)

= f(x), we get:
/ b
[ r@a="30 1 @) + £ (aa)
< tz&pb} K (on, 00, t)|\/ (f) - (5.47)

a

It can be easily calculated that

b b
sup |K (aq, as,t)| :max{ozl—a,a+ — g,y — i ,b—ag}. (5.48)
te(a,b] 2 2

Also, by using Lemma 2.2 for p (z) = K’ (o, ay,t) and v ()

= ' (z), we obtain:

< su];a K (al,az,t)‘ \b/ <f,> ) (5.49)

Calculating,

2 )
+<a1—a;b>2,(b—a) <3“:b—a1>} (5.50)

Using (5.47)-(5.50), we obtain the required inequalities. =

Corollary 5.2 Let f"V : [a,b] — R be a mapping of bounded variation on |a, b]
and n € {1,2}. Then, we have the inequality:
b

[ 1 @) + £ o)

a

b
< i, (V0 o

where My and My be defined by (5.45).
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Remark 5.9 If we choose in (5.44) ay = aa+ (1 —a)b and as = (1 — &) a + ab,
then we get (5.43). It shows that (5.44) generalizes (5.43).

Remark 5.10 It may be noted that (5.51) can generate some Newton-Cotes for-

mulae as special cases which are given as follows:

(1) For oy = a and ag = b in (5.51), we obtain:

b

/f(t)dt—b_a[f(aHf(b)]

2
b
< min {Mn V (f("_l))} : (5.52)
where ,
om0 -0
2 8
(i1) For ay = an = 2 in (5.51), we obtain:
/ b
[rwa-o-ar (5"
b
< min {Mn V (f("_l))} : (5.53)
where ,
=0 6-a)
2 8

(iti) For ay = 2% and ap = “t22 in (5.51), we obtain:

/bm)dt_ (b;a) [f (2a;b>+f(a;2l)>}

b
< min { M, (n—1) 5.54
_ng%llg}{ \a/(f )}, (5.54)
where )
[ Ot R PR )
3 18
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(iv) For oy = 3% and ap = 3 in (5.51), we obtain:

/bf(t)dt_ (b;a) [f <3a2—b>+f(az?>b>]

b
< mi M, (n—1) 5.55
_ngg}{ Y(f )}, (5.55)
where )
YR ) RV ()
4 32

Corollary 5.3 Let f exists and is integrable on [a,b] and for n € {1,2}

£l = [ 17 @] dr < .

Then, we have the inequality:

b

[ @ =220 (@) + £ (aa)

a

< min {M, || f™|,}, (5.56)

ne{l1,2}

where My and My be defined by (5.45).

Theorem 5.12 Let f"Ybe L,,-Lipschitzian functions for n € {1,2}. Then, we

have the inequality:

< B,L,, (5.57)
where ) ) )
b—a 3a+b a-+3b
and
3 3
%(al—a)3+§(b—a)2 (3ath — )2, oy < Betb
By=14 i(a;—a) (5.59)

provided that



Proof. Applying modulus and then by using Lemma 2.1 for g (t) = K (ay, o, t)
and v (t) = f (t) on (5.46), we obtain:

e+ fe) - [rwal < i [ K @uannla (560)

a a

Simple calculation shows that:

b

/|K(a1,a2,t)|dt

b—a)’ 3a+b\> a+3b\>
= ( 3 ) —l—(Oq— 4 > +(Oég— 4 ) . (561)
In the similar way, applying Lemma 2.1 for g (t) = K (a1, as,t) and v (t) = f (1),
we have:
b—a

5 (f (al)"‘f(%))_/f(t) dt| < L2/‘K/ (a1, ag,t)| dt. (5.62)

Now, by the definition of K’ (ay, a,t) it follows that:

b
/ ’K/ (Oé]_,OéQ,t)‘ dt

b

— %/(t—a)2dt+%/(t—b)2dt

a (e}

1 7 a+b\? 3a+b
—1—5/ (t— 5 ) —i—(b—a)(ozl— 1 )

a+b 2 3a+b
(t— 5 ) —i—(b—a)(m— 1 >
Here two cases arise:

Case 1. When oy > 3”’T+b. Then,

dt.

Consider

dt.

[0}

[:%/((t—a;b)QJr(b—a) (al—ga:Z)))dt.

a1
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Hence,

Case 2. When o5 < 3“T+b. Then,

a+b++/(b—a)(3a+b—4aq)
2

N B (R e

_|_
I
/N
~
|
Q
b | 4
S
N———
[\
+
=
|
£
/N
8
|
w
IS
=1+
=
N—
N—
o8
~

a+b++/(b—a)(3a+b—4aq)
2

Hence,

b
/‘K/ (Ozl,OZQ,t)‘ dt
1

s 1
= g(al—a) +E(b—a)

Therefore, from (5.60)-(5.64), we get the required inequalities.

N

(3a+b— 4a1)? . (5.64)

Corollary 5.4 Let f®™=Y € C"[a,b] for n € {1,2}, then we have:
b
b—a
[ @ = "0 1 @)+ £ (e

< B, [[f™]] (5.65)

oo’

where By and By are defined by (5.59) and

17 = sup I (B)] < .

Remark 5.11 For a; = 242 and ap = “£2 n =2 in (5.57) and (5.59), then we

b
b—a 3a+0b a—+ 3b
from=5t 1 (557) <0 ()
<1y (b—a) (5.66)
= 06 2 a) , .
which is a more generalized form of the two-point quadrature formula presented in

([55], Corollary 6).

get:
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5.3 Conclusion

By the use of Ostrowski type inequalities, we, in this chapter, have presented esti-
mates for Newton-Cotes formulae.

In Section 5.1, a four-point generalized optimal quadrature rule is obtained

3

5 and Lobatto type quadrature

which gives better error bound than the Simpson’s
rules. The function involved is twice differentiable with bounded second derivative.

In Section 5.2, we have taken into account construction of one-point and two-
point Newton-Cotes formulae of open and closed type for functions of bounded
variations and for Lipschitzian functions. The inequalities are obtained for first and
twice differentiable mappings. These inequalities generalize the results obtained in
[50] and [55]. Remark 5.9 and 5.11 reveal this fact.

Later, in chapter 8, it has also been shown that such specially derived quadrature

rules in the sense of can be applied to obtain iterative algorithms for solving non-

linear equations.
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Chapter 6

Weighted Ostrowski inequality for a con-

tinuous random variable

In this chapter, motivated and inspired by the results of ([36], Chapter 7), [10]
and [33] (see also[8], Chapter 1), we have obtained some weighted Ostrowski type

inequalities for a continuous random variable.

6.1 Weighted Ostrowski type inequality for a random vari-
able whose probability density function belongs to L..[a, D]

6.1.1 Introduction

The main aim of this section is to develop weighted Ostrowski type inequality for
continuous random variables whose probability density functions are in Lo [a, b].

An application for a beta random variable is also given.

6.1.2 Main Results

Let the weight w : [a,b] — [0,00) be non-negative, integrable and

b

/w(t)dt<oo.

The domain of w is finite and w may vanish at boundary points. We denote the

zero moment as

m(a,b) = /b w(t)dt.
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We also know that expectation of any function ¢ (X) of the random variable X is

given by
b

E[6(X)] = / b (1) dF (1). (6.1)

a

Taking ¢ (X) = [w(X)dX as taken in [85], then from (6.1) and integration by

Ey = E|:/w(X)dX]

parts, we have:

b
= W) - / w(t) F () dt, (6.2)

where

Also, we define

M,, = /m(a,t) dt, Mx7b:/m(a,t) dt,

M;x—/mtbdtM /mtb

Ma,b = Ma,m+Mx,b:/m CL,t dtv

M,, = M, ,+M,,= / m (t,b) dt

ab—l—Mb—/mab (6.3)
Then the following theorem holds:

Theorem 6.1 Let X be a continuous random variable with probability density func-
tion f : [a,b] C R — Ry and with the cumulative distribution function F(x) =

Pr(X < z). If f € Lo [a,b] and || f ||, == sup |f (t)] < oo, then we have the
te(a,b)
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1equality:

W (b) — Ew
m (a,b)

[
m (a,b)

Pr(X <) — (M + M;’b) , (6.4)

E

or equivalently,

'1_pr<xzx>_W b>—Ew‘ < Il

m (a,b) m (a,b) (Ma’x * Méb) ’

where

as defined above for all x € [a,b).
Proof. Consider the kernel p, : [a, b]2 — R (see [36], Chapter 7) given by:

ftw(u)du, if t€la,z]
Pw (xat) = %
{w(u)du, if te (0]

b
Then, the Riemann-Stieltjes integral [ p, (x,t)dF (t) exists for any = € [a,b] and
the following identity holds:

b b
/pw z,t)dF (t) = m(a,b) F (x) — /w(t)F(t) dt. (6.5)

Using (6.2) and (6.5), we get,
b

m (a,b) F () + Ew — W (b) = / P (@, £) dF (1) (6.6)

As shown in [10], if p : [a,b] — R is Riemann integrable on [a,b] and v : [a,b] — R
is L-Lipschitzian (with Lipschitz constant L), then

/p(x) dv (z)| < L/\p ()| dz. (6.7)

Since, for any z,y € [a, b|
Yy
IF(2) — F(y)| < /f(t) at| < 1l 1z — yl.
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Then, by using (6.7), we obtain:

b

/ pu (@, 1) dF (1)

a

b
< e [ Ipu o0 at

T t b

— Wl | [ | [wtau dt+/ /w i

— 1l | [mt@nar+ [

implies
b

[ poetyaF @) < 191 (Mos+0L) (6.9

where
t

m(a,t) = / w (u) du, M,, = /b m (a,t) dt,

a

b

m (t,b) :/ (u) du, M., /mtb

t

From (6.6) and (6.8), we have (6.4) and the second inequality follows directly from
(6.4) by using
PriX<z)=1-Pr(X >uzx).

Remark 6.1 Choosingw (t) = 1 in (6.4), we have the classical Ostrowski inequality
for random variables whose probability density function belongs to Lo [a,b]. In this

case, we have

and

t b b
My, + M, = / /du dt+/(/du dt
a T t




Thus, (6.4) reduces to classical Ostrowski inequality

_ o — o)’
Pr(x <) - 25200 < E n <(b_—)] 6=l

for all x € [a,b).
Corollary 6.1 Under the assumptions of Theorem 6.1, we have the double inequal-

ity:
W (0) = My If g < Bw < W () —m(a,b) + Map || f - (6.9)

Proof. Choosing = = a in (6.4), we obtain:
W (b) = Bw| < Moy | fll.o

This implies
W (b) = Bw < My | f ]l

or

W (b) — M, | fllo < Ew,

which proves left side of the inequality in (6.9).

Similarly, choosing x = b in (6.4), we have:

‘1_ W b)—EW‘ _ sl

m (a,b) ~ m(a,b) ab?
which gives

m(a,b) =W (b) + Ew < Map || f]l o -

or

Ew < W (b) —m(a;b) + Moy || fll »

which proves right side of the inequality (6.9). m
Remark 6.2 Choosing w (t) =1 in (6.9) gives us the inequality
1 2 1 2
bt 0P fll < EX) <at L (b—aP|f]..

which was proved in [10] as Corollary 2.2.
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Remark 6.3 Let us define

It can be easily seen that

implies

which further implies
b b

/F; (t)dt:/w(t)f(t)dt.

a a

Now since F,, (a) = 0. We, therefore have:

F(b) = /w<t)f(t)dt

a

IN

tela,b]

sup |f(t)|/w(t) dt
= 1l (@),

implies
F, (b)
m (a,b)

We assume that || f||, is not so large, say

[flloe =

2F, (b)

e < 055

(6.10)
then

Ew

v

W (b) = Moy 1 £l
2F, (b) _
m(a,b) Y

v

W (b) -

154



and

s
S
IA

W (b) —m (a,b) + Map || /]l
2F, (b)
m(a,b) “"

IN

W (b) —m(a,b) +

Thus

2F, (b)

M , < Ew <W(b) — b
ab = W—W() m(a’)+m(a,b)

Map. (6.11)
We observe that the inequality

W (b) = Mo |1 flloe < Ew < W (6) = m (a,0) + Map || fl -
is sharper than the inequality (6.11), when (6.10) holds.

Remark 6.4 Choosing w (t) =1 in (6.11) gives us the inequalities (2.8) and (2.9)
in [10].

Corollary 6.2 With the above assumptions, we have:

—M@OUM—”“Z@T“ngW_WWwam
< Moy (111 - 9. 612
Also
= RO <y (11 - ) oy
when
M’ (a,b) = M (a,b). (6.14)

Proof. From the inequality (6.9), we have

W (b) - W@ il < B W(a)—QFW(b)
< O a) 4 Mo e
implies
W) -Wla)

) i a,b) + My |If]
W (b) — W (a)

VAN

o0

IN
|

+ Ma,b ||f||oo )



b
as m(a,b) = [w(u)du =W (b) — W (a).
This givesa(6.12). Moreover, if (6.14) holds then

By - LIV O

< Moy (11, - D)

2Mey

This corollary helps in finding a sufficient condition in terms of || f|_, for the

expectation Ey to be close to the point w [ ]

Corollary 6.3 With the above assumptions, we have:

/ (b)_a_+b a"—b
M SRR CARN T Ry 5 S
w@mm“Mﬂ < By -

SMMOmu—Kﬁtf§> (6.15)

My

m (a,b) =2W (b) — (a+ D).

Also, if (6.14) holds then

a+b W (b) — <t
— < - . 1
2 QI_M@@MM i (6.16)

Proof. From the inequality (6.9), we have

a+b ’ a+b
W (B~ M I < B
+b
<W(0) = “5= = m(@,b) + Muy /] .
implies
’ W()_Q_H) CL"—b
_Ma,b <Hf”oo - M/ 2 S EW - 2
a,b
W (b) — %2 —m (a,b)
SAQOu+ —
W (b) — 4*
< Map <Hf”oo_M—b2 ,

if m(a,b) =2W (b) — (a + b).
This further gives

a+b W (b) — et
By — < M, AR
EEE ﬁ@mm g

)
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when

!
Map = M,

This corollary helps in finding a condition in terms of ||f||, for the expectation

Eyw to be close to the midpoint % of the interval [a,b]. =

Remark 6.5 If we choose w(t) =1 in (6.13) or (6.16), then we get the inequality
(2.10) in [10].

Remark 6.6 It may be observed that for € > 0, if

5 W(b)—“T*b—m(a,b)

£l < 57 - e
then
By — ath <e¢
2
Moreover, for e > 0
By a+b —
2
if ,
i< 5+ 05

!
M,,

Obuiously the two definitions of || f||, coincides when

!
M., = M.y,

m(a,b) = 2W (b) — (a+10),

and therefore with these conditions

Corollary 6.4 Let X and f be defined as above, then

Pr (X< a+b> W) —W(a)
-2 2m (a, b)
1l / 1 W (a) + W (b)
= n(a,b) (Masgs +Mogs,) + m (a,b) ‘EW - 2 ‘
1/l / W(b) =W (a)
< oy (Mast Moo+ M) = =0 em s, (6.17)

if (6.14) holds.
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Proof. If we choose z = %2 in (2.4), then we have

at+b\ W(EO)-Ew|_ |/l /
Pri X < — < X\ M s+ M, .
r( - 2 > m (a,b) ‘ ~— m(a,b) ( o %bi’)

Thus, the cited inequality can be written as:

a+b, W(b)—W(a) 1 W (a) + W ()
‘PY(X =) 2m(a,b) - m (a, b) (EW_ 2 )'
1/ 1l ,
= n(a,b) (Mib + M%b,b) : (6.18)
Using triangular inequality,
O
_ atb WOH-W() 1 W (a) + Wb
= Pr(X < 5 ) — 2m(a.b) () (Ew — 5 )
1 W (a) + W(b)
Tt W 2 )‘
<[P < S - e B
1 Wi(a) + W (b)
M T R m—

Using (6.18) in the above inequality, we get the required inequality:
a+b,  W(b)—W(a)

Pr(X < —

X s 2 ) 2m(a,b)

1/l / 1 W(a) + W(b
< (M .« M — |y — —————
— m(a,b) ( aogt T %b) + m(a,b) | 2

1/l / W(b) =W (a)
< - ( M, M . My, — —————=
- mf(a, b)( ab T Mo epp ¥+ %7”) 2m(a,b) '

if (6.14) holds. m
Remark 6.7 A similar result holds for Pr(X > “tb).

Remark 6.8 If we assume that f is continuous on (a,b), then F is differentiable

on (a,b) and we get in view of (6.4)-(6.6), a weighted Ostowski inequality (see [36],
Chapter 7):

for all x € |a, b].
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6.1.3 Applications for a Beta Random Variable

A beta random variable X with parameter (p, ¢) has the probability density function

P 1 —z)rt

flxsp,q) = T 0<z<1, (6.19)
where
1
Q= {(p7 Q) D, q 2 1} and ﬂ(p’ q) — /tp_l(l _ t)q_ldt7
0
and X
Ewp = m{ (/w(t)dt) (1 —t)7 Lt (6.20)
We observe that
. B P71 — x)q_l]
1f(@;p, 0| = sup { 50 :

Assume that p,q > 1,then we find that

df (z;p,q)  aP2(1 — )72
de B(p.q)

[~(p+q—2)z+(p—-1)].

We further observe that for p,q > 1, % = 0 if and only if z = 2o = L. We,

therefore, have % > 0 on (0, xy) and % < 0 on (zg,1). Thus, we have:

1f(@p Dl = [1f(m0;p, 0l
B (S TATEIS)

B(p,q) | (p+q—2)pta2

Proposition 6.1 Let w and F' be as in Theorem 6.1 and X be a random variable

with parameters (p,q),p,q > 1. Then, we have the inequalities:

Pr(X <) — VW) = Fws
m(0,1)
1 (p—1)P(qg—1)7 ,
< M M
N 6(p7 Q)m(O, 1) (p +q— 2)P+Q*2 |: 0,z + w,l} )
or equivalently,
| = Pr(X > 2)— L) = Bws
m(0,1)
1 (p—1)Pt(g—1)1"! ,
< M Y
~ Blp,gm(0,1) (p+q—2)pta2 [ 0 T x,l:| ;
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for all x € [0, 1], where Ewp is given by (6.20) and

My, = / /w(u)du dt,
0o \o
1 /1

M;C’l = / /w(u)du dt,
T t

and

In particular, we have:

1 1) —F
pr(x < 1y W) = Fws
2 m(0,1)
1 (p—1)PY(qg— 1)1 ,
< M
= Bp,q)m(0,1) (p+q—2)pte2 [ 01+ 5’1] :
or equivalently,
1 1)—F
1-Pr(X ><-)— W) - Bws
2 m(0,1)
1 (p— 1)~ (g — 1) ,
= My, + M, ]
— Blp,gm(0,1) (p+q—2)pta2 [ 04 T M1 1]

6.2 Weighted Ostrowski type inequality for a random vari-
able whose probability density function belongs to L,[a, 0],

p>1

6.2.1 Introduction

The main aim of this section is to develop weighted Ostrowski type inequality for
random variables whose probability density functions are in L, [a,b],p > 1. An

application for a beta random variable is also given.

6.2.2 Main Results

Let X be a continuous random variable with probability density function f : [a,b] C

R — R, and with cumulative distribution function F'(z) = Pr(X < z). Also, let

f € Ly[a,b]. The weighted norm in Ly(a,b) is defined as [/ ||, = (f lf ()P dt)
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Let the weight w : [a,b] — [0,00) be as defined in Section 6.1.2 and let us define

mg(a,b) = (/w (t)th> : (6.21)

The expectation of any function ¢ (X) of the random variable X is defined by (6.1).

Also, we define

x b
Qun (2) = / my (6, 2) dt, Quy (2) = / m, (2, 1) dt,
b

Qup (1) = Qua () +Quy(x) = / im, (¢, )| dt. (6.22)

a

Then, the following inequality for random variable holds:

Theorem 6.2 Let X, w, f and F be as defined above. Then, if f € L,[a,b],p > 1,

then we have the inequality:

W(b) - E
Pr(X <) — W[))W’
mla,b) e O N1, [Qa (2) 4+ Qup (2)] (6.23)

where

Qua (z) = / my (4, ) dt.
b

Qup (v) = /mq(x,t)dt,

T

for all x € [a,b] and%+%:1.

Proof. Now
Fla) = [l fudu F(t) = [w( f(u)du
This gives ' '
F(x)—F(t) = /w(u)f(u)du - /w(u)f(u)du
. /w(u)f(u)du + /w(u)f(u)du
— - [u@dn



implies
t

F(z) - F(t) = /w<u>f<u>du

< / lw ()] du / @) du
< / o ()" du| (£, (6.24)

for all z € [a,b],p > 1, 11)—1— % =1.
Now using (6.24), we obtain:

[F(x) - £, -

0 /t|w<u>|qczu E

Integrating with respect to ¢ over [a, b], we have:

7IF($) -

< IIpr]w(t) /tIW(U)quuq

= 11, [/ (/w qdu) dt+/ (/w m) dt]

a

dt

= 17, / (/w qdu) dt+/ (/tm)qdu);dt]
171, tggp;w / (/ w (u qczu) it sup / (/ o (u qdu) dt]

IA

162



IN

tela,x] te(z,b]

x 7(]w<u)qdu>th+7 (/tw(u)qdu>th

= maxw () [ f], |:/mq(t,a:)dt+/mq(x,t)dt]

max < sup w(t), sup W@)) 1£1l,

tela,b]
x

= max e () 11, Qo (2) + Qs (@) (6.25)

where (), (v) and Q. () are defined by (6.22).

Consider

This implies

or

m(a, b) / |F(2) = F(t)] w(t)dt. (6.26)

Using (6.2) and (6.25) in (6.26), we get:

W (b) — EW‘
m(a, b)

max w () || f|l, [Qax (2) + Qap (2)]

m(a,b) t€la,b]

Pr(X <uz)-—

and the theorem is completely proved. m
Remark 6.9 A similar inequality can be deduced for Pr(X > x).

Corollary 6.5 Under the above assumptions, we have the double inequality:

W(b) — maxw (t) [| f]|, Qap (a) < Ew

te(a,b]
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< W(b) —m(a,b) + maXW( IS, Qas (0) (6.27)

tela,b

where

Qap (@) = /mq (a,t)dt

b
Qap () = /mq (t,b)dt

Proof. Choose x = a in (6.23), to get:
W) - Ew < maxX;e(q, W (7)
m(a,b)

1f1l, Qae (@) -

This gives
W(b) = maxw () || fll, Qap (a) < Bw,

tela,b

which is equivalent to the first inequality in (2.9).
Also, by choosing = = b in (6.23), we get:

W) - Bw| _ s
'1 - m(a,b) ’ = m(a,b) ||pr Qap (b),
or .
m(a,b) — W (b) + Ew gél[%]w
‘ m(a,b) ‘ = m(a,b) [ f1l, Qap (D).
This gives

Ew < W(b) —m(a, b)+t€m[aXW()||f|| Qap (),

which is the right hand side of the inequality (6.27). =

Remark 6.10 Choosing w(t) = 1, in (6.27) gives us the inequality which was
proved in [33]:

4 1 q 1
—1Hpr(b—a)q SE(X)SG+H—1||f|’p(b—a>q .

Remark 6.11 Let us define

It can be easily seen that

b b .
Fw(b)Z/W(t)f(t)dtS (/W(t)th) [naime

a
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which gives

Fu(b)
£, = (@)’
If we assume that | f||, is not too large, i.e., say
qg+1 F,(b)
151, < Tt (6:28)
then
Ew 2 W(b) - maxw () I/, Qs (@)
max w (t) | F,(b)
g+l (te[a,b] )
> WOy @@,
and
Bw < W(b) —m(a,b) + max w () |f, Qs (b)
Jo1 (o) R0)
< W(b)—m(a,b)+ . mo(a,0) Qap (D) -
Thus,
o () 20
w (b) - q mq(a, b) Qa,b (a) S EW
max w (t)> F,(b)
<W(b) = m (a,) + L (tq“’” Qus (b) . (6.29)

q my(a,b)
We observe that the inequality

Wb) = maxw (1) ||, Qas (a)

IN

Ew

< W(b) = mla,b) + maxw (#) | £, Qas (0),

is sharper than the inequality (6.29), when (6.28) holds.

Remark 6.12 Choosing w (t) = 1, in (6.28) gives us the condition mentioned in

[33].
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Corollary 6.6 Under the above assumptions, we have the inequality:

_ <%§p§]w (t)) Qap (a) | [IfIl, = ve-Ta
; 2 (trél[%(] w (t)) Qap (a)
< By -— W(a);W(w

W (b) = W (a)

< () Qus ) | 171, - (6:30)
: 2 (gg{g}b(] w (t)) Qap (a)
Moreover,
‘EW_ W(a)—i—W(b)‘
< maxes (6 Qus (@) |11, - — O )
“ 2 (trél[mb(] w (t)) Qap (a)
provided that
Q(z,b (CL) = Qa,b <b> . (632)

Proof. From inequality (6.27), we have:

Wi(b) —W
w — l}g[aa’}b{}w (t) ”f“p Qa,b (a)

W (a) + W(b)

- m<a7 b) + ?gl[gﬁf]w (t) Hpr Qa,b (b) )

implies

— <tr£[3%(]w (t)) Qa,b (a) Hpr - ( W(b) — 3/ <a)
s 2 | max w (t) Qa,b (CL)
t€[a,b]
< W@ W)
< <tr3a>éw (t)) Qap (0) | 111, — v - ’
a, 2 (trél[i}lf] w (t)) Qa,b (b>
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since,

Also,
‘mwyw@+W@
2
() =W (a)
< (g}g{g}l){]w (t)) Qap (a) | I, — : <£;}g]bw (t)‘/;/@a’b " :

if (6.32) holds. m

This corollary helps in finding a condition in terms of || f| , for the expectation

W(a)+W

Ew (X) to be close to the point and this completes the proof.

Corollary 6.7 With the above assumptions, we have:

W (b) — o
- (a0 Quuto) | 11, -
, <t1£[3}b(]w (t)) Qa,b (CL)
< EW_a—Ql—b
W (b) — =3
< (tem[aﬁcu(t)) Qus®) | 11— O (g3
a, <tré1[3)b(]w(t) me (b)

m (a,b) =2W (b) — (a + ).

Also, if (6.32) holds then

a-+b
et

W) -5 . (6.34)

(1)) Qun

te(a,b]

te[a,b]

< | maxw(t) ) Qup(a) | I£]l, -
et

Proof. From the inequality (6.27), we have

2 e (011, Qus (0) < B — 2

W (b) -

b
gW(b)—a;

= m(a.8) + maxc (1) 1, Qus 8)
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implies

- o (1) Qus ) { 171, - gg{%ﬂ; @ﬁ@
- EW_a—2|—b
< max () Qo () ||f||p+W§;%ﬁ—"Z(<§)ab>
< o () Qs ®) [ 1], - — D=

t€fa,b] P tem{a:;c]w(t) Qap (D) |

if m (a,b) = 2W (b) — (a + b). This further gives
< max (1) Qs o) [ 151, ~

te(a,b] P tern[a)b(} w (t) Qa b ( ) 7

b
ot

2

when
Qa,b (a> = Qa,b (b> :

This corollary helps in finding a sufficient condition in terms of || f]| ,, for the expec-

tation Ey to be close to the midpoint %t of the interval [a,b]. m

Remark 6.13 If we choose w (t) = 1 in (6.31) and (6.34), then we get the inequal-
ity proved in [33].

Remark 6.14 [t may be observed that for ¢ > 0, if

171, < —— T AL
P~ max w (t) Qap () max w (t) Qap (b)
tela,b] te[a,b]
then
By — a+b <
2
Moreover, for e >0
a-+b
EW - 2 Z —-g,
if
141, < . LA
P~ max w(t) Qup(a)  maxw (t) Qup(a)
te(a,b] t€(a,b]
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Obviously the two definitions of | f||, coincides when

Qa,b (Cl) = Qa,b (b) 5
m(a,b) = 2W (b) — (a+),

and therefore with these conditions

a+b

Corollary 6.8 Let X and f be defined as above, then

a+b W (b) — W (a)
2 >_ 2m (a, b)

‘pr (<

11, a+b 1 W(a)+ W(b
m (a,b) relad) (1) Qas < 2 > i m(a,b) ‘EW a 2 ‘

LI a+h Y0 - ()
m(a,b) tefab] (t) <Qa’b ( 2 ) + Qs ( )> om(a,b) (6.35)

provided that (6.32) holds.

Proof. If we choose z = “TH’ in (6.23), then we have

ey B

a+b a-+b
t a+b a+b
m(a,m%”“(@%?( ; )+c22,b( 2 ))

“pr a+b
= 1), .
m(a,bﬁi‘?&”“@’b( 2 )

Thus, the cited inequality can be written as:

a+b. W) —W(a) 1 W (a) + W (b)
Pr(X < 5 ) — am(ab) +m<a7b) <Ew(X)— 5 )‘
1£1l, a+b
< s @.b) trél[i)b(}w () Qan < 5 ) ) (6.36)

Using triangular inequality,

b < 254 WO 0
a+b,  W(b)—W(a) 1 W (a)+W(b
= |PrX s 2 )= 2m(a,b) + m(a,b) (Bw (X) - 2 )
1 _ Wia)+W(b)



a+b,. W(b)—W(a) 1 W (a) + W(b

= ‘Pr(X = 2 ) - 2m(a,b) * m(a,b) (Ew (X) - 2 )

Using (6.36) in the above inequality, we get the required inequality:
a—i—b) W(b) — W (a)
2 2m(a,b)

(Al a+b 1 W (a) + W (b
m (a,b) trél[i}lf]w () Qo ( 2 ) * m(a,b) ’EW (X) = 2

a0 (0 (57) raww) - S

if (6.32) holds. m

‘Pr(X <

Remark 6.15 A similar result also holds for Pr (X > “T*b) and the details are omit-
ted.
6.2.3 Application for a Beta Random Variable

A beta random variable X with parameter (s,t) has the probability density function

l.sfl(l _ x)tfl .

where

Q= {(s,t):s,t>1} and [(s,t) = /x81(1 — )" da.

0
We observe that for p > 1,

3=

1
: 1 s—1 t—1
I#@s.0l, = 30 /xm (1 — 2)P0-D
0
1
1 1 ?
— xp(sfl)+fl(1 _ x)p(t71)+171dm
al/
Blsit) \ J
1 1
= B0 [B(p(s = 1)+ 1Lp(t—1)+1)]7, (6.37)
provided p(s—1)+1, p(t—1)+1 > 0, namely s > 1—§ and ¢t > 1—217. Moreover,
1
1 s—1 t—1
Ewp = m w(x)dz | z°7 (1 — z)" dz. (6.38)
"%

The following proposition holds:
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Proposition 6.2 Letw and F' be as defined in Theorem 6.2 and X be a beta random

variable with parameters (s,t), s > 1 — %,t >1— 1%. Then, we have the inequalities:

Pr(X <z)— W) - Bws
m(0,1)
t
i

<

m(0,1) B(s,t)
X B (p(s — 1) + 1,p(t = 1) + 1)]7 Qo (x) + Quy (2)],

for all x € [0,1], where Ewp is defined by (6.38) and
Qo () = /mq (t,z)dt,
0
1

Qua (z) = / my (1) dt,

and

In particular, we have:

e Mt

< B e o () 0 ()]

where W (1) and Ewp are defined as above and

N

6.3 Conclusion

In this chapter, some weighted Ostrowski type inequalities for a random variable
have been obtained whose probability density functions belong to {L, [a,b], p = oo,
p > 1}. The inequalities obtained in this chapter recapture the inequalities of

Ostrowski type for random variables given in [10] and [33]. Moreover, it may also
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be noted that these inequalities are also applicable to obtain expectations of random
variables defined on infinite intervals in contrast to the previous results of this type.

The inequalities for generalized beta random variables are also presented.
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Chapter 7

Applications of Ostrowski type inequali-

ties for probability density functions

7.1 A generalized Ostrowski type inequality for a random

variable whose probability density function belongs to

Lyla, b]

We establish here an inequality of Ostrowski type for a continuous random variable
whose probability density function belongs to Ly |[a,b], in terms of the cumulative
distribution function and expectation. The inequality is then applied to generalized

beta random variable.

7.1.1 Introduction

In [10], N. S. Barnett and S. S. Dragomir established the following version of Os-

trowski type inequality for cumulative and probability distribution functions.

Theorem 7.1 Let X be a continuous random variable with probability density func-
tion f :[a,b] C R — Ry and with cumulative distribution function F(x) = Pr(X <

x). If f € Ly |a,b] and|| f = sup |f (t)| < oo, then we have the inequality:
). If f [a, oo b , quality

tela,b
Pr(X <ux)— #’
1 (:1:— “Tb 2
< |3t oo ] =) IS (.1)




for all x € [a,b].

FEquivalently,
E(X)—-a
Pr(X > z)—
(X 2 z) b—a
2
1, (o=
-4+ =21 (b— . 2
< |3+ =% ]( @) 1f e (72)

The constant % in (7.1) and (7.2) is sharp.

In the following subsection, we establish a generalized Ostrowski type inequality
for cumulative distribution function and expectation of a random variable. Appli-

cations for the generalized beta distribution are also given.

7.1.2 Main Results

The following theorem holds.

Theorem 7.2 Let X and F' be as defined above. Let f € Lo, [a,b] and put || f]|, =

sup f (t) < co.Then, we have the inequality:
te[a,b]

‘O—MPMY<@ g—b;fgw
1 ) r— b’
< N”“"”“( — ) b-dlfle,  (73)
or equivalently,
kl—MPﬂX>z) Z Eg?;a
< | e -np) (“””[_?) G-alfle. (4

for all x € [a+ h%5% b — h%2] and h € [0,1].

Proof. As defined in [34], consider the kernel p : [a,b]> — R given by
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b
Then, the Riemann-Stieltjes integral [ p (z,t) dF (t) exists for any z € [a+h%% b—
h%4] and the following identity holds:

b T

Jotaarty = J[i- (o152 arto+ [ fi- (o-1252)] arts

a a

T

_ {t_ <a—|—hb;a)] F(t) | —/F(t)dt

Further, we have

implies

/ Ft)dt = b— E(X). (7.6)

a

Using (7.5) and (7.6), we get the identity

b

/p(x,t)dF(t) =({b—-a) [(1 — h)F(z) + g} + E(X) —0b. (7.7)

a

As shown in [10], if p : [a,8]* — R is Riemann integrable on [a,b] and v : [a,b] — R

is L-Lipschitzian (Lipschitzian with the constant L), then we have

b b
/ p(x)dv (x)| < L / Ip (&) da (7.8)
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Applying (7.8) for the mapping p (z,.) and the function F (.), we get

/abp(x,t)dF(t)'

b
< e [ o)l

— il /t—( )‘d“/'t‘(”‘ e

a+
— Wl | [ (ornt G t)aes / (1 (arnt50) )

L a a_;,_hb*J
b—h=>5% b
b—a b—a
+ b— 5 dt + 5 dt
x b—hbz2
2
. _ 21 2 12 x_aTH)
= M=o |+ 01 h>)+<b_a ,

for all z € [a + h%5%, b — h%52].
Finally, by the identity (7.7) we deduce for all = € [a + hb_T“, b— hb_T“] ,

h b—E(X)
(1—h)F((E)+§—ﬁ‘

a+b

(h2+<1—h>2)+< P— > (b= a) [ fll

|
| =

which proves (7.3).
Also, since

Pr(X<z)=1-Pr(X >uz),

the inequality (7.4) is obtained. m

Remark 7.1 Forh =0 in (7.3) and (7.4), we recapture (7.1) and (7.2). Moreover,

as

B2+ (1—h)?<1, forallhel0,1],

therefore, (7.3) and (7.4) gives better estimates than (7.1) and (7.2).

We now give some corollaries of Theorem 7.2 for the expectations of the variable

X.
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Corollary 7.1 Under the above assumptions, we have the double inequality:

1
b= D (b—a)— 5 & (b—aP |fl,
< E(X)
h 1 )
< ata-a)tyab-of /. (7.9
where
A=h?—h+1, (7.10)
for h €0, 1].
Proof. It is known that
a< E(X)<b.
If x = a in (7.3), we obtain
h b—EX)| 1
S Sl _
5 - <5 ae-alil.

where A is as defined above and

b= T (b—a)— 5 & (b—aP |l
< E(X)
<o-To—ayrlap-a?im (7.11)

The left hand estimate of the inequality (7.11) is equivalent to first inequality in
(7.9).
Also, if = b in (7.3)

E(X)—a h| 1
-V 7 <z _
\b_a J_QA@ I e

which reduces to

h 1
atgb—a)—ga0-a)|fl

< E(X)
h 1 ,
§a+§(b—a)+§A(b—a) I fllo - (7.12)
The right hand side of the inequality (7.12) proves the second inequality of (7.9).
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Remark 7.2 As for the probability density function f associated with random vari-

able X
b
1= [rw
implies
1
> —
e > 5—
If we suppose that f is not too large and
2—h

[flle < Ab—a) (7.13)

where A is defined by (7.10) and h € [0, 1]. Then from the double inequality (7.9) it

can be verified that

h 1
at5(b—a)+5ab—a)|fll.<b

2
and
h 1
b b—a) =58 (0-af|fle>a

when (7.13) holds. It shows that (7.9) gives a much tighter estimate of the expected

value of the random variable X .

Corollary 7.2 Under the above assumptions, we have:

a+b 1 2 ]_—h

- < (b— S .
B0 -5 <50 |81l - 5 (7.14
Proof. From the inequality (7.9),
1 , 1—h

—5(b—a) [A Hf”oo_m]
< E(X)—a;_b

1 ) 1—h
< Z(ph— _ -
< 50-0* |2l - ;=2

which is exactly (7.14).
This corollary helps in finding a condition, in terms of || f||__ , for the expectation

E (X) to be close to the midpoint of the interval, 2. m

Corollary 7.3 Let X and f be as above and € > 0. If

(1—h) 2

Ry (7.15)

Ifllee <
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then

<e¢

'E(X)—a+b'

The following corollary of Theorem 7.2 also holds.

Corollary 7.4 Let X and F be as above, then

‘(1—h)Pr(X§ “"2”)) —%(1—@‘

< i[h%r(l—h)z] (b—a) Hf\!oo+ﬁ‘E<X>‘a;b‘

< (8-3) 0=l z0-n. (7.16)

Proof. If we choose z = %2 in (7.3), then we get

a+b>+h b—E(X)’

2 2 b—a

’(1—h)Pr<X§

<3(s-3) -0l

which may be rewritten in the following form

‘(1—h)Pr<X§ “;b) +g—%+bia (E(X)—G;Lb)'

S%(A—g)w—@umw-

Using the triangular inequality, we get

R R N e COIRE S R CL R |

2
1 a+b
X _
+b—a (X) 2 ‘
1 1 1 a+b
< — _ _ - _
< 3(6-3) 00l 2 o2

< (8-3) 0=l -5 0-n),

which gives the desired result.

A similar inequality holds for

Pr(Xza;_b>.
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Corollary 7.5 Let X and F be as above, then

o0 -]
< 5(6-3) -t
+@—@1%<Xg“;b)_%u_hﬂ. (7.17)

Following the above corollary the proof is obvious and the details are omitted.

Remark 7.3 If we assume that [ is continuous on |a,b], then F is differentiable

on (a,b), and we get

b
u_hﬁww+g—bia/pumt

a+b

(W + (1 - 1)) + (mb_ : ) b-a)lfle.  (79)

NN

Using the identity (7.6), we recapture (7.3) and (7.4) for random variables whose

probability density function are continuous on [a, b].

7.1.3 Applications for Beta Random Variable

If X is a beta random variable with parameters 53 > —1, 8, > —1 and for 8, > 0

and any [3;, the generalized beta random variable
Y = 51 + ﬁQX )

is said to have a generalized beta distribution [51] and the probability density func-

tion of the generalized beta distribution of beta random variable is given as:

-B B3 By +By— Ba
f(x) = 5((:;3+3ﬁ4(+11) gﬁéézﬁm for f; <z <f,+ 5,

0, otherwise

where 3 (I, m) is the beta function with [, m > 0 and is defined as

Bl,m)= [ a1 —2)" " da.
/
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For p, ¢ > 0 and h € [0,1), we choose,

h
Bl = 57
62 - (1_h)a
By = p—1,
By = q— 1L

Then, the probability density function associated with generalized beta random

variable

h
Y=0+0-hX,

takes the form

(=8)" (1h—a)"" h
: > , 5<r<1l—3

flx)= B(p,a)(1—h)PTet (7.19)
0, otherwise.

Now,

-4

E(Y) = / of (2) do
h
2
D h
= (1—-h)—+ —-. 7.20

(1-n) L] (7.20)

We observe that for p < 1
h\P—1 h q—1
T— 3 1-35—2
1f(z:p, )l = sup =2) | 2p+q_2 :
hepah | B(pg) (1—h)
Assume that p,q > 1, then we find that
-2 —2
df (r:p.q) _ (v—3)" (1—3-2)""
dz (1=h)"""" B (p.q)
h
{(p— D+5la=-p)~ (p+q—2)x} :
We further observe that for p,q > 1, % = (0 if and only if z = 2y = %
We therefore have % >0 on (2, zy) and % < 0 on (w9, 1 — ). Consequently, we
see that
1 (@0l = [1f(20; 0 0l
1 — 1P (g — 1)

(1="h)B(p,q) | (p+q—2)p+e?
Then, by Theorem 7.2, we may state the following.
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Proposition 7.1 Let X be a beta random variable with parameters (p,q). Then,

for generalized beta random variable:
h
Y = B) +(1—-h)X,

we have the inequality

Pr(Y <) — pLﬂ]
(p—=1)""q - 1)"1]

(1—h)?B(p,q) { (p+q—2)pta=2

E (B + (1 h)?) + (a: - %) ] | (7.22)

<

for all x € [%,1—%].

In particular,

1 oy [(P— 1P (g =17
(R + (1= h)?) { e ==k (7.23)
7.2 A generalized Ostrowski type inequality for a random
variable whose probability density function belongs to

L,la,b], p> 1.

7.2.1 Introduction

In [33], S. S. Dragomir, N. S. Barnett and S. Wang developed Ostrowski’s type in-
equality for a random variable whose probability density function belongs to L,[a, b]
in terms of the cumulative distribution function and expectation. The inequality is

given in the form of the following theorem:

Theorem 7.3 Let X be a continuous random variable with the probability density

function f : [a,b] C R — Ry and with cumulative distribution function F(x) =
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Pr(X <ux). If f € L, [a,b], p> 1, then, we have the inequality:

Pr(Xﬁf)_#'
q 1 r—a o b—x E
< re-or | (522) "+ () ]
< Tl 6- 0 o

for all x € [a,b], where i + % =1.

In [106], we can find the following theorem:

Theorem 7.4 Let f : [a,b] — R be continuous, differentiable on [a,b] and f €
L, (a,b) for some p> 1. Then

b
(b—a) [(l—h)f(x)JrhM] —/f(t)dt
1

() (r )

+(mw)“r

where ¢ = -5, h € [0, 1] and a + h%% <z < b— h%2.

<

p

The main aim of this section is to develop an Ostrowski type inequality for
random variables whose probability density functions are in L, [a, b] based on (7.25).

An application for a generalized beta random variable is also given.

7.2.2 Main Results

The following theorem holds:

Theorem 7.5 Let X and F' be as defined above. Then from Theorem 7.4, we have

+ (b - WT_“))W] E 171, (7.26)



where [ is the probability distribution function associated with the cumulative dis-
tribution function F'.

Equivalently,

1—h)Pr(X < —
(1= W)Pr(X <2+ 5 — 22
1

+(0-o- M)] % 171, (7.27)

\ e

<

2

for all x € [a+ h%5% b — h%2] and h € [0,1].

Proof. Proof is obvious. Hence, the details are omitted. m
We now give some corollaries of the above theorem for the expectations of the

variable X.

Corollary 7.6 Under the above assumptions, we have the double inequality

h 1 1+1
b——=(b—a)— 1 >h b—a !
3 6= = —r s e -0,
< E(X)
S atol-at——a@h OG-0 A, (729
(g +1)

for h € [0,1] and

san=((3) e (-0

Proof. It is known that

If x = a in (7.27), we obtain

h  b-— b—a\s
5520 < () s wm i,

implies

1 1+1
b— 2 (b—a)— A (@ h) (b—a)tt
L e R UL

< E(X)
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h 1
<b-—S(b-a)+ w2 (g h) (b—a) 5 | ], (7:30)
(¢+1)
The left hand estimate of the inequality (7.30) is equivalent to first inequality in

(7.28).
Also, if x = b in (7.27)

E(X)—a h| _(b—a\s
s\Ajzae Mo h

which reduces to

h 1 1
a+ —(b—a)— - ) (b—a)'tTa
300 - s @n -0,
< E(X)
Sat bt —— a@h) b)), (7.31)
(g +1)

The right hand side of the inequality (7.31) proves the second inequality of (7.28).

Remark 7.4 As for the probability density function f associated with the random

variable X ,
1= [rw
implies
1
£l =
" (b—a)
If we suppose that f is not too large and
1
4+ (-4
171, < 1 ( 2)- (7.32)

(b—a)s & (q,h)
Then from the double inequality (7.28) it can be verified that

h 1 1
a+ 5 (b—a)+—— 8 () (b—a) " |, <,
(g+1)e
and
h 1 1+l
b (b—a) — —— & (4,) (0~ )5 £, > a,
(g+1)e

when (7.32) holds. It shows that (7.28) gives a much tighter estimate of the expected

value of the random variable X .
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Corollary 7.7 With the above assumptions, we have:

Pﬂx>—a§byg@—a>kﬁ;ﬁ);a<%mnﬂu—3§ﬁ NS

where A (q,h) is defined by (7.29).

Proof. From the inequality (7.28),

1 1 141
Zbh=a)(1=h)— - Jh)(b—a) e
00 0=h = s - ],
< B -3
< 5B (1—h)+—— & (g,h) (b—a)*F |f],
(g+1)7

which is exactly (7.33). =

This corollary helps in finding a condition, in terms of || f|[,, for the expectation

E (X) to be close to the midpoint of the interval,%t°.

Corollary 7.8 Let X and f be as above and € > 0. If

A-mg+Ds  (g+1)re

£, < ; T (7.34)
’ 2A (q> h) (b_a)g A (Q7h) (b_a’)1+E
then
'E(X)— a+b' <e
2
The following corollary of Theorem 7.5 also holds.
Corollary 7.9 Let X and F be as above, then
b 1
‘(1—h)Pr(X§ ot > ——(1—h)‘
2 2
1
1 L/b—a\«
< = q+1 1— g+1) ¢
< s ea-nmy (25) I,
b—a\s 1
h —=(1-=nh). .
+(550) s @mlsl, - ya-n (7.35)

Proof. If we choose z = %2 in (7.27), then we get

a+b h b—E(X)
_ < A S
’(1 h)Pr(X_ 5 >+2 T ‘
1 1 h—a\u
< Z q+1 R AY A
<3 (- (220 1,
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which may be rewritten in the following form

e S N CERE S|

L (b—a\d
(hq+1+(1—h)q+1)q (Q+‘1‘) ||f||p.

<

N | —

Using the triangular inequality, we get

ame(x <) bt (o0 -1 -k (o -2

gives the desired result.

A similar inequality holds for
Pr (X > 2 ; b) .

Moreover, the following applications of Theorem 7.5 hold:

7.2.3 Applications for Generalized Beta Random Variable

If X be as in Section 7.1.3, then by using (7.19), we have:

1 1
171, = - Br(p(s—1)+1p(t—-1)+1), (7.36)
(1—=n) 7B (s1)
provided
1
s > 1——
p
1
t > 1——
p

for p > 1. Then, by Theorem 7.5, we may state the following.

Proposition 7.2 Let X be a beta random variable with parameters (s,t). Then,

for generalized beta random variable:
h
Y = 3 +(1—-h)X,
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we have the inequality

t
Pr(Y <uz)-— s—i—t‘
< L <2<%>Q*1+<w—%>q“+<1—w—%>q“>qx
(=) B (s, 1) g+1
Br(p(s—1)+1,pt—1)+1), (7.37)

for all x € [%,1—%].

In particular,

. 1 (hq+1 +(1- h)q“);
T 21— R (s t) q+1

xBr(p(s—1)+1,p(t—1)+1). (7.38)

Remark 7.5 For h =0 in (7.37), we have the inequality

Pr(X <uz)-— t‘
s+t
1
o+l (1= )\ Br D)4 1pt—1)+1
q+1 B (s,t)
for all x € [0,1], and particularly,
Pr(Xgl)— t ‘
2 s+t
1 v D+l p(t—1)+1

2(q+ 1) B (s,1)
It is interesting to compare these two inequalities with the results of Proposition

3.1 in [33]. Actually, we, in here, have sharpened and improved the previous results.

7.3 Conclusion

In this chapter, Ostrowski type inequalities are applied to obtain various tight
bounds for the random variables defined on a finite interval whose probability den-
sity functions belong to {L, [a,b] : p = 0o, p > 1}. Moreover, as it has been shown

in Remark 7.2 and 7.4 that some tighter estimates of the expectation of a random
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variable have been obtained. The inequalities obtained are then applied to a gen-
eralized beta random variable to get some new and generalized estimates in this
context. Moreover, Remark 7.5 also reflects that we have improved some previous

inequalities of [33] for a beta random variable.
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Chapter 8

Applications of Ostrowski type inequali-

ties to iterative methods

Let us consider the equation
f(z) =0, (8.1)

where f is a real valued univariate non-linear function.

Locating zeros of such functions has been given much attention from several
decades due to its importance in applied sciences. Newton’s method is the most
widely used quadratically convergent iterative method in solving such problems;
yet in the recent past many other efficient iterative methods for solving non-linear
equations have appeared in the literature by the use of Taylor’s series, interpolating
polynomials, decomposition techniques and quadrature formulae. The books and
research papers [14, 6, 25| provide an extensive amount of literature in the context
of Newton’s method, its variants and modifications.

The connection of quadrature formulae and iterative methods has already been
established by S. Weerakoon and T. G. I. Fernando in [105] by using the indefinite
integral representation of Newton’s method [26] to obtain quadrature based iterative
methods. The trend continued with the publication of the papers by G. Nedzhibov
[67], V. I. Hasanov et al. [48] and M. Frontini and E. Sormani [43, 44]. However,
this domain is addressed only for classical quadrature rules e.g., trapezoid, mid-
point, Simpson’s, etc. N. Ujevi¢ in [102, 103], however, adopted a quite different
approach by using specially derived quadrature rule, infact the equivalence of two
quadrature rules to re-establish this connection and to obtain quadrature based

iterative predictor-corrector type methods for solving non-linear equations.
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The applications of mathematical inequalities, particularly inequalities of Ostrowski-

Griiss and Cebysev type have already been explored by S. S. Dragomir, N. S. Bar-
nett, P. Cerone, Th. M. Rassias and S. Wang, etc., in Numerical integration, Special
means and Probability theory, see e.g., [8, 36, 39, 40]. We, however, by using the
approach of S. Weerakoon and T. G. I. Fernando [105] give some new applications of
such inequalities to obtain iterative methods for solving non-linear equations. We,
thus, establish the fact that the specially derived quadrature rules developed in the

sense of inequalities may be applied to develop many other iterative methods.

8.1 A generalized family of quadrature based iterative meth-

ods

8.1.1 Introduction

In this section, we present a family of iterative methods for solving non-linear equa-
tions as an application of integral inequalities. Thus, we give a new application of
such inequalities other than their natural applications in Numerical integration and
Special means. Moreover, it is shown that the family of two-step iterative meth-
ods thus established has third-order convergence and it recaptures many previously

presented quadrature based iterative methods.

8.1.2 A generalized family of two-step Iterative methods

Consider the following family of quadrature rules derived in the sense of inequalities

in Section 3.4:

Theorem 8.1 Let f: I — R, where I C R s an interval, be mapping differentiable
in the interior Int I of I, and let a,b € Int I, a < b. If there exists some constants

v, € R, such that v < f (t) < T,V t € [a,b] and f € Ly (a,b), then we have:

=) [ = (2= 252 £+ n OO L o

< % (1—h%) (b—a)(S—7) (8:2)
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and

2
1 2
<S(1-1) (b —a)r ) (53)
where S = f(bg:a(a), z € [a+ h¥%5% b — h’5%] and h € [0,1].

Moreover, in Section 3.1, we have derived the following inequality:

Theorem 8.2 Let f : [a,b] — R be an absolutely continuous function whose first

derivative f' € Ly (a,b). Then, we have the inequality:

(1—h) {f(x)—W(x—aT—M)] +hf(a);rf(b)—bia/bf(t)dt

1
2

X

IA

0= (g2 _gp 1)+ n(1—n) <x—“+b)2

12 2
- (=]
1

< 5@T=7) [% (3h* =3h+1) +h(1—h) (x_a+b)2

b—a

if v < f (t) <T almost everywhere t on [a,b], (8.4)

forallz € [a+h%5% b—h2] and h € [0,1].

Remark 8.1 It may be noted that for x = “* and for h € [0,1] the left hand sides
of (2.1), (2.2) and (2.3) give the following family of quadrature rule:

/f — (b—a) {(1—h)f(a;b)+hf(a);f(b)]+R(f), (8.5)

which is a combination of mid-point and trapezoid rule.

We proceed with the indefinite integral representation of Newton’s method [26]:

f@ﬁ#@w+/f®ﬁ- (3.6)
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Now approximating the integral in (8.6) with the quadrature rule (8.5), we obtain:

/xf' (1) dt = (z — ) {(1 )/ (I" ”) L ) S @} . @87

2 2

Using the approximation (8.7) in (8.6) implies

Tn,+T

27 (o) = o =) [20 -0 £ (2FD) 0 (7 @)+ £ )]

which finally results into the following implicit method:

2f (xn>
2(L—=h) f (552) + h (f (z0) + [ (2))

r=x,—

This implies

2f ()
20— h) f (=52) + h(f (x0) + [ (yn))’

where y,, is some explicit method.

(8.8)

Tpt1 = Tp —

If we choose ¥, as Newton’s method in (8.8), then we have the following two-step

method:
o 2f (xn)
n+ n 2<1_h)f’(%)+h(f’(xn)—i-f/(yn))7
o f ()
B Lle), (8.9)
I
A [lan) (8.10)
. f (%)
A L) (8.11)
N 2f (z,) (8.12)

2(1=n) f" (za) + 0 (f (2n) + f (yn))
We, now, compute the order of convergence of algorithm (8.9) using Maple 7.0

and is given in the form of the following theorem:

Theorem 8.3 Let w € I be a simple zero of sufficiently differentiable function
f: I ER — R for an open interval I. If xq is sufficiently close to w, then the
algorithm (8.9) is cubically convergent for all h € [0, 1].
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Proof. Let w be a simple zero of f and z, = w + ¢, with an error e,. By

Taylor’s expansion, we have:

!

flzn) = f(w) (en + cgei + 0362 + 046;‘; + 0562 + c6eg) + O(efl) (8.13)

!

F@n) = f(w) (14 2cae, + 3cze? + desel + Seser + 6cgel) +O(e8),  (8.14)

where
1 (k)
Cp = (E) ffTS)})’ k=2,3,..and e, = z,, — w. (8.15)
Using (8.14) and (8.13), we have
f(zn) 2 2 3 _ A3 4 5
Pl en — Coen +2(c3 — ¢3) €5 + (Teacs — 3ca — 4c3) €5 + O(e)). (8.16)

Using (8.16) in (8.10), we obtain

Yo = W+ e+ (—203 + 203) e — (70203 — 4c3 — 304) et

+0 (€)) . (8.17)

Expanding f(y,) by Taylor’s series about w,we have:

Fun) = [ (w) (cael +2(cs — c3)€b + (—Teacs + 3ca + 5c3)en) + O (€3) . (8.18)

By Taylor’s series, we have

) = f(w)(1+2c3€2 + (—4ch + deacs) €3

+(—11e,c2 + 8¢5 + 6eaca)en) + O(€D). (8.19)

Using (8.16) in (8.11), we thus have

1
2y = w—i—ien—i—icgei—l—(—cg—l—c;),)ei
+ S L 2¢3 ) e + 0 (e 8.20
54 20203—1— A )en+0(e). (8.20)

Expanding f(z,) by Taylor’s series about w,we have:

Fe) = F ) Cent Sesc? 1 (—1c§ ; 903)

2 4 2 8
54 17 25 4
+ 14~ §C203 + EQ (o
57 9 13 65
+ (—30‘21 + gCgcg — Zc% — st 3—205) e>)
+0(e9). (8.21)
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By Taylor’s series, we have

’

4 2

2 16
+0 (e)) -

9 37 5
+ (—0204 +c5 — chc;), + 3¢ + —05) el)

Using (8.14), (8.19) and (8.22) in
2f(w,)
2(1=n) f" (z0) + B (f" (2n) + [ (yn))

1
= e, + (Z (1—3h)cs —c3)e?

3 1
+<3C§ + Z (3h - 5) CoCs + 5 (1 - 3h> C4)€i

+0 (e) -
Therefore, by using (8.23) in (8.12), we have:
s 1 3 4
Tpi1=w+ (5 — 1 (1 —3h)cs3)el + O (e) .
Hence, we obtain:

1
ent1 = (3 — 1 (1 —3h)c3)ed + O (efL) .

/ 3 7 1
f(z) = f(w)(l+ce,+ (cg + —c;;) 631 + (—203 + —cycg + —04)62

(8.22)

(8.23)

Thus, we observe that the method is cubically convergent for all 4 € [0,1]. =

Remark 8.2 It is clear from Theorem 8.3 that algorithm (8.9) is cubically conver-

gent and

1. For h = 1, it recaptures the trapezoid Newton’s method given by S. Weerakoon

and T. G. I. Fernando in [105].

2. For h = 0, it recaptures the midpoint Newton’s method given by A. Y. Ozban

in [72] and by Frontini et al. in [43].

3. Forh = %, it recaptures the Stmpson Newton’s method given by V. I. Hasanov

et. al. in [48].

4. For h = 1

2

given by G. Nedzhibov in [67].
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Remark 8.3 The computational efficiency of the algorithm (8.9) is less than the
computational efficiency of the Newton’s method except for the cases for which h =
0 and h = 1. However, the implicit method (8.8) can be used in combination

with the other known methods to increase the convergence order and computational

efficiency.

8.2 Applications of error inequalities to iterative methods

8.2.1 Introduction

In this section, we, by the use of quadrature rule developed in Section 5.1 in the
sense of error inequalities present some two-step and three-step iterative algorithms
for solving non-linear equations. The two-step algorithms and their derivation are
given in Section 8.2.2 followed by their convergence analysis in Section 8.2.3. The
three-step iterative algorithms are suggested in Section 8.2.4 with their convergence
analysis in Section 8.2.5. It is proved that the new algorithms are of three, four,
six and eighth order. In Section 8.2.6, several numerical examples are given to
ensure that the new algorithms are comparable with the existing methods. The
comparisons have been carried out with the respective known methods of cubic,

fourth, sixth and seventh order.

8.2.2 Two-step Iterative Methods

Consider the following family of quadrature rules in the sense of error inequalities

derived in Section 5.1:

Theorem 8.4 Let I C R be an open interval such that [a,b] C I and let f: 1 — R
be a twice differentiable function such that f* is bounded and integrable. Then, we

have:

[ = Jo-abs@+a-nf)

+ (@ =h) f(z2) +hf O]+ R(f), (8.24)
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with

_ b-a *_i_a—l—b _ b-a *+a—|—b
T Tyt Ty T Ty T
¥ = —4+4+4h+2V3 —6h+4h?, (8.25)
and
1 1"
HGIESYNOICEOR T (8.26)
h e [0,3] and A (h) is defined as:
2
A(h):%h3—44h2+%h+%+8(1—h)2 4h% — 6h + 3

2
+3 (8h* — 14h +7) \/8h2—14h+7—4(1—h)\/4h2—6h+3

8
-3 (1—h) \/8h2 — 14h +7 — 4 (1 — h) V4h% — 6h + 3v/4h2 — 6h +3.  (8.27)

Remark 8.4 For h = %, A (h) attains its minimum value and the corresponding
quadrature rule is as follows:

b

[rwa = Go-alr@ear (M52
+4f (Ba;;?b) +f(b)1 +R(f), (8.28)

and

"

RN <Cb-aP|s

o0

where C' = %00 ~ 0.00467.

We proceed with the indefinite integral representation of Newton’s method [26]:

f@)=f@)+ [ £ @ (8.29)
Now approximating the integral in (8.29) with the quadrature rule (8.28), we obtain:
i ’ 1 ’ ’ 7.93” + 31‘
= —(r— N et
[7 0@ = a1 @) ear (o)
’ 3 n + 7 ’
Y (xl—om) +f (x)} . (8.30)
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Using the approximation (8.30) in (8.29) implies

107 (0) = (o) | @)+ af ()

an =+ 7£U ’
+4f (—0) +f (37)] )
which finally results into the following implicit method:

10f (xn)
f (wn)+4f (7xn+3x) +4f (31‘n+7x) +f/ (IL’)

T =z, —

This implies

10f (zn)
F o)+ 4 () + 47 (B2 + F ()

where y,, is some explicit method.

(8.31)

Tn41 = Tp —

If we choose y,, as Newton’s method in (8.31), then we have the following two-

step method:

o 10f (2)
T () FAf (TP pap (BT 4 f (y,)
Yo = Tp— f ()
n n f/ (l’n)?
or
o 10f (2)
" b (@) A (ha) A () + F ()
I S X €7
! "10f (2,)
B 3f (zn)
hn = Tp— 10f/ (xn)v
B S ()
yn - xn - f, (xn) (832)

Next, we, compute the order of convergence of algorithm (8.32) using Maple 7.0

and give it in the form of the following theorem:

Theorem 8.5 Let w € [ be a simple zero of sufficiently differentiable function
f: I CER — R for an open interval I. If xqy is sufficiently close to w, then the

algorithm (8.32) is cubically convergent and the error equation is given by

1
En+1 = <C§ — ﬁ03> 67?;, + O (ei) .

198



Remark 8.5 It is clear from Theorem 8.5 that algorithm (8.32) is cubically conver-
gent. Moreover, it may be observed that the computational efficiency of algorithm
(8.32) is less than the Newton’s method. Therefore, some reduction or decompo-
sition techniques may further be applied on algorithm (8.32) to obtain some new

computationally efficient two-step and three-step variants of algorithm (8.32).

We, however, now suggest the following reductions of two step iterative algo-
rithm (8.32) to increase the computational efficiency.

Algorithm 1. For a given initial guess zy, find the approximate solution of

(8.1) by:
_ e 3f (zn)
hy = =z, —IOf/ @) (8.33)
10/ () (8.34)

T T I T A (1) + B (hn)

Algorithm 2. For a given initial guess z(, find the approximate solution of

(8.1) by:
_ 7f ()
Zn Ty 07 (2,) (8.35)
10/ (n) (8.36)

T I T A @) + B (za)

Algorithm 3. For a given initial guess z(, find the approximate solution of

(8.1) by:
- e f(xn)
Yn = @Tn F (2n) (8.37)
_ 3f ()
h, Ty —10f' @) (8.38)
10/ (y) (8.39)

Tpy1 = yn_Afl<£L'n)+Bf/(hn)

Algorithm 4. For a given initial guess z(, find the approximate solution of

(8.1) by:
— e f(xn)
b = Ta g (8.40)
— e 7f (zn)
Zn = Iy 107 ()] (8.41)
Tnsr = 10/ (yn) (8.42)

Yn — 7 ’ .
Af' (zn) + Bf' (zn)
We now compute the convergence orders of the above suggested algorithms using

Maple 7.0.
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8.2.3 Convergence Analysis of Two-step Iterative methods

Theorem 8.6 Let w € [ be a simple zero of sufficiently differentiable function
f: I CR — R for an open interval 1. If xq s suﬁ?ciently close to w, then the

algorithm 1 is cubically convergent for A = —@ and B =

Proof. Let w be a simple zero of f and x,, = w + e, with an error ¢,. By

Taylor’s expansion, we have:

!

f(z,) = f(w) (en + o€ + c3e3 + cued + c5ed + cgel ) +O(el). (8.43)

f(zn) = f(w) (1 + 2cae,, + 3czer + deael + Besep + 6egsel) +O(ed),  (8.44)

(k)
Cp = (%) ff,(guu)}),k —92,3,..., and e, = z,, — w. (8.45)

Using (8.43) and (8.44), we have
(mn)
(xn)
Using (8.46) in (8.33), we thus have

= e, — ael +2 (5 — ¢3) €0 + (Teacs — 3ca — 43 en + O(eD). (8.46)

h b e >+ S22
10 " 10 52'5°)™
9 21 6 )
+ (1—004 106268 + gcg—) e+ O (e)) (8.47)

Expanding f(h,) by Taylor’s series about w,we have:

/ 7 79 1,943
1 819 11401
+%(_E 2C3 + 500 4 +9c3)en) + O (e) . (8.48)

By Taylor’s series, we have

f (hy) = f (+;Cg€n+<22+147 )62

100
1 343
g ( g CQC3 + — 50 ) 63
1 63 891 2401
5 (1202 0302 + EC; + 50204 + m05) 6;11)

(8.49)
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Using (8.43), (8.44) and (8.49), we have:

10f(zy,) 10 2(5A+2B)
7 ; = ——F5tn— — 35 26,
Af'(xn) + Bf (hn) A+ B (A+ B)
+1—10(4 (504 — 40AB — B?) ¢3

—(A+ B)(2004 + 47B)c3)ed + O (ep) . (8.50)

Therefore, by using (8.50) in (8.34), we have

10 2(5A+2B)
ep + ——————0Cs¢€
A+ B (A+B)* "
—%(4 (504 — 40AB — B?) ¢3

—(A+ B)(2004 + 47B)cs)el + O (e,) -

$n+1 = w+ (1 —

For A = —23—0 and B = %, we obtain:

11
s = (cg _ %03) & 10 (c).

Thus, we observe that the method is cubically convergent. m
For A = —? and B = %0, algorithm 1 takes the following form:
Algorithm 1 (FM1). For a given initial guess xg, find the approximate solu-
tion of (8.1) by:
3f (x,
" 10?(@3)’

e = a 3f (zn) ‘
" " 5 (hn) —2f" (zn)

hon

(8.51)

Similarly, we can compute the convergence orders of algorithm 2 to algorithm 4
using Maple 7.0 and are given in the form of the following Theorem 8.7 to Theorem

8.9:

Theorem 8.7 Let w € I be a simple zero of sufficiently differentiable function

f: I ER — R for an open interval I. If xq is sufficiently close to w, then the
. , . _ 20 _ 50 ;

algorithm 2 is cubically convergent for A = = and B = = and the error equation

s given by
1
Ent1 = (cg + 2—003) e+ 0 (ep).

Thus, for A = 2—70 and B = %, algorithm 2 takes the following form:
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Algorithm 2 (FM2). For a given initial guess xg, find the approximate solu-
tion of (8.1) by:

T
n n 1Of/ (xn)>
7f (zn)
Tpt1 Ty — 5F o)+ 2f ()" (8.52)

Theorem 8.8 Let w € [ be a simple zero of sufficiently differentiable function
f: IR — R for an open interval 1. If xqy is sufficiently close to w, then the
algorithm 8 has fourth order convergence for A = —% and B = % and the error

equation is given by

21
Cnil = <cg - 1—00203> en+0(e]).

Thus, for A = —? and B = 12—0, algorithm 3 takes the following form:
Algorithm 3 (FM3). For a given initial guess xg, find the approximate solu-

tion of (8.1) by:

[
y?’l, - a:n f{ (ITL)?
I TAC
fn = 10f" (zn)’
3f (yn)

Theorem 8.9 Let w € [ be a simple zero of sufficiently differentiable function

f: I CR — R for an open interval I. If xqy is sufficiently close to w, then the
; _ 30 _ 100

algorithm 4 has fourth order convergence for A = —=- and B = == and the error

equation is given by

9
Cni1 = (cg - 1—00203) en+0(e]).

Thus, for A = —3—70 and B = @, algorithm 4 takes the following form:

Algorithm 4 (FM4). For a given initial guess ¢, find the approximate solu-
tion of (8.1) by:

e f ()
yn - n f/ (l’n)’
1)
n - n 10f/ (xn)v
7f (yn)
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8.2.4 Three Step iterative methods

We now suggest some three-step iterative algorithms based on algorithm 1, 2, 3 and
4.

Algorithm 5 (FM5). For a given initial guess xg, find the approximate solu-
tion of (8.1) by:

- f(xn)
Yn = n —f/ (xn), (8.55)
- 3f (yn)
h, = o () (8.56)
3f (yn) (8.57)

xn = yn - ! / N
" 5f (hn) = 2" (yn)
Algorithm 6 (FMS6). For a given initial guess zo, find the approximate solu-

tion of (8.1) by:

- f(xn)
o= T (8.58)
T ()
Zn = Un —10]” )’ (8.59)
7f (yn)

S U Py 2l () s

Algorithm 7 (FMTY). For a given initial guess g, find the approximate solu-
tion of (8.1) by:

— f($n>
e = T woy (8.61)
o flu)
et ra (862
3f (Yn)
b = b goF o (8.63)
3f (2n) (8.64)

Tpt1 = 2Zn — 7 / :
! 10f" (ha) = 7" (yn)
Algorithm 8 (FMS8). For a given initial guess zy, find the approximate solu-

tion of (8.1) by:

- f(xn)
o= Ty (8.65)
o f)
Zn = Un ) (8.66)
- 7f (yn)
ha = Yn— 107 (1) (8.67)
7/ () (8.68)



8.2.5 Convergence Analysis of Three-step Iterative Methods

Theorem 8.10 Let w € I be a simple zero of sufficiently differentiable function

f: I CR — R for an open interval I. If xqy is sufficiently close to w, then the

algorithm 5 has sixth order convergence.

Proof. Let w be a simple zero of f and z, = w + ¢, with an error e,. By

Taylor’s expansion, we have:

!

f(z,) = f(w) (en + 02631 + 0362 + c4ei + 05675I + 0662) + O(e;),

!

f () = f (w) (1 + 2cae,, + 3czel + deae) + Besey, + 6eesel) + O(en),

where
1 (k)
Crp = (E) ffTE:)))’ k=23,..and e, = x,, — w.
Using (8.69) and (8.70), we have
f(@n) 2 2 3 . _A3) 4 5
o) en — Co€; + 2 (02 63) e, + (76203 3¢y 402) e, +0(e).

Using (8.72) in (8.55), we obtain

Yp = w+coe: + (—203 + 203) e — (70203 — 4¢3 — 304) et

+0 (efl) .

Expanding f(y,) by Taylor’s series about w,we have:

flyn) = flw) + cgei + 2(ec3 — c%)ei + (—=Tcoes + 34 + 563)6;‘; +0 (ei) )

By Taylor’s series, we have

fya) = f (w)(1+2c3€2 + (—4ch + deacs) €3

+(—11e,c2 + 8¢5 + 6eaca)en) + O(eD).

Using (8.74) and (8.75), we have

f,(yn> = e, — cae2 +2(c3 — c3) € + (Teacs — 3ea — 463) € + Oe)).
f'(yn)
Using (8.76) in (8.56), we thus have
7 7 7
h, = w+ Ecgei + (—gcg + 503) el
21 49 31, ., .
(EC4 — ECQC,?, + EC2> en -+ O (en) .
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Expanding f(h,) by Taylor’s series about w,we have:

f(hy) = f (w) (10262 + (—zcg + Zc:;) e3

10 5 5
1 /339
+E <Wc§’ — 49cyc3 + 21c4> et
219 429 21 14
+ (—2—03 + gcgcg — Ecg — Teaey + 365) e?)
+0(ed). (8.78)
By Taylor’s series, we have
/ / 7 14
£ () = @)1+ e — (- )l
1 833
—i—g (31031 + 21cocs — 2—00303) efl
68 613 63 28
+ (—gcg + gcgc;j, — 14c2c, — %czcg + 30205) e’)
+0 (e). (8.79)

Using (8.74), (8.75) and (8.79) in

3f(Yn)
5 (hn) =21 (yn)

o€l + (203 — 2c3)€d + (4cy + 3cy — Teacs)en
+(—6¢2 — 8¢5 + 20c3ca — 10cocy + 4cs)e

+0 (e9). (8.80)
Therefore, by using (8.80) in (8.57), we have

11
Tpy1 =W+ (c5 — %03c§)eg +0 (e)) .

Hence, we obtain

11
— 2—003c§’)eg + 0 (6771) .

Thus, we observe that the method has sixth order convergence. m

En+l = (Cg

Similarly, we can compute the convergence orders of algorithm 6 to algorithm 8

and are given in the form of the following Theorem 8.11 to Theorem 8.13:

Theorem 8.11 Let w € I be a simple zero of sufficiently differentiable function
f: I CR — R for an open interval I. If xqy is sufficiently close to w, then the

algorithm 6 has sixth order convergence and the error equation is given by

1
Enil = (cg + %0303)62 + 0 (eZL) )
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Theorem 8.12 Let w € I be a simple zero of sufficiently differentiable function
f: I CR — R for an open interval 1. If xqy is sufficiently close to w, then the

algorithm 7 has eighth order convergence and the error equation is given by

3671
ent1 = u%g—qﬂT@£+1Mqé+(wwé—m%y;+

(—105¢4¢3 + 6c6)cs + (30¢3 + 25 + 2¢7)co

+9c4c5 + 9ezce — 33cica)el + O (€)) -

Theorem 8.13 Let w € I be a simple zero of sufficiently differentiable function
f: I ER — R for an open interval I. If xq is sufficiently close to w, then the

algorithm 8 has eighth order convergence and the error equation is given by

3659
€ni1 = (12605 - 1—00303 + 174040;1 + (1990§ — 5005)03 +
(—105¢4¢3 + 6cg)cs + (30¢3 + 25 + 2¢7)co

+9¢4¢5 + 9esce — 33ciea)el + O (e€)) -

8.2.6 Numerical Examples

In this subsection, we now consider some numerical examples to demonstrate the
performance of the newly developed iterative methods. The methods being chosen
for numerical comparison are some of the efficient methods developed in the recent
past. All the computations for the above mentioned methods, are performed using
Maple 7 with 128 digits precision and € = 107'° is taken as tolerance. The following
criteria is used for estimating the zeros:

(i) 0= |xpi1 — x| < e

() IS (el <e

Thus for convergence criteria, it is required that the distance between two con-
secutive iterates be less than 107'°. x( represents the initial guess, and w, the
exact zero of the non-linear function f(x). In all the tables, the columns below
each method represents the number of iterations required to find the approximate
solution of the respective functions.

The following examples are used for comparison, most of which are taken from

54, 105, 68].

206



Examples

f1($)2562—6$—393—|-2,

fa(z) = 2" + 42% — 15,

f3 (z) =In(x),

fa(z) =sin(z) — 1077,

fs (@)= (z=1)° =1,

fo (¥) = ze® — sin® (z) + 3cos (z) + 5,
fo(x) =e " + cos(),

fs (x) = 2° — 10,

fo (z) = €x2+7$—30—17

fio0 () = cos (x) — x,

Exact Zero

w = .2575302854398607604553673049
w = 1.631980805566063517522106445
w=1

w = 3.140869666785039238259944749
w =2

w = —1.20764782713091892700941675
w = 1.746139530408012417650703089
w = 2.154434690031883721759293566
w=3

w = .7390851332151606416553120876
w=1

w = —1.3793645942220308253915879

w = 1.895494267033980947144035738
w = 1.404491648215341226035086817
w = 1.679630610428449940674920338

Table 8.1: Numerical Examples

In Table 8.2, we compare the classical Newton’s method (CN), the Weerakoon-
Fernando method (WF) [105], the midpoint method (MM) [43], the method of
H. H. H. Homeier (HM) [49], the method of J. Kou et al. (KLW) [53] and the
newly developed cubically convergent two-step methods, FM1 and FM2. All these

methods except Newton’s method are cubically convergent. D stands for divergent.

f@) o CN WF MM HM KLW FM1 FM?2
fi 20 6 5 4 5 5 4 4
30 7 5 5 5 6 5 5
f» 08 7 5 5 4 6 5 5
25 6 5 4 4 5 4 4
fs 30 D D 5 5 5 5 6
55 D D 7 7 D 5 D
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f(x) x CN WF MM HM KLW FM1 FM?2

fi 3.0 4 4 4 4 4 4 3
3.5 4 4 4 4 4 4 3
fs 25 8 6 6 5 6 5 6
3.0 10 7 6 6 7 6 7
fe 00 72  Fails D 14 D 27 D
—-20 9 6 6 6 6 6 6
fr 16 5 4 4 4 4 4 3
2.0 5 4 4 4 4 4 4
fs 25 6 4 4 4 4 4 4
3.0 6 5 5 4 5 4 5
fo 325 9 7 6 6 6 6 6
3.5 9 9 9 8 8 9 9
fio 3.0 7 10 5 6 6 5 5
3.5 19 9 6 D D 5 8
fiu 21 Fails D 6 5 5 5 7
3.0 Fails Fails D Fails 7 7 7
fia 0.3 8 5 5 5 6 5 4
-1.0 5 4 4 4 4 4 4
fis 15 6 5 5 5 6 5 4
3.5 6 4 4 4 5 4 4
fia 18 6 4 4 4 5 4 4
1.1 6 5 4 4 5 4 4
fis 1.3 6 4 4 4 5 4 4
1.7 5 3 3 3 3 3 3

Table 8.2: Comparison of Cubically Convergent Iterative Methods

In Table 8.3, we compare the classical Newton’s method (CN), the method of
M. A. Noor et al. (NA) [68], the method of J. F. Traub (MT) [93], the Ostrowski’s
method (OM) [71] and the newly developed fourth order convergent two-step meth-
ods, FM3 and FM4. All these methods except Newton’s method are fourth-order

convergent.
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CN NA MT OM FM3 FMA

Zo

0.9

h

2.0
0.8

fa

2.0
0.7
1.2
3.0
3.5

fs

Jfa

2.5

3.5
—1.2

-2.0

fs

Jo

1.0
2.0

0.5

f7

11

Js

1.5
3.2

fo

13

3.5

0.5

J1o

2.0
0.8

Fails

4
4

fll

Fails

1.2

0.3
—-1.0

12

2.0

3.5
—-1.0

Jis

J1a

1.1
1.3

Jis

1.7

Table 8.3: Comparison of Fourth-order Convergent Iterative Methods
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In Table 8.4, we compare the method of M. Grau (MG) [45], a sixth order variant
of Ostrowski’s method, the seventh order convergent J. Kou method (KM) [54], the
newly developed three-step sixth order convergent algorithms, FM5 and FM6 and
the eighth order convergent algorithms, FM7 and FMS.

f(z) o MG KM  FM5 FM6  FM7  FMS8

fi 09 3 3 3 3 2 2
2.0 4 4 3 3 3 3

f» 0.8 4 4 4 4 3 3
2.0 3 3 3 3 3 3

fs 0.7 3 3 3 3 3 3
1.2 3 3 3 3 3 3

fi 30 3 3 3 3 2 2
3.5 3 3 3 3 3 3

fs 25 3 3 3 3 3 3
3.5 4 4 4 4 3 3

fo —12 3 2 3 3 2 2
—1.0 3 3 3 3 3 3

fr 17 3 3 3 3 2 2
2.0 3 3 3 3 3 3

fs 05 5 14 5 5 5 5
1.5 3 3 3 3 3 3

fo 3.2 4 4 4 4 4 4
3.5 6 5 6 6 4 5

fio 0.5 3 3 3 3 3 3
1.0 3 3 3 3 3 3

fiu 038 3 Fails 3 3 3 3
1.2 Fails 2 3 3 3 3
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f(z) o MG KM  FM5 FM6 FM7  FMS8

fiz 03 4 5 4 4 4 4
—1.4 3 2 3 2 2 2

fis 1.0 Fails 7 6 5 4 6
2.0 3 3 3 3 3 3

fuu 11 3 3 3 3 3 3
1.6 3 3 3 3 3 3

fis 1.0 3 3 3 3 3 3
1.8 4 3 3 3 3 3

Table 8.4: Comparison of Higher Order Convergent Iterative Methods

New algorithms are tested for almost all types of non-linear functions, poly-
nomials and transcendental functions. Table 8.2 shows that if the initial guess is
far from the exact root then the newly developed cubically convergent methods
specially FM1 converges while most of the existing methods diverge or fail to con-
verge. Tables 8.3 and 8.4 show that the new fourth order, sixth order and eighth
order convergent methods namely FM3, FM4, FM5, FM6, FM7 and FMS8 are at
least comparable with the existing methods of respective orders and in some cases
perform better than the existing methods. It can be further noted that the algo-
rithms FM3 and FM4 are free from second derivative in contrast to other recently
developed fourth order convergent methods [92]. Moreover, the computational effi-
ciency of all the methods derived in this section is either equal or greater than the

computational efficiency of Newton’s method.

8.3 Conclusion

We, in this chapter, have established the fact that the specially derived quadrature
rules developed in the sense of inequalities may be applied to develop many other
iterative methods. Moreover, the presented iterative methods are extendable to the
system of non-linear equations. The iterative algorithms obtained in this chapter
are of cubic, fourth, sixth and eighth order and are computationally efficient in

comparison with other known algorithms of this type.
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Chapter 9

Concluding Remarks

9.1 Ciritical Analysis

By analyzing the Ostrowski type inequalities obtained in this dissertation, the fol-

lowing concluding aspects of this dissertation are highlighted:

1. The insertion of an arbitrary parameter, hence modifying the Peano kernels

in this manner can improve the bounds.

2. The bounds are presented for first and twice differentiable functions which are

more applicable in the cases where higher derivatives do not exists.

3. The bounds are also obtained for functions of bounded variation, Lipschitzian
functions and for Euclidean norm which enlarges the applicability of the re-

sults.

4. The results obtained in here can also give estimates for three-point inequalities

in contrast to the existing inequalities of corresponding domains.

5. The bounds are obtained by using Griiss and Pre-Griiss inequalities which pro-
vide more accurate approximations, since the bounds are expressed in terms
of the oscillation of a function rather than its sup norm that is usually not as

tight.

6. The composite quadrature rules mainly involve an arbitrary point. The con-
cept is useful in the sense when the data is given at discrete points and is not

uniform.
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10.

11.

9.2

The results are also obtained for shells, spheres and balls by moving in the

n-dimensional Euclidean space R".

More refined bounds are obtained for the expectation of random variables

defined on finite as well as on infinite intervals.

The results obtained are applied to special means to show their applicability

towards obtaining direct relationship of these means.

Estimates for the beta random variables are provided as applications of the

inequalities presented.

Applicability of the obtained inequalities towards constructing some quadra-

ture based iterative methods for solving non-linear equation is also shown.

Future Extensions

The outcomes of this dissertation may further be extended:

To obtain Ostrowski type inequalities for n-differentiable functions.

To present multivariate analogues of the inequalities, extending to inequalities

involving double integrals or more than one independent variable.

To obtain weighted versions of the inequalities.

To obtain the inequalities in other environments such as for linear spaces.
To obtain fractional Ostrowski type inequalities.

The inequalities may also be extended to time scale domains.

9.3 Research Publications

The following research material has been published in some international journals

from the thesis:

[111] is based on the results obtained in Section 2.1.

[107] is based on the results presented in Section 2.3
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e The results presented in Section 3.1 have been published in [113].
e The results of Section 3.2 have been published in [87].

e The results from Section 3.3 have been published in [88].

e The results presented in Section 3.4 are published in [91].

e [109] is based on the results presented in Section 4.1.

e [114] covers the work of Section 4.2.

e The results presented in Section 4.3 have been publication in [112].
e The work of Section 5.1 has been published in [110].

e The work presented in Section 7.1 has been published in [89].

e Section 7.2 has been published in [90].

[108] presents the results of Section 8.1.

The final versions of the research papers may slightly vary from the original

version in terms of presentation and bibliography.
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