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CHAPTER |

PREFACE

The approximation problem of the Riemann—Stieltjes integral in terms of Riemann—Stieltjes
sums is very interesting problem. The most significant way to study this problem may

be done through the well-known Ostrowski inequality. In recent years, several authors
have studied the well-known Ostrowski inequality in one variable for various types of
mappings such as: absolutely continuous, Lipschitzianraddferentiable mappings

as well as mappings of bounded variation. However, a small attention and a few works
have been considered for mappings of two variables. Among others, Dragomir and
his group have studied a very interesting inequalities for mapping of two independent

variables.

The concept of Riemann-Stieltjes integrﬁ}fif(t) du (t); where f is called
the integrand,u is called the integrator, plays an important role in Mathematics.
The approximation problem of the Riemann—Stieltjes integffa;f (t) du (t) in terms
of the Riemann-Stielties sums have been considered recently by many authors.
However, a small attention and a few works have been considered for mappings
of two variables; i.e., The approximation problem of the Riemann-Stieltjes double
integral fab fcdf (t,s) dsdyu (t, s) in terms of the Riemann—Stieltjes double sums. This
study is devoted to obtain several bounds f§rfcdf (t,s) dsdyu (t, s) under various
assumptions on the integrarfdand the integraton. Mainly, the concepts of bounded
variation and bi-variation are used at large in the context. Several proposed cubature
formula are introduced to approximate such double integrals. For mappings of two

variables several inequalities of Trapezoidji&€s and Ostrowski type for mappings of



bounded variation, bounded bi-variation, Lipschitzian and monotonic are introduced
and discussed. Namely, Trapezoid-type rulesRaét-Double integrals are proved, and
therefore the classical Hermite—Hadamard inequality for mappings of two variables is
established. A Korkine type identity is used to obtain severd@is&type inequalities

for integrable functions. Finally, approximating real functions of two variables which
possessi-th partial derivatives of bounded bi-variation, Lipschitzian and absolutely

continuous are established and investigated.

The main concern in this monograph is to study the approximation problem of
the Riemann-Stieltjes double integral in terms of the Riemann-Stieltjes double sums. In
fact, the Ostrowski inequality for mappings of two independent variables which are of
bounded bi-variation, Blder continuous and absolutely continuous are used to discuss
this problem. In this way, an interesting study of the approximation problem of the
Riemann-Stieltjes double integral is presented and therefore several proposed cubature

rules for mappings of two variables are given.

The organization of this monograph is given as follows. The first chapter gives
a general introduction of the research work where the motivation and objectives are

defined.

In chapter Il, some basic concepts of bounded variation, Riemann-Stieltjes
integral including some of its properties are given. Some known inequalities of
Ostrowski’s type with some related refinements and generalizations in one and two

variables are given.

In chapter lll, several new inequalities of Ostrowski’'s type are introduced.
Trapezoid and Midpoint type rules for double Riemann-Stieltjes double integral are
proved. A generalization of the well known Beesack-Darst—Pollard inequality for
doubleRS—double integrals is also considered. Finally, as applications, two cubature

formulae are proposed.



In chapter IV, in order to approximate tii&S—double integrals some functionals
are introduced and therefore several representations of the errors are established. Finally,

as application, a cubature formulae is proposed.

In chapter V, some related inequalities are proved. Namelyjs&itype
inequalities are proved as well as an approximation of a real function of two variables
which possess-th partial derivatives of bounded bivariation are established. Finally

Trapezoid-type rules foRS—double integrals are provided are given.



CHAPTER I

LITERATURE REVIEW AND BACKGROUND

2.1 INTRODUCTION

This chapter shall be considered as a review of some famous, fundamental and basic
concepts of mappings of bounded variation and bounded bi-variation in two variables
with some of their properties. As well as, several inequalities of Ostrowski’'s and

Simpson’s type in one and two variables are reviewed.

2.2 FUNCTIONS OF BOUNDED VARIATION AND BIVARIATION

Let D C R? and letf : D — R be any function. We say thdtis bounded above ob
if there isa € R such thatf(z,y) < « for all (z,y) € D; in this case, we say thgt
attains its upper bound an if there is(zo, yo) € D suchthatup f(x,y) : (z,y) € D =
f(zo,y0). Likewise, we say thaf is bounded below o if there isj € R such that
f(z,y) > pforall (x,y) € D;in this case, we say thgtattains its lower bound o
if there is(zo,y0) € D such thatnf f(x,y) : (z,y) € D = f(xo,yo). Finally, we say
that f is bounded orD if it is bounded above o® as well as bounded below dp; in
this case, we say thdt attains its bounds o if it attains its upper bound o and

also attains its lower bound an.

In general, we remark that for the order paits, 1) (z2,y2) € D, we write
(x1,11) < (x2,9) If 1 < 29 @andy; < yo. Now, let/ and.J be intervals inR such that

I x J C D. We say that



1. f is monotonically increasing oh x J if for all (z1,y1), (x2,y2) In I x J, we

have(xi,11) < (x9,y2) = [ (x1, 1) < f (22, y2)

2. f is monotonically decreasing ahx J if for all (x1,y1), (z2,y2) in I x J, we

have(zi,y1) < (z2,42) = [ (z1,11) > f (22,92)

3. fis bimonotonically increasing oh x J if for all (x1, 1), (x2,y2) In I x J, we

have(zi,y1) < (v2,y2) = f(21,92) + [ (22, 51) < f (w1, 01) + f (22,92)

4. fis bimonotonically decreasing dnx J if for all (x1,y1), (za,y2) In I x J, we

have(r1,y1) < (72, y2) = f (71,92) + f (22,91) > f (w1, 90) + f (22, 92)

It may be noted thatf is monotonically increasing o x J if and only if it is
(monotonically) increasing in each of the two variables. The following result gives
conditions under which an increasing function in the variabland an increasing
function in the variable; can be added or multiplied to obtain a monotonic and/or

bimonotonic function of two variables.

Proposition 2.2.1. (Ghorpade & Limaye 2009) Let, J be nonempty intervals iiR.
Givenanyp : I — Randvy : J — R, considerf : I x J - Randg: I xJ — R

defined byf (z,y) = ¢ (z) + ¢ (y) andg (z,y) = ¢ (x) ¢ (y) for (z,y) € I x J. Then
we have the following

1. f is monotonically increasing oh x J if and only if¢ is increasing on/ and

is increasing onJ.

2. Assume thap(x) > 0 andy(y) > Oforall x € I,y € J, and also that(xy) > 0
and ¢ (yo) > 0 for somex, € I and somey, € J. Theng is monotonically

increasing on/ x J if and only if¢ is increasing o/ and+ is increasing onJ.

3. f is always bimonotonically increasing and also bimonotonically decreasing on

I xJ.



4. If ¢ is monotonic ol and+ is monotonic on/, theng is bimonotonic on x J.
More specifically, if¢ and ) are both increasing or both decreasing, thens
bimonotonically increasing, whereasdfis increasing andy) is decreasing, or

vice-versa, thep is bimonotonically decreasing.

We recall that for/ interval inR. A function f : I — R is said to be convex if

forall z,y € I and for alla € [0, 1], the inequality

flox+(1-a)y) <af(z)+(1—-a)f(y) (2.2.1)

holds. If (2.2.1) is strictly for allz: # y anda € (0,1), then f is said to be strictly
convex. If the inequality in (2.2.1) is reversed, thérs said to be concave. If (2.2.1) is
strictly for all z # y anda € (0, 1), then f is said to be strictly concave (see {aec

et al. 1992)).

The above proposition as well as the one below can be used to generate several

examples of monotonic and bimonotonic functions.

Proposition 2.2.2. (Ghorpade & Limaye 2009) Let, J be nonempty intervals iRR.
The setl + J := {z +y|z € I,y € J} C R. Further, considek : I + J — R be any
function and considef : I x J — R defined byf (z,y) = ¢ (x +y), for (z,y) € I x J.

Then we have the following

1. ¢ isincreasing o + J = f is monotonically increasing oh x J.
2. ¢ is decreasing od + J = f is monotonically decreasing ahx J.
3. ¢ isconvex on + J = f is bimonotonically increasing oh x .J.

4. ¢ is concave o + J = f is bimonotonically decreasing ahx J.

Example 2.2.3.(Ghorpade & Limaye 2009)



1. Considerf : [-1,1]*> — R defined by

(x+1)(y+1), r+y<0
f(z,y) = :
(x+2)(y+2), r+y=>0

If we fixy, € [—1, 1] and consider the functiop : [—1, 1] — R defined by

o+ (x+1), x+y<0
(Yo +2) (x +2), r+y>0

¢ (x) =

then itis easy to see thatis increasing ori—1, 1]. Similarly, if we fixx, € [—1, 1]

and consider the function : [—1, 1] — R defined by

(xo+1)(y+1), r4+y <0
(ro+2) (y+2), r4+y>0

Y (y) =

then it is easy to see that is increasing on[—1,1]. It follows that f is
monotonically increasing of-1, 1]2. However,f is not bimonotonic of—1, 1]2.
To see this note thg0,0) < (1,1) and f(0,1) + f(1,0) =6 +6 < 4+ 9 =
£(0,0) + f(1,1), whereag—1,0) < (0,1) and f(—1,1) + f(0,0) = 3+ 4 >
0+6=f(—1,0)+ f(0,1).

2. Considerf : R? — R defined byf(z,y) := cosx + siny. Using Proposition

2.2.1, we readily see thgtis bimonotonic, but not monotonic.

A functions of bounded variation is an interesting class of functions that is very
closely related to monotonic functions. Let us recall some facts about functions of
bounded variation ifa, b] is a compact interval , a set of poings:= {z¢, z1, -+ ,x,},

satisfying the inequalities
a=2g<x1 <+ <xp_1<xy=0>0,

is called a partition ofa, b]. The interval[x;_1, x| is calledkth subinterval ofP and
we write Azy, = x, — x4_1, SO that) ", Az, = b — a. The collection of all possible

partitions of{a, b] will be denoted byP|[a, b].



Definition 2.2.4. (Apostol 1974) Lef be defined ota, b]. If P := {x¢, 21, ,2,} IS
a partition of [a, b], write A fy, = f (zx) — f (zx—1), fOrk =1,2,---  n. If there exists a
positive numbed/ such thati |A fx| < M for all partition of [a, b], then f is said to
be of bounded variation ohz]j:bi Moreover, if f is of bounded variation oifu, b], and
> (P) denote the sunf: |A fx| corresponding to the partitio® = {zg, 21, -+, x,}

k=1
of [a, b]. The number

b

\/(f) = sup {Z(P) 1P e P[a,b]},

a

is called the total variation of on the intervala, b].

In two variables or more, the concept of bounded variation is quite different.
According to Clarkson and Adams (1933), several definitions have been given of
conditions under which a function of two or more independent variables shall be said to
be of bounded variation. Of these definitions six are usually associated with the names
of Vitali, Hardy, Arzeh, Pierpont, Fechet, and Tonelli respectively. A seventh has been
formulated by Hahn and attributed by him to Pierpont; which are equivalent, and the
proof of this fact was presented in the same paper. In general, some relations between
these classes are discussed and investigated in the interesting paper Clarkson & Adams

(1933).

In this work, we are interested in two of the above senses, which are; bounded variation

in Arzela and Vitali senses.

The monotonic mappings plays a main role in studying mappings of bounded
variation, in two variables, the sum of two monotonic functions need not be monotonic.
For example,f : [0,1]> — R defined byf(x,y) := x — y is a sum of monotonic
functions (given by(z,y) — =z and(z,y) — —y, but it is neither increasing nor
decreasing. On the other hand, since a monotonic function on a (closed) rectangle is
bounded f : [a,b] X [¢,d] — R monotonic=> the values off lie betweenf(a, c)
and f(b, d)), sums of monotonic functions are bounded. In fact, they satisfy a stronger

property defined below.



Fora,b,c,d € R, we consider the subs@t:= Q5% = {(z,y) :a <2 < b,c <y < d}
of R2.

Definition 2.2.5. (Clarkson & Adams 1933) If

P={(ri,y;) vi1 <z <z y1 <y<y;i=1,...,n}

is a partition of(, write

Af(zi,y) = f(xi,v) = f (Tic1,Yi1)

fori =1,2,---  n. The functionf(z,y) is said to be obounded variation in the Arzel

senseg(or simply bounded variation) if there exists a positive quantifysuch that for
every partition o) we havean IAf (z5,9:)] < M.

=1

Therefore, one can define the concept of total variation of a function of two
variables, as follows:

Let f be of bounded variation or), and let > (P) denote the sum
S |Af (z4,v:)| corresponding to the partitioR of . The number
i=1

V=V =sw{d P:PeP@]}.
Q c a

is called the total variation of on Q).

In the following, we point out some elementary properties of functions of
bounded variation.

Proposition 2.2.6.(Ghorpade & Limaye 2009) Let g : Q@ — R andr € R. Then

1. fis bounded variation=- f is bounded.

2. fis monotonic=> f is of bounded variation.

3. f, g are of bounded variatioe= f + g, rf, fg are of bounded variation.
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Proposition 2.2.7. (Ghorpade & Limaye 2009) Let, J be nonempty intervals iiR.
Givenanyp : I — Randy : J — R, considerf : [ x J — Randg : I x J — R

defined byf (z,y) = ¢ (z) + ¢ (y) andg (z,y) = ¢ (z) ¢ (y) for (z,y) € I x J. Then
we have the following:

1. fis of bounded variation ofu, b] x [c, d] if and only if¢ is of bounded variation

on [a, b] and is of bounded variation ofr, d.

2. Assume thap and are not identically zero, then is of bounded variation on
[a,b] X [c,d] if and only if¢ is of bounded variation ofu, b] and) is of bounded

variation onlc, d.
Definition 2.2.8. (Clarkson & Adams 1933) If
P={(zs,y;) i xi1 <z <z y1<y<y;i=1...,n;j=1...,m}
is a partition of ), write

A f (i, y5) = f(wic,y5-1) — f (@i, y5) — f (@i, y5-0) + f (26, 95)

fori=1,2,--- ,nandj = 1,2,--- ,m. The functionf(z, y) is said to be obounded
variation in the Vitali sense(or simply bounded bivariation) if there exists a positive

quantity M such that for every partition o@® we haved > [Ay f (z;,y,)] < M.
i=1j=1

Therefore, one can define the concept of total bivariation of a function of two

variables, as follows:

Let f be of bounded bivariation o), and let >  (P) denote the sum
3 > |Aqi f (xs, ;)| corresponding to the partitioR of (). The number

1j=1

(]

Vi =VV=sw{d P rero},

Q
is called the total bivariation of on Q).

In the following, we point out some elementary properties of functions of

bounded bivariation.
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Proposition 2.2.9. (Ghorpade & Limaye 2009) Let g : Q@ — R andr € R. Then

1. If fis of bounded bivariation and, in additiorf,is bounded on any two adjacent

sides of the rectangl, b] x [c, d], thenf is bounded.
2. If fis bimonotonic, therf is of bounded bivariation

3. If f andg are of bounded bivariation, then so afe+ g andr f.

Proposition 2.2.10.(Ghorpade & Limaye 2009) Let, J be nonempty intervals iR.
Givenanyp : I — Randy : J — R, considerf : I x J —- Randg : I xJ — R

defined byf (z,y) = ¢ (x) + ¢ (y) andg (z,y) = ¢ (z) ¢ (y) for (x,y) € I x J. Then
we have the following:

1. fis always of bounded bivariation dn, b] x [c, d].

2. Assume thap and) are not constant functions, thens of bounded bivariation
on|a,b]x|[c,d] if and only if¢ is of bounded variation of, b] andz is of bounded

variation onlc, d.

For further properties of mappings of bounded variation and bivariation we refer

the reader to the comprehensive book Ghorpade and Limaye (2009) .

2.3 INEQUALITIES FOR MAPPINGS OF ONE VARIABLE

2.3.1 Ostrowski type Inequalities

For a differentiable mapping defined[a, b] and f’ be integrable orja, b], then the

Montgomery identity

1

fa) = —

b b
/ F(t)dt + / P(x,t) f'(t)dt (2.3.1)
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holds, whereP (z, ) is the Peano kernel,

e a<t<u,
P(z,t) = .

In 1938, Ostrowski established a very interesting inequality for differentiable

mappings with bounded derivatives, as follows:

Theorem 2.3.1.(Ostrowski 1938) Lef : I C R — R be a differentiable mapping on
I°, the interior of the intervall, such thatf’ € Lla,b|, wherea,b € I witha < b. If

|f' (x)| < M, then the following inequality,

bia/abf(u)du

holds for allz € [a, b]. The constant is the best possible in the sense that it cannot be

kﬂm—

<M (b—a)

1 (-’
vk W] (2.3.2)

replaced by a smaller constant.

In 1992, Fink and earlier in 1976, Milovan@vand Péaric have obtained some

interesting generalizations of (2.3.2) in the form

n—1 b
% <f (z) + ZFk (x)) — ﬁ/ f@)dt| <C(n,p,x) Hf(")Hoo (2.3.3)
k=1 a
where,
P (2) n—k % (@) (@ —a) = fEV () (@ —b)"
k(T) = ,

n! b—a

and,||-||,, 1 <r < oo are the usual Lebesgue normsbfia, b}, i.e.,

[flloo := ess sup |f(#)],

tela,b]

b 1/r
1fll, = </ ’f(t)frdt) , 1< r<oo.

and

In fact, Milovanovt and Péaric (see also Mitrinovi et al. (1994)) have proved that

(x—a)" + (b—a)""!
(b—a)n(n+1)!

C (n,00,x) =
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while Fink proved that the inequality (2.3.3) holds providgd—" is absolutely
continuous ora, b] and f™ € L,[a, b], with

[(.T o a)nq+1 + (b . x)nq+1] 1/q
(b—a)n!

C(n,p,x)= BY((n—1)g+1,q+1),

for 1 < p < o0, Fis the beta function, and

(n—1""
(b — a)n"n!

C(n,l,z) = max {(x —a)",(b—12)"}.

In 2001, Dragomir proved the following Ostrowski’s inequality for mappings of

bounded variation:

Theorem 2.3.2.(Dragomir 2001b) Letf : [a,0] — R be a mapping of bounded

variation onla, b]. Then we have the inequalities:

b
‘ f(z) - ] \/ () (2.3.4)

foranyz € [a,b] , where\/l;(f) denotes the total variation of on [a, b]. The constant

a+b

b—a

t)dt‘ <|=
2

1 is best possible.

The following trapezoid type inequality for mappings of bounded variation

holds:

Theorem 2.3.3.(Cerone & Dragomir 2000) Leff : [a,b] — R, be a mapping of

bounded variation offu, b], Then

t)dt — (b—a)

f(”f()‘ (b—a)\/ (f) (2.3.5)

The constang Is the best possible.

A generalization of (2.3.5) and 2.3.4 for mappings of bounded variation, was

considered by Cerone et al. (2000), as follows:

x—“ng\i/(f)

(2.3.6)

(b—a)f(b)+(z—a)f /f dt‘ [ —
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for all z € [a,b]. The constant is the best possible.

In the same way, the following midpoint type inequality for mappings of

bounded variation was proved in Cerone and Dragomir (2000):

Theorem 2.3.4.(Cerone & Dragomir 2000) Leff : [a,b] — R, be a mapping of

bounded variation offu, b], Then

\(b—cof(“;b) —/abf(t)dt‘ s%(b—@\i/m. (2.3.7)

The constang Is the best possible.

In the recent paper Tseng et al. (2008), the authors have proved the following

weighted Ostrowski inequality for mappings of bounded variation, as follows:

Theorem 2.3.5.(Tseng etal. 2008) L&t < o < 1, g : [a,b] — [0, 00) continuous and
positive on(a, b) and leth : [a, b] — R be differentiable such that (t) = g(¢) on|a, b].
Letc =h"' ((1— %) h(a)+ Sh(b)) andd = h™* ($h(a) + (1 — %) h(b)). Suppose
that f is of bounded variation ofu, b], then for allz € [¢, d]|, we have

/abf(t)g(t)dt— {(1—a)f(fv)+aw} /abg(t)dt‘ = \b/(f)

2
(2.3.8)
where,
152 7 g (t)dt + | (@) + MO 0<a<l
K= max{l_To‘fabg(t)dt+‘h(m)+—h(a);h(b) ,%f;’g(t)dt}, lca<?
[ 5,9, 2<a<1

and \/Z (f) is the total variation off over[a,b]. The constantz2 for 0 < o < $ and

the constang; for % < a < 1 are the best possible.

Another new generalization of weighted Ostrowski type inequality for mappings

of bounded variation has been obtained by Liu (2012), as follows:
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Theorem 2.3.6.(Liu 2012) Letf : [a,b] — R be a mapping of bounded variation,
g : [a b] — [0,00) continuous and positive ofu,b). Then for anyz € [a,b] and

] we have

ﬁ_Vl—@f@%é%@ﬁﬁ+a(ﬂ@[ﬁﬂﬂﬁ+f®X[QQM0H

b

1|1 1 v 1 [
< [5+ 3ol [5 [owas|[swa-g [swal V) @39
Where,\/Z (f) denotes to the total variation gfover|a, b]. The constani + \% — H

is the best possible.

In 2002, Guessab and Schmeisser, incorporate the mid-point and the trapezoid
inequality together, and they have proved the following companion of Ostrowski’'s

inequality:

Theorem 2.3.7.(Guessab & Schmeisser 2002) Assume that the fung¢tidn, b — R

is of r- H—Holder type, where € (0, 1] and H > 0 are given, i.e.,

@)= f(s)| <Ht=s|",

for anyt, s € [a,b]. Then, for eachr € [a, %], one has the inequality
fl@)+fla+b—z) 1 /b
5 =, f(t)dt

r+1 o\l o r+1
SH[Z (x—a)" 4+ (a+b—2x) (2.3.10)

27 (r+1)(b—a)
This inequality is sharp for each admissihle Equality is obtained if and only if =

+Hf, + ¢, withc € R and

(x—1t)", a<t<ux
fit) =19 (t—2), xﬁtﬁ%”
| filatb—a),  H<t<Dh

Dragomir (2002), has proved the following companion of the Ostrowski

inequality for mappings of bounded variation:



16

Theorem 2.3.8.(Dragomir 2002) Letf : [a, b] — R be a mapping of bounded variation

on [a, b]. Then we have the inequalities:

_bia/bf(t)dt‘ <

foranyz € [a, %52 , where\/’ (f) denotes the total variation ¢ffon|[a, b]. The constant

_ 3a+b
4

b—a

f@)+ fla+b—2x) 1
2 T

] \/(f), (23.11)

1/4 is best possible.

Dragomir (2000), has introduced an Ostrowski type integral inequality for the

Riemann-Stieltjes integral, as follows:

Theorem 2.3.9.(Dragomir 2000) Letf : [a,b] — R be a function of bounded variation

andu : [a,b] — R a function ofr- H-Hblder type, i.e.,
u(z) —u) < Hlz—yl",  Va,yelab],

wherer € (0,1] and H > 0 are given. Then, for any € [a, ],

<H [(m —a)"\/ (N + -2\ (f)] (2.3.12)

d
where,\/ (f) denotes the total variation gf on the intervalc, d].

For other results concerning inequalities for Stieltjes integrals, see Liu (2004)
and Cerone and Dragomir (2002). In 2007, Cerone et al. established some Ostrowski
type inequalities for the Stieltjes integral where the integrand is absolutely continuous
while the integrator is of bounded variation. Also, the case wfénis convex was

explored.
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Recently, Dragomir (2008) provided an approximation for the funcfievhich
possesses continuous derivatives up to the orddr(n > 1) and has the-th derivative
of bounded variation, in terms of the chord that connects its end pdints(a, f(a))
andB = (b, f(b)) and some more terms which depend on the values df thezivatives

of the function taken at the end point&ndb, wherek is betweenl andn.

As pointed out by Dragomir, if : [a,b] — R is assumed to be bounded pnb]. The

chord that connects its end poimts= (a, f(a)) andB = (b, f(b)) has the equation

1

ds : la,b] — R, df(x):b_a[f(a)(b—x)+f(b)(x—a)].

Before that in (2007) Dragomir was introduced the error in approximating the value of

the functionf (x) by d;(x) with x € [a, b] by ®;(x), i.e.,®((x) is defined by:

b—x X—a

q)f(x)izm'f(a)Jr b—a

f(b) = f(x).
The following bounds fo® (x) holds :
Theorem 2.3.10.(Dragomir 2007) Iff : [a,b] — R is of bounded variation, then

\<Df<x>rs(z:j)-\7<f +(522)- \/

a

( ath
ERa =S| VAT
e v (Vo) ea)
p>1, % + % =1
VR + 3V = VA

The first inequality in (2.3.13) is sharp. The constaris best possible in the first and

third branches.

Therefore, a generalization Theorem 2.3.10, was considered as follows:

Theorem 2.3.11.(Dragomir 2008) Let/ be a closed subinterval dR, leta, b € I with

a < b and letn be a nonnegative integer. ff: I — R is such that the:-th derivative
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f™ is of bounded variation on the intervél, b], then for anyz € [a,b] we have the

representation
Fe) = (b= 2) f (@) + (2~ a) £ ()
Loa=a). = 0 @)+ 1)t - ) o)

1

+b—a

b
/ S (z,t)d (f™ (1)), (2.3.14)
where the kerne$, : [a,b]*> — R is given by
(x—8)"(b—1x), a<t<ux
Sy (z,t) =
()" t—2)"(x—a), a<t<z

and the integral in the remainder is taken in the Riemann—Stieltjes sense.

After that, on utilizing the notations

Dy (fi,0,6) == = [(b—2) £ (@) + (2 = a) f ()

HE T g e M @ 0 -0 M
(2.3.15)
and
b
E, (f;z,a,b) := ﬁ/ S (x,t)d (f(n) (t)) (2.3.16)

under the assumptions of Theorem 2.3.11, Dragomir approximated the funftion
utilizing the polynomialsD,, (f;z,a,b) with the errorE,, (f;x,a,b). In other words,

we havef(z) = D, (f;x,a,b) + E, (f;z,a,b) foranyz € [a, b].

More recently, Dragomir (2009) introduced an approximation for the Riemann-Stieltjes
integral fab f (t) du (t) by the use of some generalized trapezoid-type rules. To be more
specific, we investigate the error bounds in approximaf;fwg (t) du (t) by the simpler
guantities:

) [b_a/abu(t)dt—u(a)] +f(a) {u(b)—bia/abu(t)dt} (2.3.17)
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and
1 b
) il |10+ 5@ - 2 [ roal 2318)
provided the Riemann integrgff f (t) dt exists and can be either computed exactly or

can be accurately approximated by the use of various classical quadrature rules.

For a functiong : [a, b] — R, Dragomir defined), : [a, b] — R by

(t—a)g(a)+(b—1)g(b)
b—a

W (£) =g (t) —
and he gave the following representation

Theorem 2.3.12.(Dragomir 2009) Iff,u : [a,b] — R are bounded otja, b] and such
that the Riemann—Stieltjes integrﬁjf (t) du (t) and the Riemann integrajiff (t)dt

exist, then

FO)du®)=q f @) |3— [ ult)dt—ula)| +fla) |u(b) = 3—— [ u(t)dt
[romo-{so [Z5 [ woaa] s[5 [uoa]}

b
- / Gy () du(t) (2.3.19)

and

) w10+ 1@ - [ rwa] - [ roae

- [wwa® @320

Therefore, several error inequalities of approximating the Riemann-Stieltjes integral
fab f (t) du (t) by the generalized trapezoid formulae (2.3.17) and (2.3.18) under various

assumptions were obtained in the same paper.

Mercer (2008) has introduced a midpoint and a trapezoid type rules for the
Riemann-Stieltjes integral which engender a natural generalization of Hadamard's
integral inequality. Error terms are then obtained for this Riemann-Stieltjes Trapezoid

Rule and other related quadrature rules.
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Theorem 2.3.13.(Mercer 2008) Ley be continuous and increasing, kesatisfy

[ atat=(c-ag@+v-050).

and let

If />0, then we have

b
f(e)lg () —g(a)] < / fdg < [G—g(a)] f(a)+g() —G]f(b)  (2.3.21)

2.3.2 Simpson’s Type Inequalities

The Simpson’s inequality was known in the literature, as follows:

Theorem 2.3.14.(Davis & Rabinowitz 1976) Suppoge: [a,b] — R is four times

continuously differentiable mapping dn,b) and || f®|| = sup |[f* (z)] < oo.
z€(a,b)

/f

The following inequality

L0 oy (2r0)]

(4)
< 2880 Ny I

(2.3.22)

holds.

In 1999, Dragomir proved the Simpson’s inequality for functions of bounded

variation, as follows:

Theorem 2.3.15.(Dragomir 1999) Letf : [a,b] — R be a mapping of bounded

variation on|a, b]. Then we have the inequality:

) dw — (b;a) f(a)+ f(b) Yy (Hbﬂ

b
<29/ (). 2329

a

2 2

where\/® (f) denotes the total variation ¢ff on the intervala, b]. The constant is the

best possible.
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In 2000, Péaric and Var@anec, obtained some inequalities of Simpson’s type

for functions whose:-th derivative,n € {0, 1,2, 3} is of bounded variation, as follow:

Theorem 2.3.16.(PeCaric & Varosanec 2000) Let. € {0,1,2,3}. Let f be a real

function on|a, b] such thatf™ is function of bounded variation. Then

jf(x)dx—@ s rar(“50) + 1)

b
<Co(b—a)"\/(f™), (2.3.24)

where,
1 1 1

2w = mp O

and\/’ (™) is the total variation off ™ on the intervala, b].

1
COZ§7 Clz

In recent years, many authors have considered Simpson’s like inequalities and
therefore several bounds are introduced, for details see Dedic et al. (200@), @ edi
(2001), Dedt et al. (2001), Paaric and Vardanec (2001), Dedi et al. (2005), P&aric
and Franjt (2006) and Frangi et al. (2006)

2.4 INEQUALITIES FOR MAPPINGS OF TWO VARIABLES

2.4.1 Ostrowski and Giuss type inequalities

In the recent papers Barnett and Dragomir (2001) and Dragomir et al. (2003), the

authors have proved the following inequality of Ostrowski type for double integrals:

Theorem 2.4.1.Let f : [a,b] x [¢,d] — R be continuous ofu, b] x [¢,d]. Then for all
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(x,y) € [a,b] X [c,d], we have the inequality

‘m/b/df(t,s)dsdwf(x,y)

/ f(x,s) ia)/abf(t,y)dt‘

i+(%ﬁf)]@—aﬂd—@\

02 f
Otds
oo

,if ZLe L, (Q);

1 1 1
_(b—a d—c) | q z—a\qt1 —z\q+1 q —c\ g+l d—y\9+1T ¢ || 82
<4 (B (™ ™) )™+ =)™ ||a |
if el (@Q.p>11+1=1;
1 o 22 1 - 92f 92 f
|| || 15 i Sen@
(2.4.1)
forall (z,y) € Q, where,
0*f O*f (t,s)
Otds o N (t,5)€Q Otos

and

PN\
dsdt) , p>1.

92 f
3t83

-(LL15

The best inequality we can get from (2.4.1) is the one for whieh “T“’ andy =

H 87588

<4 For some applications of the above results in numerical integration for cubature

formulae see Barnett and Dragomir (2001) and Dragomir et al. (2003).

In order to approximate the double integﬁlfcdf (t,s) dsdt, Dragomir et al.

(2000) introduced the following representation:

Theorem 2.4.2.(Dragomir et al. 2000) Letf : [a,b] x [¢,d] — R be such that the

partial derivatives?(t=) 2/(ts) 2/(ts) gyist and are continuous dn, b] x [¢, d]. Then
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forall (x,y) € [a,b] X [c,d]. Then, we have the representation

Few =g [ 1w s
*-b_al _C‘/a/ZManf@@ywﬁ
(b—a)( —c// q(y,s ts)dsdt

+m/ / p(x,t)q(y,S)%(t,s)dsdt, (2.4.2)

wherep : [a,b° — R andgq : [¢,d]> — R and are given by

t—a, tela,z]

t—b, te(z?)

and

s—c, s€|cy]

s—d, s€ (y,d]

An interesting particular case for which= 2> andy = “t¢ may be deduced
to get a midpoint representation. Also, by lettingy) = (a,¢), (a,d), (b, ¢) and(b, d)
in (2.4.1), then summing the obtained identities and do the required computations we

obtain successively, we obtain the following a trapezoid type identity

f(a0)+f(ad)+f(56)+f(bd)
b—a)(d—c [//ftsdsdt

bord a+b bord c+d\ of
—i—/a/c (t— 5 ) tsdsdt—i—//( )8 (t,s)dsdt
+// (t—“;b> <s—cgd) ;28]; (t,s)dsdt] (2.4.3)

After that Dragomir et al. pointed out an inequality of Ostrowski type for mapping of

two independent variables, as follows:

Theorem 2.4.3.(Dragomir et al. 2000) Letf : [a,b] x [¢,d] — R be such that the

partial derivatives?(L=) 9/(ts) 2/(ts) gyist and are continuous dn, b] x [¢, d]. Then




for all (z

1 d prb
f(w,y)—(b_a><d_c)/c/af(t,s)dtds

,Y) € [a,b] x

[c, d], we have

24

< M; (iL‘) + My (y) + Ms (.T,y),

(2.4.4)
where,
h i
( 1 2 at+b)2
p—a)’+(z=22)" af(t,s
e 15l - U € Lo (Q);
1
-—o) 1t 4 (@—a) ! ¢
at of Of (t,5)
M (z) = T ”E 5 € Lu (Q),
(b—a)(d—c)P1
p1 > 1, pil + qil =1
[50- a+|x—* 21(t.0)
\ : (b—a) H ”1’ €L (Q).
( hl(d )>+(y C*‘i)gi 9
1\@—e 2 o) t,s
- d—c : ||B_{Hoo fa(s ) € LOO (Q) i
1
<d—y)q2+14ﬁ—c>qz+1 q2 , ( |
92 f(t,s
M2 (y) = 1 || Hp2 = Lpz (Q) )
(d—c)(b—a)P2
D2 > 17 P2 + 17
[3@—a+|y—<]] | o1 9 (t.s)
| o 1521, o €L1(Q).
and
h ih
(300 +(@m- )" Fo-a+ (== | a2y 9§ (1,9)
4 2 4 2 ) .
(b—a)(d—c) Otos oo ) OtOs € Loo (Q) )
1 1
(bfz)q3+14;(ffa)q3+l a3 | (d7y>¢13+11<1yfc>q3+1 a3 ) .
3 3 o2 f 02 f(t,s
M (2,y) = N — |24 T e, Q.
p3>1 -+ =1,

[0+ fo=5t]) [

]
\ (b—a)(d—c) ‘ Otds 1

Io} s
2 e 1,(Q).
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Therefore, several special cases, e.g., midpoint and trapezoid type inequalities
were obtained in Dragomir et al. (2000), as well as applications to cubature formulae

are considered.

Hanna et al. (2002a) have obtained some generalizations of an Ostrowski type

inequality in two dimensions fat-time differentiable mappings

Theorem 2.4.4.(Hanna et al. 2002a) Lef : [a,b] x [c,d] — R be continuous on
la,b] X [e,d] , and assume th tna I exist on(a,b) x (¢, d). Further, considerk,
[a,b]” — RandS,, : [¢,d” — R given by

(=) ¢ € [a, 2] =A% s € [e,y]
Kn (x7t) = ) Sm (y,S) =
0Tt e (a, b] =A™ s € (y,d]

Then we have the inequality

b pd —1m— k+1
O f (z,y)
c f(t,s)dsdt — ZO; l(y)W
m v f (z,s)
— (=1 X S, — ' 7q
0N [ S lons) T s
-1
(9”+lf (t,y)
— ” Y (y K, —— 22t
(-1 - 3 / s
( n n m m n+m
Gt (@ — )™+ <b — )" [y ="+ d =y ‘ S Lo’
n—+m
if St € Loo (Q)
1 1
L |:($_a)nq+1+(b_x)nq+1:| q |:(d—6)mq+1+(d—y)mq+1:| q ) anerf
< n!m! ng+1 mq+1 otnosm p’
(= a)" + (b —2)" +|(z —a)" = (b—x)"]]
m m m m n+m . n+m
| ="+ @=y)" +ly =" = (=) | Grgek]| 5 if Sk € L1 (@)

(2.4.5)
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forall (z,y) € Q, where,

anerf ~ an+mf (tvs)
otnosm || . wweo| otdsm |’
an+mf 8n+mf t, S P
>
H otros™ ||, <// Otndsm ddt) RE.
and
CoNKHL o Nk Nkt RN S A R A |
O I e oV ) VP (e s o VBt

(k+1)! ((+1)!

Keeping in mind thatr and y are free parameters, then one can produce
“mid-point” and “boundary-point” type results by choosing appropriate values:for
andy. In addition choosing values for andm will re-capture the earlier results of

Hanna et al. (2000) and Dragomir et al. (2000).

In order to compare the integral mean of the product with the product of the

integral means, @iss (1935) have considered l(fieby“sev functional defined by

fg——/f

and he has proved that for two integrable mappifigssuch thatp < f(z) < ® and

1 b
t)dt  —— t)dt 2.4.6
) b_a, ag<) ? ( )

v < f(z) < T, the inequality

(®—¢) (=) (2.4.7)

B~ =

IC(f,9) <

holds, and the constal}gtis the best possible.

The proof of (2.4.7) may be done by applying the Cauchy—Bunyakovsky—Schwarz
integral inequality for double integrals, on the right hand side of the well-known Korkine

identity,

<b—a>/abf<x>g<x>dx—/jf(x)dx-/abg(x)da:

—5 | [@-sulb@-swiis @as
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After that, and in order to represent the remainder of the Taylor formula in an
integral form which will allow a better estimation using thelGs type inequalities,
Hanna et al. (2002b), generalized the above Korkine identity (2.4.8), for double

integrals and therefore Gss type inequalities were proved. Namely, they proved
Theorem 2.4.5.(Hanna et al. 2002b) We assume that

|f (@,y) = [ (u,v)] < My |o — ™ + My |z —ul™
where, My, My > 0, ay, an € (0, 1] and

f (@,y) = f(w,0)] < Ny |z —ul™ + Ny o — o]

where,Ny, Ny > 0, 81, 32 € (0,1] for all (z,y), (u,v) € [a,b] x [c,d], then we have the

following inequality:

‘Wl(d—c)/ab/cdf(%y)g(:v,y)dydm
_(b—a)l(d_c) /“b/cdf(x’y)dydx'm/bldg(x,y)dydm

(b . a)a1+61 9 (b ) ( )ﬁ2
@i D@ iaty T D@ ) (B (B
2(b— a)™ (d— &) (b ayeet:
@i D G 0G+ 2 M i D D)
(2.4.9)

< M N,

+ MyN,

Corollary 2.4.6. Whena; = as = 1 andf; = 3, = 1, then

[f (@, y) = f (u,0)| < Lo —uf + Ly |z — ul,

|f(@,y) = [ (u,0)] < K|z —u| + Kz |z — u

where,Ly, Ly, Ky, Ko > 0, 31, B2 € (0, 1] and then (2.4.9) becomes

’b_a //fxy (z,y) dydz

“h—a)( _C//fxydydx = )(d C)/ab cdg(:c,y)dydx

(b— a) a)(d—c) (b—a)(d—0) (d—c)
5+ L1K2—18 + LK, 5 + LKyt
(2.4.10)

< LK,
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For approximation of multiple integrals see the classical book Stroud (1971). Several
multivariate and univariate higher order Ostrowski type inequalities over Euclidean
domains as well as multivariate Fink type identity were recently proved in Anastassiou
(1995), Anastassiou (1997), Anastassiou (2002), Pachpatte (2002b), Pachpatte (2001),
Pachpatte (2002a) Anastassiou (2007) and Anastassiou and Goldstein (2007) and
(2008). For recent comprehensive list of refinements, counterparts and generalizations
of Ostrowski integral inequality see, Mitrindvet al. (1993) and Dragomir and Rassias
(2002), as well as the recent PhD study, Hanna (2009) where the author introduced new
multivariate approximations from a generalized Taylor perspective in terms of Appell

type polynomials.

2.4.2 Simpson’s Type Inequalities

Zhongxue (2008), has proved the following Simpson type inequality for mappings of

two independent variables:

Theorem 2.4.7.(Zhongxue 2008) Let : [a, ¢| x [b, d] — R be an absolutely continuous

function, whose partial derivative of order 2§ € L*([a, c| x [b,d]). Then

fla5%) + F(4550) + £ (455 d) + f (e 59) +4 (%55 57

9
L@+ fad) f(eb)+fed) Sy [F(5.0)+4F (5, %5) + 1 (5,d)] ds
36 6(c—a)
S (e t) +Af (5 8) + f (e p)] dt A ST (s,1) dsd
6(d—b) (c—a)(d—b)
[(c—a) (d— b)) p
< T o (f"), (2.4.11)

whereo (+) is defined by

o0 =M= = ([ [ 76 dsdt) , 24.12)
I1£112 = ( |/ d\f(s,m?dsdt)m

and
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The inequality (2.4.11) is sharp in the sense that the constédtt cannot be replaced

by a smaller one.

Another interesting result was considered by Zhongxue (2008), as follows:

Theorem 2.4.8.(Zhongxue 2008) Under the assumptions of Theorem 1, fofaamy €

la, c] x [b,d], we have

c d
<c—a><d—b>f<x,y>—<d—b>/ f(s,wds—(c—a)/b f (1) di

(-5 (- Hea - fad - Fen £

3
2

‘ d [7 (C - CL) (d - b)] "
[ [ s dsdt] < ! (70, (2.4.13)

whereo (f) is defined above. The Inequality (2.4.13) is sharp in the sense that the

constantﬁ—‘f cannot be replaced by a smaller one.

In his recent work, Liu (2010) has derived a new sharp inequality with a

parameter for the absolutely continuous functjon [a, c|] x [b,d] — R whose partial

derivative of order 2 ig”, € L? ([a, ] x [b, d]) via the new sharp bound (2.4.12), which

will not only provide a generalization of inequalities (2.4.11) and (2.4.13), but also gives

some other interesting sharp inequalities as special cases.

A generalization of (2.4.11) is considered recently by Liu (2010), as follows:

Theorem 2.4.9.(Liu 2010) Let the assumptions of Theorem 1 hold. Then fordaay
[0,1] and(z,y) € [a,c] x [b,d], we have

ey @=0){1- 077 @)+ L @)+ f ) + £ @)+ £ o)

+0Z2 [f(a,b)+f(a,d)+f(c,b)+f(cad)]}

=0 (o= 50) (- B Ve d - Fad) - Fen) + £ @)

2 2
d—>b

_T/:[ef(s,b)+2(1—0)f(s,y)+9f(s,d)]d8

c—a
2

/bd[ef(a,t)+2(1—Q)f(x,t)+0f(c,t)]ds+/ac/bdf(s,t)dsdt‘



30

< {0<2—9>(1—9>2<c—a><d—b> (x—a20>2<y_b%i>2

(1—6)(1— 30— 362)
12

T

(-3 392)?
144

(c—a)(d—0>)

N[

(¢c—a)®(d— b)3} o () (2.4.14)
whereo (f) is defined above. The inequality (2.4.14) is sharp in the sense that the

coefficient constant of the right-hand side cannot be replaced by a smaller one.

In special case, if we set= 2t¢ andy = 22 with § = £, we get

J o 59) + F (955 0) + F (255 d) + (e 59) + 2 (555, 57)

8
+f(a,b)+f(a,d)+f(c,b)+f(c,d) S (s, 0) +2f (5,59 + (s,d)] ds
16 4(c—a)
T et 2f (5550) + £ (e, t)] dt . I F (s,1) dsdt
4(d —b) (c—a)(d—D)

¢ —a)(d—0b)"?
[ )g N /a1, (2.4.15)




CHAPTER IlI

OSTROWSKI'S TYPE INEQUALITIES

3.1 INTRODUCTION

In this chapter, several new inequalities of Ostrowski’s type are introduced. Trapezoid
and Midpoint type rules for doubl S—double integral are proved. A generalization
of the well known Beesack—Darst—Pollard inequality for doubie-double integrals is

also considered. Finally, as applications, two cubature formulae are proposed.

3.2 PRELIMINARIES AND LEMMAS

In this section, we introduce some fundamental inequalities concerning Riemann-Stieltjes
double integrals. Namely, we first prove integration by parts formula for the
Riemann-Stieltjes double integral and then using the concept of bounded bi-variation,
bi-monotonic and Lipschitz mappings to generalize some basic and well-known

inequalities for double integrals in the Riemann-Stieltjes sense.

Frechet (1910) has given the following characterization for the double
Riemann-Stieltjes integral. Assume thatz,y) and o (z,y) are defined over the
rectangle

Q:(a<z<b; c<y<d);

let R be the divided into rectangular subdivisions, or cells, by the net of straight lines

x:xiay:yja

a=xg<r1<--<xp,=0b and c=y <y <--- <Yy =d;



32

let ¢;,n; be any numbers satisfying the inequalities, < ¢; < z;, yj—1 < n; < y;,

(t=1,2,--- ,n;5=1,2,--- /m); and for allz, j let

A (JEi, yj) = (951'71, yjfl) -« (-Tiflayj) -« (xivyjfl) + (3617 yj) .

Then if the sum

n m

S=> " f(Gm) Ana(zi,y))

i=1 j=1

tends to a finite limit as the norm of the subdivisions approaches zero, the integral of
with respect tax is said to exist. We call this limit the restricted integral, and designate

it by the symbol

b d
| [t ddat.y, (3.2.1)
If in the above formulatiort' is replaced by the sum
=Y > f (Gyomig) Ana (i, y),
i=1 j=1
where(;;, n;; are any numbers satisfying the inequalities; < (;; < x;, y;_1 < n;; <
y;, we call the limit, when it exists, the unrestricted integral, and designate it by the

symbol

b d
//f(x,y)dxdya(x,y). (3.2.2)

The existence of (3.2.2) implies both the existence of (3.2.1) and its equality to (3.2.2).
On the other hand, Clarkson (1933) has shown that the existence of (3.2.1) does not
imply the existence of (3.2.2) (see Clarkson (1933)).

Lemma 3.2.1. (Integration by parts) Iff € RS(a) on @, thena € RS(f) on @, and

we have

//ftsdtdats // (t,s) didsf (t,s)

= f(b,d)a(b,d) — f(b,c)a(b,c)— f(a,d)a(a,d)+ f(a,c)a(a,c). (3.2.3)



33

Proof. Lete > 0 be given. Sincgfcd f;f (t,s) didsa (t, s) exists, there is a partitioR,

of ) such that for every”’ finer thanP,, we have

’5(13’, fa)— / ' / Crts) dda(ts)| < e (3.2.4)

Consider an arbitrary Riemann-Stieltjes sum for the integ(al s) d;d. f (¢, s), say

S(P, f,«) ZZ (ti, s5) A f (i, y;5)

=1 =1
zzza(ti,sg) (Tic1,Y5-1) Z a(tiysi) f (i1, y;)
Jj=1 =1 j=1 i=1
_ZZ@(thS] xzay] 1 +ZZO&(fi,5j)f($i7yj)’
7j=1 i=1 j=1 i=1

whereP finer thanP.. Writing
A=f(b,d) a,d) — f(bc)a(bc)— f(a,d)a(a,d)+ f(a,c)a(a,c),

we have the identity

A:ZZf(xiflayjfl) (i-1,Yj-1) ZZf Ti-1,Y;) & (Tio1,Y;)

j=1 i=1 j=1 i=1
- ZZf (i, yj—1) @ (Tiy yj-1) + ZZf (i, y5) o (i, ;)
j=1 i=1 j=1 i=1

Subtracting the last two displayed equations, we find

A-S(P f,« ZZf Tio1, Y1) [ (o1, yjm1) — (s, 55)]

Jj=1 =1
+ZZf T 1;3/] t1,83> (Ii—hyj)]
J=1 =1
+ZZf (3, y5-1) [ (b, 55) — @ (23, 95-1))]
j=1 i=1
3N F ) o () — o (t,s5)],
j=1 i=1

The sums on the right can be combined into a single sum of the$qrAY, f, o), where
P’ is that partition of¢) obtained by taking the point$;, s;), (z;, y;) together. Ther’
is finer thanP and hence finer thaR.. Therefore the inequality (3.2.4) is valid and this

means that we have

d b
A—S(P,f,a)—/ / f(t,s)didsa (t,s)] <e,
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wheneverP is finer thanP,. But this is exactly the statemeyﬁf faba (t,s) didsf (2, 5)
exists and equald — fcd ff f(t,s)didsa (2, ). O

Lemma 3.2.2.1f f is continuous or) and if « is of bounded bivariation o), then
feRS(a).

Proof. First of all, we note that, by Lemma 3.2.1, a second sufficient condition can be
obtained by interchanging and« in the hypothesis. It suffices to prove the theorem
whena is bi-monotonically increasing with (a,-) < a/(b,-), a(-,¢) < a(-,d) and
a(t,s) < a(zx,y), forallt < xands < yin Q. Sincef is continuous org) then f is
uniformly continuous o, i.e.,Ve > 0 there exist® > 0, such that

f (@,y) = f (L) < ~

1 whenever |(z —t,y —s)| <0,

whereA = 4o (b,d) —a(b,c) —a(a,d) + a(a,c)]. If P, is a partition of() with
| P|| < 0, then forP finer thanP. we must havel/;; (f) — m;; (f) < ¢/A, where

Ml(f)_mlj<f) :sup{f(x,y)—f(x,s)—f(t,y)+f(t,s) : (xay)v<t75) GQ}

Multiplying the inequality byA«;; and summing, we find

U(P, f,a)— L(P, f,a) < %ZZAHa:£<e.

=1 i=1

Hence,f € RS(a) on@Q). O

Lemma 3.2.3. Assume thay € RS(«) on @ and « is of bounded bivariation o),

then

d b
[ [ sendiaty) < s g Vi @29

Proof. The existence offcd fabg(x,y) d.dya (z,y) follows from Lemma 3.2.4. Let
A, =a=xg< 11 < - <z,=bandA,, =c=y <y < - < yYn =d

be a partitions ofa, b] and|c, d|; respectively. Let

An:m ::{ (any0>7'” a($07ym>7(x17y0)7"' a(l'l?ym)f” a(l'nay[))y”' 7(xn7ym) }
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be a partition of@ and! (A,,,,) = max{z,+1 — z;,y;41 — y;} be the length of?),
2y}

therefore,
m—1n—1
g(m,y)dxdya(x,y)’: lim Z g( )Ana(%,yy)
I(An,m)—0 "0 im0
m—1n—1
< 9 (677 18ne (i
oo g 2178 B o)
m—1n—1
< sup [g(z,y)|- sup |Ana (zi,95)]
= sup |g(z,9)\/ (o),
(I,y)EQ Q
which is required. [

Lemma 3.2.4. Let ¢ be a continuous mapping o®"¢ and « is bi-monotonic

non-decreasing o<, then

a,c?

:vyddoz(xy‘ //|gmy)|dda(xy) (3.2.6)

Proof. Let

Anm ::{ (l‘o,yo),"' 7(9507ym),($1,3/0)7“' 7(x17ym>7“' 7('7;117:'-/0)7"' 7($n7ym) }

be a partition of@ and!(A,,,) := max{z;;1 — z;,y;11 — y,;} be the length ofY,
Z?J

therefore,
m—1n—1
(w.0) e (2,)] = | fim Ozzg( ™) Aua (a1,
n,'m — ]:0 i—0
—1n—1
< lim 9 (& n™) | 1800 (@i, )]
J=0 i=
which is required. ]

Lemma 3.25.Letg,a : @ — R, be such thaly is L-Lipschitz on@ and « is
Riemann-integrable o then the Riemann-Stieltjes integ;fg"l ff g(z,y) d.dya (x,y)

exists and the inequality

d b
g (z,y) dydya (w,y)‘ < L/ / 9 (z,y)| dzdy, (3.2.7)

holds
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Proof. The existence oﬂcd fabg(x,y) d.dya (z,y) follows from Lemma 3.2.2. Let
A, =a=xg< 11 < - <z,=bandA,, =c=y <y < -+ < yn =4d

be a partitions ofa, b] and|c, d; respectively. Let

Ay = {(ﬂfo,yo) c(@ny) s (T yo) s (T yn)}

be a partition of) and( (A,,,) = max{x;11 — x;,y;+1 — y;} be the length ofQ),
2¥}

therefore,
d b n—1 n—1
/ / 9(,y) dedyor (m,y)‘ = l(AliH)l OZ g <€§"),n§")> [ (i, i) — o (Tim1, Yi1)]
c Ja " =0 =0
n—1 n—1
< lim ZZ ‘9 <f¢(n)777§n))‘ | (@3, yi) — o (i1, yi1)|
{Ann)=05=0 20
n—1 n—1
<L lim ‘g (55"),77?))‘ (@i, yi) — (Tiz1, Yic1)]
Ann) =050 20
d b
= L/ / g (z,y)| dxdy,
which is required. [

3.3 OSTROWSKIINEQUALITY FOR MAPPINGS BOUNDED BIVARIATION

In this section and in order to approximate the Riemann-Stieltjes double integral, some

of Ostrowski, trapezoid and Simpson type inequalities are proved.

We begin with the following generalization of (2.3.4):

Theorem 3.3.1.Let f : Q — R be a mapping of bounded bivariation éh Then for

all (z,y) € @, we have the inequality

‘(b—a)(d—C)f(w,y)—/cd/abf(t,S)dtds
Lsteb o bty eso

where\/, (f) denotes the total (double) bivariation gfon Q.
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Proof. From Lemma 3.2.1, we have

/Cy/:(t—a)(s—C)dtdsf(t,S):(x—a)(y—c)f(x,y)—/cy/:f(t,s)dtds,
/yd/j(t_a)“_d)dtdsf(t’s):(@“—a)(d—y)f(xyy)—/yd/:f(t,s)dtds,
// (t =) (s — ) dydy f (t,5) = (b—2) (y — ©) f (z,) //ftsdtds

// (t —b) (s — d) dydyf (£, 8) = (x — ) (y — d) f (2,y) //ftsdtds

Adding the above equalities, we get

/Cd/abP(aZ,t;%S)dtdsf(t,S):(b—a)(d—c)f(x,y)—/cd/abf(ts)dtds

where,

(

(t—a)(s=c), (2,9)€la,z]x[cy]

(t_a) (S - d)v <$,y) € [av‘r] X (yvd]
P(x,t;y,s) =

t=b)(s=c), (z,9)€ (xb] xcy]

t=0)(s=d), (z,y)€ (x,0]x(yd

\

forall (¢,s) € Q.

Now, applying Lemma 3.2.3, by letting= P anda = f, we get

P (z,t;y,s)dids f (L, 5)

< sup |P(z,t;y,s)|- \/
(z,y)€Q Q

= max{(z —a) (y =), (x —a) (d—y),(b—2) (y =), (b —2) (d =y} - \/ (/).

x7y
Q
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but,

M =max{(z—a)(y—c),(z-a)(d=y),(b-2)(y =), (b-2)(d-y)}

:max{m;iX{(x—a) <y—c),<x—a)<d—y>,<b—x><y—c>,<b—x><d—y>}},

T

and sincanax is independent af, we have
Y

M=ma><{(ﬂf—a)-mgx{(y—C),(d—y)}ﬁ(b—ﬂf)-mgx{(y—C),(d—y)}}

xT

Sm:?x{(w—a),(b—x)}.mfx{(y_c)’(d_y)}
- [b;aJr‘x—a;bH . [dgcwy_c;duj
it follows that,
/cd/abp (2. tyy, 5) dyd, f (2, 5)
e AR
Q

which completes the proof. O

Corollary 3.3.2. In Theorem 3.3.1. Let = 2t andy = <£4, then we have

’(b—a)(d—c)f(a;rb,cgd) —/Cd/abf(t,s)dtds

Remark 3.3.3. Similar inequalities can be found if we assume th& monotonous on

<029 ),
Q

Q, we left the details to the interested reader.

Corollary 3.3.4. In Theorem 3.3.1. Assunie b] = [c, d], we get

(b—a)Qf(w,y)—/ab/abf(t,s)dtds

ST T

A generalization of the trapezoid inequality (2.3.5) for mappings of two variables

may be stated as follows:
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Theorem 3.3.5.Let f : Q — R be a mapping of bounded bivariation h Then for
all (z,y) € @, we have the inequality

(b—a)(d—rc)

1 [f(b,d) = f(bye)— f(a,d)+ f(a,c)] //ftsdtds

<UZ9W=9 Ny, 332)

- 4
Q

The constanﬁ IS best possible value.

Proof. From Lemma 3.2.1, we have

//Rtsdtdfts)

—a c d b
O ) - )~ @)+ f ] - [ [ v

where,R (t,s) = (t — ) (s —<4), a<t<b; c<s<d

Now, applying Lemma 3.2.3, by letting= R anda = f, we get

d b

/Rts didsf (t,8)| < sup |R(t, )| \/\/(f)z(b_a)4(d_c)'\/(f>

tS EQ c a Q

which is required. O

The following theorem generalize the inequality (3.3.2).

Theorem 3.3.6.Let f : Q — R be a mapping of bounded bivariation ¢h Then for

all (z,y) € @, we have the inequality

d b
umm@—www@—um@@+uwm@—/ /fmwmﬂW@

< sup |af(t,s)|- . (3.3.3)
(t,9)€Q \/

Proof. From Lemma 3.2.1, we have

// (t,s)didsf (t,s) //ftsdtdats)

= f(b,d)a(b,d) — f(b,c)a(b,c)— f(a,d)a(a,d)+ f(a,c)a(a,c).
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Now, applying Lemma 3.2.3, by letting= R anda = f, we get

a(t,s)ddsf (t, )| < sup |a(t,s)| - \/
(tS)EQ Q

which is required. O

The following result holds

Theorem 3.3.7.Letu : Q — R be a function of bounded bivariation arfd: Q — R a
function such that there exists the constants\/ € Rwithm < f(¢,s) < M, for each
(t,s) € Q, and the Stieltjes integral” [” f (t,s) dyd,u (t, s) exists. Then, by defining

the error functional

w (f,u,m, M; Q)
d b
:/ / (1) e (1,9) = S u (b,d) — (b)) + e a,)]
(3.3.4)
we have the bound
1 d b
W (f u,m, M Q) < 5 (M —m)- \/\/ (u) (3.3.5)
Proof. Since, obviously, the functiofi — M satisfies the inequality
it ="M < L0r-m) v €@
and the Stieltjes integrqlcd fab (f (t,s) — 24M) dyd,u (¢, s) exists, then
b
(f(t,s) - m;M) didyu (t, 5)
m+ M d b 1 d b
< — . < Z — .
R (I RVAVICES TR BRI
and the inequality (3.3.5) is proved. O

Now, we consider an Ostrowski type inequality fo#f,, 5;)—Holder type

mapping on the co-ordinate.
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Definition 3.3.8. A functionf : Q%¢ — R is to be of(3,, 3,)—Holder type mapping on

a,c

the co-ordinate, if for allt,, s1) , (t1, s1) € Q%¢, there existd,, H, > 0 and 3, 5, > 0

a,c?

such that
|f (t1,81) — f (t2, 82)| < Hy |t — 752|ﬁ1 + Hy|s1 — 52‘62 .
If 5, = B, = 1, thenf is called(L;, L,)-Lipschitz on the co-ordinate, i.e.,
|f (t1,s1) = f(t2, 82)| < Ly [ty —ta| + La|s1 — s2f -

Theorem 3.3.9.Let f : Q% — R be a(f, 3;)-Holder type mapping on the

a,c

co-ordinate, i.e., for alt,, s1) , (t1,s1) € Q%%, there existH,, H, > 0 and 3,3, > 0

a,c?

such that
|f (t1,81) — f (t2, 82)| < Hy |t — 752|ﬁ1 + Hy |s; — 32‘62 ;

andu : Q%% — R be a mapping of bounded bivariation ¢};¢. Then for all(x,y) €

bd ‘we have the inequality

[u(b,d)—u(b,c)—u(a,d)—i—u(a,c)]f(x,y)—/ / F (L) ddou ()

—a a B1 N B2
§<H1V2 tlo— +w} +H2V C+¢y—c+du )\/my(aaa

2 2 2 b
Qa’,c
Proof. From Lemma 3.2.3, we have

d b
‘f(x,y)(u(b,d)—u(b,c)—u(a,d)+u(a,c))—//f(t,s)dtdsu(t,s)

/‘/<fuu»—faw»¢¢ums
< suwp |f(zy)—fts)\/ (u).

b,d
(t,S)EQa:C b,d
Qe

Now, sincef is a(/3, 2)—Holder on the co-ordinate, we have

swp |f (e,y) = FEs) < swp (Hile =" + Haly— s*)

(t.5)€Que (t.5)€Qae
— H, sup |z —t|” + Hy sup |y — s|™
t€(a,b] s€[e,d]

= Hymax {(z —a) (b~ 2)" } + Homax { (s — )™, (d )}

b—a | _atb]™ pfd—c | c+d]]”
2 2172 )T

:Hl[




42

which follows that,
[u(b,d)—u(b,c)—u(a,d)-}—u(a,c)]f(x,y)—/cd/abf(t,s)dtdsu(t,s)
< <H1 {b;aJr x_a;b‘]ﬁl+H2 {d;c+‘y_042rd’}ﬁ2) \/(U),

Qae
which completes the proof. O

Corollary 3.3.10. Let v as in Theorem 3.3.13 and lef : Q% — R be an

L—-Lipschitzian mapping on the co-ordinate ¢, i.e., for all (t1,s1) , (1, 51) € Q%4,

there existL,, L, > 0 such that
|f (t1,51) — [ (ta,82)] < Ly |t1 — to| + Lo |s1 — s2].

Then for all(z, y) € we have the inequality

(IC’

[u(b,d) —u(bc)—u(a,d)+u(a,c)f(z,y) //ftsdtduts)

b—a a+b

c+d
2

§L1|:

2 ‘4 'y - H (3.3.7)
Theorem 3.3.11.Let f : Q%Y — R be a mapping of bounded bivariation @p{¢
andu : vad — R be a(p, #,)—Holder mapping on the co-ordinate. Then for all

(z,y) € Q4% we have the inequality

O (f, w; 2, 0,b;y,¢,d)| < [Hl(fv—a)ﬁ”rﬂz(y—c)@] V)

[

+ [H - )"+ (y— 0)*]

+H (b= ) + Hy(d—y) } . (3.3.8)

\V
+:H1(:z: )" + Hy (d — v) }\/
.
V

g<@g<H e~z<c~

where,
O (f,u;x,a,byy,c,d)

d b
:[u(b,d)—u(b,c)—u(a,d)—l—u(a,c)]f(x,y)—//f(t,s)dtdsu(t,s)

is the Ostrowski’s functional associated tandw« as above.
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Proof. Asu is continuous ang is of bounded bivariation 0@%¢ , the following double
Riemann-Stieltjes integrals exist and, by the integration by parts formula, we can state
that

I - // (t, 5) ¢)) didsf (¢, 5)

[u(z,y) —u(z,c) —ula,y)+ul(a,c)f(z,y) — //ftsdtdu(ts)

I = /Cy/: (u (L, 5) — u (b, ¢)) dyda f (1, 5)

Y b
= [u(b,y) —u(b,c) —u(zr,y) +u(z,c)f(z,y) —/ / f(t,s)ddsu(t,s),

d T
I3 ::/ / (u(t,s) —u(a,d))ddsf (t,s)
= [u(x,d) —u(z,y) —u(a,d) +u(a,y)] f(x,y) —/ /xf(t,s) dydgu (t,s),

and

I ::/ / (u(t,s) — u (b, d) ddsf (2, 5)
d b
:[u(b,d>—u(b,w—u(x,d>+u<x,y>]f<x,y>—/ / £t s) didsu (1, 5).

If we add the above identities, we obtain
Yy x
G(f,u;x,a,b;y,c,d)—/ / (u(t,s) —u(a,c))didsf (L,s)

o[ [
+/yd/“(U(
gy

(t,s) ) dids f (t, 5)
t,s) —u(a,d))ddsf (t,s)

u(t,s) —u(b,d))didsf (t,s)



Now, using the properties of modulus, we have:

1(Zféﬂuuﬁ>—uwm»@¢f@s>

+ /yd /: (u(t,s) —u(a,d))ddsf (t,5)

+ / / (u(t,s) —u(b,d))ddsf (t,s)
< sup u(t,s) —u(a,c)-\/\/ (/)

(t,5)€Qud c a
y b
+ sup Ju(t,s) —u(b,c)| \/\/
(t,s)ng'}é c

+ sup |u(t,s)—u(a,d)|-
(t.5)eQiy

+ sup Ju(t,s) —u(b,d)]
(t,s)eQYs

However,
|u (t78) - U(G,C)| < H; |t - a|ﬁ1 + H |S - c|ﬂ2 )
so that,

sup |u(t,s) —u(a,c)| < sup <H1 it —a|™ + Hy|s — c\ﬁ2>
(t,5)€Qaé (t.s)€Qad

= H, (z—a)” + H, (y — o)™
Similarly, for

sup Ju(t,s) —u(b,0)| < Hy (b—2)" + Hy (y — o),
(t,s)EQyY

sup [ (t, ) — (o, d) < Hy (z— a)* + Hy (d - y)”
(t,5)eQe:d

and
sup [u(t,8) = u (b, d)| < Hy (b—2)* + Hy (d - y)*
(t,5)eQy %

in obtaining the above inequalities we get the required result.
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Remark 3.3.12.In the above results, if one chooses= “f* andy = <4, we get

inequalities of midpoint type for mappings of two independent variables.

In the following, we generalize the inequality (2.3.11) which is a companion of

Ostrowski’s inequality for mappings of two variables:

Theorem 3.3.13.Let f : Q%% — R be a mapping of bounded bivariation ¢}%. Then
atb ctd
forall (x,y) € Q.2 " ? , we have the inequality

‘W[f(x,y)+f(a+b—:zc,y)+f(m,c+d—y)+f(a+b—x,c+d—y)]
—/Cd/abf(t,s)dtds
S[b;aer_?)aIbH'[d;c_F‘ 30—|—dH \d/\b/w (3.3.9)

Proof. From Lemma 3.2.1, we have

[ [ a-o6-addses = e-au-0s@y (3.3.10)

/ /Hb m ( b) (s —¢) deds f (t,5)

() -as@ib-an - (o= 50 -9 o) @3

/y/+b (t=b)(s—c)ddsf (t,s) = (v —a)(y—c)fla+b—my) (3.3.12)

[ T i (s- ) s )

~Jaetrd-pe-a (5 -y) +fen o

c+d

5 - y) (3.3.13)
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ct+d—y at+b—x
/ / (t_a+b) (S_C+d> dtdsf(tas)
) ; 2 2

=fla+b—z,c+d—y) (a;—b—x) (C—gd—y>
+ fla+b—x,y) (GT—H)—x> <C—£d—y)

+ f(z,c+d—y) (x—a;rb> <C;d—y)
+ f(zy) <a:— “*b) (y— C+d> (3.3.14)

2 2
/c+d y/ (b (3—C+d>dtdsf(t,s)
+b—x 2
=/

(a+b—z,c+d—y)(z—a) (%l_y)ﬂe(a“}_x ) e—2) (y_«:;-d)
(3.3.15)

d T
/d /(t—a)(s—d)dtdsf(t,s):(x—a)(y—c)f(a:,c—i-d—y) (3.3.16)

+
d at+b—zx
/ (t—a+b>(s—d)dtdsf(t,s)
ctd—y Jx 2
a+b

:< 5 —x) (d—y)f(a+b—a:,c—|—d—y)+(a:—

a+b
2

) (c—y) f(zctd—r)
(3.3.17)

/d /+b (t—b) (s — d)dydof (t,8) = f(atb—a,c4d—1)(z—a)(d—y)

(3.3.18)
Adding the above equalities, we get
b— d—
oD o)t flatb—mp) + factd—y)+ Flatb—rctd—y)
d b
—/ / f(t,s)dtds
C a d b
— [ [ K K ddg ),
where,
t—a, t € |a,x]
K (z,t) = t—”’Ter, te(x,a+b—2a] ,

t—b, te(a+b— bl



a7

and
s —c, s € |a,y]
Ky (y,s) = s—%’, s€ (y,c+d—yl
s —d, se(c+d—y,d
Now, by Lemma 3.2.2
b— d—
‘%[f(x,y)+f(a+b—x,y)+f(:v,c+d—y)+f(a+b—x,c—|—d—y)]
d b
—/ / f(t,s)dtds
<x7t) K2 (ya 8) dtdsf (t,S) < sup |K1 (.Yl,t) K2 (y7$)| ' \/ (f) .
(m,y)GQZ’,i Qb
Since

sup 1K1 (o,t) K 9] = max {0 = @) (57 <o) boma{ - 0. (S50 - 0)

(z,y)€QE
[b—a ' 3a+bH [d—c I 30—|—dH

4 4 4 4

Combining the above identities we get the required results. ]

Corollary 3.3.14. In the above theorem, choose

1. x = aandy = ¢, we get

(b—a)4(d—0) [f(a,c)+f(b7c)+f(a7d)+f(b’d)]_/c /a f(t,s)dtds
(b—a)(d—c)
< 1 -V (). (3.3.19)

b,d
Qa,c

3a+b 3c+d
2. x =22 andy = 244, we get

’(b—a)(d c) {f<3a~|—b 3c+d) +f<a~|—3b 3c+d>+f(3a+b c+3d)

4 4 7 4 |

+f<a—23b c+3d>] //f dtdsg( a)(d—c)‘\/ﬁ)'

16 oh

a,c

(3.3.20)
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3.z = andy = <4, we get

‘(b—a)(d—C)f(a;b,C;d) —/cd/abf(t,s)dtds gw- \ ().

Qe
(3.3.21)

A generalization of the Simpson inequality (2.3.23) for mappings of bounded

bivariation, is considered as follows:

Theorem 3.3.15.Let f : Q — R be a mapping of bounded bivariation ¢h Then for

all (z,y) € @, we have the inequality

‘@—@( ” (b,d) — f (b,¢) — f (a,d) + f (a,0)]

+ b—a [f<a+b ) (b’c+d)+4f(a—2|—b,c%2—d)
(a—;b > f(a,c+d>] /a/fstdtds

<=9\ (p), @322)

) Q

where/,, (f) denotes the total (double) bivariation gfon Q.

Proof. From Lemma 3.2.1, we have

a+b c+d
Tz b d
/2 /2 (S_5a6+ )(t_5cg )dtdsf(t,s)

::@—agd—@f<a;gc;d>

(b—aéd—@{f(a;bm>+f(mc;d>]

a+b c+d

)
1
+%Jf(a,c)—/&2 /2 f(s,t)dtds

[
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(b—Cj)g(d—C)f(CL;—b7C—|2—d)

R R

atb 4
—(b_a;éd_c)f(a,d)—/a ’ /%df(s,wdtds

)5
a)(d - ¢ %

and

:2(6—2a)(d—c)f(a+b c+d)

9 2 72
O 1) s (252
+(b_a;#f(b,d) h :df( ,t)dtd

Adding the above equalities, we get

/b/dK(s,t)dtdsf(s,t)
_(b—a)(d—c)
= AR
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where,
(s =22 (1= 24), a<s<ogte<i<e
(-3 (-5, asssepsti<isd
K (s,t) =

(5 =42) (1 30) s <5 <ho<t< e

| (-2 -). g cschgtciza

forall (t,s) € Q.

Now, applying Lemma 3.2.3, by letting= P anda = f, we get

b b

/K (s,t)dydsf (t,8)] < sup |K (s,t)]- \/\/(f):(b_a)g(d_C)'\/\/(f)

(z,y)€eQ a a

which completes the proof. O

3.4 QUADRATURE RULES FOR RS-DOUBLE INTEGRAL

In this section and using Mercer approach to prove Theorem 2.3.13, we introduce
the following quadrature rule for Riemann—Stieltjes double integral. Looking for a

trapezoidal rule for the doublBS-integral, we seek number§ B, C' and D such that

b d

[ [ @) didug (@9) = AF (@.0) + Bf (0.) +CF (b.0) + Df (0. )
is equality forf (x,y) = 1,f (z,y) = z,f (z,y) = y andf (z,y) = zy. Thatis,

b od
//1ddzgxy A+B+C+ D,

b d
//xddxgmy) Aa+ Ba + Cb+ Db,

b od
//yddxgxy Ac+ Bd+ Cec+ Dd,
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and
b d

//xydydzg (x,y) = Aac + Bad + Cbc + Dbd.

Solving these equations fet, B, C' and D, we obtainour doubleR S-trapezoidal rule

/b/df(x,y)dydxg(a:,y) = !g(a,c) T g(xcd:c——/
b—a d—c) /b/dgxydydx] (a,c)

[ /bg x—L 9(a,y) dy
+( _al d— o) /b/dg x,ydydx]f(a,d)

b d
[ a/g:ltcdzv—L g(b,y)dy
b od )
b—a //gxydydx] (b, c)
"5 d
+[g<b,d>ﬁ g(r.dydr ——— [ g(b.)dy

f(b,d).

+(b—a)1(d—c) /b /d g (x,y)dydz

Looking for a midpoint rule for the doubl&S-integral, we seekd € R and(¢,s) €

[a, b] x [e,d] such that

/b/df(:v,y) dydyg (z,y) = Af (t,s),

is equality forf (z,y) =1, f (z,y) = x, andf (z,y) = y. Thatis,

//1ddmgxy //xddmgl‘y =tA, and //yddxgxy—sA

Solving these equations fot, t ands, we obtainour doubleRS-midpoint rule

/ / f () dydeg (2,9) = g (b.d) — g (a,d) — g (b,) + g (a 0)] £ (¢, 5)
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where,

blg (b,d) =g (b,c)] —alg(a,d) = g(a,c)] = [ g (x,d) — g (x,c)] dx

g(b,d) —g(a,d) —g(b,c)+g(a,c)

8~

t =

and

dlg (b,d) — g (a,d)] —clg (b,c) — g (a,0)] = [[g(b,y) — g(a,y)] dy

[

g(b,d)—g(a,d)—g(b,c)—i—g(a,c)

Theorem 3.4.1.Letg : R* — R be continuous and increasing, lgt s) € [a, b] x [c, d]

S =

satisfy

b

/[g(fcad)—g(ﬂ?,C)]dﬂC: (b—=1)[g (b,d) =g (b,c)l + (t —a)[g(a,d) — g (a,c)],

a

and

d

/www%wﬂmwwy=M—ﬂﬂﬂhﬁ—QWJﬂ+@—wHM@@—gwmﬂ

C

If % > 0 andg has continuous second partial derivatives, then we have

(b d) —g(a,d) —g(b,c) +g(a,c)] f (¢ )

//f:vyddzg:cy (3.4.1)

d

< %wwﬁa/hm@mji g@@@+4f@@

a C

IN

d

- wm@bla/gm@wwgi;/gmwww+alfm@>

c
d

b
1 1
~ o) - /gucnm—gj; 9(b.)dy + G

— £ (b.o)

[

d

b
1 1

/gwddaz——/gbydy+6’
—a d—c

b d
//gazydydx
b—a

f(b,d).

where,
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Proof. We begin with the right hand inequality. Let
B (u,v) = g (u,v) — Gy (u) — Ga (v) + G,

where

wazjwam% G2(v) = [ g(wv)da,

H(t,s):/t/sh(u,v)dvdu

satisfiesH (a,c) = H (a,d) = H (b,c) = H (b,d) = 0. Therefore,

so that

d

c

b d
I = //owMMMWwwwwwm—Gmw—Guw+@owm

d

- /b/df(u,v)dvduh(u,v)—h(ua’U)f(Ua’U)\Z :

C

therefore using integration by parts twice, then usth@u, ¢) = H (a,d) = H (b,¢) =
H (b,d) = 0, we see that

b d o
I = //H(u,v)auav

We claim thatH < 0. Then by hypothesi% (u,v) > 0 and sol < 0, which would

(u,v) dvdu.

prove the right-hand inequality.

To prove the claim, let := (7, 7») € A be provided by the First Mean Value
Theorem for Double integralgi(m,, ) = G, wherer is unique becausegis increasing.

For(x,y) € [a, 1] X [c, T2] Wwe have

z oy
H(x,y)://h(u,v)dvdqu
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sinceg is increasing. Fofz,y) € [, b] x [r2, d] we have

H(z,y)

IN

// ddu+// v) dvdu
_//h U, v dvdu—i—//h u, v) dvdu
b [ m y
—/ /h(u,v)dv—l—/h(u,v)dv} du
b d b
—/ /(g(ujv)—/g(u,y)dy—/g(x,v)dx+G) dv
y_ d b
+/(9 u,v) _/9 u,y dy—/g T,V d:L’—i—G)dv
T2 b d
/{/(9 /9 ) dy / xvdx+G)du
b d
//(guv /guydy / xv)dm—i—G)du
b d b b
/{/ +//guydydu+//g v) drdu — /Gdu
y b b d b b
+/{/QU,Udu+//guydydu+//ga:vdxdu /Gdu
T2 b b d
/{—/guvdu+// (u,y) dydu + (b /( v)de — (b—x)G

b

g
y b d
/{/guvdu%—//guydydu—k /ngdax

du

dv

dv

dv

dv

dv




IN

IN

—/[—(b—x)g(x,v)—i—(b—x)g(x,d)—i—(b—x)g(b,v)—(b—a:)G]dv

T2
Yy

/[—(b—x)g(x,v)—i—(b—x)g(x,d)—i—(b—x)g(b,v)—(b—x)G]dv

d
—/[—(b—x)g(z,v)—I—(b—x)g(x,d)—l—(b—x)g(b,v)—(b—x)G]dv

)
d

(b—2x)g(z,v)dv— (b— 1) d g (x,d)dv
y/ y/
d

—(b—x)/g(b,v)dv—l—(d—y)(b—x)G

b—2)(d=y)g(z,y) —20b—-2)(d-y)g(b,d) +(d-y)(b—2)G
(b—=z)(d—y)-[g(x,y) —29(b,d) +G]
0,

so the claim is proved becaugés increasing.

For the left-hand inequality, we begin instead with

ht () = { g(z,d) —g(z,c)—g(a,d)+g(a,c), x€ la,t]

Here again,

@) = [ n

a

clearly H? (a) = 0. Now, we have

t

HA() = / 9 (2,d) — g (,¢) — (g (ad) — g (a,))] dz

a

+/[g<x,d> (@) (g (b.d) — g (b,c))] de

b

— [l@d) = g(@elds— 6= 0)o(bd) g (0.0)

IS}

_<t_a) [g(aad)_g(a>c)] =0.

55
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by our choice otf. Similarly, we have

B (y) = 9(,y) —g(a,y) —g(bc)+gla,c), yelcs]
’ 9(,y) —g(a,y) —g(b,d) +g(a,d), yes,d

Here again,
Y

H (y) = / B (v) do,

C

clearly H? (c¢) = 0. Now, we have

S

HY(d) = / 9 (b.y) — g(ary) — (g (0,6) — g (a, )] de

C

d
+/[g<b,y>—g<a,y> (g (b d) — g (a,d))] dz

d

_ /[g(b,y)—g(a,y)]dy—(d—s)[g(b7d)—9(a>d)]

_(S_C) [g(b,C) —g(a,c)] =0
by our choice ok.
Defineh (z,y) = h (x) h? (y) on[a,b] x [c, d], and therefore

H(x,y) = / /y H (u) H? (v) dvdu.

a

We use integration by parts (twice), aifl(a,c) = H (a,d) = H (b,c) =
H (b,d) = 0, to obtain

b d
/ / £ () dydog (2,9) — g (0.d) — g (a,d) — g (b.c) + g (@, )] f (1, 5)

b d
o2 f
= [ [ #w 5o v

We claim thatH > 0, and then by hypothes@% > 0 and so

//f<x,y>dydxg<x,y>—[g(b,co—g(a,d>—g(b,c>+g<a,c>]f<t,s> >0,
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which would prove the left hand-side inequality.

To prove the claim, that ig/ > 0iff 0 < H?(x) H? (y) which implies either
H?>0andH? > 0,or H¢ < 0andH? < 0.

We will show thatH? > 0 andH? > 0 and hence the other case does not hold.

Letx € [a,t], Sinceg is increasing, then

xT

H5<x>=/[g<u,d>—g(u,c>—g(a,d>+g<a,c>]du.

Forz € (z,b], we have

t

H(z) = /[g<u,d>—g<u,c>—g(a,d>+g<a,c>]du

a
T

+/[g<u,d>—g<u,c>—g(b,d>+g<b,c>]du

t
T

= /[g(uad)—g(uaC)]du—(x—t)[g(bad)—g(b,fi)]

—(t—a)lg(a,d) —g(a,c)]

_ /[g(u,d)—g(u,c)]du—(t—a) g (a,d) — g (a,c)]

b

- [t ~ g el du— @~ 1)lg (.~ g .)

= 6= 0)lgbd) - 9 0.0) - [ lg(u.d) ~ g (u.0)du
=l () — g 00l

by our choice of, which gives

Hf(x)—<b—x>[g<b,d>—g(b,cn—/[g<u,d>—g<u,c>1duzo,

again sincey is increasing. Similarly one can prove thdf (y) > 0, and therefore our

second claim is proved, which completes the proof of the theorem. O
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The quadrature rule in Theorem 3.4.1 requires knowledgé of In many
applications this is not an obstacle, howevefr iis indeed unknown we may use instead

its classical trapezoid rule approximation .

3.5 APPROXIMATIONS VIA BEESACK-DARST-POLLARD INEQUALITY

We start by establishing the Beesack—Darst—Pollard inequality in two real dimensional

spaceR?.

Theorem 3.5.1.Let f,u : Q»? — R be such thatf is of bounded bivariation o>

a,c a,c?

u is continuous o))’ ¢ and fcd f;’f (t,s) dydsu (t, s) exists. Then, we have

/d /bf(t,s)dtdsu(t,s)§A~ inf f(ts)+S (@) \/ () (351)

(tvs)GQZ’,i QZ’,%
where,
A:=[u(b,d) —u(b,c)—u(a,d)+ua,c)]
and

S (U; Qf;,‘i) = B sup - [w (81, B2) — u (B, a2) —u(aq, B2) +u (o, o))
?gfiiigégd

By replacingu with (—u) in (3.5.1), we can also obtain the “dual” Beesack inequality

/d /bf (t,s)didsu(t,s) > A- inf f(t,s)+s (u; Z‘i) . \/ (f) (3.5.2)

(t,s)eQhs

Que
where,
.NbdY . :
S (% a,c) = agallgfﬂlgb [U (51,52) —u (517 042) —u (041,52) +u (0417 062)] .
cLaa<f2<d

Proof. We observe first that it is enough to prove the inequality in the a#sg = 0,

when it becomes

d b
| [ 1t ddats) <swa)- V), (35.3)
C a Q
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For the general case can be obtained from (3.5.3) by replacing h in ft-byinf f.
Clearly we may also suppose that for sofge &2), f(&1,&2) = 0. Since

/C d / bf(t, s) dydgu (t,s) = / d / " f(t,s)dodyu (t, s)

_,_/Cd/jlf(—t,s) dydy [—u (~t, 5)]
+ /C& /abf (t,5) didsu(t, s)
L /j /ab f(t,—s)didy [—u (t,—5)],

and

sup {[u(=p1, ) = [u(—ar, )b = 5 (6,4,

—b<p1<a1<=&1

swp  {lu )]~ [u )]y =8 (@),

a,g2
—d<fa<aa<—&2 ¢

therefore, we need only to show thatfif> 0 and f (b, -) = 0, then (3.5.3) holds.

To observe that let us assume thal,-) = 0 = u(-,¢). Define¢(t,s) =
inf w (51,52) and

a<&1<t
c<&2<s

bt s) = ult,s)— ¢t s) = sup {u(t,s) —u(&, &)} < S (u, Q).
ez

Then, ¢ is non-increasingg (¢,-) = 0 = ¢ (-,¢), and0 < ¥ (t,s) < S (u, QL%).

Moreover, we have

/cd /abf () ddauts) = [ d /abf (t,5) didsf (1, ) + / /abf () ()

§0+/Cd/abf(t,8)dtdsl/)(t78)

_ _/cd/:zp(t,s)dtdsf(t,S)

< ¢l -V (f)
<8 (u, Q%) - \/ (),

which proves (3.5.1). Similarly, one can obtain (3.5.2) by replacingith (—u) in

(3.5.1), and thus the proof is completely established. O
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As in one variable, a careful examination of the above proof, shows that the
continuity ofu was only used at two points of the proof: first, to justify the assumption
that f (&1, &) = 0 for some(&y, &) € @ inthe second reduction step of the proof; finally,
to justify the existence of the integrﬁf f;’ I (t,s)didstp (¢, s) (since the continuity of
1 follows from the continuity of:). In the following we show that the bounds (3.5.1),
(3.5.2) remain valid even if is not continuous oK), provided only that: is bounded

onQand [’ [? f (t,5) didsu (t, ) exists.

We observe first that when is bounded withu (a,-) = 0 = u(-,¢), and if

o(t,s) = <inf<t u(&,&), forallt € [a, b ands € [c, d], it follows that,¢ is decreasing
e,

on (). Now, it remains to observe thdf fff(t,s) didsu (t, s) exists. In order to

complete the proof of our assertion, it suffices to rearrange the proof of Theorem 3.5.1

somewhat in order to avoid the necessity of assuming fthatnishes at some point of

@ whenm = inf f = 0. As in the proof of Theorem 3.5.1, the general case of (3.5.1)

follows from the casen = 0, so we are to prove that (3.5.3) holds, whefif = 0.

Given an integen. > 1 there exist3¢), &8) € @ such thatf (&7, ) = 0. Writing

/Cd /abf(t,s) didsu (t,s) = /cd /j? f(t,s)dsdyu(t, s)
+ /Cd /_j? f(=t,s) dydy [~u (. 5)]

+/C; /abf(t,s) didsu (t, 5)
i /_j /abf (t, —s) dydy [—u (t, —5)],

and note thaf (¢, s), f (—t, s) andf (¢, —s) are nonnegative on their respective intervals

of integration and

d —¢&F d b
\/ \/ (f(=t,s)) = \/\/ (f(t.s))
c —b 3

and

—£3 b

d b
VV =9 =\ V(Es),
& a

—d a
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also,S(—u(—t, s), :fi’d) = S(u (t, s),Qg’{i{J andS( u(t,—s), QZ f;) -
S <u (t,s), chégc>

Sinceu (a,-) =0=u(-,c), then

//ftsdtduts //ftsdt w(t,s) —u(a,s) —u(tc)),

and definingp (¢, s) = <1?f<t u(&1,&) as above and (¢, s) := u(t,s) — ¢ (t,s), it
c<&93<s

follows that

& & v
/ f(t,s)ddsu (t,s) < f (&7, 65) v (51752)+S qulcgz \/\/

< FIE,E) S (0, Q58 + S (u, QS \/\/

Proceeding in the same way Qﬁ_lbg_?d = [—b, =&} x [—d, —&5], we similarly obtain
& € NN

/ ) ddauts) < T (b =% (b —d) + 5 (w52 #) -V V)
— — —d —b

<f(-€.-8)8 (—u (~t,—s), :2?_’;53 )

+S5 (—u (—t,— 51 _£2>

1

\/
By (u (,5) 762?51,55’) ' {f (&) +\/\/(f)] |
& &

It follows that for eacm > 1,

//fts ) ddyu (1, 5) < S (u, Q) - [2f<£?,£;‘>+\/\/<f>],

so that (3.5.1) follows on letting — oo. Therefore, we just have proved the following

fact:

Theorem 3.5.2.Let f, u : Qb — R be such thaf is of bounded bivariation ofp®? U
is bounded o)’ and fcd fa f(t,s)didsu(t,s) exists. Then, (3.5.1) and (3.5.2) hold.

In the following, by use of the Beesack—Darst-Pollard inequalities (1.1) and

(1.3), we provide other error bounds for the functionaly, u, m, M; Q) and ..... )
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3.6 APPLICATIONS TO QUADRATURE FORMULA

In this section, we apply some of the above obtained inequalities to give a sample of

proposed quadrature rules for Riemann—Stieltjes integral. Let us consider the arbitrary

divisionl, : a =29 < 21 < - < xp1 <z, =b,andJ,, 1 c =y < y1 <
oo < Ypo1 < Yp = d, Where§; € [z, x,44] (0 =0,1,--- ,n—1)andn; € [y;,y;41]
(j =0,1,--- ,m — 1) are intermediate points. Consider the Riemann sum
m—1n—1
R(f,In, Jm:&,m) = (@it1 — @) (Yj41 — y5) (&> m5) (3.6.1)

I
=)
Il
=)

J )

Using Theorem 3.3.1, we can state the following theorem

Theorem 3.6.1.Let f as in Theorem 3.3.1. Then we have

d b
//f(t,s)dtds:R(f,]n,Jm,ﬁ,n)+E(f,]n,Jm,§,n), (3.6.2)

whereR (f, I,,, Jm, &, n) is the Riemann sum defined in (3.6.1) and the remainder the

through the approximatiot (f, I,,, J., &, n) satisfies the bound

|E(f, Ly Iy € 1)

n—1 m—1 T T I+ 1 y y y +Z/ Yj+1 Tit+1
+1 = Ly % i+1 +1 — Y3 j j+1
< Z[%+&— 2+]_{J+2 J+nj_%}.\/\/m.
i=0 j=0 Yi @i
(3.6.3)

Proof. Applying Theorem 3.3.1 on the bidimentional inter\al, z;.1] x [y;, y;j+1], we

get the required result. m

Similarly, we can give the following estimation for the Simpson’s rule for

mappings of bounded variation in two independent variables:

Theorem 3.6.2.Let f as in Theorem 3.3.15. Then we have

d b
/ / f(t.8) dtds = R (f. o, Ju &0) + Es (f, I, s E21) . (3.6.4)
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whereRs (f, I, Jm, &, n) is the Riemann sum defined such as

RS (fa [m Jm> 57 77)
(Tiv1 — i) (Yj1 — )) [f (

= 36 Tit1, Yjr1) — (@1, y5) — f (6, y500) + f (24,95)
Ti + % 1Y x; + x;
P (B ) g (s B g ()
Yj+1 Ti+1
paf (g, LYY gy (DT o T Yo / / f(t,s)dtds,
2 2 2
and the remainder the through the approximatia( f, 1,,, J.., &, ) satisfies the bound
n—1m-—1 (ZE'_H y - Yj+1 Tit1
B (f, Ly Jns &) <D0 - J \/ \/ (3.6.5)
i=0 j=0

Proof. Applying Theorem 3.3.15 on the bidimentional interi@l ;1] < [y;, y;+1], we

get the required result. ]



CHAPTER IV
ON AN OSTROWSKI TYPE FUNCTIONAL

4.1 INTRODUCTION

This chapter is devoted to introduce some functionals related with the Ostrowski integral
inequality for mappings of two variables and therefore several representations of the
errors are established. Therefore, inequalities of Trapezoid and Ostrowski type are

discussed. Finally, as application, a cubature formula is given.
4.2 A FUNCTIONAL RELATED TO THE OSTROWSKI INEQUALITY

Theorem 4.2.1.Let f,¢g : @ — R be such thatf is (5, 5,)—Holder type mapping,
whereH,, H, > 0 and(,, 3, > 0 are given, and; is a mapping of bounded bivariation
on . Then we have the inequality

[ st [t t]

C

. [ (b—a)” (d—c)™

-\ (9, 4.21)

H——— +Hy——
9GPy Y
QZ:d

where/,, (¢9) denotes the total bivariation gfon Q.
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Proof. As g is of bounded bivariation o®, by Lemma 3.2.3 we have
(bd)—g(ad)—g(bc +g(a,c) //
/fwyddyg:vy) [ b—a)(d- f(t,s)dtds

a {f(x,y) gy //ftsdtds}ddyg(xy)’

S sup f(fvay) ftsdtds : ()
1
S =) (@) (e / / (x,y) — f (t,9)] dtds]| - ;{b(g)' (4.2.2)

Now, asf is of ([, #»)—Holder type mapping, then we have

f(z,y) — f(t, s)dtds

//|fxy f(t,s)|dtds
g// H1|$—t|B1+H2|y—s]ﬁ2>dtds

b d
:Hl(d—c)/ \x—t|ﬁ1dt+H2(b—a)/ ly — 5| ds

B (:L' _ a)51+1 + (b . x)ﬁl—l-l (y _ C)ﬁ2+1 + (d _ y)ﬁz—H
_Hl(d—c) 61_{_1 +H2(b—a) 524—1

and therefore,

/ / (x,y) t,s)] dtds

p1+1 Bi1+1 B2+1 B2+1
- b - d—
< swp |H(d-oBZWT FOZDT gy W= Fdy)

(z,)€Q™ B+l G2 +1

sup
(z,9)€QL, o’

_ \Bitl h— B1+1
< Hy(d—c) sup [(:c a) +(b—2)
(z.9)€QY, P+l

(@) eQ, P +1
b—a pr+1 (d . C)ﬂg—l-l
[(m—> + Hz (b~ a) gy
(G, + 1) 25, + 1)

+ Hy(b—a) sup [(y — C)ﬂ2+1 4 (d— y),@2+1]

=H,(d—¢)
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Using (5.4.2), we get

/fxyddyg:vy) [(b,d)—((ba_dgl)—(gbc+gac} //ftsdtds

sup (x,y) s)dtds| - \/ (g9)
(b_ a (wy )EQL, \a/s
(b—a)™ (d—c)™
<\g -9 g e |
— [ 12ﬁ1+1(/81 + 1) + 22/82+1(/82 + 1) \a/b (g)J

c,d

as required. O

Theorem 4.2.2.Let f,g : Q@ — R be such thatf f is (5, 5,)—Holder type mapping,
whereH, H, > 0 and(;, 5, > 0 are given, and; is bimonotonic nondecreasing ¢h

Then we have the inequality

’ [g (bv d) -9 (bv C) -9 (a7 d) +9g (CL, C)] : (423)

Hy(b—a)”  Hy(d—c)™
S[ G+ B

Proof. As g is bimonotonic nondecreasing 6h by Lemma 3.2.4 we have

xyddygxy)_[g(b,d) ((ba_dc)L)—(gbangac} //ftsdtds

[ x,y) b= _C//ftsdtds}ddyg(xy)’

- (t,s) dtds| dyd
f(z,y) b_a _C//f s)dtds| d.dyg (v,y)

fz,y)— f(t,s)]dtds

dydyg (x,y) (4.2.4)

b—a d—c)

Now, asf is of (31, 52)—Holder type mapping, then we have

(x,y) )] dtds

_ C)ﬁz-H + (d i y)ﬁz-i-l

By +1

(o - a>5l“ (b — )™

. cHb—a) Y

§H1<d—0)
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as we shown in Theorem 4.2.1. Therefore,

/d/bfxyddygmy_{g(b,d) ((ba_dc)o—gbcwaﬂ //ftsdtds

o =0 (x,y) — f(t,s)]dtds| d,dyg (z,y)
—a)(d—rc)
H

Using Riemann-Stieltjes double integral, we may deduce that

/ / a)PH 4 x)ﬂl“] dyodyg (z,y)

—a)" " g (b,d) — g (b,¢) — g (a,d) + g (a,c)]

/ / l’ y /31+1 + (b_x)ﬁﬁ-l dy

= (b—a)" g (b,d) = g (b,c) — g (a,d) + g (a,c)]
- (ﬁ1+1)/Cd/ab(w—a)ﬁlg(:r,y)drcdy
+ (B 1) / ‘ / "= 2 g (2.) dudy (4.2.5)
and

/ / O 4 (d— )] dudyg ()

= (d— )" [g(b,d) = g (b,c) — g (a,d) + g (a,0)]

/ / I y d:(:d 62+1 (d _ y)ﬁz—H

=(d =" g (b,d) = g (b.c) = g(a,d) +g(a,0)]
— (B2 +1) / / (z,y) dxdy

+ﬁ2+1// d—yﬁQg (x,y) dxdy (4.2.6)

Now, on utilizing the bimonotonicity property gfon (), we have

// xydxdy>(/cdg(a,y)dy> (/ab(x—a)ﬁldx)

h— a)ﬁ1+1
O+ 1 ’

> (d=c)g(a;c)
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<@gt S0
//<y >ﬁ2g<xy>d:cdyz(/cdgmc)dy)(/abw C)%)
> -y (e0 I
and
/Cd/ab(d—y)ﬁzg(fc,y)dxdyﬁ(/Cdg(fc,d)dy> </ab(d—y)52dx>
< (- I

Substituting in (4.2.5) and (4.2.6), we get

/ / )"+ (0= 2) ] dudyg ()

—a)" " g (b,d) =g (b,¢) — g(a,d) + g (a,c)]

—(Bﬁl)/c /a (x —a)™ g (z,y) dudy

d b
B+ 1) / / (b—2)* g (2, ) dady

c a

< (b - a)ﬁﬁ_l [g (bv d) -9 (b’ C) -9 (a’7 d) +9g (av C)] (427)

and

// o) 4 (d - y)ﬁm}ddyg(:v v)

— )"t g (b,d) — g (b,c) — g (a,d) + g (a,c)]
d b
—(ﬁz+1)/ / (y — ) g (z,y) dudy

c a

LB+ ) / / (d— ) g (2. y) dudy

< (d—c)*g(b,d) — g (bc) — g (a,d) + g(a,c)] (4.2.8)
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which gives that

[rvasiaoa (R ) [ rvn

51+1 B1+1
&+1 hﬂl/1/ — ) }%%M%w

lﬁ@—@m Hﬂ )
S[ (B +1) - (B2 +1)

“lg (b;d) =g (b,¢) = g(a,d) + g (a,c)],

which completes the proof. O

Theorem 4.2.3.Let f,g : Q@ — R be such thatf is continuous or) and f, g are of

bounded bivariation o). Then we have the inequality

d b a C a,c
j /af(x,y)dxdyg(af,y)— 9(b.d) - ((b—dc)z)( (b.0) + 91 } //ftsdtds
_\/ )\ (9), (4.2.9)
Q

Q

where\/, (f) denotes the total bivariation gf on Q.

Proof. As g is of bounded bivariation o€, by Lemma 3.2.3 we have

/fxyddygxy) {(bd) (ba_dc)l)( bc+gac} //bf(t,s)dtds

’ {fx o //ftsdtds}ddyg(xy)’
< sup

(2.9)€Q /(@ y) b_a / / f(t,s)dtds| - \/ (g)

: Yfffi;(gﬁif o Sl ldS”F‘C?dm

<\V -V
Q Q

Since

b—a+
2

which completes the proof. O

sup
(=,y)€Q

I_a;ﬂ}[d;c+P_c+de:@_aMd_@
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4.3 INTEGRAL REPRESENTATION OF ERROR

For a functiong : Q%% — R, we definep,, v, : Q%% — R by

Gg(t,s):=(t—a)[(s—c)g(a,c)+(d—s)g(a d)
+(b—1t)[(d=5)g(b,d)+ (s —c)g(bc)]
and
o bg (t,s)
by (t,5) =g (t,s) = (EDICEDE (4.3.1)
We can state the following result

Theorem 43.1.1f fu : Q¥ — R are bounded onQ’¢ and such that the

Riemann-Stieltjes double integrgfld fbf(t, s)didsu (t,s) and the Riemann double
integral [ [ (t, s) dtds exist, then

/C / Uy (£, ) dudsu (1, )

_ {f(a,C)—f(a ) —

o bc+fbd}// tsdtds_// s ot ()

(4.3.2)

Proof. By assumptions, we have

/Cd/bwftsdtduts)
//ftsdtduts o) (d _c//qsftsdtdu(ts)

Integrating by parts in the Riemann-Stieltjes double integral (see Lemma 3.2.1), we also
have

//gbf(t,s)dtdsu(t,s)
=5 (b,d)u(b,d) — ¢y (b,c)u(b,c) — ¢y (a,d) u(a,d) + ¢y (a,c) u(a,c)

// u(t,5) didy (8, 5)

=(b—a)(d—c)[f(a,c)u(d,d) - f(a,d)u b,c)u(a,d) + f (b,d)u(a,c)]
—[f(a,c) = f(a,d) — f(b,c)+ f(b,d)] // (t,s)dtds,
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which gives that

/d/bwf t,s)didsu(t, s)

//ftsdtduts [f(a’c)_f((ba_di)( bc+fbd]/d/butsdtds
—[f(a,0)u(b,d) - f(a,d)u(b c)— u(a,d) + f (b,d)u(a,c)]

:[f(“’c)_f((ba_di)( bc+fbd}// tsdtds// (t,5) dids f (¢, 5)

which completes the proof.

Theorem 4.3.2.Let f,u, 1 as above. Iff is continuous or@f;ﬁ andu is of bounded
bivariation onQ%¢. Then we have the inequality

(t,s) didsu (t,s)

< max {[f (b,d) — f (a, )], [f (b;¢) = f (a,d)],
| (a,d) = f(b,d)], | (a,¢) = f (b, )]} - \/ , (4.3.3)

whereV/ .. (u) denotes the total bivariation af on Q7.

Proof. As v is of bounded bivariation 0®%¢, we have

d b
/ Gy (45 ddgu (1,5)| < sup [y (1,5)] - \/ ()

b,d
t,s)€ ’ b,d
( 75) Qa,c Qa,c

But

sup |y (¢, 9)]
(t,5)EQu"

= maX{Wf (b, d)’ ) ’wf (b7 C>| ) ’wf (av d)| ) W}f (CL,C)|}
:max{\f(b,d) _f(a>c)’7’f(b>c) _f<a7d)’>’f(a>d) _f(b’d)’7’f<aac) _f(bac)l}

which gives

d b
/wf(t,s)dtdsu(t,s)

< \/ (u)xmax {|f (b,d) — f (a,c)|,|f (b,c) — f (a,d)],
Qut
’f((l,d) _f(bvd)‘v‘f<avc) _f(bvc)‘}

as required. O]
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Remark 4.3.3. With assumptions of Theorem 4.3.2, if we assume in addition

1. fisincreasing orR%¢, then we have

a,c?

/cd /ab”‘”f (¢, 8) deddsu (2, 5)

<max{|f (b,d) = f(a,c)|,|f (a,¢0) = F (b, )} - \[ (u), (43.4)

b,d
Qa,c

2. fis decreasing oi)"¢, then we have

a,c?

/Cd /ab%‘ (t,s) dedsu (2, 5)

< max{|f (b.¢) - f (a.d)|.|f (a.d) = f (0. D)} - \/ (u), (4.35)

b,d
Qa,c

The following result holds:

Theorem 4.3.4.Let f,u : @ — R be such thatf is (3;, 52)—Holder type mapping,
whereH, H, > 0 and 3, 5, > 0 are given, and: is a mapping of bounded bivariation

on . Then we have the inequality

/cd /ab Py (t,s) dydsu (t, s)

where\/, (u) denotes the total bivariation af on Q.

(b—a)”" (d—c)™
< [Hl e + H, e -\ (), (4.36)

a,b
c,d

Proof. The proof may be done by applying Theorems 4.2.1 and 4.3.1 directly. [

Now, if we denote the error of approximating the Riemann-Stieltjes double in-

tegralfcd ff [ (t,s)dydsu (t, s) by the representation of errgr; (¢, s) by E (f,u; Q%%),
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which is given as follows:

E (f,u;QY7)

(t—a)(s=d)[f(t,d) = [ (t;s) = [(a,d) + [ (a,s)] didsu (t, 5)

(=) (s =) [f(b,s) = f(bc) = [ (ts) + [t 0)] didsu(t,s)

b—a —c// (t—="0)(s—=d)[f(byd)— f(bs)— f(t,d)+ f(t,s)]didsul(t,s),

then we can state the following result.

Corollary 4.3.5. With the assumptions of Theorem 4.3.2, we have

E (f,u; Q%)

_ —(b—a)l(d—c) /Cd/ab (/cd/abT(t,rl,s,rg)drldmf(rl,rg)) ddgu (¢, 5)
_ — a)l(d_ 5 /Cd /ab (/Cd /abT(t,h,S,?“z) dydsu (t, s)) dy dpy f (11,72)

(4.3.7)
where,
)
(t—a)(s—c), a<r <t<b c<ry<s<d
(t—a)(s—d), a<r <t<b c<s<ry<d
T (t,r,s,m9) =
(t—=0)(s—c), a<t<r;<b, c<rpy<s<d
K(zf—b)(s—d), a<t<r <b c<s<ry<d

Proof. If f is bounded onQ%¢, then for any(t,s) € Q¢ the Riemann-Stieltjes
double integrals* [ d,.d,, f (r1,72), [ [\ dydy, | (r1,72), [ [ dyydry f (1, 75) @nd

fsd ftb d, d., [ (ri,r2) are exist and

[ [ttt ir = £~ 1.0~ Fl09)+ S @0,

d t
//dmdmfm,m)=f<t,d>—f(t,s>—f<a,d>+f<a,s>,
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s b
//tdmdmfm,m)=f<b,s>—f<b,c>—f<t,s>+f<t,c>,

and

//tdmdmfm,m)=f<b,d>—f<b,s>—f<t,d>+f<t,s>.

Therefore,

/Cd/abT(TlaT‘z)dndmf(ﬁﬂb) =060 [ [t inn)
-0 [ [t rim)
0060 [ [ ands i)
+((b—t)(d—s //drldmf T1,72)

= (b—a)(d =)y (ts)
and by (4.3.2) we deduce the first and the second equalities in (4.3.4). The last part

follows by the Fubini-type theorem for the Riemann-Stieltjes double integral. The

details are omitted O]

Remark 4.3.6. One can obtain another error approximation for the Riemann-Stieltjes

double integral defined above by considering the dual erro‘fc@f, u; ngg) i.e., define
F(fu;Q0%)
1 d b
:(b—a)(d—c)/ / (t—CL)(S—C)[U(t,S)—U(t,C)—U(CL7S)+U<G,C)]dtdsf(t,8)

1

+<b—a><d—c>/c
i

/ (t—a)(d—5)[u(t,d) —u(t,s) —ula,d) +u(as)] ddsf (¢, )

1
(b—a)(

b—a —c// (b—1t)(d—s)u(b,d) —u(b,s)—u(t,d) +ul(t,s) ddsf (t,s).

Therefore, with the assumptions of Theorem 4.3.2, we have

/(b—t)(s—c)[ (bys) — w (b c) —u(t,s) +u(t,)] didsf (¢, 5)

F(f,u; Q%)

_ m/j/: (/Cd/abT(t,rl,s,rg)drldmu(rl,rg)) did. f (¢, 5)
_ (b_a)l(d_c) /Cd/ab (/Cd/abT(t,rl,s,m)dtdsf(t,s)> drydyyu (11, 72)

(4.3.8)
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where, T (t,r1, s,72) is defined above.
4.4 ERROR BOUNDS

The following result may be stated:

Corollary 4.4.1. Assume thaf, v : [a,b] — R are bounded.

1. If u (respectivelyf) is of bounded bivariation and (respectively) is continuous,

then

£ (f,u; QI(F (f,u;Q))
< sup [¢y (¢, )] \/ (u) ((sup [t (t,s>|-\/(f>> (4.4.1)

(t,S)eQ Q t,S)EQ Q

2. If u (respectivelyf) is bimonotonic nondecreasing anfl (respectivelyu) is

Riemann integrable o, then

1B (f;w QI (1F (f,u; @)))

//rwftsrdtduts (//rwutsrdtdfus)) (4.4.2)

Proof. The proof follows, using Lemmas 3.2.3 and 3.2.4; respectively. O

Theorem 4.4.2. Assume thatf,u : [a,b)] — R are bounded onla,b] and the
Riemann-Stieltjes (double) integrﬁcfl f:f(t, s) dydgu (t,s) exists. If—oco < my <

f(t,) <M < oo, forallt € [a,b]l and —oco < mg < f(-,5) < My < oo, for all
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s € [e,d], andu is bimonotonic nondecreasing 6h Then, we have

—[f (0ed) — £ (@,0)] - [u (b, d) — u(a,c)]

— My — f (a,d) + My —m] - [u (b, d) — u (b,

— My — [ (b.¢) + My — m] - [u (b,d) — u(a,d)]
<£(f,u;Q) (4.4.3)
<[ (b, d) = f (a,0)] - [u (b, d) — u(a,0)

T [m1 — f (ayd) +my — M] - [u(bc) — u(a,0)

+ [mg — f(byc) +my — M] - [u(a,d) —u(a,c).

where,

M = max{M;, M5}, and m :=min{my, ma}.

Proof. From the condition-co < m; < f(¢t,-) < M; < oo, forallt € [a,b] and

—00 <mg < f(-s) < My < oo, foralls € [¢,d]. Setting
M :=max{My, My}, and m :=min{mi, my},
then we haven < f (¢,s) < M. Also, we may state that

m — f(t,c) = f(a,s)+ f(a,c) < f(t,s) = f(t,c) = f(a,8)+ f(a,c)
<M—f(t,e)— f(a,s)+ f(a,c), (4.4.4)

f<t7d)_f(a7d)+f(a’3)_MSf(tvd)_f(tas)_f(a’d)+f(a75)
< f(t,d)— f(a,d)+ f(a,s) —m, (4.4.5)

f(b,S)—f(b,C)—l—f(t,C)—MSf(b,s)—f(b,C)—f(t,S)—i—f(t,C)
< f(b,s)— f(byc)+ f(t,c) —m, (4.4.6)

and

f(bvd)_f(b>5)_f(t7d)+m§f(bﬂd)_f(b75>_f(t>d)+f(t=5)
< f(bd)—Fbs)—f(t.d)+M  (4.4.7)
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Therefore, by assumptions the above inequalities become respectively; as follow:

m— My =My + f(a,c) < f(t,s) = f(t,¢) = f(a,s) + [ (a,c)

<M—-—my—mo+ f(a,c), (4.4.8)

ml—f(a,d)+m2—M§f(t,d)—f(tvs)—f(a,d)—kf(a,s)
< M; — f(a,d) + My —m, (4.4.9)

m2—f(b,c)—|—m1—M§f(b,S)—f(b,C)—f(t,8)+f(t,c)
< M, — f(b,c)+ M, —m, (4.4.10)

and

f(bvd)_MQ_Ml+m§f(b=d>_f<b75)_f<t7d>+f(t7s>

If we multiply (4.4.8) by(t —a) (s —c¢) > 0, (4.4.9) by(t —a) (s —d) <0,
(4.4.10) by(t — b) (s — ¢) < 0, and (4.4.11) byt — b) (s — d) > 0, we obtain
(t—a)(s—c)lm— M — M+ f(a,c)]

<(t—a)(s—o)[f (ts) = f(t,c) = f(a,8)+ f(a,c)] (4.4.12)
< (t—a)(s =) [M—mi—my+ f(ac)],

(t—a)(s—d)[My — f(a,d) + Mo —m]

<(@—a)(s—d)[f(t,d) = f(t,s) = f(a,d)+ [(as)] (4.4.13)
< (t=a)(s —d)[my = f(a,d) +mg — M],

(t=0)(s—¢c)[My— f(bc)+ M —m]
<(t=0b)(s—)[f(bys) = f(bc)—f(ts)+ f(t0) (4.4.14)
<(t—=0b)(s—c)[ma— f(bc)+m — M],
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and

(t—0)(s—d)[f(b,d) — My — M; +m]

S (E=0) (s =d)[f (b,d) = [ (bys) = f(t,d) + [ (t,5)] (4.4.15)
< (t—=0b)(s—d)[f (b,d) —mg—mq+ M].

Summing the above inequalities (4.4.12)—(4.4.15), and then integrating over the

bimonotonic nondecreasing functiarwe get,

m — My — My + f (a,0) /d/bt—a(s—c)dtdu(ts)
(M~ f (ard) + M — // (t — a) (s — d)dsduu (1, 5)
My — f(be)+ M — // (t = b) (s — )ddau (¢, )

U0 - =] [ =06 - dadantr
i

S/Cd/ab( —a)(s—o)[f (t,s) = [ (t,¢) = [ (a,5) + [ (@, 0)]drdu (t, s)
d
iy

/

J

/ ;
/’a—m@—wmﬂa@—fwmyaﬂu@+fw@uﬂmua>
/ b

b
(t—a)(s—d)[f(

ad) - f (t73) - f (a’ d) + f ((L, S)]dtdsu (t,S)

+

d b

+ (t - b) (S - d) [f( 7d) - f (b7 S) - f (t7d) + f (t7 s)]dtdsu (ta 5)

d b
< [M —mqy —ms+ f(a,c)] // (t —a)(s—c)didsu(t,s)
+ [my — f(a,d) +mq — // (t—a)(s —d)didsu(t, s)
+ [mg — f(b,¢) +my — // (t—0) (s — c)didsu (t,s)

d prb

+[f<b,d>—m2—m1+M// (t—b) (s — d)dsdyu (1, ).
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Dividing the above inequalities by — a) (d — ¢), we deduce

(b—a)l(d c){[m_Ml_M2+f“C /d/bf—a(S—C)dth(t,s)

+ [My — f(a,d) + My — // (t—a)(s—d)ddsu(t,s)

My — f (b, )+ My — // (t = b) (s — )didsu (¢, )

+[f(b,d)—M2—M1+m/c/a t—b(s—d)dtdsu(t,s)}
<&(f,w;Q)
Sm{[M—ml—mg%—fac /d/bt—a(s—c)dtdsu(t,s)

[y — f (ayd) +ms — // (t— a) (s — d)dsdyu (1, 5)

+[ma — f (b,¢) +my — // (t = b) (5 — )dydyu (2, )

+[f(b,d)—m2—m1+M/C/a t—b(s—d)dtdsu(t,s)}.

However,

/cd/ab<t—a><8—c>dtdsu<t7s>=<b—a><d—c>u<b,d>—/cd/:uu,smds,
/cd/ab(t—a)(s—d)dtdsu(t,s):(b—a)(d—c)u(b,c)—/Cd/abu(t,s)dtds,
// (t—0)(s—c)didsu(t,s) =(b—a)(d—c)u(a,d) — // (t,s) dtds,

(t—b) (s —d)didsu(t,s) = (b—a) (d— ) u(a,c) (t, s) dtds.
// AL



Substituting these values in last inequality, we

m = My~ M+ F (0,0 a0~ s

get

S

+ [My — f(a,d) + My —m] - {u(bc
+[M2 bC +M1 {uad b
+ [f (b, d) — — M, +m]- {uac C

E(f,u;Q)

< [M—mqy—mse+ f(a,c)]- lu(b,d)—

+ [m1 = f(a,d) +mg — M] - [u(b,c S (b—a)(d—c)

) | [ s
+ [mg — f(b,c) + my — M] - {u(a,d)——/cd/abu(t,s)dtds:
) | [ s

(
(b—a
(

+ [f (b,d) —mg —my + M] - [u(a,c

Observe that, by the bimonotonicity of

““"C)Smf/:“(

and then

Wl(d_c)/cd/abu(t,s)dtds}
)
)

b—a

d b

1

d b

(
1
@)
1
)(d— o)

t,s)dtds < wu(b,d),

m — My — My + f (a,c)] - [u(b,d) —u(a,c)]

+[M1—f(a,d)+M2—m]
+[M2—f(b,c)+M1—m]
—[f(b;d) = My — My +m] -

<E(fiu;Q)

—[M —mi —ma+ f(a, )] [u
+ [my — f(a,d) +my — M] -
+ [ma — f (b,¢) + mqy — M] -
1f (0, d) — my — my + M] -

[u (b7 C) —u (bv d)]
[u (@, d) —u(b,d)]
[u (b, d) —u(a,c)]

(b, d) — u(a,c)]

[u (b, ¢) = u(a,c)]
[u(a,d) —u(a,c)]
[u (b, d) = u(a,c)].

[ vt
L oy
=l [

(t,s)dtds

u(t,s)dtds

u(t,s)dtds| .

80
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which gives that,

= [f(b,d) = f(a,0)] - [u(b,d) = u(a,c)]
— [My = f(a,d) + My —m] - [u(b,d) — u(b,c)]
— [Mz = f(b,c) + My —m] - [u(b,d) — u(a,d)]
<&(fiwQ)
< [f(b,d) = f(a,0)] - [u(b,d) — u(a,c)]
+ [m1 — f(a,d) +mg — M] - [u(b,c) —u(a,c)]

+ [mg — f(byc) +my — M] - [u(a,d) —u(a,c).

as required. ]

Aresult for F (f,u; Q) is incorporated in the following result:

Corollary 4.4.3. Assume thatf,u : [a,b] — R are bounded ona,b] and the
Riemann-Stieltjes (double) integrﬁf fff(t, s) didsu (t, s) exists. If—oco < ny <
u(t,r) < Ny < oo, forall t € [a,b] and —co < ny < u(,s) < Ny < oo, for all

s € [e,d], and f is bimonotonic nondecreasing éh Then, we have

— [u(b,d) —u(a,c)] - [f (b,d) — f(a,c)]

— [Ni —u(a,d) + Ny —n] - [f (b,d) — f(b,c)]

— [No —u(b,c) + Ny —n] - [f (b,d) — [ (a,d)]
< F(f,uw:0) (4.4.16)
< [u(b,d) —u(a,0)] - [f (b,d) = f(a,c)]

+ [my — u(a,d) +ng — N - [f (b,¢) - f (a,0)

+ g —u(b,¢) +ny — N]- [f (a,d) — f (a,c)].

where,

N :=max {Ny, Ny}, and n:=min{ns, ny}.

Proof. The argument is similar to the proof of Theorem 4.4.2 and we shall omit the

details O]
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In what follows, we establish some bounds 1 f,u; Q%) (respectively
f(f,u; Q’;;‘i)) in the situation where the function from the integrand satisfies the

following conditions at the end points:

|f(t,s)— f(a,0)] < Ly (t—a)™ +L.(s—c)™, V(ts)€Q. (4.4.17)
[f(ts) = fad)| < La(t—a)™ + La(d— )", V(ts)€Q.  (44.18)
[f(ts) = F(b,Ol < Ly(b—1)" + Le(s — )™, ¥ (t,5) € Q. (4.4.19)
1f (t,s) — f(b,d)| < Ly(b—t)" + Ly(d— )", ¥V (L,5)€Q. (4.4.20)

where,L,, Ly, L., Ly anday, as, 51, B2 > 0 are given.

We notice that if the functionf is of (ry,re)-(Hy, Hy)—H0lder type, then
obviously conditions (4.4.17)—(4.4.20) hold with = 3, = ri, ap = [ = r, and
L,= L, = Hy, L. = Ly = Hy. However,ay, as, 31, 3> can be greater than 1. Indeed,

for instance, if we choose

1. f(t,s) = (t—a)™ (s — ) with ay, ap > 0 then f satisfies (4.4.17) witlL,, =
(b—a)*, L. = (d —¢)™.

2. f(t,s) = (t—a)™ (d — s)” with a1, 3> > 0 then f satisfies (4.4.18) witl, =
(b—a)™, Ly = (d —¢)™.

3. f(t,s) = (b—1)" (s — ¢)* with (1, ay > 0 then f satisfies (4.4.19) wittL, =
(b—a)”, L. = (d — ¢)™.

4. f(t,s) = (b—1t)" (d — s)™ with 3, 3, > 0 thenf satisfies (4.4.20) witt, =
(b—a)™, Ly = (d— ).

Theorem 4.4.4.1f f,u : Q — R be bounded oK) and such that the Riemann-Stieltjes
double integralfcd f;’f(t,s) did, (t, s) exists. Iff satisfies (4.4.17)—(4.4.20) and
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1. w is of bounded bivariation, then

€ (fu; Q%%
< 4max { [La (b—a)™ + Ly (b— a)f’l} , [LC (d— )™ + Ly (d ] } \/ (w)
Q
(4.4.21)

2. u is bimonotonic nondecreasing, then

€ (f,u: Q2|
< max {2La (b—a) [u(b,d) —u(a,d)] — 2Ly (b— a)” [u(b,c) — u(a,c)],

2L (d—¢)* [u(b,d) — u(a,d)] — 2Lq (d — )™ [u (b, ¢) — u (a, c)}} (4.4.22)

Proof. 1. If wis of bounded bivariation, then we have

€ (fru @’;i}_

4

;
a)(d—c)
t—a (s—c)[f(t,s)— f(t,c)— f(a,s)+ f(a,c)] didsu(t,s)

t—a (s—d)|

f 7d) - f (tv S) - f (av d) + f (a7 S)] dtdsu (t7 S)

(t—=0)(s—c)[f(b,s)— f(byc)— f(t,s)+ f(t o) ddsul(t,s)

t—b (s—d

(b;d) = f(b,s) = [ (t,d) + [ ()] didsu (t,s)

|

smlsup (t=a) (s =) [F (ts) = £ (t,6) — f (as) + f (@, 0)]

(t,9)€Q

+ sup |(t—a)(s—d)[f(t,d) = f(ts) = f(a,d) + [ (a,s)]|

(t,8)€Q

+ sup |(t=0)(s =) [f(bs) = f(byc) = f(ts)+ [ (L)

(t,8)€Q

+ sup [(t=0) (s —d)[f (b,d) = [ (bys) = [ (t,d) + [ (1, 5)]]

(t,8)€Q
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M su —a)(s—c s —c)*
S(b-axd—c)[z(t,s)?@’“ )5 =) Le (s — )"

+2 sup |(t—a)(s—d)Ly(d—s)™
(t,s)eQ

+2 sup [(t—=10)(s—c)L.(s— )"
(t,s)eQ

+2 sup |(t—=0)(s—d) (s —d) Ly (d—s)™
(t,s)eQ

<4 [LC (d— )" + Ly (d— 0)52] \/ ()
Q
Similarly, we may observe that

€ (fu Qi) <4 [Lab—a)* + Ly (b — )| - \/ ()
Q
and therefore,

1€ (fu; Q%%
g4max{[La(b—a>al+Lb(b—a>ﬂ,[Lc<d )" + Lq(d ]}\/

Q

2. If u is bimonotonic nondecreasing, then we may state that

(t—a)(s—c)[f(t,s)— f(t,c)— f(a,s)+ f(a,c)] didsu(t,s)

// (t—a)(s—c)|f(t,s)— f(t,c)— f(a,s)+ f(a,c)|didsu(t,s)

§2LC// (t—a) (s — ) dydou (t,s)

<2Le(b—a)(d—e) T u(b,d) —2(ag + 1 // u(t,s)dtds,

(4.4.23)

// (t—a)(s—d)[f (t.d) — [ (t,5) — f(a.d) + f ()] didot (£, 5)

// (t—a)(d—s)|f(t,d)— f(t,s)— f(a,d)+ f(a,s)|didsu(t,s)

<2L// (t —a)(d—s)” T dydau(t, s)

< —2L4(b—a)(d— ) u(b,c)+2( ﬁg—i-lLd// u(t,s)dtds,

(4.4.24)
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Similarly we may observe that

t—b (s—c)[f(bys)— f(byc)— f(t,s)+ f(t,c)]didsu(t,s)

< —2L.(b—a)(d—c)** M u(a,d) +2(ay+1)L // u (t, s) dtds,
(4.4.25)
(t—="0)(s—=d)[f(byd)— f(bs)— f(t,d)+ f(t,s)]didsul(t,s)
<2Lg(b—a)(d—c)* M u(a,c) —2(Ba+ 1) Ld// u (t, s) dtds.
(4.4.26)

Adding the above inequalities (4.4.23)—(4.4.26), therefore we have

€ (fu: Qe
< 2L, (d—¢)* [u (b,d) — u(a,d)] — 2Lq (d — )™ [u (b, ¢) — u(a,c)].
(4.4.27)

On the other hand, we may write the above inequalities as follows:

(t—a)(s—c)[f(t,s)— f(t,e)— f(a,s)+ f(a,c)]didsu(t,s)

// (t=a)(s— )| f (t,s) = f(t.c) = f(ars) + f (a,c)| deduus (2, 5)

< 2L, / / a)*" (s — ¢) didgu (t, s)

< 2L, (b—a) ™ (d—c)u(b,d) —2(as +1 / / u (t, s) dtds,
(4.4.28)

and

// (t—a)(s—d)[f (t.d) — f (t,5) — f(a,d) + f (a,5)] ddar (£, 5)

// (t—a)(s=d)|f(t,d)— f(t,s)— f(a,d)+ f(a,s)|ddsu(t,s)

< 2Lb/ / a)? 1 (d — s) dydsu (t, s)

< 2Ly (b—a)" ™ (d—c)u(b,c) —2(5 + Lb// u(t, s) dtds,
(4.4.29)
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Similarly, we may observe that

//<t—b><s—c>[f<b,s>—f<b,c>—f<t,s>+f<t,c>]dtdsu<t,s>

< 2Ly (b—a) ™ (d—c)u(a,d) —2 (a1 + 1) L, /d /b (t —a)u(t,s)dtds,
(4.4.30)

and

[ [ a=06-a 0.0~ b5~ ftd)+ s ddats

< 2Ly (b—a)" ™ (d—c)ula,c) —2(6 +1) Ly /d /b (b— )" ul(t,s)dtds.

(4.4.31)

Adding the inequalities (4.4.28)—(4.4.31), therefore we have

€ (f.u: Q)|
< 2L, (b—a)™ [u(b,d) —u(a,d)] — 2Ly (b—a)™ [u(b,¢) — u(a,c)].
(4.4.32)

Now, using ‘max’ property, from (4.4.27) and (4.4.32), we get
€ (f,u; Q0|
< max {2La (b—a)™ [u(b,d) —u(a,d)] — 2Ly, (b— a)™ [u (b, ¢) — u(a,c)],

2L (d—¢)* [u(b,d) — u(a,d)] — 2Lq (d — ¢)* [u (b, ¢) — u(a, c)}} (4.4.33)

Now, we may state the following result faF ( f, u; Q%¢):

Corollary 4.4.5. With the assumptions of Theorem 4.3.4. $fatisfies (4.4.17)—(4.4.20),
Witha; = v, a0 = 72, B1 = 01, B = 0o and L, = H,, Ly = Hy, L. = H.a, Ly = Hy,
then if



87

1. fis of bounded bivariation, then

| (f.u; Q09|
§4max{[[-[a (b—a)™ + H, (b—a)él} , [Hc (d—e)? 4+ Hq(d }} \/
Q
(4.4.34)

2. fis bimonotonic nondecreasing, then
|7 (f,u:Que) |
< max {2H, (b= a)" [/ (b.d) — [ (a,d)] = 2Hy (b = )" [f (b.€) = f (a. )],

2H, (d = ) [f (b.d) = f (a.d)] = 2Hq (d = ) [f (b.) - f (a, )]}
(4.4.35)

Theorem 4.4.6.1f f,u : Q — R be bounded o) and such that the Riemann-Stieltjes

double integralfcd fab f(t,s)dids (t, s) exists. Ifu is of bounded bivariation ofy and

1. fis of bounded bivariation oy, then we have

€ (f,u;Q0%) !<\/ () (4.4.36)
Q

2. fis bimonotonically nondecreasing éi the we have

1€ (f,u; Q%)) (4.4.37)

< |70 - = _//f dmdm] T\l/m(“)
— f(b c) — b—a =0 //frl,frz drldrg] Q\l/

- _f(a,d)— = (d—c)/c /a f(rl,rg)drldrg} : \/ (u)

+ :f(a,c)—Wl(d_c)/cd/abf(rl,rg)drldrg} :

l\)&

Qry e
1

b,d
Q’V‘I,T‘Q
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Proof. Utilizing the equality between the first and the last terms in (4.3.7) we can write

) {//(/ / (t—a)(s—c) du(t,s))dndwf(rl,m)
+ d <T/a (t —a) dtduts)d Ao f (r1,72)
(U]

d b b
(t—0)(s—c dtdut5>d dyy f (71,72)

//(// (t—b)(s—d dtduts>d dmfrl,m]

1. If fis of bounded bivariation, then

d b 9 1
(/ / (t —a) (s —c)didsu(t, s)) drydry f (11,72)
/ / (t—a)(s—c)didsul(t,s)

also, since: is of bounded bivariation, then

/m/rl(t—a)(s—c)dtdsu(t,s) < sup (t—a)(s—c)- \/ (u)

(r1,m2)€Q Qi

=(b-a)(d—c)- \/ (u), (44.38)

1,7
Qare ?

E(fu -Qi’;i)

b—a) d—

_|_

V)

Q

sup
T1 TQ)EQ

which gives that

d ab </ / (t—a) (s —¢) dydgu (t, S)) dy.dy, f (11, 72)

<t-a)@d-a- \/ @V

Q12 Q

Similarly, we may observe that

! ab (/d / (t— a) (s — d) didsu (, 8)) Arraf (,72)

<b-a@=0V V)
Q

Qa 7‘2

d ab (/:2 /: (t—10) (s —c)didsu(t, 3)) dp dy, f (71, 72)

<-a)@d—o-\ @V

Q2 Q
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and

/Cd /ab (/: /: (t="0)(s —d)didsult, s)) dpody, f (71, 72)

<@-—a)(d-c -\ @\ ().
Q

b,d
Qr’l,'rg

Therefore,

. If fis bimonotonic nondecreasing, then

/Cd /ab (/crz /a” (t —a) (s — ¢) dydgu (t, S)) dpydyy f (11, 79)
= /cd/ab /;2 /: (t—a) (s —c)didsu(t,s)| dpdp f (r1,72)

and by (4.4.38), we have

/:2 /aT1 (t—a) (s —c) didsu(t,s)

it follows that

/cd /ab (/cm /a” (t —a) (s — ¢) dydsu (¢, S)) dy dyy f (r1,72)

d b
< / / (r1—a) (ry = &) drdp, f (r1,72) -\ (w). (4.4.39)

1,7
Qa}c 2

<(rm—a)(ra—c)- \/ (u),

1,7
Qaye ?

Similarly, we may observe that

/cd /ab (/: /ar2 (t—a)(s —d)ddsult, 3)) v dy, f (71, 72)

d b
< / / (r1—a) (d = ra) dpydy, f (r1,72) - \/ (u), (4.4.40)

r1,d
Qe
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d rb re b
(/ / t B b S - C dtd u (t S)) dmdmf (7“1 7’2)

// (b=71) (r2 =€) drylp, f (11, 72) . (4.4.41)
b,

Q2

d by pd b
(/ / (t —b) (s —d)dydsu (t, s)) dpdy, f (r1,72)
a T2 T1

// — 1) (d—72) dydry f(r1,72) \/ (u). (4.4.42)

b,d
Q12

Now, using Riemann-Stieltjes integral, then by (4.4.39)—(4.4.42), we get

[ [n-ae-aaarim

d b
—(b—a)(d—c) f (b,d) - / / F(r1rs) drydrs, (44.43)

/Cd /ab (r1 —a) (d = r2) dyydy, f (r1,72)
~G-a@-asma+ [ [ e, @a

/Cd /ab (b—r1) (ra — €) dy,duy f (11, 72)

d b
—(b—a)(d—c)f(a,d)+ / / f (r1,7m9) dridrs, (4.4.45)

/cd /ab (b—r1) (d = ra) dydy, [ (11,72)
=(b—a)(d—c)f(ac)— /Cd /ab f(ri, o) dridry.  (4.4.46)

Substituting (4.4.43)—(4.4.46) in (4.4.39)—(4.4.42), respectively; we get

d ab (/:2 /: (t—a) (s —c)ddsu(t, 3)) f (r1,7r2) dridrs

; [(b—a) (d—c)f(b,d)—/Cd/abf(rl,rg)drldrg}- \/ (). (4.4.47)

1,7
Qaye ?
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Similarly, we may observe that

d ab (/: /;2 (t—a) (s —d)ddsu(t, s)) dy dyo f (11,72)

< [/Cd/abf(rl,m)drldm— (b—a)(d—c) f (b, C)} -\ (), (4.4.48)

r1,d
QCL}’I‘Q

b T2 b
(/ / (t —0) (s —c)didsu(t, s)) dpydyy f (11, 79)

{/ / f(ri,7me) dridre — (b—a) (d —¢) f (a,d) } , (4.4.49)

2

an

//(/:/:t—b ) (s — d) dydsu (¢, 3))dr1dr2f(7"1,7“2)
<

[(b—a —c¢) f(a,c) / / f(ri,mre drldr2}~ \/ (u). (4.4.50)

Qs
Adding the inequalities to each other and then dividing(by- a) (d — ¢), we

obtain

1€ (f,u;Qee)]

< |f(b,d) - b—a)(d—0) / / f(ri,me drldr2:| \/

- f(b c b—a s / / f(ry,re dTldT2:|

- _f (a,d) — — — f(ry,me drldrg]
iy | [ ]V

+ f(a C b—a —C / / f 1,72 d?"ld?"Q:|

Q)

<

a

Q 1,

< 3

"m

2

]

Corollary 4.4.7. If f,u : QQ — R be bounded o® and such that the Riemann—Stieltjes
double integralfcd ff f(t,s)dds (L, s) exists. Iff is of bounded bivariation oy and
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1. u is of bounded bivariation oy, then we have

|7 (fu QZi!<\/ \ () (4.4.51)
Q

2. w is bimonotonically nondecreasing @i the we have

7 (02 (4452
S N e / / w172 i) Q\/ V)
[ [ [ vremanan] -V @
- red gy / /“ rura) s Q\/ )
tutwo- g [ [ vt dmdw]-;\:{m(fy

Theorem 4.4.8.1f f,u : Q — R be bounded oK) and such that the Riemann-Stieltjes
double integralfcd fab f(t,s)dids (t, s) exists. Ifu is bimonotonically nondecreasing on
@ and

1. fis of bounded bivariation ofy, then we have

€ (fw;Q44)] < [u(b,d) —u(be) —u(a,d) +u(ac)-\/(f). (4453)
Q

2. fis bimonotonically nondecreasing éi the we have
bd <
1€ (fu; QY9)] < |u(b,d) — b _C// (t,sdtds} (b, d)

__ (b,c)—(b /d/butsdtds] f(bc)
—:U(a,d) (b_a /d/butsdtds} f(a,d)

—l—_u((z,c)—(b_a /d/butsdtds] f(a,c)
(4.4.54)
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Proof. Utilizing the equality between the first and the last terms in (4.3.7) we can write

(waZ’fﬁ)
3 {//(/ / (t—a)(s—c) du(t,s))drldmf(rl,m)
+ d </ (t—a) dtduts)dmrzfrl,rz
L]

b—a) (d—

d b b

—I— (t—"5)(s—c dtduts>d dyy f (11,72)

/ / (/ / (t—10)(s—d)didsu( ts)d e [ ( 1“1,7“2]
1. If fis of bounded bivariation, then

d b T2 r1
(/ / (t—a)(s—c)ddsu(t, S)) dy dpy f (11,72)
/ / (t—a)(s—c)ddsul(t,s)

also, since: is of bimonotonic non-decreasing, then

/;2 /: (t —a) (s —¢) dydsu (t, s)
< /crz /a“ (t —a) (s —¢) dydsu (t, s)

=(r1—a)(rg—c)u(ry,re) — /T2 /T1 u(t, s)dtds, (4.4.55)

which gives that

(// (t—a) S_Cdtd“(ts))dndrgf(n,rg)

sup [(rl—a)(m—c w (11, 72) // tsdtds} \ ()

B (7"1 r2)€Q Q

< {(b—a)(d—c)u(b,d)—/c / u(t,s)dtds} \ (f).

Similarly, we may observe that

d r1
’ (/ / (t—a)(s—d)ddsu(t, 3)) dy dpy f (11,72)

sup U/ (t, s) dtds — (r1 — a) (d — 12) u rl,rz]\Q/

(r1,72)€Q
< U / u(t,s)dtds—(b—a)(d—c)u(bac)] '\Q/<f)

V)

Q

sup
(r1,r2)€Q
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b o b
(/ /t b) (s — cdduts)ddf(rl,rg)

S s U/ s) dtds —c)u(mm)}-\@/(f)

_U/ u (t,s)dtds — (b— —c)u(a,d)]-\Q/(f),

<// d) dydu (t, 5))d1dr2f(7"1,r2)
{“’ o= N"ﬁ—/m [ e -

< |o-w@-uao- | /aua,s)dtds]\Q/(f)

Therefore,

€ (fus Q)] < Tu(b.d) —u(bye) —ula,d) +ula,e)] - \/(f).
Q

2. If fis bimonotonic nondecreasing, then

d b o 1
<// (t—a)(s— cdduts))ddf(r 2)

//// ¢) dydyu (t, 8)| dyydyy f (1,75)
and by (4.4.55), we have
[ oo
// &) dydgu (1
(r1 —a) (ry — ¢) u (r1, 72) / / (t,5) dtds, (4.4.56)

which gives that

(// o) dyd,u (1 )ddf( )‘
_/C/a['r’ 0) (rs — &) u (1, 72) // t,sdtds}dmdwf(rl,rg).

(4.4.57)




95

Similarly, we may observe that

cd ab (/: /arl (t —a) (s —d)didgu (t, 3)) dy,dy, f (11,75)
: /cd /ab {/: /@LT1 u(t,s)dtds — (ri —a)(d —r2)u (7“1,7“2)} dyy dyy f (11, 72),

(4.4.58)

[ L obiemasan) s
[

d b b
{/ / u (t,s)dtds — (b —ry) (ry — c)u(rl,m)} dy dyy f (11,72),
(4.4.59)

and

cd ab (/: /le (t—10) (s —d)didsu(t, 3)) v dy, f (71,72)
< /Cd /ab {(b—n) (d—r9)u(ry,ry) — /:/mbu(t, s) dtds] dy dyy f (11, 72).

(4.4.60)

Now, using Riemann-Stieltjes integral, then by (4.4.57), we get

/Cd /ab {(rl —a)(ry —c)u(ry,re) — /:2 /:1 u(t, s) dtds} Ay dyy f (11,73)

:/cd/: (11 — @) (ra — &) (r1,72) dyydoa f (r1,72)

B / ‘ / b { / " / "t s) dtds] dyodyaf (r1,72), (4.4.61)

/Cd /ab (r1 —a) (ro — c)u(ri,r2) dpydpy f (r1,72)

therefore,

— (- @-ubd 0.a)~ [ [ 1) ddautr), (@462)

and
/Cd/b U / (t,s) dtds} dp dy, f (r1,75)
= [/d/bu t,s dtds} f(b,d) —/C /a f(ri,me) dpdru (11, 7m9), (4.4.63)
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which gives by (4.4.61)—(4.4.63), we get

/Cd/b{r —a)(ry —c)u(ry,re) /7"2/7"1 tsdtds}d dpy f (r1,72)
{ w(byd) — // dtd} (b,d). (4.4.64)

Substituting (4.4.64) in (4.4.57)

/Cd/b(/rz/”t a) (s — cdduté’))ddf(r )
{ u(b,d) — // dtd} f(bd). (4.4.65)

Similarly, we may observe that

(// (t=a) ddut3)>dndr2f(7”1ﬂ”2)

< [/ / (t, s) dtds — (d—c)u(b, c)] Fbc), (4.4.66)

/d /ab (/2 /lb (t = b) (s — ¢) didsu(t, s)) dyydyy f (11, 72)

< ‘ bu (t,s)dtds — (b—a)(d—c)u(a,d)| f (a,d), (4.4.67)
I

(//tb d) dydu (¢ )ddf( )’
s{ // dtd] a,c). (4.4.68)

Adding the inequalities (4.4.65)—(4.4.68) to each other and then dividing by
(b —a)(d — c), we obtain
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]

Corollary 4.4.9. If f,u : @ — R be bounded o®) and such that the Riemann-Stieltjes
double integralfcd ff f(t,s)dids (t,s) exists. Iff is bimonotonically nondecreasing on
Q and

1. u is of bounded bivariation oy, then we have

|}"(f,u; QZ:(ZH < [f (b7 d) - f(b’ C) - f(a d +f a, C \/ . (4.4.69)
Q

2. u is bimonotonically nondecreasing ¢j the we have

[F(fuQue) < | f(b.d) = (b—a)l(d—C) /cd /abf () dtds} v
o0t [ [ s s uoo
_ :f(a,d) — (b—a)l(d—c) /Cd/abf(t,s)dtds] u(a,d)

- 1 d b
+ _f(a7c) BRI /C /a f(t,s)dtds} u(a,c)
(4.4.70)

4.5 A NUMERICAL QUADRATURE FORMULA FOR THE RS—-INTEGRAL

In this section, we apply some of the above obtained inequalities to give a sample of

proposed quadrature rules for Riemann—Stieltjes integral. Let us consider the arbitrary

divisionl, : a = 29 < 21 < - < xp_1 < T, =b,andJ,, i c =y < y1 <
- < Yn1 < Yn = d, Wwhere§; € [z;,xiq] (0 =0,1,--- ,n—1)andn; € [y;, yj+1]
(j =0,1,--- ,m — 1) are intermediate points. Consider the Riemann sum

A(f 1o, Im, &1)

n—1 m—1

_ Z Z g $z+1,yg+1 (g(mzﬂ;yj) - Q(Iiayj+1> +9(Ii>yj) /Ii+1 /yj“ ¥ (t, 3) dtds
Z; Y

Tiy1 — l’z) (3/j+1 - yj)

=0 5=0

(4.5.1)

Using Theorem 4.2.1, we can state the following theorem
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Theorem 4.5.1.Let f as in Theorem 4.2.1. Then we have

d b
/ / F(t8) dudeg (£,5) = R(f Iy o €0) + B (f. Lo T 1), (45.2)

whereR (f, I,,, Jm, &, n) is the Riemann sum defined in (4.5.1) and the remainder the

through the approximatiod (f, I.,, J.., &, n) satisfies the bound

1E(fs Iny Iy € )| <

H(b-a"  H@d-o”] "\
231:-1 (ﬁl + 1) T 2[323-1 62 \/ \/ (4.5.3)

Proof. Applying Theorem 4.2.1 on the bidimentional inter\al, z;.1] x [y;, y;j+1], we
get that

Tit1 Yj+1

f (ta 3) dtdsg (ta S)

_ 9 (Tiv1, Yjr1) — 9 (Tiv1, ¥5) — 9 (@i, Y1) + 9 (i, y;) /Ii+1 /yj+1 F (¢, 5)dtds
(Tiv1 — @) (Yj+1 — ¥5) 7

[Hl (i1 — )™ | Ho(yj1 —

Ti41 Yj+1

V Vi)

Summing ovet andj such that) <i <n —1and0 < j <m — 1 we get

261+1 (ﬁl + 1) 2524—1 52 + 1

Ti+1 Yj+1

V Vi)

n—1 m—1 B1
Hy (241 — ;) Hy (yj+1 — y]
’E (fa [na Jmaf?ﬁ)' S Z Z [ 2514.1 51 ) + 2,82+1 52 _|_

=0 5=0
Hl Ié; H2 3 }
< |l=—F—= sup (Tjy1 — )"+ =—F——= su 1=y
20 (B + 1) 19’35—1( w8 o (B2 + 1) 15m1 (51 = 93)

n 1 m—1Ti+1 Yj+1

2. 2.V VW

=0 j=0 z; y;
H, b . CL /31 HQ( ﬁ2 b d
251+1 61 + 1 252+1 52 _|_ \/ \/
which gives the result. ]

Remark 4.5.2. Similarly, we can give several estimations for the edo(f, 1,,, ., &, 1)

using the results the previous sections.



CHAPTER V

SOME RELATED INEQUALITIES

5.1 INTRODUCTION

In this chapter, for mappings of two variables several inequalities of TrapezdidsGr
and Ostrowski type are discussed. Namely, in the next two sections, by a Korkine
type identity the Giiss type inequality for integrable functions holds. Inequalities for
mappings of bounded variation, bounded bi-variation, Lipschitzian and bimonotonic
are also provided. In the section after, approximating real functions of two variables
which possess-th partial derivatives of bounded variation, Lipschitzian and absolutely
continuous are proved. In the section 5.5, Trapezoid-type rulggfsDouble integrals

are proved, and therefore, the classical Hermite—Hadamard inequality for mappings of
two variables is hold. As applications quadrature rulesR&—double integral are

deduced.

5.2 GRUSS TYPE INEQUALITIES

We start with the following lemma:

Lemma 5.2.1.Let Fy, F5,G1, G5 - Q — R be a Riemann-integrable mappings @n



100

Then the following identity holds:

d b d b
//mmwwmmmffamw@mWMy

_/cd/abFl (2,y) G (x,y)dxdy/cd/abFQ (2,1) G (z, y) dedy
:%/Cd/cd/ab/ab{(ﬂ (21, 11) G (22, 1) — Fi (22, y2) G1 (21, 11))

X (Fy (z1,91) Go (22, y2) — F (22, y2) G2 (71, 1)) } derdradyrdys,  (5.2.1)

provided that the above integrals are exist.

Proof. Simple calculations yield that

L T ) G ) — B (20) G (1)
S

X (Fy (z1,y1) Go (22,92) — Fa (22, y2) G2 (21, 91)) } dridwady, dys
1

d pd pb pb
25/ / / / (Fl (xl’yl)Gl ($2ay2)F2 (ﬂﬁl,yl)G2 ($27y2))d$1d$2dy1dy2
C C d a d a b b
/ / / / (Fy (z1,11) G1 (22, y2) Fo (22, y2) G2 (21, y1)) drrdxady, dys
Cd cd ab ab
/ / / / (Fl (1’2,y2)G1 ($1>y1)F2 (xbyl)GZ ($2,y2))d1’1d332d?/1dy2
Cd Cd ab ab
/ / / / (Fl ($2>y2)G1 (mlayl)FZ (1’2792)(;2 (I1,y1))dx1dxzdy1dyz
Cb e d b
/F1($1791)F2(9517yl)d$1dy1/ / G (72, 12) Ga (72, y2) dxadys
1 ad b ° d b
—5/ / Fy ($1>y1>G2(x1ayl)dxldyl/ / Fy (22,92) Gy (22, Y2) dradys
1 Cd ab Cd ab
5/ / F2($17y1)G1($17y1)d551d3/1/ / F1($271/2)G2(172792)d5€2dy2
1 cd ab Cd ab
+§/ / G1($17y1)G2($1ay1)d$1dy1/ / FI(I2,y2>F2(x27y2>dI2dy2
d bC a d b C a
[ [ Ay Readedy [ [ 6w Ga o) dedy
C a d b C a d b
—/ / £y (:v,y)Gz(x,y)dxdy/ / Fy (z,y) Gi (z,y) dzdy,

where, the last equality holds by changing of variables and thus the required result holds.

= NI~ N

+
& o

]
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Therefore, we may deduce the following Korkine type identity for mappings of

two variables.

Corollary 5.2.2. Let Iy, F5,G1,G as in Lemma 5.2.1. Then the following identity
holds:

A/Cd/abfu,y)g(x,y)dxdy— (/Cd/abm,y)dxdy) (/Cd/abm,y)dxdy)

d d b b
= %/C /C /a /a (f (@1, 91) — f (22,92)) (9 (21, 91) — g (22, 42)) dw1dzody: dys,
(5.2.2)

where,A = (b —a) (d — ¢).

Proof. In Lemma 5.2.1, choosé&/, (z,y) = Gay(z,y) = 1, Fi(x,y) = f(x,y),
Fy(x,y) = g (x,y), then the required result holds. N

For two measurable function§ ¢ : Q — R, define the functional, which is

known in the literature a€ebyésev's functional, by

T (f.9) =M(fg) —M(f) Mg), (5.2.3)
where the integral mean is given by
1 d b
M (f) == m /C /6; f (I, y) dl’dy (524)

The integrals in (5.2.3) are assumed to exist.

Further, the weighteéebyésev functional is defined by

S(f,g:0) =R(f,9:0) = R(fip) R(g5p), (5.2.5)

where the weighted integral mean is given by

[ 2 (2,y) f (2,y) dady
R(f;p) == : (5.2.6)
7) [0 p (2, y) dedy
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Here, we note that,
S(f.g:1) =T (f.9) and R(f;1) = M(f).
Let SR (f) be an operator defined by

which shifts a function by its integral mean, then the following identity holds. Namely,

T(f,9)=T(S(f),9)=T(f,S(9)=T(S(f),S(9) (5.2.8)

and so

T(f,9)=M(S(f)g) = M(fS(9)) = M(5(f)5(9), (5.2.9)

sinceM (S (f)) = M (S (g)) = 0.

For the lastterm in (5.2.8) (or 5.2.9) only one of the functions needs to be shifted
by its integral mean. If the other were to be shifted by any other quantity, the identities

would still hold.

Using the above Korkine type identity (5.2.2), we give another proof for the

well-known Giiss inequality:

Theorem 5.2.3.Let f, g : Q — R be integrable or) and satisfy

< f(r,y) <P, v<g(z,y) <T, V(r,y) €Q

Then we have the inequality

T (f,9)] <5 (@—9¢)(I'—7) (5.2.10)

1
4

where,

A//fxy xyd:cdy( //fxydxdy)(%/j/jg(x,y)dxdy)

is theCebygsev's functional, aneh := (b — a) (d — ¢).
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Proof. First of all, we note that

T(f

= 5z / / / / (x1,91) — [ (22,92)) (9 (21,41) — g (¥2,92)) dvrdzadyidys
Applying the Cauchy-Bunyakovsky-Schwarz integral inequality on the Korkine identity

(5.2.2), we get

(o) = f(72,92) (9 (21, 11) — g (22, y2)) drrdrady, dys

- d pd prb b 1/2
SV ///(f(xl’yl)_f("””Q’y?))Qd%dﬂfzdyldyz}
d d b b 1/2
XU ///(g(xl"l“)_g(x%y?))Qdfcldfvzdyldyz} . (5.2.11)

Now, observe from (5.2.2) that we have

%/Cd /Cd /ab /ab (f (x1,91) = [ (22, 90))* dwrdadyrdys
o[ [ renan ([ [ 1o dxdy)i (52.12

and a similar identity fop, i.e.,

1[4 pd poopb 2
5/ ///(g(flilayl)_g($2,y2)) dxydzody, dys
d b 4w ,
:A/ / gQ(x,y)dxdy—(/ / g(x,y)dxdy) . (6.2.13)

A simple calculation yields that

%/j/bﬁ(x,y)d:cdy_ <i/d/abf($7y)dxdy)2
(‘I’__/ / f(z,y d:cdy) (%/cd/abf(ﬂf,y)dxdy_(b)

1 / / ( (2.) — ) (@ — f (z,)) dedy, (5.2.14)

and a similar identity foy

%/Cd/ng ) dady = (l /d/abg(a:,y) dxdy)2
(F__/ / Iyda;dy) (%/Cd/abg(x,y)dmdy_y)

. / / g(2,9) =) (T = g (x,y)) dudy. (5.2.15)
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By the assumption we havg (z,y) — ¢) (¢ — f (z,y)) > 0and(g (z,y) — ) (I' — g (z,y)) >
0forall x,y € @, and so

| [ @ -o@- @)y =0

/ / (g (x,y) —7) (T =g (z,y))dxdy >0

which implies that from (5.2.14)

%/cd/abe(x,y)da:dy_ (%/cd/abf@,y)dmy)g
— <®_%/cd/abf(x,y)dxdy) (%/cd/abf(l‘,y)dajdy—¢)
< Kq)_%/cd/abf(x’y)dxdy)+<%/Cd/abf(x,y>dxdy_¢>r

(@ —¢)* (5.2.16)

A

1
4
where we have used the fact thabB < (“73)2. A similar argument foy, gives

1 4 b , 1 rd b 2
5| [ewnan- (5 [ [ ownaan)
< }l(r — 7). (5.2.17)

Using the inequality (5.2.11) via (5.2.12), (5.2.13) and the estimations (5.2.16) and
(5.2.17), we get

1 d d b b
‘5/ / / / (f (@1,91) = [ (22,92)) (9 (1,91) — g (22, y2)) dz1dwadyidys
1
< @=0)(T=7)(b—a)(d—0),
and then, by (5.2.2), we deduce the desired inequality (5.2.10). O

Theorem 5.2.4.Letf, g : @ — R be L, Ly—Lipschitzian mappings of, so that

|f (@,91) = f (w2,92)] < Lo [[(z1,91) — (22, 90) |

and

|9 (:Blayl) —4g ($2,92)| < Ly ||(:v1,y1) - (552792)”
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forall (xz1,11), (z2,y2) € Q. We then have the inequality

LiLy

7 (f9l = —5

[(b—a)” + (d—¢)?], (5.2.18)

where,||-|| is the usual Euclidean norm, i.él(x, y)|| = /22 + y2.

Proof. We have the Korkine identity

A/cd/abf@,y)g(x,y)dazdy— (/cd/abﬂx,y)dxdy) (/Cd/:g@:,y)dxdy)

= %/ad/j/j /ab (f (x1,51) = [ (22,92)) (9 (21,91) — g (¥2,y2)) dw1dzadyrdys,

(5.2.19)
where,A = (b —a) (d — ¢).
By assumptions we have
(f (@1,91) = [ (x2,92)] - [(9 (@1, 51) — g (22, 92))]|
< L [(@1,91) = (2, 92)|] - [L2 (21, 1) — (22, 92)]]
= L1Lo (\/(% —22)" + (41 — ?/2)2)
= L1 Ly [(21 — 22)* + (11 — )] (5.2.20)

forall (z1,11), (72,12) € Q.

Integrating (5.2.20) o)?, we get

/Cd /cd /ab /ab (f (x1,91) = f(22,92)) (9 (21, 91) — g (22, 92)) dxrdzadyidys

d d b b
= L1L2/ / / / (21— 22)" + (31 — v2)°] dardaadydys
c c 2a ba , 2 2 ; . 2
= L1L2 |:(d — C) / / (1’1 — IQ) d.%ld.f(fg + (b — CL) / / (91 — yg) dyldyg

:quu—cfw—af[@_ay+(d_@1

6 6

Using (5.2.19), we get (5.2.18). ]
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Theorem 5.2.5.Let f, g : Q — R be satisfy

\f (1, 91) — f(22,92)| < Ly |zy — 22 |y1 — yo

and

|9 (21,91) — 9 (T2, 92)| < Lo |21 — 22| [y1 — 2]

forall (xz1,11), (2, y2) € Q. We then have the inequality

Ly Ly
36

T (f,9)] < (d—c)* (b—a)', (5.2.21)

where,||-|| is the usual Euclidean norm, i.él(z,y)|| = /22 + y2.

Proof. We have the Korkine identity

A/Cd/abfm,y)g(x,y)dxdy— (/cd/abm,y)dmy) (/cd/abgu,wdmy)

= %/cd /cd /ab /ab (f (@1,91) = f(22,92)) (9 (z1,91) — g (2, y2)) drrdzadyidys,

(5.2.22)
where,A = (b —a) (d — ¢).
By assumptions we have
|(f (z1,91) — f (22, 92))] - [(9 (21, 91) — g (72, 92))]
< [Ly |z — @of [y1 — wol] - [La |71 — 22| [y1 — 12]]
= L1L2 (fEl — .’13'2)2 (yl — y2)2 (5223)

forall (z1,11), (72,12) € Q.
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Integrating (5.2.23) oi)?, we get

/cd /Cd /ab /ab (f (@1,m1) — [ (22,92)) (9 (21, 91) — g (22, 42)) dvrdzodyrdys

d pd b pb
= L1L2/ / / / (21— 22)* - (31 — 12)°] da1dwadyrdys
= LL, [ — ) / / 21 — 19)° daydwy - (b— a) / / v — o) dyidys

:LL2[<d o’ (b-a)' (b-a)’ <d—c>]

6 6
= iLlLQ (d )6 (b — a)6 .
36
Using (5.2.22), we get (5.2.21). O

The following result presents an identity for teebyésev functional that

involves a Riemann-Stieltjes integral and provides a Peano kernel representation:

Lemma 5.2.6.Let f,g : @ — R wheref is of bounded variation ang is continuous

on(@, then
frg AQ/ / U (t,s)duds f (1, 5), (5.2.24)
where,

Y (t,s):=(s—c)(t—a)A(tb;s,d) —(s—c)(b—t)Ala,t;s,d)
—(d—s)(t—a)A(t,bjc,s)+ (d—s)(b—t)Ala,t;c,s) (5.2.25)

with

d b
Ala,b;c,d) ::/ / g (z,y) dxdy (5.2.26)

Proof. From (5.2.24), integrating the Riemann-Stieltjes integral by parts produces

//wtsdtdfts)
W (b,

A d) f (b;d) =4 (b,c) f(b,c) — ¢(adfad)+¢(a0)f(a,0)]

] [

,8) dtds
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since ¢ (t,s) differentiable. Thus, from (5.2.25) we havwe(b,d) = ¢ (b,c) =
¥ (a,d) = (a,c) =0, and so

%/cd/abip(t,s) dd f (t, )

1 4o
:—/ / [(b—a)(d—c)g(t,s)— Al(a,b;c,d)] f(t,s)dtds

:_// (t.5) = M ()] f (t,) dids

=M(f5(9)=T(f.9).
from which the result (5.2.25) is obtained on noting identity (5.2.24). ]

Remark 5.2.7. We remark that) (¢, s) attain its maximum af2t?, <t4) and therefore,

2 7 2
sup ¥ (t,s) = (452, =4),
(t,5)eQ

Theorem 5.2.8.Let f, g : Q — R wheref is of bounded variation angd is continuous
on(@, then

sup ¥ (t,) - Ve Vo (f)

(t,5)eQ
2
AT (f,9)] < Lfcd fab [ (t, s)| dtds, for f L — Lipschitzian
fcd f; [0 (¢, 8)|dyds f (t,8),  for f bimonotonic nondecreasing

(5.2.27)

Proof. The first part may be done by Lemma, the second by Lemma and the last part by

Lemma. We shall omit the details. O

The following result gives an identity for the weight€ebyésev functional that

involves a Riemann-Stieltjes double integral.

Theorem 5.2.9.Let f,g,p : @ — R where f is of bounded variation ang, p are
continuous orQ. Further P (b,d) = [* [*p(t,s) dtds > 0, then

S(fig:p) = m/c /a Y (t,s)dids f (t,5) (5.2.28)
X (f,g;p) isgivenin (...),

U(t,s)=P(t,s)G"(t,s) — P*(t,s) G (t,s) (5.2.29)
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with
P(t,s)= // p(z,y) dzdy,
P*(t,s) =P (b,d) — P(b,s) — P(t,d)+ P(t,s) (5.2.30)
and

G(t,S)Z/:/:p(x,y)g(%y)dmdy,

G* (t,s) =G (b,d) — G (b,s) —g(t,d) + G (t,s). (5.2.31)

Proof. The proof may be very closely to proof of Lemma 5.2.6. We shall omit the

detalils. ]

Theorem 5.2.10.Under the assumptions of Theorem 5.2.9, we have

sup W (t,5) - VeV, (f)

(t,5)€Q
2 :
P(b,d) IS (f,g:p)| < Lfcd fab |W (t,s)| dtds, for f L — Lipschitzian
fcd f; |W (t,s)|didsf (t,8), for f bimonotonic nondecreasing

(5.2.32)

Proof. The proof uses results 5.2.6 through 5.2.8 and follows closely the proof in

procuring the bounds in (5.2.32). O

In the following, we derive a new inequality of @uss’ type for Riemann-Stieltjes

double integral. In Chapter 4, we have discussed several properties of the functional

R(f,9.Q) //f:cyddyg<xy>

{ (éa_diw(b‘f*g“] //ftsdtds (5.2.33)

which is of Ostrowski’s type for Riemann—Stieltjes double integral.

The following result holds:
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Theorem 5.2.11.Let f,g : @ — R, be such thay is L-Lipschitz onQ and f is
Riemann-integrable o® and there exist real numbers, M such thatn < f (z,y) <

M, forall (z,y) € Q. Then we have the following inequality:

R(f,9,Q) < 5 (M—=m)(b—a)(d—c). (5.2.34)

DO | —

Proof. Using Lemma 3.2.5, we have

R(f.9.Q) /fxyddygxy)
g(b,d) —g(a,d) — bc )+g(a,c
[ eI [ e
{ f(z,y) m//ftsdtds}ddyg(xy)‘
<L f(z,y) A=) //fts ) dtds| dzdy. (5.2.35)
Now, define

I'= 5o _c//< (z,y) = _C//ftsdtds)d:pdy,

then, we have

S S YA S S O
(g [ [ ranms) | aa
s cereEr / / 7 @ y)dady - ((b @3 / /abf (i:9) ‘”dsf‘

On the other hand, we have

]:(M—(b_a;_c/d/bftsdtds)
(b—a _C//f s)dtds — )
_(b—a)(d_c)/c / [M — f(t,s)] - [f (t,s) —m]dtds.

Asm < f(z,y) < M, forall (z,y) € @, then

Wl(d—c)/ / (M — f(t,s)]-[f(t,s) —m]dtds >0
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which implies that

JS(M‘@Tfaii[lv“@““)

(=g [ [ 1esas-m).

Using the elementary inequality

(M — ) (k= m) < 7 (M —m)’
which holds for allm, k, M € R, we get
1 2
I< 1 (M —m)”. (5.2.36)

Using Cauchy-Buniakowski-Schwarz’s integral inequality we have

= [(b—a;(d—c) //

Now, by (5.2.36), we get

/cd/ab [l y) - (b_a)l(d_c) /Cd/abf(t,s)dtds

<
and then by (5.2.35) we obtain the desired inequality (5.2.34). O

1 d b
Fen) - Goaamg |, | 7o das

2
da:dy}

dxdy

(M —m)(b—a)(d—c)

N —

5.3 APPROXIMATING REAL FUNCTIONS OF TWO VARIABLES WHICH
POSSESSV-TH DERIVATIVES OF BOUNDED VARIATION

Theorem 5.3.1.LetQ := I x J be a closed rectangle dR?, leta,b € I witha < b,
¢, d € Jwith ¢ < d and letn be a nonnegative integer. ff:  — R is such that the

n-th partial derivativesD” f is of bounded variation o), then, for any(z, y) € Q we
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have the representation

1
fz,y) = b=a)d=0) [(b —2)(d —y)fla,c) + (b—2)(y — c)f(a,d)

(y —c)(d—y)
+(z —a)(d—y)f(b,c)+ (x —a)(y — ) f(b,d)] + b=a)d=c
S ( ' ) {0—2)@—ay7 [(y=cP " D"f (a,0) +(-1Y (= ' D" (a,0)]
j=1 J: J
(@ =a) (b—2)"7 [(=1) (y = D"F (b.0) + (d— )" D"f (b.d)| |

1 d rb )
+(b—a)(d—c)/c / Sn (2, 4y, 8) deds (D" f (¢, 5)) (5.3.1)

where,D"f (t,s) = 2L (t,s) and

T Otn—19sd
( (x—=8)"(b—2)(y—29)"(d—y), a<t<z c<s<y
B K L N E AT
vl (=D)"(z=t)"b—2)(s—y)"(y—c), a<t<z, y<s<d
\ t—x)"(x—a)(s—y)" (y—rc), r<t<b y<s<d

Proof. We utilize the following Taylor’s representation formula for functiofis Q C
R? — R such that the:-th partial derivatives)™ f are of locally bounded variation on

@

such that,
"1 (n i .
Po(zy) =) ( , ) (x —20)" 7 (y — yo)” D" f (20, y0) (5.3.3)
=0 J: J
and

R == [ [ @0 w-edd 07 1) (634)

where,D"f (t,s) = % (t,s), and(zx,y), (xo,y0) are in@) and the double integral

in the remainder is taken in the Riemann-Stieltjes sense.
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Choosingry = a, yo = ¢ and thenzy = b, yo = d in (5.3.1) we can write that

f(w,y) :Z ! (n) (ac—a)"_j(y—c)jD"f(a,c)

i
§=0 J: J

+%/cy / (x— )" (y — 5)" deds (D" [ (t,5)), (5.3.5)

Fay =35 ( " ) (@~ )" (d - 4 D'/ (a.d)

-1 n+1
)
n.

d x
/ / (2 — 1) (s — y)" dud, (D" (£, 5)), (5.3.6)

Fla =3 ( " ) (b= 2y (g — ) D" (5,0

_|_

n

(_1)!n+1 /y/ (t—2)" (y—s)"dds (D" f (t,5)) (5.3.7)

f(z,y) :Z% ( " ) (b—z)"" (d—y) D"f (b,d)

d b
+ %/ / (t—2)" (s —y)"dids (D" f (t,5)) (5.3.8)
forny (z,y) € Q.

Now, by multiplying (5.3.5) with(b — z)(d — y), (5.3.6) with(b — z)(y — ¢),
(5.3.7) with(z — a)(d — y), (5.3.8) with(z — a)(y — ¢), we get

(b—2)(d—-y)f (z,y) = (b—z)(d—y)f(a,c)

n

+o-0d-0) 5 ( ' ) (@ =)' (y=¢)’ D"f (a0

Jj=1 J
+ %(b —z)(d—-y) /y / (x—1)" (y — 8)" did (D" f (1,5)), (5.3.9)
(b—x)y—)f (x,y) = (b—2)(y —c)f(a,d)
R SE ( : ) (x—a)" (d—y)’ D"f (a,d)

m '
=0 J: J

(-1

+ !
n.

(b— )y —e) / / (@ — )" (s — )" did, (D"f (1.5)), (5.3.10)
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(z—a)(d=y)f (z,y) = (r = a)(d = y)f(bc)
+(x—a)(d_y)2(_j_Pj ( n ) (b—2)"7 (y — ) D"f (b, )

J
t

_1\nt+1 y b
+! 2+<x—amﬁﬂﬂ/‘/(-—@"@—sﬁm@(nvuﬁn (5.3.11)

(x—a)y—o)f (z,y) = (x —a)(y — ¢) f(b,d)
"1

ta-ay-9) ( ' ) (b= a)" (d =y D"} (b.d)

Jj=0 J J
d b
T %(ﬂf —a)(y —¢) / / (t—a)" (s —y)"dud (D" f (t,5)) (5.3.12)

respectively, for ny(z,y) € Q.

Finally, by adding the equalities (5.3.9)—(5.3.12) and dividing the sum with
(b —a) (d — c), we obtain

1
AR

+(@ —a)(d=y)f(b,c) + (z — a)(y — c) f(b,d)]
+ —((y_z)(d_z) Zl ( n ) {(b—x) (m—a)n_j [(y—c)j_l D" f (a,c)

|
:1]' ¥

[(b—2)(d—y)f(a,c)+ (b—=z)(y — ) f(a,d)

(=1 (= gV D (@ d)| + (2= a) (b= @) [(<1) (y = ) D" (be)

+ =y D (b,d)]

Lb—x)d=y) (Y [* s

A ). | €= )
L Ez:gg:j;/y | @t =y (07 (1.5)
+(—1)'”+ (fc—a)((j:?g /y/x (t— )" (y — )" didy (D" [ (L, 5))

which gives the desired representation (5.3.1). O
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Remark 5.3.2. The case: = 0 provides the representation

1
b—a)d=0) [(b—2)(d =y)[fla,c) + (b —2)(y = ¢)f(a,d)

+(z —a)(d— y)f(bc (. —a)(y — c) f(b,d)]
b_a =0 //So z, by, s) dids (f (t,5) (5.3.13)

f(z,y) =

foranyz € @, where

SO (.’E,t;y, 8) =

and f is of bounded variation ofy.

The above representation provides, as a natural consequence, the possibility
to compare the value of a function at the mid pdﬁg‘—” «td) with the values of the
function and its derivatives at the end points (the corners of the rectangle generated by

the end points). Therefore, we can state the following corollary:

Corollary 5.3.3. With the assumptions of Theorem 5.3.1 foand ), we have the
identity

F (a+b c—i—d) fla,c) + fla,d) + f(b,c) + f(b,d)

5 9 )~ 1

+ 2n1+2 Z% ( n ) (b—a)"7(d—c) {D"f(a,c) + (=1)’D"f (a,d)
=17\ J

+ (=1)'D"f (b,c) + D" f (b, d)}
1 d rb "
Ay / / M, (t,s)dydy (D"f (t,5)) (5.3.14)

where,D" f (t,s) = 575 (t,5) and
((aTb—t)n(CTd—s", a<t< e << et
M(ts):(b_a><d_c) (_1)n(t—a7b)n(%i—s)n, “Tb<t§b7 CSSS#
) 4n! (_1>n<aTb—t)n(S—ch)n, aStS‘lTb’ %l<8§d
(s (ossty, e lpch o<
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On utilizing the following notations

A(1Q) = G (0= (A = 1) (e.0) + (b= )y = )f (0.0
(y —o)(d—y)
+(@—a)(d—y)f(b,c)+ (x—a)(y — o) f(b,d)] + b—ad=0)

32 ( i ) {0-2) @@= [(y= o D"f (a,0) +(=1) (4 =)' D"f (a,d)]

+(@=a)(b—2)"7 [(=1) (y = D"F (b.0) + (d =) D"f (b.d)| |
(5.3.15)

and
B, (f.Q) :=m / / S, (z,t;y,s) dids (D" f (¢, 5)) (5.3.16)

under the assumptions of Theorem 5.3.1, we can approximate the furfctitiizing

the polynomialsA4,, (f, @) with the errorB,, (f, @) . In other words, we have

forany(z,y) € Q .

It is then natural to ask for a priori error bounds provided tliabelongs
to different classes of functions for which the RiemannStieltjes integral defining the

expression in (5.3.16) exists and can be bounded in absolute value.

Theorem 5.3.4.With the assumptions of Theorem 5.3.1 fand @, we have

1B, (f, Q)

(—a)(b—z)(y—c)(d—y)
= W (b—a)(d—0)

x|@=a)" -\ V(D) (@ —a) d=y)" -\ (D))

C

d b

+o=2)" ="\ O )+ 0—2)" d=y)" -\ (D)

c Yy

(5.3.17)
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(z—a)(b—2)(y—c)(d—y)
S T h—a)(d—0

([Lo—a)+ o — )" A=) + |y — 2] VEVE (D)

[(x_a)p(n—l)+(b_x)p(n_1):|1/p [(y PO 4 (d — )P 1]

vz (vvem) + (v o)+ (vive o) "

p,q > 1, 1+l_1

max { V2 V5 (D), Vg Vi (D), VAV (D), Vg Ve (D) }
| x [(z—a)" " +b—2)"] [(y—0)"  +d—y"].

(5.3.18)

cb-a)ld=0
- 16n!

([Lo—a)+|o— 2" [ d— o)+ [y — )" VL (D)

1/p 1/p

[(x — )" 4 (p— x)?(ﬂ—l)} - [(y _ ot 4 (g — y)p(n_l)]
) fovvsors (vive ) = (vevi o)+ (viven) ]

1 1 _ 1.
p7q>1a§+a_1a

max {\VL V2 (D), Vg Vi (D7), VAV (D7), Vg Vi (D) |
| < [@—a "+ -0 (=" + =y

(5.3.19)

Proof. Using the inequality for the Riemann-Stieltjes integral of continuous integrands



118

and bounded variation integrators, we have

.01 = | e = U/ T A (D)
; / [0 @ -0 (s = )" (- 9, ("1 ()
vk / (= )" (2 — a) (y — 5)" (d — )y (D (1, 5))

+/yd/x”t_x o a) y_s>n<d—y>dtds<D"f<t,s>>}\

/y/r (=) (b—2)(y—8)" (d—y)dds (D" (, 5))

Sn!(b—al)(d—c [
+// L= t) (b= 2) (s — )" (y — ), (D] (2, 5))

+// D™ (¢ )" (¢~ a) (y — )" (d — y)d, (D" (1, 5))

1

d prb

-|-// (t—2)" (x —a)(y—s)" (d—y)dds (D" f (t,5))

Sn,(b_a)(d 3 {tg}%{(fvt) (b—2)(y - EEAVAVAC2S)
' seley] e
+tgl[g§ {@-t)"(b-2)(s—y)"(y—c)} (D" f)

€ly,d]

+ max {t—2)"(x—a)(y—95)"(d—y)}- (D" f)

s€[cy]

n<td @<&
&<@ H<@ m<i~z

—
-
S
=

« <=

+ max {(t—2)" (2= a) (s =) (y = )}
s€ly,d]

Sm(b_al)(d_c) (x—a)n(b—x)(y—c)n(d—y)‘\C/\G/(D"f)
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r—a)b—x)( _ nel NN T
:( Lg(b—i —a)" " (y—c) \C/\‘L/(D )

d = y b
+(@—a)""(d—y)"" \/\/ +(b—2)""( —c)"_l-\/\/(D”f)
Vi

+o—2)" d-y)" -\ (D) ]

and the first inequality in (5.3.17) is proved.

However, by Hblder’s discrete inequality we also have

Yy x d =z

(x—a)" (y—c)" " \/\/ D'fy+(x—a)" ' (d—y)" - \/\/ D"f)
y b o d b
=) =0 VN @D+ 02" d=y)" N (D)

max {(z = a)" " (y— )" (@ — )" (@ =) (b )" (g - o)
(b—2)"" (=)™} x [V (D) + Vi Vi (D) + VAV (D)
+V VL (D)
( — a)" AP 4 (g — @)D (@ = D)

(b= 2P (y = D 4 (b - D (d - gy
<[ovrvr i+ (vive o)+ (veve o)+ (vivee)]

1
pg>1.+.=1

IN

max {\VL V2 (D), Vg Vi (D), VAV (D7), Vg Vo (D7) |
-0 - - ) T =) (-0
+(b—2)" " (d—y)"];
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(

max {(z —a)"" (b —2)" "} -max {(y — )" (d = y)" '} - Vi Vo (D)

[(x )™ 4 — x)p(nq)} v [(y — }
) o fovevE o (VivE )+ (Ve Ve ) ( )"

pq>11+ =1;

max {2V (D), Vg Vi (D), VAL (D7), Vg Vo (D7) |
| x[@—a)" -] [y @y

(L0 a)+ o — =] (A (d =)+ y— 2] VAV (D)

1/ 1/
[(x _ a)p(n—l) +(b— I)p(n—l)} . [(y _ C)p(n—l) +(d- y)p(n—l) i

_ ] X [(\/i’ Va () + (vj Ve (f))q_|_ (\/‘Z v (f)>q+ <\/Z V' (f)ﬂ /g

1 1 _ 1.
p7q>1)5+5_1a

max {2V (D), Vg Vi (D7), VAV (D7), Vg Vo (D7) |
| @ =] (=" @—y)

which proves the second inequality in (5.3.18).

The last part is obvious by the elementary inequalities

(x—a)(b—1) < Z(b—a) ,Vx € [a,b]

and

1
(y—C) (d_y) < Z(d_c)Zavy S [C>d]'
The proof is complete. O

Remark 5.3.5. Under the assumptions of Theorem 5.3.4 foand (), with the case
n = 0 provides the following inequality:

Yy T

’Bn(f’Q”SW (b—2x)(d—vy) \/\/ +(b—x)(y—rc) \y/\a/
ta—a)d-y) - \/VH+@E@-ay-c- -\ (5320

C



121

Now, if we denote

fla,¢) + fla,d) + f(b,¢) + f(b,d)
4

5M(f§Q):

+ 2n1+2 Zl ( ” ) (b—a)" (d—c) {D"f (a,c) + (=1YD"f (a,d)

i
j=1 J: J

+ (=1)'D"f (b,c) + D" f (b,d)} (5.3.21)
and

d b
Fur (fa Q) = m /c /a M, (t, 8) dtds (an (t, S)) (5322)

where,
(-0 ()" astse csssed
(~1)" (-2 (- s)", bt <, e<s< el
) ot o )", a<t<et st cs<d
| (=) " (s —=9)", ab cp<p o<

then we can approximate the value of the function at the midpoint in terms of the values
of the function and its partial derivatives taken at the end points with the £550¥; Q).

Namely, we have the representation formula

(55 = (1@ + Fu (7:Q)

The absolute value of the error can be bounded as follows:

Corollary 5.3.6. With the assumptions of Theorem 5.3.4 for) andn, we have the

inequality

n n d
Futrl < _ggnfi!_ 2 V&) (5.3.23)

The following result concerning Lipschitz mappings may be stated as well:

Theorem 5.3.7.LetQ := I x J be a closed rectangle dR?, leta,b € I witha < b,

¢, d € Jwithc < d and letn be a nonnegative integer. ff: Q — R is such that the:-th
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partial derivativesD™ f is L;—Lipschitz ona, x] x [¢, y|, Le—Lipschitz ona, x] x [y, d],
Ls—Lipschitz onz, b] x [¢,y] and L,—Lipschitz onx, b] x [y, d], then we have
b—z)(z—-a)(d=y)(y—0)
n!(n+1)*(b—a)(d—c)
+(b—2)" [Ls (y — )" + La(d — )"}

(b—a)(d—rc) n n n
Sm{(w—a) L (y =) + Ly (d—y)"]

1B, (f,Q)] <

{(z=a)" [Li(y —c)" + La(d —y)"]

+(b—2)" [Ls(y — )" + La(d—y)"]} (5.3.24)

Proof. SinceD™ f is L—Lipschitz on@, then by 3.2.5, we have

8, (4.Q) = | == U/ (= 0" (b= 2) (y — )" (4 y)dd, (D" (1)
d
+// "(b—x)(s—y)" (y —c)dids (D" f (t,5))
+// (- 2)" (x — a) (y — 9)" (d — y)ddy (D"f (£.5)

+/yd/:t_x o a) y_s>n<d—y>dtds<D"f<t,s>>}\

1 vore n . .
Sn!(b—a)(d—c [// (x—t)"(b—2)(y—s)" (d—y)dds (D" f (t,5))

+// ML= t) (b 2) (s — )" (y — ), (D] (2, 5))

[ ] ot or e - @6 o - pad 07 0,9)
[ ] a-or e - @ a0 0.0
R [Ll/y/xrx—t”(b—x)(y—s>“<d—y>|dtds
w10 e 0 0ma) 6-  ofares
wrs [l e @0 o @ s
—H@L‘th—x v —a) (y — s)" (d — y)|dtds
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- T dﬁﬂwmw—wfﬁwwW@[@—mﬁ

d T

+ Ly (b—x)( / "ds/ (x —t)"dt
b

+ Ls(x —a) / /(t—x)"dt

d b
+Ly(x —a) ”ds/ (t—x)”dt}

Yy

:(b—fv><x—a)( y) (y —c)
n‘(n+1)2(b—a)( ¢)

+(0—2)" - [Ly(y—c)" + La(d—y)"]}

which proves the first inequality in (5.3.24). The last part follows by elementary

inequalities
1
(r—a)(b—2) < 7 (b—0)° Vo € [a,b],
and
1 2
y—=c —Y) >~ —C),Vy ¢, aj,
(y-c)d-y) < (d—o) Wyeled
the details are omitted. The proof is complete. ]

Remark 5.3.8. If the function D" f is L—Lipschitzian on the whole bidimentional
interval [a, b] x [c,d], which, in fact, is a more natural assumption, then we get from
(5.3.24) that

(b)) (d— ) (v -
n!(n+1)*b—a)(d—c)

fly =)+ (d—y)"]

x[(x—a)"+(b—2)" [(y—0)"+(d—y)"] (53.25)

B, (£.Q)] < ) o —a) + (b—a)"]

(b—a)(d—rc)
L

n!16 (n+ 1)
Corollary 5.3.9. Let(@ := I x J be a closed rectangle dR?, leta,b € I witha < b,
¢, d € Jwithc < d and letn be a nonnegative integer. ff:  — R is such that the:-th
partial derivativesD" f is L,—Lipschitz ona, 2] x [c, 29], Lo—Lipschitz ona, %] x
(<44 d], Ls—Lipschitz on“£2, b] x [c, 2t9] and L,—Lipschitz on %2, b] x [<5¢, d], then
we have

(d . C)n+l (b . a)nJrl
nl22n+4 (n 4 1)

1Far (f, Q)] < [Ly + Ly + Ly + Ly (5.3.26)
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In particular, if D" f is L—Lipschitzian or@), then

(d—c)"™ (b—a)"™!

5.3.27
nl22n+2 (n 4 1) ( )

Remark 5.3.10.In Section 4.3, we have considered an integral representation of error
for mappings of two variables. Similarly, one may consider another more accurate error
representation using Taylor representation formula witk: 0 by defining) (¢, s) such

as for a functionf : Q¢ — R, we definej;, vy : Q%% — R by

¢y (t,s) 2 = [(0—1)(d—s)f(a,c) + (b —t)(s — c) f(a,d)
+(t —a)(d—=s)f(b,c) + (t — a)(s — ) f(b,d)]

and

(bf (tv 5)

Yy (t,s) = f(t,s) — b—ad—0)

A generalization of this error may be extended to berfee k, provided that the:-th

partial derivativesD” f exist, as we shown above.

Finally, the case wherD"f is absolutely continuous o) produces the

following estimates for the remainder:

Theorem 5.3.11.LetQ := I x J be a closed rectangle dR?, leta,b € I witha < b,
c,d € J with ¢ < d and letn be a nonnegative integer. ff: ) — R is such that the
n-th partial derivativesD" f is absolutely continuous af, then for any(z, y) € Q we

have

1B, (f, Q)] < (b_al)( J — ) (d— y// (x—)" (y—s)" | D" f (t,5)| dtds

y—c) b—x// (x—t)"(s—vy }D”H ts|dtds

—i—(d—y)(m—a)/ / (t—2)" (y — 8)" | D" f (8, 5)| deds

—i—(d—y)(x—a)/ / (t—a)" (y—s)" |D"" [ (t,s)| dids
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( n n+
(z—a)" " (y—c) HDn+1f|| D" f e Loo( o)

(n+1)? la,z] X [e,y],00
(b - x) (d - y) (xia)n+1/q(yic)n+l/q nl il .
ol (b—a) (d—C)x (ng+1)'/ HD f“@f Ix[ey]p D fELp( a:g)7

p>1,§+%:1;
L (@=a)" (y = )" D" fll g agwen » D" € Li(Q2Y):;
n+1 z,d\.
D f e Loo(Q5);

( T—a n+1 d— n+1 n
( )(n+(1)2y) HD +1f”[ax

X [y,d],00 ?

(b—2)y—c) (@=a)" "/ (d—y)" 1/ nt1 nt1 zd
Ab—a)(d—c ) o ID" g D" F € Lp(@ay),
p>1c+:=1

=0 (= )" 10"l D € Q)

( (b—2)" M (y—o)" n n
( )(m(ly) || D+t o D" f e Lo (QY v);
(x—a)(d—vy) by U4 (g ey 1/ D
n!(b—a) (d—C)X ( )(nq+§z)/1/q 1o m f”[wblx leylp? Dif e LP(Q%’%),
1,1 _ 1.
p>175+5_17
L 0=2)" (y = )" (1D fll e DM € La(Q54);
( (b—2)" ! (d—
) D" gyt DM € Lo QR);
4 (x—a)(y—c) =) d—y) Dl pDrtl L. (Ob
n! (b_a) (d_c> (nq+1)1/q || f||[a}b><[yd]p7 fE p( $7y)7
1,1 _ .
p>155+5_17
| 0=2)"(d=y)" - 1D fll gy D" € La(Q%5);

(5.3.28)

Proof. SinceD™ f is absolutely continuous o then for any(x,y) € @ we have the
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representation

1
(y —o)(d—y)
+(x—a)(d—y)f(b,c)+(x—a)(y—c)f(b,d)] + (b—a)(d—c)

xg}%(7){ﬂwwau—awjky—@fHmem>u—nwd—ijWfWAﬂ
j=1 J: J

+ (z—a)(b—a)" [(_1)3' (y— e D F (b,e) + (d— )~ D f (b, d)]}
1 d prb .
Th—ad—9 / / Su (z,t;y,5) D" f (t,5) dtds (5.3.29)

where the integral is considered in the Lebesgue sense and the Keinet; y, s) is

given in Theorem 5.3.1.

Utilizing the properties of the Stieltjes integral, we have

1B, (f; Q)] / / (z,t;y,s) D" f (t,5) dtds

—C

. b_al) 5 [// (2= )" (b—2) (y — 5)" (d — y) D" f (¢, 5) dtds
+/ﬁ/ D™ (= 1) (b— ) (s — )" (y — €) D™ (1, ) deds
+/’/b Y (= ) (5= a) (y — )" (d— y) D"V F (1) deds

+/yd/: t— ) (x—a)(y—s)”(d—y)D”“f(t,s)dtds]

/y/x (—1)" (b—2)(y—s)" (d—y) D"\ f (t,5) dtds

Sn!(b—;)(d—c [

+-/d/$ P @ — 1) (=) (s — )" (y — ) D™ (1) deds
[ oo e @ o a0 s
*‘Aiﬁbt‘m x—axy—@"w—yﬂW“f@wwwh]
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S b —ad=o {(b_@<d—y>/y/x(w—t)"(y—s)”|D"+1f(t,s)|dtds
Fu=Ab-a) [ [ @0 =" D )| drds

Y b
H=g) @) [ [ e s D )] deds
—i—(d—y)(:v—a)/ / (t—a)" (y—s)" |D""f(t,s)| dids

and the first part of the inequality (5.3.28) is proved.

Utilizing Holder integral inequality for the Lebesgue integral we have

[ [ =i o s

(@) y—o)" "

— (z—a)" T/ (y—c)n 1/
(ng+1)"/4

/yd /:‘ (@ —1)" (s — )" |D"f (t,5)| dtds

(@) (d—y)" !

_ ) (@—a)"tVid—y)tt/e

e 1P gy

0 = " 1D e

. n+1
(n+1)2 “D fH [a,x] % [y,d],00 7

(nq-i—l)l/q ’ HDn+1fH[a,x]><[y,d},p )

L (x—a)"(d—y)"- ||Dn+1f||[a7x]><[y,d],1 )

D" f € Loo a, 2] X [ y];

D"t fe L,a,x] X [c,y],
p > 1,%—1—52 1;
D" f e Ly [a, 2] % [c,y];

(5.3.30)

D" f € Ly [a,x] x [y,d];

Y

Dn—Hf € LP [CL,LE] X [yvd]u
p > 1,%—1—%: 1;
D" f e Lya,z] X [y,d]

(5.3.31)
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Y b
b/ /"U~—xf(y—sYﬂlw+UXusﬂduw

( b—zx n+1 c 'n+ "
e D™ tosoe s D" € Lo [0 x e,
. b—x n+1/q —c n+1/q " .
o : )(anr%’l/q) ||D +1f||[azb X [e,y],p D +1f € Lp [ff,b] X [C, y] ,
p>1 4+ =1
\ (b - 'r)n (y - c)” ’ HDn—‘_lfH[x,b}x[c,y],l ) Dn+1f c L1 {I, b] X [C, y] ;
(5.3.32)

d pb
L/ /hﬁ-—ﬁf(y—sYﬂlw+U%usﬂduw

b—z)" 1 (d— n n .
) D™ iyt s D7 € Lo [, 8] % [y, dl
- b—z) /9 (q— yrtt /a n n
- ( )(nq_,'_(l)l/zt/z HD +1f” [x,b] % [y,d],p D +1f € LP [%,b] X [yad]a
p>1, % + é =1;
[ O=2)" [d=9)" 10" Sl pyxpyar D" € Lifw,b] X [y, d]

(5.3.33)
On making use of (5.3.30)—(5.3.33) we deduce the second part of (5.3.28). [

5.4 TRAPEZOID-TYPE RULES FOR RS-DOUBLE INTEGRALS

Let f,u : Q — R be such tha]fcd fab [ (t,s)didu(t, s) exists. Define

T(f,wQ)

_ o+ f(ad)+[(bo)+](bd) (b, d) — u (b, ¢) — u(a,d) +u(a,c)]

4
//ftsdtduts)

For integrators of bounded variation, the following result holds:

Theorem 5.4.1.Let f,u : @ — R be such thatf is (a1, as)-(H;, Hy)—Holder type
mapping, whered,, H, > 0 anday, as > 0 are given, and. is a mapping of bounded

variation on@. Then we have the inequality

rruals m(5) (4

ﬁm}WJWy (5.4.1)

Q
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Proof. Using the inequality for the Riemann-Stieltjes integral of continuous integrands

and bounded variation integrators, we have

T (fu: Q)| = [ a,c +fad)zf(bc)—'—f(bd)—f(t,s)]dtdsu(t,s)

Ssup'f a,c) +f(a,d)4f(bc)+fbd ‘ \/

(5.4.2)

As fis of (o, as)-(Hy, Hy)—Holder type mapping, then we have

fla,c) + fla,d)+ [ (bc)+ f(bd)
4

- f(tv S)

i 1 (a,c) = F ()| +1f (a,d) = F (&)l +|f (b, ) = f (&, 8)| +|f (b, d) = f (¢t 5)]]
i {[Hy (t —a)™ + Ha (s — )] + [Hy (t —a)™ + Hy (d — 5)*]

THL (b= 0%+ Ha (5 — 0] 4 [Hy (b — )% + Hy (d — 5)°]}
Tl a)™ o™+ 2 (s — O (d - 5], (5.4.3)

for anyt € [a,b] ands € [c, d].

Now, consider the mapping, : [a,b] — R, given by, () := (t —a)™" +
(b—1)*,t € [a,b],ay € (0,1]. Then,y, (t) ;= oy (t —a)™ " —ay (b— ) "iff t =
b 41 (t) > 0 0n (a, ) andv; (t) < 0 on (%t b), which shows that its maximum is

realized at = 2t and

mx 0 (0} = (50) =2 0

tela,b
Similarly, if we consider the mapping : [a,b] — R, given by, (s) := (s — ¢)** +

(d— )™, s € [e,d], as € (0,1]. Therefore, its maximum is realized at= <14 and

o (a6} = (57 ) =2 (- 0

s€le,d] 2

Consequently, by (5.4.3), we have

fla,c)+ f(a,d) + f(bc) + f (b, d)
4

sup

- f (ta S)‘
< H, (b _ “)al +H, (d;)m. (5.4.4)

2

Using (5.4.2) we obtain the desired inequality (5.4.1). O
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Remark 5.4.2. We notice that, iff is (L1, Ls)—Lipschitzian or®, then (5.4.1) becomes

T (f;Q) < 5 [Li(b—a) + La(d— )] - \/ (u). (5.4.5)

Corollary 5.4.3. If we assume thay : ¢ — R, is Lebesgue integrable o@,

thenu (z,y) = [’ [7g(t, s)dtds is differentiable almost everywhere,(b,d) =

fcd f;g (t,s)dtds, u(b,c) =u(a,d) =u(a,c) =0 and\/Q (u) = fcd f; lg (t, )] dtds.
Consequently, by (5.4.1) we obtain

‘f(a,c)+f(a,d)+f(b,c)+f(b,d) ,/cd/abg(t,s)dtds—/cd/abf(t,s)g(t,s)dtds

4

< [Hl (b;a)al + H, (d;C)w] ~/Cd/ab]g(t,s)\dtds. (5.4.6)

From (5.4.6) we get a weighted version of the trapezoid inequality,

fa0)+ fad)+ f(bo) +f(0,d)  fo [ F(ts)g(ts)dtds
4 fcd ff g (t,s)dtds

b—a\™ d—c\™
i (55 e (4557, e

provided thaty(¢, s) > 0, for almost everyt, s) € @ and fcd f;g (t,s)dtds # 0

Remark 5.4.4. We notice that, iff is (L, L,)—Lipschitzian or®, then (5.4.7) becomes

fla,0)+ flad)+ f(be)+ Fbd) [ f(ts)g(ts)deds
4 [4 12 g(t,5) dtds
[Li(b—a)+ Ly (d—c)]. (5.4.8)

<

DN | —

For a bimonotonic non-decreasing integrators, the following result holds:

Theorem 5.4.5.Let f,u : @ — R be such thatf is (a;,as)-(H;, Hy)—Holder
type mapping, wheréf,, H, > 0 and ay, a2 > 0 are given, andu is bimonotonic

non-decreasing o). Then we have the inequality

T (f,u; Q)|

< {%%_a)a%%(d—c)” [u(b,d) = u (b e) —ulad) +u(a,c)

J% (b= a)" (@ =)+ 2 (b= a) (d — )| [u(b.d) ~u(a,c) . (5.49)
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Proof. Using the inequality for the Riemann-Stieltjes integral of continuous integrands

and a bimonotonic non-decreasing integrators, we have

[ ac+fad)+f(bc)+f(bd)

T(f,w;Q) = — f(t, s)] dydsu (t, s)

(a,c)+ f ad) f(b,c)+f(b,d)

— f(t,s)|didsu(t, s).

(5.4.10)

As fis of (a1, as)-(H;y, Hy)—Holder type mapping, then by (5.4.3) we have

- f(ta 8)

’f(a,C)+f(a,d)+f(byc)+f(b,d)
4

<Z [t —a)™ +(b—t)“1]+%[(s—c)a2+(d—s)a2], (5.4.11)

for anyt € [a,b] ands € [c, d]. Consequently, by (5.4.10) and then using integration by

parts, we have
T (f,u; Q)]
« H2 a o
// { M (0= )"+ S (5= )™+ (d = 5)]| didgu (£, 5)

_[T(b—a)al L a—ep } 0 (b, d) — (b, ) — u(a,d) +u(a,0)

— —al/ / )T — (b= ) u(t, s) dtds
- —ag/ / s—¢) = (d— s)”_l} u(t, s) dtds. (5.4.12)

Now, on utilizing the bimonotonicity property af on (), we have

// a)™ tsdtds>uac// a)® " dtds

= —u(a,0) (=) ([d—c). (5.4.13)
/d/(b—)a11 (tsdtds<ubd// )" dtds
_ a_lu (b,d) (b— a)* (d—c), (5.4.14)
d b
//(8—0)”1 (tsdtds>uac// )" dtds
= —u(a,c)(b—a)(d—c)*, (5.4.15)

042
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and

d
//(d— ) u tsdtds<ubd// $)*2 7" dtds

= —u(b d)(b—a)(d—c)*". (5.4.16)

%)

Substituting (5.4.13)—(5.4.16), in (5.4.12) we get

T (f,u; Q)|

< [%<b_a>al+%(d—c>” [ b,d) —u(bic) —ula,d) +u(a )

b0 =0+ P o=@ - 0| bd) - u e
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