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ABSTRACT

Inequalities play a significant role in almost all fields of thematics. Several
applications of inequalities are found in various areasorses such as, physical,
natural and engineering sciences. In numerical analysegjualities play a main
role in error estimations. A few years ago, a number of agth@ve considered
an error analysis of some quadrature rules of Newton-Cofas. tyn particular, the
mid-point, trapezoid and Simpson’s have been investigawee recently with the view
of obtaining bounds for the quadrature rules in terms of astnsecond derivative.
By using modern theory of inequalities and Peano kernel a@gbrothis thesis is
devoted to investigate several refinements inequalitieshie Hermite—Hadamard’s,
Ostrowski’s and Simpson'’s type and deduce explicit bouad#e mid-point, trapezoid
and Simpson’s quadrature rules in terms of a variety of goasvex, s-convex and
r-convex mappings, at most second derivative. This appralieWvs us to investigate
several quadrature rules that have restrictions on thevimehat the integrand and thus
to deal with larger classes of functions. Several genextadins and improvements for
a previous inequalities in the literature for functigrwhere|f’| (or |f'|%,¢ > 1) is
convex (or other type of convexity) hold by applying thélger inequality and the
power mean inequality. As applications, some error esésfr a proposed quadrature
rules and for some special means are derived. A comparisovebe the presented
results with the previous one is considered and discussadthi$ way, this thesis
provides a study of some of the most famous and fundamertgliadities originated by
Hermite—Hadamard, Ostrowski and Simpson and shall gatiemreisting developments
in this research area under a unified framework.
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PELBAGAI ANGGARAN BAGI BEBERAPA PERATURAN KUADRATUR
DALAM SEBUTAN PALING BANYAK TERBITAN PERTAMA

ABSTRAK

Ketaksamaan memainkan peranan penting dalam hampir kaeseilang matematik.
Beberapa penggunaan ketaksamaan ditemui dalam pelbagaglsdins termasuklah
fizik, sains semulajadi dan kejuruteraan. Dalam analisisrigka, ketaksamaan
memainkan peranan dalam anggaran ralat. Beberapa tahunlgfasy sebilangan
penulis menumpukan perhatian kepada analisis ralat bagiysan kuadratur jenis
Newton-Cotes. Khususnya titik tengah, trapezoid dan Simpsmg terkini dikaji
secara mendalam dengan membayangkan bahawa batas unablrgrerkuadratur
diperoleh dalam sebutan terbitan pertama paling banyakg&®emenggunakan teori
ketaksamaan moden dan kaedah inti Peano, tesis ini mereekdeljpada pencarian
beberapa penambahbaikan ketaksamaan untuk Hermite—ldetla®@strowski dan
Simpson. Lantas menghasilkan batas tersirat untuk tiigah, trapezoid dan peraturan
kuadratur Simpson dalam sebutan terbitan pertama palimyakabagi pelbagai
penjelmaan kuasi-cembung;cembung dan-cembung. Kaedah ini membenarkan
beberapa peraturan kuadratur yang mempunyai kekangadsgrtkelakuan pengamir
dikaji dan seterusnya menerokai kelas fungsi yang lebilarbd3alam kesusasteraan,
beberapa pengitlakan dan penambahbaikan ketaksamaamukrduntuk fungsif
cembung (atau jenis cembung lain) yahf| (atau |f’|?,q > 1) adalah benar
dengan menggunakan ketaksamaaiiddr dan ketaksamaan min kuasa. Dari segi
penggunaan, beberapa anggaran ralat untuk cadanganraetatadratur dan beberapa
min istimewa boleh diperoleh. Satu perbandingan diantasl kerkini dengan yang
lepas diberi perhatian dan dibincangkan. Secara am, regihi yang diperoleh
terbukti lebih berkesan dari yang sebelumnya. Secara tidagsung, tesis ini
mempersembahkan sorotan kajian awal beberapa ketaksamsaanterkenal yang
bermula dari Hermite—Hadamard, Ostrowski dan Simpson. kdP@pangan yang
menarik dikumpulkan dalam kajian ini di bawah kesepaduangdingkup kerja.
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CHAPTER |

INTRODUCTION

1.1 GENERAL INTRODUCTION

In mathematics, the word ‘inequality’ means a disparity@stn two quantities, which
is used to reflect the correlation between two objects. Sinapl ‘inequality’ means that
two quantities are not equal. In the 19th century and wittethergence of calculus, the

touch of the inequalities and its role increasingly becasseastial.

In modern mathematics, inequalities play a significant mokdmost all fields of
mathematics. Several applications of inequalities aradan various areas of sciences
such as, physical and engineering sciences. In numeriedysas, the approximation
of a definite integral of a real functiofi(¢) over an intervala, 0] is a very interesting
problem. Therefore, many methods appeared in literatuseliee such problems, and
one of the most popular examples of such methods are the Ne@dtes formulas (e.g.
midpoint, trapezoidal and Simpson formulas). Error bouisdghese approximations
involve higher order derivatives, i.e., for the midpointdatie trapezoidal formulas
the error bound involves a second-order derivative. Iniqadr, the error bound of
Simpson’s method involves a fourth-order derivative, ameréfore this method has
many disadvantages, such as it requires a lot of differeonia(if we assume the
derivatives exist), with bounded derivatives, that make ¢hass of functions inefficient
and inelastic to solve such problems. In recent years, mottheory of inequalities
is used at large and many efforts devoted to establish degeneralizations of the

Midpoint, Trapezoid and Simpson’s inequalities for magiof bounded variation and



for Lipschitzian, monotonic, and absolutely continuousppiags as well as-times

differentiable via kernels to refine the error bounds of ¢hegqualities.

The main concern in this thesis is to investigate, sevefalaments inequalities
of Hermite-Hadamard’s, Ostrowski’'s and Simpson’s type qugsi-convexs-convex
and r-convex functions and therefore obtains explicit boundsupgh the use of a
Peano kernel approach and the modern theory of inequalitteserror bounds derived
involved only at most second derivative. A generalizatibrthe obtained results are
considered by applying élder and power mean inequalities. Improvement for the
previous inequalities in the literature for functigrwith | f'| (or | f'|9,q > 1) is convex
is given. Finally, some error estimates for midpoint, trapd and Simpson’s rules and
for some special means are derived. In this way, this thesibges a study of some
famous and fundamental inequalities originated by Heridelamard, Ostrowski and
Simpson via three types of convex functions. This shallgplatest developments in the

research area under a unified framework.

1.2 PROBLEM STATEMENT

In this thesis, the main problem statement is devoted todioite and discuss several
inequalities of Hermite-Hadamard’s, Ostrowski’'s and Ssops type via three kinds of
convexities, namely-convex, quasi-convex andconvex mappings. These convexities
are used to obtain several refinements of the above mentineqdalities. In addition,
the problems where the midpoint, trapezoid and Simpsorasiiiure rules cannot not

be applied will be discussed in the thesis.

1.3 RESEARCH OBJECTIVES

The objectives of the research are:

1. To improve the role of convexity in the theory of inequabt



2. To introduce several new inequalities of Hermite-Hadal'sa Ostrowski’'s and

Simpson’s type vig-convex, quasi-convex andconvex mappings.

3. To establish alternatives quadrature rules using firs¢atese.

4. To find several error inequalities for some quadraturesraind for some special

means.

1.4 RESEARCH METHODOLOGY

Three types of convex mappings together with suitable Pkantels and Montgomery
identity, are used to establish variant inequalities ofriler-Hadamard’s, Ostrowski’s
and Simpson’s type in terms of first derivative of a real fiortt Several generalizations,
refinements and improvements for the corresponding verBorpowers of these
inequalities are considered by applying théldéer and power mean inequalities.
Therefore, some new error estimate for some quadrature ard for some special

means are derived.

1.5 THESIS ORGANIZATION

In the following we give an outline of our thesis organizati€onsists of six chapters
defining the work contributed. The first chapter gives a ganetroduction of the

research work where the motivation and objectives are d&fine

In chapter Il, some basic concepts of convex, quasi-convesgnvex and
s-convex functions including some of its properties are givdome known inequalities
of Hermite—Hadamard’s, Ostrowski’s and Simpson’s typdwidme related refinements

and generalizations are briefly introduced.

In chapter Ill, some refinements, improvement and new indmsa of

Hermite-Hadamard’s type via-convex, quasi-convex ang-convex functions are



introduced. As applications, an estimation of error boundsapezoidal formula and to

some special means are given.

In chapter IV, some refinements, improvement and new indosalof
Ostrowski’s type vias-convex, quasi-convex andconvex functions are introduced.
As applications, an estimation of error bounds to midpantfula and to some special

means are given.

In chapter V, some refinements, improvement and new indasadif Simpson’s
type vias-convex, quasi-convex andconvex functions are introduced. As applications,

an estimation of error bounds to Simpson’s formula and tossgpecial means are given.

In chapter VI, some topics for further research are sugdeste

Conclusion and final remarks of this work are presented in tite & each

chapter.



CHAPTER I

LITERATURE REVIEW AND BACKGROUND

2.1 INTRODUCTION

A classification of functions of a real variable is concerneih various special
properties, such as continuity, convexity, monotonicitg aifferentiability. It is know
that, convexity plays a significant role in the developmehtseveral branches of
mathematics. In this section, we begin with formal desmipof this concept followed
by a precise definition. Next, we outline some basic ternugigls associated with
convex functions. Later, we give another types of convegjtincluding quasi-convex,
r-convex ands-convex functions. By means of these convexities, we disbess a
number of properties and some results related to the furgtiinally, we discuss some

inequalities of Hermite-Hadamard’s, Ostrowski’'s and Ssops type.

2.2 ELEMENTARY CONCEPTS

2.2.1 Convex Functions

Let 7 be aninterval irR. A function f : I — R is said to be convex if for alt,y € I

and for alla € [0, 1], the inequality

flox+(1—-a)y) <af(z)+(1—-a)f(y) (2.2.1)

holds. If (2.2.1) is strictly for all: # y anda € (0,1), then f is said to be strictly
convex. If the inequality in (2.2.1) is reversed, thérs said to be concave. If (2.2.1) is

strictly for all z # y anda € (0, 1), then f is said to be strictly concave (see {aec



et al. 1992)).

A simple geometric interpretation of (2.2.1) is that thepdraf f lies below
its chords, i.e, ifP,(Q and R are any three points on the graph okuch thatQ lies
betweenP and R, then@ is on or below the chord@®R. Equivalently, for all distinct

x1, T, x3 € I, With 21 < x5 < x3, the following inequality

[ (w2) (23 — 21) < (23 — 22) f(21) + (22 — 21) f (23), (2.2.2)

holds. Another way of writing (2.2.2) is instructive:

[ (2) — f (1) < [ (z3) — f(%)'

To — 1 T3 — a1

(2.2.3)

Here, we note that, if is defined orja, b], convex (concave) ofa, b| and differentiable

atxz, then forz € (a,b) we have

f@) = f (@) = () f (w0) (& — 20) - (2.2.4)
If fis differentiable on(a,b), the f is convex (concave) iff (2.2.4) holds for all =, €

(a,b). Also, one can characterize the convexityfahrough derivatives as follows:

Theorem 2.2.1.(PeCari¢ et al. 1992) Suppose th#t exists ona, b). Thenf is convex

(strictly convex) if and only if”(x) > (>)0, for all € (a, b).

Definition 2.2.2. (Apostol 1974) A functiorf : I — R is said to satisfy a Lipschitz

condition of ordera, o > 0 if there exists a positive numbérsuch that

[f () = f (o)l <Lz —d". (2.2.5)

Moreover, if0 < o < 1, thenf is said to satisfy a Elder condition.

We recall that a functiorf which satisfies a Lipschitz condition of ordeis continuous

atcif o > 0, and differentiable at if o > 1.

Definition 2.2.3. (Apostol 1974) A functiorf : [a,b] — R is said to be absolutely
continuous onfa,b] if for ¢ > 0, there is§ > 0 such that for any collection
{(a;, b;)};—, of disjoint open subintervals dé, b] with >  (b; — a;) < ¢, we have

2?:1 |f (bz) — f (ai)\ < €.



The relation between convex, Lipschitz continuous andlabely continuous functions,

is obtained in the following theorem.

Theorem 2.2.4.(Pecaric etal. 1992) Iff : I — R is convex, therf satisfies a Lipschitz
condition of order 1, on any closed interval, b] contained in the interior/° of I.

Consequentlyf is absolutely continuous dn, b] and continuous ot°.

Monotonicity is a significant property for real-valued ftioo defined on a subset of
R that corresponds to its graph being increasing or decrgagirmonotonic function
or monotonically increasing (decreasing) is just a functiovhich preserves the order,
ie., for/ C Randz,y € I with z < y, we havef(z) < (>)f(y). The following
two theorems concerning the relation between the monatgraod the derivatives of

convex functions.

Theorem 2.2.5.(Petaric et al. 1992) Iff : I — R is convex (strictly convex), then

J(x) and f’ (x) exists and are increasing (strictly increasing) 6n

Theorem 2.2.6.(Petari¢ et al. 1992) Suppose thgtis differentiable on(a, b). Thenf

is convex (strictly convex) if and only ff increasing (strictly increasing).

A functions of bounded variation is an interesting class wictions that is
closely related to monotonic functions. Let us recall som&d about functions of

bounded variation

Definition 2.2.7. (Apostol 1974) Ifla, b] is a compact interval , a set of poinf3 :=

{9, 1, - ,x,}, satisfying the inequalities
a=2)g<T1 << Tp_1<xTy=>o,

is called a partition of{a, b]. The interval[z;_1, zx] is calledkth subinterval ofP and
we write Az, = zr — Tp_1, SO thatZ’,j:1 Az, = b — a. The collection of all possible

partitions of{a, b] will be denoted byP|a, b].

Definition 2.2.8. (Apostol 1974) Lef be defined ota, b]. If P := {x¢, 21, ,2,} IS
a partition of [a, b], write Af, = f (zx) — f (xx_1), for k = 1,2,---  n. If there exists



a positive numbed/ such that) |Af,| < M for all partition of [a, b], then f is said
k=1
to be of bounded variation da, b].

Definition 2.2.9. (Apostol 1974) Lef be of bounded variation ofa, b], and let) _(P)
denote the suni |A fx| corresponding to the partitio® = {xg, z1,--- ,z,} 0f [a,]].
k=1

The number ,

\/(f) = sup {Z(P) 1P e P[a,b]},

a

is called the total variation of on the intervala, b].

We note that a continuous function need not be of boundedtiam, for example
considerf(z) = xcos(5) if z # 0, f(0) = 0. For further detailed properties for

functions of bounded variation see Apostol (1974).

2.2.2 Quasi-Convex Functions

The notion ofquasi-convex functiongeneralizes the notion of convex functions. More

precisely,

Definition 2.2.10. (Pecari¢ et al. 1992) A functiorf : [a,b] — R is said quasi-convex
ona, b] if

flaz+ (1 —a)y) <max{f(z),f(y)}, (2.2.6)

foranyz,y € [a,b] anda € [0, 1].

Clearly, any convex function is a quasi-convex function. ldeer, there do exist

guasi-convex functions which are not convex.

Example 2.2.11.(lon 2007) The function : [-2,2] — R,

1, tel-2-1]
h(z) = (2.2.7)

2, te(-1,2]

is not a convex function op-2, 2] but it is a quasi-convex function dr-2, 2|.



Also, a quasi-convex function may be neither convex noriooous. For
example, thédloor function f,..(z) = |x], is the largest integer not greater than
is an example of a monotonic increasing function which issgiganvex but it is neither
convex nor continuous. For more details, we refer the resm®&oberts & Varberg

(1973).

It is convenient to note that, the quasi-convex mappings Ineayot of bounded
variation, i.e., there exists quasi-convex functions Wwrace not of bounded variation.

For example, consider the functigh [0, 2] — R, defined by

8
=.
=
—~
El
~
8
N
=}

xT

therefore,f is quasi-convex but not of bounded variation on [0,2].

2.2.3 Mathematical Means and—Convexity

In the following we study certain generalizations of som#&ans for a positive-valued

function of a positive variable.

Definition 2.2.12. (Bullen 2003) A functiod/ : RZ — R, is called a Mean function

if it has the following properties:

1. HomogeneityM (ax,ay) = aM (x,y), for all a > 0,

2. Symmetry M (z,y) = M (y,x),

3. Reflexivity :M (z,x) = z,

4. Monotonicity: Ifxr < 2" andy < ¢/, thenM (x,y) < M (2, y'),

5. Internality: min{z,y} < M (z,y) < max{z,y}.
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We shall consider the means for arbitrary positive real rensb, 5 (o« # (),

(see Bullen (2003) and Bullen et al. (1988) ). We take

1. The arithmetic mean :

A=A, p) = a—;—ﬁ’ a,feR,.

2. The geometric mean :

G:=G(a,p) =B, oBeR,

3. The harmonic mean :

1 1
a3
4. The power mean :
1
Mr(a7ﬁ):(a ;—/6>Ta TZL a)ﬁeR-ﬁ-
5. The identric mean:
1
L) as
[(CK?ﬁ): ) a7ﬁ>0
a, a=/0

6. The logarithmic mean :

._ __a-p
L'_L(avﬁ)_ln|a|_ln|ﬁ|7 |Oé|7é|ﬁ|7 aaﬁ%(): Ol,ﬁER+.

7. The generalized log-mean:

6P+1_ap+1 ]lo
LP:LP(a7ﬁ):|:(p+1><ﬁ_a>:| 7pER\{_170}7a7ﬁ>0'

It is well known thatL, is monotonic nondecreasing overc R, with L_; := L and

Lo := 1. In particular, we have the following inequality < G < L < I < A.
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A positive functionf is log-convexon a real intervala, b| if for all =,y € [a, D]

andX € [0, 1] we have
FOz+1=Ny) <) (). (2.2.8)
If the reverse inequality holdg, is said to be log-concave (seef@ec et al. (1992)).

In 1997, Gill et al. used the power meaf).(z, y; \) of orderr of positive numbers;, y,

which is defined by

M, (x,y; \) = (2.2.9)

to define the concept efconvex mapping, as follows

Definition 2.2.13. (Gill et al. 1997) A positive functiotf : [a,b] — R,, is called

r-convex function if for alk:, y € [a,b] and A € [0, 1] we have

fQz+ 1 =Ny) <M (f(z),f(y);A) (2.2.10)

In the above definition, we have that 0-convex functions en@ly log-convex functions
and 1-convex functions are ordinary convex functions. herrgeneralization of the
extension of Hadamard’s inequality teconvex functions and other related results are

considered in and Pearce et al. (1998).

Also, Definition 2.2.13 of--convexity can be expanded as the condition that

AT (@) + (L= N f7 (), r#0
P @) P (). r=0

ffOz+ 1=y <

In 1998, Pearce et al., proved that for a nonnegative fungtithat possesses a second

derivative. Ifr > 2, then

2 £r
== () e
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which is nonnegative if” > 0. Hence under the above restrictions, ordinary convexity
impliesr-convexity. The reverse implication is not the case, asasvsihby the function,

f(z) = 2'/?forz > 0.

Another definition forr-convex mapping was known in the literature, which is

quite different from Definition 2.2.13. Let us call Namelyfumction f : [a,b] — R is

said to ber-convex ¢ = 0,1, 2, ---), if for all choices ofzg, 1, -+ , 2,41 € [a,b] Such
thatzy < 21 < ... < z,11, the divided differencécy, - - - , z,41; f] > 0, where,
oyt Tr—1; — L1, 5 Ty,
[‘r()?f]:f(‘r())? [x()u"'?x?’;f]:[o lf] [ : f]u
To — Ty

see Peéaric et al. (1992). Equivalently, when the derivatige f (t) exists, [ is r-convex
if and only if ij (t) > 0. For example, Pearce et al. (1998), considered the function
f(x) = (2 —2® + 1), z € (1/2,1), and they showed that, < 0 but . > 0, so

that f is 3—convex but not convex. Also, the functign= — f on the same domain is a

function which is convex but not 3—convex.

2.2.4 s-Convex Functions in The Second Sense

Due to Hudzik and Maligranda (1994), two definitionssefonvexity (0 < s < 1) of

real-valued functions are known in the literature, and igivelow:

Definition 2.2.14. (Orlicz 1961) A functionf : R, — R, whereR, = [0, c0), is said

to bes-convex in the first sense if

flaz+pBy) <o’ f(2)+ B8°f (y) (2.2.11)

forall z,y € [0,00), o, 8 > 0 with a® 4+ 3° = 1 and for some fixed < (0, 1]. This

class of functions is denoted B/ .

This definition of s-convexity, for so calledy-functions, was introduced by Orlicz in
1961 and was used in the theory of Orlicz spaces ( Matuszeas#teOrlicz (1961),
Musielak (1983), Rolewicz (1984)). A functigh: R, — R, is said to be g-function
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if £(0) = 0andf is nondecreasing and continuous. The symbstands for an Orlicz
function,i.e.,p is a convex, even, vanishing and continuous at zero fundedimed on

the real lineR and with values if0, +oo].

In 2007, Pinheiro , claimed that this class/&f has many problems. Pinheiro
studied this class of-convex functions and explained why the fisstonvexity sense
was abandoned by the literature in the field. Pinheiro reivibe class ok—convexity
in the first sense and proposed a geometric interpretatidaifictions inK! with some
related results. For further results concernsrgpnvexity in the first sense see Pinheiro
(2008).

Definition 2.2.15. (Breckner 1978) A functiorf : Rt — R, whereR* = [0,00), is

said to bes—convex in the second sense if

flaz+PBy) <a’f () + B8°f (y) (2.2.12)

forall z,y € [0,00), a, § > 0 with « + 3 = 1 and for some fixed € (0, 1]. This class

of functions is denoted hi2.

This definition of s-convexity considered by Breckner, where the problem when th
rational s-convex functions are-convex was considered. Also, we note that, it can be
easily seen that for = 1, s-convexity (in both senses) reduces to the ordinary cotyexi

of functions defined ofD, co).

In 1994, Hudzik and Maligranda, realized the importance andertook a
systematic study of-convex functions in both sense. They compared the notion of
Breckner s-convexity with a similar one of Orlicz (1961). A functiofi is Orlicz
s-convex if the inequality (2.2.11) is satisfied for all 3 such thatv® + §° = 1. Hudzik
& Maligranda, among others, gave an example of a non-cootisiDrlicz s-convex

function, which is not Brecknesr-convex.

In the following, we shall consider some Hudzik and Maligtamesults, that are

connected withs-convex functions in the second sense.
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Theorem 2.2.16.(Hudzik & Maligranda 1994) Iff € K2, then f is non-negative on
0, 00).

An example ofs-convex functions of the second sense is introduced asaisilo
Example 2.2.17.(Hudzik & Maligranda 1994) Let < s < 1 anda, b, ¢ € R. Defining
foru e Ry,

a, u =0,
f(u) = (2.2.13)

bu® +c¢, u>0,

we have the following

(i) b>0and0 <c<a,thenf € K2

(i) b>0andc<0,thenf ¢ K2

As Hudzik and Maligranda pointed out, it is important to knauere the condition
a+ (3 = 1inthe definition of K2 can be equivalently replaced by the condition 3 <
1.

Theorem 2.2.18.(Hudzik & Maligranda 1994) Letf € K2. Then the inequality
(2.2.12) holds for alki,v € R, anda, 8 > 0 witha + g < 1 if and only if f(0) = 0.

Some properties oi—convex mappings in the second sense are considered ag:follo
Theorem 2.2.19.(Hudzik & Maligranda 1994) Leb < s; < s, < 1. If f € K2 and
f(0) =0, thenf € K7 .

Theorem 2.2.20.(Hudzik & Maligranda 1994) Letf be a nondecreasing function in
K? andg be a nonnegative convex function [onoo). Then the compositiofi o g of f

with g belongsK™.

Recently, Pinheiro devoted her efforts to give a clear genmdefinition for
s-convexity in the second sense. In 2007, Pinheiro sucdissitoposed a geometric

description fors-convex curve, as follows:
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Definition 2.2.21. (Pinheiro 2007)f is calleds—convex) < s < 1, f > 0, if the graph
of f lies below a ‘bent chord’L between any two points. That is, for every compact

interval J C I, with boundarydJ, it is true that

sup (L — f) = sup (L — f).
J oJ

Indeed the geometric view ferconvex mapping of second sense is going through which
Pinheiro called itfimiting curvé, which is going to distinguish curves that are€onvex

of second sense from those that are not. After that, Pinludatained how the choice
of ‘s’ affects the limiting curve. In general a ‘limiting curve’ag be described by a
bent chordjoining f(x) to f(y)-corresponding to the verification of theconvexity
property of the functiorf in the interval|x, y]-forms representing the limiting height
for the curvef to be at, limit included, in casgis s-convex. This curve is represented

by A*f (z) + (1 — \)® f (y), for eachd < s < 1.

2.3 INEQUALITIES VIAMONTGOMERY IDENTITY AND PEANO KERNEL

In recent years, a number of authors have considered anasrabysis quadrature rules
of Newton-Cotes type. In particular, the mid-point, trapdzmd Simpson’s have been
investigated more recently with the view of obtaining bosirwh the quadrature rule
in terms of a variety of convex mappings, at most first or sdcderivatives. This

particular section will touch upon some background litgr@ton some inequalities of

Hermite-Hadamard’s, Ostrowski’'s and Simpson’s type viess real mappings.

Before this, let us recall some famous results obtained initbeature. The
following theorem contains the integral inequality whighknown in the literature as

Montgomery identity.

Theorem 2.3.1.(Mitrinovic et al. (1994)): Letf : [a, b] — R be differentiable otja, b]
andf’ : [a,b] — R be integrable oria, b], then the following Montgomery identity holds

! a/bf(t) dt+/bP(:c,t) £ (1) dt (2.3.1)

o) = 5=
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whereP (x,t) is the Peano kernel,

P(z,t) =

Suppose now thab : [a,b] — [0,00) is some probability density function, i.e. is a

positive integrable function satisfyinﬁ’ w(t)dt =1, and

The following identity is a generalization of Montgomerjdentity,

b b
f(x):/ w(t)f(t)dt+/ Py (28) f (£) dt (2.3.2)
where the weighted Peano kernel is

W (t), a<t<u,
P, (z,t) =

W) -1, x<t<b.
This generalization of Montgomery'’s identity is considitlyy P&aric (1980).

Theorem 2.3.2.(Mitrinovi¢ et al. 1993) Lep > 1 and}) + % = 1. If fandg are real

functions defined ofu, b] and if | f|” and|g|? are integrable functions ofw, b], then

1
q

/ab|f(x)9(m)|dx < (/ab|f($)|pdx)% (/ab|g(x)|qdm) . (2.3.3)

Theorem 2.3.3.(Mitrinovi€ et al. 1993) Letf be a convex function on the opén b)
and letz(t) : [c,d] — R be integrable withu < z(t) < b. If a(t) : [¢,d] — R is
positive,fcd a(t)dt = 1,and(« - z)(t) is integrable one, d], then

f (/Cda )z (1) dt) < /cda () f (x (1)) dt. (2.3.4)
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Theorem 2.3.4.(Mitrinovi¢ et al. 1993) For real numbersg ¢, with ¢ > ¢, and positive

real numbersi,, ao, ..., a,, the following inequality holds:

1
Sar\* (v
= < | = . (2.3.5)

n n

Thus, the integral form may be written such as:

<f plz fqo ) < (f plz dm) . (2.3.6)
Jip( fip(
For instance, ifjy = 1, then we have
b 1
Jup(@ < <f pla dx) . (2.3.7)
fp S (x

2.3.1 Hermite-Hadamard’s Type Inequalities

Let f : [a,b] — R, be a twice differentiable mapping such thft(z) exists on(a, b)

and|| /||, = sup,e(ap) [f” (¥)| < co. Then the midpoint inequality is known as:

gae-w-af () < U5 @3

and, the trapezoid inequality

) do — b_a>f() f()‘_( a)?’Hf,,”W (2.3.9)

also hold. Therefore, we can approximate the integfaf () dz in terms of the

midpoint and the trapezoidal rules, respectively such as:

[ @iz o-ar (),

and
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which are grouped in a very interesting and useful relatignsknown as the

Hermite-Hadamard’s inequality. That is,

f<a+b)<biaa/bf(x)dx<w (2.3.10)

2 2 ’

which hold for all convex functiong : [a,b] — R. As pointed out by Mitrinowi and
Lackovic (1985) the inequalities (2.3.10) are due to Hermite whaioled it in 1893,

ten years before Hadamard.

Itis clear that if the mapping is not twice differentiable or the second derivative is not
bounded on (a,b), then (2.3.8) and (2.3.9) cannot be apdieampting many authors
to find alternative inequalities involving, at most the fidstrivative. A few years ago,
several types of the Montgomery'’s identity and Peano kdraeé been used to obtain

various inequalities for several kinds of convex functions

In 1998, Dragomir and Agarwal, obtained inequalities fdfedlentiable convex
mappings which are connected with the right-hand side ofntiterHadamard's

(trapezoid) inequality and they used the following lemmartove it.

Lemma 2.3.5. (Dragomir & Agarwal 1998) Letf : I ¢ R — R be a differentiable
mapping on/° wherea,b € I witha < b. If f' € L[a,b], then the following equality
holds:

f(a);rf(b)_bia/a f(x)dm:b;a/o (1—2t) f' (ta + (1 — t) b) dt.
(2.3.11)

Therefore, they proved the following result:

Theorem 2.3.6.(Dragomir & Agarwal 1998) Letf : I C R — R be a differentiable
mapping on/°, wherea, b € I witha < b. If || is convex orja, b], then the following
inequality holds:

fl@+fo 1
5 _b—a/af(m)dw

b—

—If @ +1F ). (2312

<
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In 2000, Pearce and Paric generalized Theorem 2.3.6 and they proved the

following inequalities:

Theorem 2.3.7.(Pearce & Pé&aric 2000) Letf : I ¢ R — R be a differentiable
mapping on/°, wherea, b € I witha < b. If | f’|? is convex ona, b], for someg > 1,

then the following inequality holds:

f (a) + b—a [If (@) +|f (B)]"
‘ 2 b_a/ f(x ' { . } . (2.3.13)
and
a+b b—a [lf (@ +|f (B)]"
’f( ) /f ‘ [ ! ] (2314
If | f|? is concave ota, b] for someg > 1, then
f(a)+ f(b) I b [a+b
‘ 2 _b—a/a J(@)de| < < 2 >‘ (2:315)
and
a+b ,(a+0b
() [l 2 () oo

In the same way as Dragomir and Agarwal approaches, ingigsaior differentiable
convex mappings which are connected with the left-hand sidéermite-Hadamard’s

(midpoint) inequality was proved by Kirmaci in 2004 , usimg following lemma:

Lemma 2.3.8. (Kirmaci 2004) Letf : I C R — R be a differentiable mapping off
wherea, b € I witha < b. If f € L|a, b], then the following equality holds:

%a/abf(x)dx—f<a—2'—b> b—a/K "(ta+ (1 —t)b)dt (2.3.17)

where,

Namely, Kirmaci proved the following result:
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Theorem 2.3.9.(Kirmaci 2004) Letf : I C R — R be a differentiable mapping oft,

wherea, b € I witha < b. If | f’| is convex orja, b], then the following inequality holds:

%a/abﬂx)dx—f(“;b)\ <@ ir el e3s)

For more refinements, generalization and new results cetat¢2.3.12) and (2.3.18),
are considered i@zdemir (2003), Kirmaci an@zdemir (2004a), Kirmaci an@zdemir

(2004a), Kirmaci andzdemir (2004b) and Kirmaci (2008).

In 2004, Yang obtained a very interesting inequalities faffecentiable
convex and concave mappings that are connected with thedi#is of celebrated

Hermite—Hadamard integral inequality as follow:

Theorem 2.3.10.(Yang et al. 2004) Lef : I C R — R be a differentiable mapping
on I° wherea,b € I witha < b. If |f'|* is convex orfa,b], ¢ > 1, then the following

inequality holds:

ORI
= _a/ i
q 1/q
[|f<>|q+ r(5) sirer] T ess
and
a+b 1 b
(% )—b_a/aﬂx)d:c
a a 1/q
<t @y (S50) o] eazo

If | f|? is concave otja, b] for someg > 1, then

EEESION Y At
(=)

b—a[
<

- 8
and

\f(a;b) —bia/abf@)dx

b—a[
<
- 8

f <a 7;‘%) H (2.3.21)

)

7 (azzb) H . (2:3.22)
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For further results concerning the Hermite—Hadamard'quiadty for monotone
and Lipschitz mappings and functions of bounded variativa, refer the reader to
Dragomir (1999c), Dragomir (2000a), Dragomir (2000b), dmair and Mabizela
(2000), Cerone and Dragomir (2000a), Cerone and DragomitO®Q@erone et al.
(2000a), Dragomir (2001c), Dragomir (2001d), Barnett et(2002), (Barnett &
Dragomir 2004), Dragomir (2004), Tseng et al. (2004), Dragoet al. (2007), Tseng
et al. (2007b) and Dragomir (2008).

Since there is a different types of convexities, many astimoved various
inequalities of Hermite-Hadamard type. In Dragomir andpatrick (1999), proved
a variant of Hadamard’s inequality which holds feconvex functions in the second

sense, as follows:

Theorem 2.3.11.(Dragomir & Fitzpatrick 1999) Suppose thdit: [0, 00) — [0, 00) is
an s—convex function in the second sense, whkete(0, 1) and leta, b € [0, 00), a < b.

If f € L'[a,b], then the following inequalities hold:

b
951y <“+b) < bia/ f(z)de < fla)+ 1) (2.3.23)

2 - s+ 1
The constant = sﬁ IS the best possible in the second inequality in (2.3.23¢ ddove

inequalities are sharp.

Several inequalities of Hermite-Hadamard type for diffei@ble functions
based on concavity andconvexity established in Kirmaci et al. (2007), are présen

below:

Theorem 2.3.12.(Kirmaci et al. 2007) Letf : I C [0,00) — R be a differentiable
mapping on/° such thatf’ € L[a, b], wherea,b € I witha < b. If | f'|? is s-convex on

[a, b], for some fixed € (0, 1] andq > 1, then the following inequality holds:

fl@+fo 1 [
5 i af(x)dx

b—a (1\ ¢«
< _
<3 (1)

1

(F @]+ f B))7. (2.3.24)
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Theorem 2.3.13.(Kirmaci et al. 2007) Letf : I C [0,00) — R be a differentiable
mapping on/° such thatf’ € L[a, ], wherea,b € I witha < b. If |f'|? is s-convex on

[a, b], for some fixed € (0, 1] andq > 1, then the following inequality holds:

f(a +f

R [ e
<“{ e
=2 |2(2¢-1) s+1

el () + (r () <o) |
Sb;“[(v’(anu f(“;b) q)i( ,(a—;b)qﬂf,(b)lq)%l

Theorem 2.3.14.(Kirmaci et al. 2007) Letf : I C [0,00) — R be a differentiable

(2.3.25)

mapping on/° such thatf’ € L[a, b], wherea, b € I witha < b. If |f’|? is s-concave on

la, b], for some fixed € (0,1] andq > 1, then the following inequality holds:

f(a)2 b—a/f
(C‘Z‘%)\+ r(*57))

<b—CL q—l %2%1
- 2 |2(2¢—1)

22 (r (52 ()

Recently, lon (2007) obtained two inequalities of the rigintth side of Hermite-Hadamard'’s

(2.3.26)

type for functions whose derivatives in absolute valuesgai@si-convex functions, as

follow:

Theorem 2.3.15.(lon 2007) Letf : I° C R — R be a differentiable mapping off,

a,b € I°witha < b. If | f’| is quasi-convex ofx, b], then the following inequality holds:
a)+ f (b 1 b b—a , ,
HOPIO L [t < 2 mas i @l 1 0. @3:27)

Theorem 2.3.16.(lon 2007) Letf : I° € R — R be a differentiable mapping oft,

a,b e I°witha < b. If |f’|p/(p_1) is quasi-convex ofu, b], then the following inequality
holds:

‘f(a);f(b)_bia/abf(:c)dx

< s ({1 @ P ) @ aoe
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In Gill etal. (1997), the authors developed some Hadamgrd-inequalities for

log-convex functions and more generally feconvex functions, as follow:

Theorem 2.3.17.(Gill et al. 1997) Letf be a positive, log-convex function @n b].

Then

1
b—a

For f a positive log-concave function, the inequality is revdrse

/f@ﬁSLUw%ﬂW- (2.3.29)

Theorem 2.3.18.(Gill etal. 1997) Letf be a positivey-convex function ofu, b]. Then

bimlf@ﬁéLdﬂijh- (2.3.30)

For f a positiver-concave function, the inequality is reversed.

Several inequalities are obtained for somtime differentiable convex mappings
that are connected with Hermite—Hadamard type inequafitiehigher order derivatives
in Cerone et al. (2000a), Cerone et al. (2000b), Cerone and Biia¢@000a), Cerone
and Dragomir (2000b), Cerone et al. (2000b), Barnett & Drag¢2§i02a), Barnett and
Dragomir (2002b), Hwang (2003), Paric and Vukele (2003), Dedi et al. (2001b),
(Dedic et al. 2005), Dedi et al. (2006), Barnett and Dragomir (2007), Ufewnd
Erceg (2007), and Dragomir and Sofo (2008). For a compreéehst of refinements,
counterparts, generalizations and new inequalities ofriterHadamard’s type see

Mitrinovi¢ et al. (1993), Dragomir and Pearce (2000) and Pachpat®t&#20

2.3.2 Ostrowski’'s Type Inequalities

In 1938, Ostrowski established a very interesting inetyédr differentiable mappings

with bounded derivatives, as follows:

Theorem 2.3.19.(Ostrowski 1938) Lef : I € R — R be a differentiable mapping on
I°, the interior of the intervall, such thatf’ € Lla,b], wherea,b € I witha < b. If

|/ (z)| < M, then the following inequality,

<M@b-a)|*+ ﬂ] (2.3.31)

ro- [ @ R
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holds for allz € [a, b]. The constant is the best possible in the sense that it cannot be

replaced by a smaller constant.

In 1992, Fink and earlier in 1976, Milovan@vand Péaric have obtained some

interesting generalizations of (2.3.31) in the form

n—1 b
%(ﬂw+§ywm>—gﬂ/f@ﬁ

where,

<Cmpa) |7, (2332

=k (@) (@ — ) = 4 (1) 2 - )
ol b—a ’

Fy ()
and,||-||,, 1 < r < oo are the usual Lebesgue normsbyja, b}, i.e.,

[flloc := ess sup [f (1),

te(a,b]

b 1/r
HM@=</ff®Vﬁ) rem.

and

In fact, Milovanovt and Péari¢ (see also Mitrinod et al. (1994)) have proved that

_ a)n+1 + (b o x)n+1
b—a)n(n+1)!

C(n,00,x) = (z
while Fink proved that the inequality (2.3.32) holds praddf™~1) is absolutely
continuous ora, b] and f™ € L,[a, b], with

(z —a)" "™ + (b — 2)" ] B
(b —a)n!

C(n,p,x) = [ BY0((n=1)q+1,q+1),

for 1 < p < oo, s the beta function, and

(n—1""
(b — a)n"n!

C(n,l,z) = max {(x —a)",(b—12)"}.

Recently, Pachpatte (2004b), Matét al. (2002), Dedi et al. (2000) and Pearce
and Pecaric (2000), have given some generalizations of/stilovic and Péaric (1976)

and Fink (1992) inequalities. For multivariate, univagighigher order Ostrowski type
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inequalities over Euclidean domains and multivariate Ryge identity, we refer the
reader to Anastassiou (1995), Anastassiou (1997), Amasta2002), Pachpatte (2002)
Anastassiou (2007) and Anastassiou and Goldstein (20@/7(2208).

In 2000, Dragomir introduced an Ostrowski type integralgunaity for the

Riemann-Stieltjes integral, as follows:

Theorem 2.3.20.Let f : [a,b] — R be a function of bounded variation and [a, b] —

R a function ofr- H-Holder type, i.e.,
ju(@) —u)| < Hlz—yl", Va,y€lab],

wherer € (0,1] and H > 0 are given. Then, for any € [a, b],

gH[u—arv«ﬂ+w—wrwuﬁ (2:333)

<Hx [@—@“+@—xwqu§q0;+(Quﬂﬁuip>L§+3:1

d
where,\/ (f) denotes the total variation gf on the intervallc, d].

For other results concerning inequalities for Stieltjeegnals, see Liu (2004)
and Cerone and Dragomir (2002). In 2007, Cerone et al. edtedlisome Ostrowski
type inequalities for the Stieltjes integral where the gméad is absolutely continuous
while the integrator is of bounded variation. Also, the caden |f’| is convex was

explored.

Dragomir and Wang (1997), (1998a) and (1998b), introdud¢edfollowing results

concerning inequalities of Ostrowski’s type for absolytsbntinuous functions.
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Theorem 2.3.21.(Dragomir & Rassias 2002) Lef : [a,b] — R be an absolutely

continuous function ofu, b]. If ' € L4 [a, b], then for allz € [a, b], we have

r@- s [ e

:rfa—% 2
b (5 0=, if £eLalad
< -0 Ny [foma\PHL | (b \pHI] VP
S [yt (2 if e Lfa b b+ L= 1p > 1
1 -2t
ERaE==INE
\
(2.3.34)
where, |||, 1 < r < oo are the usual Lebesgue norms byja, b], i.e.,
9]l := ess sup [g ()],
t€[a,b]
and

b 1/r
ot = [lara)  1sr<oc

The constants;, m and ; are the best possible in the sense that it cannot be

replaced by a smaller constant.

During the past few years, many researchers have givendarasie attention
to the Ostrowski's inequality. Further extended resultsnimorporate mappings of
bounded variation, Lipschitzian mappings and monotoni@piregs see Dragomir

(1999f), Dragomir (2001b), Cerone et al. (2008) and Tsend. €2@08),

An Ostrowski type inequality for convex functions was pehbut by Barnett et

al., as follows:

Theorem 2.3.22.(Barnett et al. 2003) Lef : [a,b] — R be an absolutely continuous
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function on|a, b] such that f’| is convex oria, b]. Then for anyr € [a, b] we have

"” b—a/f

z+( e ) ] b—a)[f' @)+ 1), f € Loola,bl;

N

IA
N =

! — / / / 3.
ﬁ [(Z:—”Z) S (%)rﬁl]l q (b— a)l/q I @)+ 1] (2.3.35)

(g+1

f’ELp[a,b],p>1,%+%:1

}[@—a»W@»+nfmy

_a+b
)

b—a

1
g

The constang in the first and second inequalities is sharp as is the gr'stthe final.

[N

\

In the following, some Ostrowski type inequalities for alogely continuous

functions whose first derivative satisfies certain conyexgsumptions are considered.

Lemma 2.3.23.(Cerone & Dragomir 2004a) Lef : I C R — R be a differentiable
mapping on/° wherea,b € I witha < b. If f' € L[a,b], then the following equality
holds:

f(a:)—bia/f(u)du:(xb:? /Otf’(ter(l—t)a)dt

- (bb__xa>2 /01 tf (tr + (1 —t)b)dt

for eachz € [a,b] .

Theorem 2.3.24.(Cerone & Dragomir 2004a) Lef : [a,b] — R be an absolutely

continuous function ofu, b] andx € [a, b]. If | f’| is convex ona, z] and [z, b], then one

é[v<>|(bjj) ol (=)
+ (1 42 <xb—_aa7> I/ @:)) (b— a)] (2.3.36)

The constang is best possible in the sense that cannot be replaced by desmalue.

has the inequality :

rw- i [
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The following Ostrowski type inequality for absolutely ¢omuous functions for

which | f'| is quasi-convex holds.

Theorem 2.3.25.(Cerone & Dragomir 2004a) Lef : [a,b] — R be an absolutely

continuous function ofu, b] andx € [a, b].

1. If |f'| is quasi-convex ofu, x] and [z, b], then one has the inequality :

ro- it [

gi[(jjj)<uww«+uwww~uwm«—uwwm

+(Z:i> (If @)+ 1f @]+ 1f @) =1 O] . (23.37)

2. If|f'| is log-convex ona, z] and |z, b], then one has the inequality :

‘f@%— 1 Laﬂwdu

b—a
sw—aWKx—a>1fm”AmA+1—A

b—a (In A)?
b—z\>, ,,,. BnB+1—B
(=) o PRE) @as
where,
_f@ [
T P

The constant}; in (2.3.37) is best possible in the sense that cannot be cedldy a

smaller value.

In 2005, Pachpatte proved some inequalities of Ostrowsgle involving two

functions and their derivatives.

Theorem 2.3.26.(Pachpatte 2005b) Lef, g : [a,b] — R be continuous of, b] and

differentiable on(a, b), whose derivativeg’, ¢’ : (a,b) — R are bounded, i.e]| || =
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sup |f'(z)| < oo, [|¢'ll = sup g ()| < co. Then

z€(a,b) z€(a,b

fa)g(e) - b_a{ ) [t 1@ [ owa)

a+b 2
@11 F e +1f @11} |5 + ( ] - (2.3.39)

T — =
4 (b—a)

For other inequalities of the type (2.3.39), see the bookriMiviC et al.
(1994), where many other references are given. Furthenégteresults was proved in
Pachpatte (2006), where Pachpatte proved Ostrowski tyggeialities involving product
of two functions. The analysis used in the proofs is elengraad based on the use of

the integral identity recently established in Dedit al. (2003).

Several generalizations of (2.3.31) by consideringimes differentiable
mappings via kernels, had been obtained in Anastassiolwb),l@Fagomir (1999d),
Dragomir (1999e), Dedi et al. (2000), Cerone et al. (1998), Dragomir and Barnett
(1998), Sofo and Dragomir (1999), Cerone et al. (1999a), Gerdral. (1999b), Cerone
et al. (1999c), Cerone et al. (1999d), Dragomir and Sofo (R®@arce et al. (2000),
Barnett et al. (2001), Dragomir (2001a), Sofo (2002), Wj&@d004b) and Pachpatte
(2004a) . For recent comprehensive list of refinements, teoparts and generalizations

of Ostrowski integral inequality see Dragomir and Rassi@922 .

2.3.3 Simpson’s Type Inequalities

The Simpson’s inequality was known in the literature, akos:

Theorem 2.3.27.(Davis & Rabinowitz 1976) Suppoge: [a,b] — R is four times

continuously differentiable mapping dn,b) and || /|| = sup |[f®* (z)] < oo.
z€(a,b)
The following inequality

%[Mﬂf (a;rb>] _bia/f(x)dx

holds.

( (4)
< s Hf |

(2.3.40)
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Further extended results were considered by Ghizzetti &idPss(1970),
Dragomir et al. (2000), Yang and Chu (2000), Ufe¢2002), Ujevt (2004a), Uje\e
(2004d), UjevE (2004c), Ujewt (2005a), Ujewé (2005b), Liu (2007a), Tseng et al.
(2007a) and Ujew (2007).

Inthe recent years, alarge progress concerning Simpswgsiality is appeared,
where in 1998, Dragomir obtained Simpson’s inequality fofedentiable mappings

whose derivatives belong 1, spaces.

Theorem 2.3.28.(Dragomir 1998) Letf : [a,b] — R an absolutely continuous

mapping ona, b] whose derivative belongs 19,[a, b]. Then we have the inequality:

[ (50)] st f e

1 [20+ 1] Va i
< g{m] (b —a) [ £, (2.3.41)

where,(1/p) + (1/q) = 1,p > 1.

In 1999, Dragomir proved the Simpson’s inequality for Lipgzian mapping

and functions of bounded variation, as follows:

Theorem 2.3.29.(Dragomir 1999a) Letf : [a,b] — R be anL-Lipschitzian mapping

[a, b]. Then we have the inequality:

b—a) {f(a)ﬂLf(b) Y (“er)} < iL(b—a)Q. (2.3.42)

2 2 — 36

Theorem 2.3.30.(Dragomir 1999b) Letf : [a,b] — R be a mapping of bounded

variation on|a, b]. Then we have the inequality:

U V(a);f(b) +2f(a—2kb)}

f).(2.3.43)

a

Where\/z (f) denotes the total variation gf on the intervala, b]. The constant is the

best possible.



31

In 2000, Péaric and Var@anec, obtained some inequalities of Simpson’s type

for functions whose:-th derivative,n € {0, 1,2, 3} is of bounded variation, as follow:

Theorem 2.3.31.(Pecaric & Varosanec 2000) Let. € {0,1,2,3}. Let f be a real

function on[a, b] such thatf™ is function of bounded variation. Then

jf(x)dx—@ s+ (50) 41 0)

2

b
<Cp(b—a)t\/(f™), (23.44)

where,
1 1 1 1

3 T T G e
and\/’ (f™) is the total variation off™ on the intervala, ].

C():

Here we note that, Ghizzetti and Ossicini (1970), proved ithg” is an absolutely

continuous mapping with total variatidyiz (f), then (2.3.44) holds with = 3.

In 2001, Péaric and Var&anec, generalized Dragomir result (2.3.42) for

functions whose:-th derivative is Lipschitzian, as follow:

Theorem 2.3.32.(Pecaric & VaroSanec 2001a) Lef be a real function ona, b] such
that ™ is L,,-Lipschitzian function. If. = 1,2, 3, then

[ ra- 020 [ ar () 4 ]| < a0, s

where,

1 1 1
G = 81’ ¢y = 576 Cs = 2880

Ifn>4

/bf(fv)dx— O @ ar (U5 + s
SRRt (a;b) ¢ ;;;)!k“ (ki1 - %)

b—a\"? 1 1 1
<2 - — L, (2.3.4
- ( 2 ) (n+1)! (3 n—l—l) n- (2:3:46)
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In recent years, Raric and his group research consider another approach to
obtain estimate of the error in several quadrature rulesgusiconvex mappings (the
divided difference convexity) via Euler-type identitiehe first main results in this
way are considered by Ddtiet al. (2000). In particular Detliet al. (2001a) proved a
number of inequalities of Euler-Simpson type, for funcievhose derivatives are either
functions of bounded variation or Lipschitzian functiondunctions inL,-spaces. For
different approach, generalizations and new inequalitieSimpson type and other
inequalities via Euler-type identities, we refer the readdedt et al. (2001a), Raric
and Var&anec (2001b), Raric and Vukele (2003), Dedt et al. (2005), Pe&aric and
Franjic (2006), and Franji et al. (2006)



CHAPTER IlI

HERMITE-HADAMARD'S TYPE INEQUALITIES

3.1 INTRODUCTION

This work brings together results for Hermite-Hadamardsqualities type and thus
giving explicit error bounds in the trapezoidal and midporales, using Peano
type kernels and results from the modern theory of inedaalit Although bounds
through the use of Peano kernels have been obtained in s@varch papers on
Hermite-Hadamard’s inequality (see Chapter Il), but thesendt seem enough to
perhaps the extent that they should be. In this chapter, figeresome inequalities
of Hermite-Hadamard’s type vigconvex, quasi-convex andconvex functions. Some

error estimates for the trapezoid and midpoint are obtaimésrms of first derivative.

3.2 INEQUALITIES VIA S-CONVEX FUNCTIONS

Our aim in this section, is to give some improvements anchésrigeneralizations
for Kirmaci inequalities (2.3.24)—(2.3.26), which are odpezoid type vias-convex
functions in the second sense. After that, we introduce soegualities of midpoint
type via s-convex functions. In order to prove our main result(s) watsivith the

following lemma:

Lemma 3.2.1.Letf : I C R — R be a differentiable mapping off wherea,b € I
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witha < 0. If f € L|a, b], then the following equality holds:

f@+fo) 1
5 —b_a/f(x)dx

1 1
b—a (14t 11—t (14t 1—t
b [/H)f( o ) for (Lt )}
0 0

Proof. It suffices to note that

1
1+t  1—¢
0
2 1+t 1—+¢ ! 2 ; 1+t 1—¢
- bt b dt
cwwf< 2 ‘T ) O+a—b/f( > ‘T )
0

2 2 1+t 1—t
= —a_bf(a)+a_b/f( 5 ot 5 b)dt.

Settingr = a4+ 5b, anddz = %2dt, which gives

a+b

2 4 B
L= 0 [ f@as

Similarly, we can show that

1
I+t 1—t
I, = ) (L A
0

Thus,

which is required. O

Next theorem gives an improvement of Kirmaci result (2.3\24h ¢ = 1.
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Theorem 3.2.2.Let f : I C R, — R, be a differentiable mapping off such that
f" € Lla,b], wherea,b € I witha < b. If |f'| is an s-convex ora, b], for some fixed

€ (0, 1], then the following inequality holds:

< (b—a) 1+ 52°
- 2t (s+1)(s+2)

1" @)+ 1/ ®)]. (3.2.1)

Proof. From Lemma 1 and sind¢g’| is s-convex ona, b], then we have

L4t 1t (14t 1—t
| o (Lt ) e for (L )
0
/ 1 1
T
b)|at
/ f( > ‘T3 )
0

1ot 1-1¢
f(+b+ a)dt

IA

2 2

b‘a/ () @i+ () o a
_(1”) o+ (S50) @ a

— o [ (@) (1 =) f (b)]] dt

IN

Lo QL/ (L4 0 |f ()] + £ (1 = 0)° | ()] dt

(b—a) 1+ s2°

T s+ 1)(s+2) 17" (@l 11 @)1,

where we have used the fact that

1

/t(1+t)5dt:

0

823+1 + 1
(s+1)(s+2)
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and
1

o 1
/t(l_t) U= I T2

0
which completes the proof. O

Remark 3.2.3.1f one choose = 1 in (3.2.1), then we refer to (2.3.12).

A similar result may be embodied in the following theorem.

Theorem 3.2.4.Letf : I C R, — R, be a differentiable mapping off such that
f € Lla,b], wherea,b € I witha < b. If |f’|? is an s-convex ora, b], for some fixed

s € (0,1] andg > 1, then the following inequality holds:

b
fla)+fp) 1 b—a\ [ q—1)\4 D .
2 _b—a/f(x)dx S( | )(2q—1> (s + 1) 02l

AL =) I @I+ 1 @)

+ 17 @+ @+ = 1) [F B}
(3.2.2)

Proof. Suppose thag > 1. From Lemma 3.2.1 and using thé&lder’s inequality, then

we have

f@+fo) 1]
i —b_a/f(:c)daz

1

1
1 1- 1 1-
/—tf’( ;ta+ th)dt+/tf’(%tb+ 2ta)dt
0
1+t 1—t
f’( ; at = b)‘dt

1
b—a 1+1¢ 1—t
tHf | —b+ —— dt
+4/||f(2+2a)’
0

_b—a
4

o
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0 0

1 1/p
b—a
tPdt

0

1 1/p 1 . 1/q
b—a 14+t 1—t
< — P !
<t (/tdt) (/f( SRR dt)
1

Becausef’|? is s-convex, we have
(1t 1=t
2 ‘T
0
/ 1 B 1 *
+1 / —t /
< [|(5) wars (559) v ora
0

= S faroas iror [a-od @23

q

dt

and

q

dt

1+t 1—t
f( 5 b+ 5 a>

(5) wors (5 1@

_ %|f’(b)|q/(1+t) it + - L 1f (@) /(l—t)sdt. (3.2.4)

IA

O\H O\H

A combination between (3.2.3)—(3.2.4), gives the follagvin

'ﬂ@z b—a/f

b—a - ) —
4(;+1))/P. (S—l—l)l/qu/q {[( 2+ )|f ( )| +|f (b)| ] /

+ 17 @17+ @ =) 1 @1}

A simple calculations give the required result (3.2.2), mr?;ent % = 1. O

Next result gives a new refinement for the inequality (2.8.25
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Theorem 3.2.5.Let f : I C R, — R, be a differentiable mapping off such that
f’ € Lla,b], wherea,b € I witha < b. If |f’|? is an s-convex ora, b], for some fixed

s € (0,1] andg > 1, then the following inequality holds:

|f<a>+f<b> Sy g

2 T b—ua

a

< () 6= e Al () ]
+{f(“§ﬁq+u%wﬂw} (325)
< “’;a)-{[f'(“j”)q+|f'<a>rq]1/q
4 [ f (“;b) Y (bﬂ Uq}. (3.2.6)

Proof. We proceed similarly as in the proof of Theorem 3.2.4, buhgishequality

(2.3.23) for| f'|* s-convex mapping, we have

TP ER] I @)

1
1+t 1—t
! b)| dt <
/f< 7 T ) = s+ 1 ’
0
and
1
T+t 1—t\/| £ () + | (b))
! - - - < 2 .
/f(zbJrza)dt— s+1
0
So that,

2
< (36wl
w{lr ()] +iror /}

f@+fo) 1
| o [ @

q

e "

,(a+b
r(5)
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) (a—1)/q
Also, smce(fq;fl) <1 and(s%l)l/q <1,s€(0,1),q € (1,00), then we get

2
< ()6l
w{lr ()] +iror Uq}
< (5
wlr (2] 1 o] /}

which completes the proof. O

f@+fo) 1]
| —b_a/f(:z:)dx

q 1/q

,(a+b
r(5)

I @

1/q

U]

A generalization for the inequality (3.2.5), may be giverid®ws:

Theorem 3.2.6.Let f : I C R, — R, be a differentiable mapping off such that
f € Lla,b], wherea,b € T witha < b. If |f'|? is ans-convex ora, b], for some fixed

s € (0,1] andg > 1, then the following inequality holds:

f@+fm) 1
2 —b_a/f(x)dx

_ (b—a\ (g—1) .
- 4 2 — 1 (s+1)92s/a

<[ =) 1] (7 @)+ 17 B)) (32.7)

< D@+ ir o). (329

Proof. We consider the inequality (3.2.2), i.e.,

b
f(a)+ f(b) 1 b—a\ [ q—1)\@D )
| . —b_a/f(a:)dx < ( . )<2q_1) YR

<A@ =) 1 @1+ 1 B
+ I @1+ @ = 1)1 w1}
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Leta; = (227" = D) [f' (a)|", by = |f" (D)I, a2 = | f" (a)|" andby = (21 = 1) | (B)/".

Here,0 < 1/q < 1, for ¢ > 1. Using the fact

i((lZ +bz>r S ia: +ib:,
i=1 =1

=1

for0 <r <1,aq,as,...,a, > 0andby, by, ..., b, > 0, we obtain

_ b—a qg—1 (¢-1)/q 1
= U4 J\2-1 (s + 1) 25/a

AL =) 17 @I+ 17 @)1
+ (17 @17+ @ =) 17 o1}

_ (b—a) [g—1)\"" .
a 4 29 —1 (s+1)92s/a

<[ = )" 1] (1 @]+ 17 o)),

which is required. O

Another new bound for the trapezoid inequality may be statefbllows:

Theorem 3.2.7.Let f : I C R, — R, be a differentiable mapping off such that
f" € Lla,b], wherea,b € I witha < b. If |f'| is an s-convex ora, b], for some fixed

s € (0,1] andg > 1, then the following inequality holds:

GRS U YA

2

h—
—a 1-s 1/q »
< € 8 ) ((s—i—f) (s+2)> (14827 7 @I+ 17 o)1)

+ (1 (@) + (1 +s227) | f (b)\Q)”q] : (3.2.9)

Proof. Suppose thag > 1. From Lemma 3.2.1 and using the power mean inequality,



then we have

b—a 1+t 1—t 1+t 1-—t
= b|dt tf' b
0 0
i 1 1
+ 1 —t
< d
< f( 5 a+ 5 b) t
b—a 1+1 1-—1t
b dt
1 f( > T “)
0
1 171/(] 1 . 1/q
— 1 1 —
- a(/tdt) ( / ’( L tb) dt)
2 2
0 0
1 1-1/q 1 . 1/q
b— 14+t 1—1¢
+ a(/tdt) (t’(+b+a> dt) .
2 2
0 0
Becauséf’| is s-convex, we have
1+t 1—t\|
t|f b || dt
( 5 a+ 5 )
1+1¢

and

I

2

1

) i@+ (S51) 1o a

1

41

@ [taras i oF [ta-va (@210

o

0

IN

b)|q/t(1+t)sdt+%|f’(a)\q/t(1—t)sdt.

0 0

(3.2.11)
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A combination between (3.2.10)—(3.2.11) gives the follayvi

b
f(a)+ f(b) 1
5 —b_a/f(x)da:

T (%)1 ) (zs s—i—ll) (8+2))1/q (42 17 @ + 17 )
+|fa> + (14527 17 1)

simple calculations give the required result (3.2.9). O

Another approach leads to the following result.

Theorem 3.2.8.Let f : I C R, — R, be a differentiable mapping off such that
f’ € Lla,b], wherea,b € I witha < b. If |f’|? is an s-convex ora, b], for some fixed

€ (0,1] andg > 1, then the following inequality holds:

Ok b—a/f
- (b ; a) <(8 + f)_(; + 2))1/q <1 + (1 + 828+1)1/q> (|f/ (a)’ + lf, (b)|

Proof. We consider the inequality (3.2.9), i.e.,

b
fla+fe) 1
2 _b—a/f(x)dw

T (%)1 ) (zs s+11) (s+2))1/q (@21 @I 17 )
+|fa> + (14527 17 1)

Let a; = (1+s2T)[f (@), b = [ B a2 = [f(a)]" and by =
(14 s2TH) [f ()"

Here,0 < 1/q < 1, for ¢ > 1. Using the fact

i a; +b;)’ <Za +Zb
=1
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for0 <r <1,ay,as,...,a, > 0andby, b, ...,b, > 0, we obtain

e ( I ) (@1 @ + 17 B
(|f (a)|* + 28+l f’ (b)lq)l/q}-
b— a ( - )1/q (1 N (1 n s2s+1)1/Q> (If (a)| + | (b)),

which is required. 0

In the following, we obtain some inequalities of Hermite-ddenard type for

s-concave mappings. We begin with following result, whickliigerent from (2.3.26).

Theorem 3.2.9.Letf : I C R, — R, be a differentiable mapping of? interior of /,
such thatf’ € L|a, b], wherea,b € I witha < b. If | f’|? is s-concave ora, b], for some

fixeds € (0,1] andq > 1, then the following inequality holds:

ICETIGRN Sy IRy

2 b—a
7 <az3b) H . (3.2.12)

b

,(3a+0b
()

Proof. From Lemma 3.2.1 and using thelder inequality forg > 1, andp = (ﬁ we

(b—a)
= 4(p+ )P [

obtain

14t 1—t
! b||dt

1
1+1¢ 1—1¢
—l—/t (2b+2a)dt}
0
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1 1/p 1 . 1/q
b—a 14+t 1—t
< P !
< (/tdt) (/f(2a+ 21)) dt)

0 0

1 1/p 1 . 1/q
b—a 1+t 1-—1t
P /
+ : (/tﬂ) /1f<—§—b+—§—a> ﬁ) :

0 0

where,p is the conjugate of.

We note that, sincef’| is concave onfa,b|, and using the power mean

inequality, we have

[f Qe+ =Nyt = Af @)+ @ =N ()
A @+ Q=N Yo,y € la,b].

v

Hence,

[f Az + 1A =Nyl 2 A (@) + A =2 W)l

so|f'| is also concave.

By the Jensen integral inequality, we have

1
’ ! J (Bta+5b)dt
1+t 1t . K
f'(—5-a+—5-b)| d < odt | | f :

0

,(3a+Db
(™
and analogously,

1,1+t 11—t \| ,(a+3b
[l (e ) s (457)
0

dt <
Combining all obtained inequalities, we get the requirediltes O

/

q

Y

q

Next result gives a new inequality which of trapezoid type feconcave

mappings.
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Theorem 3.2.10.Let f : I C R, — R, be a differentiable mapping off interior of
I, such thatf’ € L[a,b], wherea,b € T witha < b. If |f'|? is s-concave orja, b], for

some fixed € (0, 1] andg > 1, then the following inequality holds:

GES IR YA

2 b—a
, [ a+3b
o (57)

q

q} ’ , (3.2.13)

,(3a+0b
r(*7)

where,q > 1.

Proof. For¢ = 1. From Lemma 3.2.1 and using the Jensen’s integral inegualé

obtain
b 1
b 1 b— 1+t 1-—
f(a);f()ba/ﬂx)dx < 4(1 /tf'(—;CML th)‘dt
a L O
1
1+t 1—1
+ tf’(—b+ a) dt]
0/ 2 2
1
1 f(ﬁa—i—ﬁb)dt
S b4a</tdt> f/ 0 2 : 2
0 [ tdt
0
1
1 (%t + ta) dt
+ba(/tdt e ? : ?
0 [ tdt
0
b—a ||, (3a+b , (a4 3b
< 5t e Gl (5PN

which proves this case.

Now, for ¢ > 1, using the Hlder inequality forq > 1, and then the Jensen’s

integral inequality, we obtain
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1
b—a 1+t 1—1¢
< tif b|dt
= /f(2“+2)'
0
14+t 1t
f(—5—6+—§—a dt
b Pl 1 1
—a 1-= =, 1+ —1
= ta .t b | dt
4/ qqf<2“+2)’
0
Ll /14t 1-—t
—)
! f( y 't ¢
1+t 1—t
!
f( 5 a+ 5 @
b i / 1 1
—a +1 —t1
tdt tif [ —b
+4/ /f(2+2“)
0

0
1
L K L [ (HFta+ o) dt
0

Sb;a /}ﬁ t/Mt i
0

1
0 [ tdt
0

dt

Q=

q

dt

q

dt

which completes the proof. O

Note that we can apply the estimates in (2.3.9) only if thesdderivativef”
exists and bounded. It means that we cannot use (2.3.9)itoagstdirectly the error
when approximating the integral of such a well-behaved tioncas f(t) = /13 on
[0,1], sincef”(t) = 3/4+/t is unbounded o0, 1]. Also, we can apply the estimates
in (2.3.12) only if the first derivativg’ exists and f’| is convex, so that we cannot use
(2.3.12) to estimate the error in case we h#vs s-convex (0 < s < 1). Infact, it is

not easy to construct an example for which this case hoklsfiis s-convex (0 < s <
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1) (and not convex) in one variable, however, the case wikd®y if we considef in
two variables, for more details see Dragomir & FitzpatritRg7), where the-Orlicz

convex mappings in linear spaces are discussed.

Next, we consider several refinements for the left Hermisglkinard’s
(midpoint) inequality vias-convex functions and in order to prove our main result(s)
we consider the following lemma:

Lemma3.2.11.Letf : I C R, — R, be adifferentiable mapping ot wherea,b €
witha < 0. If f" € L|a, b], then the following equality holds:

b
(SSRVITE
b / ab | :
_ ;CL /tf/(ta;_ _|_(1—t)a)dt+/(t_1)f/(tb+(1_t>a—2i_ )dt
; 0

Proof. We note that

1
L = /tf’ <ta;—b+(1—t)a) dt
0

2 a+b
= ﬁtf(t 5 +(1—t)a)

1
1
2 a+b
— t 1—t¢ dt
0 b_a/f( 2 T )a)
0

1
2 a+b 2 a+b
= b_af< 5 )—b_a/f(t 5 +(1—t)a>dt
0

Settings = t%% + (1 — ¢) a, anddz = %%dt, which gives

a+b

I = bfaf (a—;b) B (6_4&)2 jf(x)dx.

Similarly, we can show that

1

L = /(t—l)f’ (tb+(1—t)a;b)dt

0

b
2 at+by 4
B b—af( 2 ) (b—a)2a+/bf(x>dx'
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and therefore,

which completes the proof. O

Next theorem refines the inequalities (2.3.14) and (2.3.f20) s-convex

mappings.

Theorem 3.2.12.Let f : I C R, — R, be a differentiable mapping off such that
f' € Lla,b], wherea,b € I witha < b. If |f'| is ans-convex ora, b, for some fixed

s € (0, 1], then the following inequality holds:

‘f<a§b>b1a/bf<x>d:c
4(s ibf)é)m [\f’ (@) +2(s+1)

(22 + 1) (b— a)
151 1)(s+2)

f (a ;r b)’ +|f (b)|] (3.2.15)

1 (@) + 1 @)
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Proof. From Lemma 3.2.11, we have
b 1 /
a +
f( )it [fod
1
—a
0

IN

f’(a+b (1—1) ) dt

(tb+ (1—1) ;b) dt]

(40| a- i@

IA

1

b—a
/t[ts
0

4a/11_t [ﬁf I+ =ty '(a—;b)Hdt
_ b;a{siz f<G_2H)>’+(s+1)1(8+2)‘f,(a)|}
+b2a{<s+1>1<s+2>|f’<b>l+siz <;b>u
(b—a)

T At (s+2) {'f/(a””@“)

f (“ ; b)‘ S (b)@ (3.2.16)

which proves the first inequality in (3.2.15). To prove thes®l inequality in (3.2.15),
since| f'| is s-convex ona, b, for anyt € [0, 1], then by (2.3.23) we have

yfatb /" (@) + [/ (b)]
f (T)‘ < ) : (3.2.17)

2871

A combination of (3.2.16) and (3.2.17), we get

(55 -5 f e

S T [If()|+2(5+1) (COIREC]
00 | (@) + |7 (b)]

< ot i@l +Ir )]
2 1) (- a)

- oy [ @I o

s+ 1

which proves the second inequality in (3.2.15), where weeheed the fact that

1 1

/tS“dt = /(1 — )"t dt = L
s+2

0 0
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and
1 1 .
t*(1—-t)dt= [t(1—-t)’dt= —-—
/ ( ) / ( ) (s+1)(s+2)
0 0
which completes the proof. O

Remark 3.2.13. We note that, the first inequality in (3.2.15) with= 1 reduces to
the inequality (2.3.20), and the second inequality in (B2 with s = 1 reduces to the
bound of (2.3.18).

Simply, we can state the following result.

Corollary 3.2.14. Let f : I C R, — R, be a differentiable mapping off such that

I € Lla,b], wherea,b € I witha < b. If |f’| is convex ona, b], then the following

f(“jb) - [

inequality holds:

b— b
< St r@ivalr (S50) s o (3:2.18)
< LD gp @i+ 17w,
Proof. Puts = 1 in Theorem 3.2.12, we get the required result. O

Next theorem gives a new upper bound of the left Hermite—Hexald's
inequality fors-convex mappings.
Theorem 3.2.15.Let f : I C R, — R, be a differentiable mapping off such that
f' € Lla,b], wherea,b € I witha < b. If |f/["/?~) is an s-convex or{a, ], for some

fixeds € (0,1] andp > 1, then the foIIowing inequality holds:

(Y-
< () (pil) (sil)“

[((2175 + 54 1) ’f/ (a)‘q + 2173 ‘f/ (b)‘q)l/‘l
F TS @1+ @ s 1) 1O (3.2.19)
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whereq = p/(p — 1).

Proof. Suppose thap > 1. From Lemma 3.2.11 and using thélder inequality, we

f<“§b>—bfa/bf<x>dx

b4a[/1tf'(ta;b+(1—t)a)
+/1 1-1) <tb+ 1t)a;b)dt]

< b4a( tpdt) ( f’(taH) 1—t>

(o) (i

Becausef’|? is s-convex, we have

1 1
/f’(ta;b—i—(l—t)a) it < /[t f
0 0

1
s+1 i@l

1
1 s sl f(a+Db
dtgo/[ﬂf t)f(Q)
1 f,<a—2|—b)q

s+1

have

dt

IN

1/q
q
dt)

tb+ 1-1) a;”’)

1/q
q
dt)

FA—0|f (a ﬂ i

and
1

q
}dt

’(tb+(1—t)a;rb)

= (0" +

s+1
Therefore, we have

b—/f dx_( )

< () Gr) ) () erer)”
+ (17w (45 )/] (3.2.20)
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Now, since| |7 is s-convex ona, b], for anyt € [0, 1], then by (2.3.23) we have

p(440)] < Lo

28—1

(3.2.21)

A combination of (3.2.20) and (3.2.21), we get

) ol ()6 ()

1—s 1/q
( 2 (1F @+ 1 O + 1 <a>|q)

s+ 1

1—s 1/q
(1 or 250 @rie o) ]

b_a 1 1/p 1 2/q
<
() GH) ()

|:((21_8—|—8+1) |f/ (a)|q+21—s|f/ (b>|Q)1/q

+ (21—5 |f/ (a)|q + (21—5 s+ 1) |f/ (b)|q)1/q]

wherel/p 4+ 1/q = 1, which is required. O

Therefore, Theorem 3.2.15 may be extended to be as follows:

Corollary 3.2.16. Let f : I C R, — R, be a differentiable mapping off such that
f € Lla,b], wherea,b € I witha < b. If [f/[”/*~) is an s-convex or{a, ], for some

fixeds € (0,1] andp > 1, then the following inequality holds:
b 1 /
a+
() - [ s
b—a 1 \YP/ 1\
<
< (7)) ()

{2 @ s+ )L IF @I 0D (B222)

whereq = p/(p — 1).
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Proof. We consider the inequality (3.2.19), for> 1, ¢ = p/(p — 1)
b 1 /
a—+
H(*50) -2 [f o
b—a 1\ 1\
<
< (7)) ()

[((217‘9 s 1) I ()| + 2V | (b)‘q)l/q

+ (21_5 | (a)|" + (21_3 + s+ 1) |f! (b)|q)1/q} ‘

Leta; = (215 +s+1)[f (a)|?, by = 215 |f (b)Y, ax = 2'7%|f" (a)|? and by =
(2175 + s+ 1)|f" (b)|%. Here,0 < 1/q < 1, for ¢ > 1. Using the fact

i(al +bl)r < ZOJ: +Zb:,
=1 i=1

=1

for0 <r <1,ay,as,...,a, > 0andby, by, ..., b, > 0, we obtain
b 1 /
a +
f( 5 )—b_a/f(x)da:
b—a\ [ 1 \""[ 1\
<
< (%) Gn) ()

(@ s+ 1) 17 @I+ 27| )
O @+ O 1) )]

b_a 1 1/p 1 2/q
<
< () GH) ()

x {20 @7 s 1) 17 @)+ 1 O,

which completes the proof. O

Another result is given in the following theorem.

Theorem 3.2.17.Let f : I C R, — R, be a differentiable mapping off such that

I € Lla,b], wherea,b € T witha < b. If |f'|? is an s-convex ora, b], for some fixed
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s € (0,1] andg > 1, then the following inequality holds:

‘f () _bia/bf(‘”)dx

a

—a 1/q y
: (b 8 ) ((5+1)2(8+2)> [{@1_5“) £ @)+ 21 | )}
HE ) IO+ 2 17 @) ] (3229)

Proof. Suppose thagt > 1. From Lemma 3.2.11 and using the power mean inequality,

we have

() -
b4a[/1tf’(ta;b+(1t)a)
+/1(1—t) f’(tb+(1t)a;rb)’dt}

b;a (jtdt)ll/q (/lt f’(ta+b+(1—t)a>

2
0

+b;a (j(lt)dt)ll/q (/1(115)

0

dt

IA

IN

1/q
q
dt)

f (tb+(1—t)a;b)

1/q
q
dt)

Because f’|? is s-convex, we have
/t I (ta;b+(1—t)a>
0
/ b
_|_
t8+1 ! a
[l ()
0
1

,(a+b\| 1
512 f( > ) T AN G+2)

1
q

dt

IN

TR <a>|q] i

[ (@)l
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and

dt

’(tb+(1—t)a;b> q

,(a+0b
/ (T)

[ ()]

o

< [1—tts|f + (1 =)
!

,(a+b
()
Therefore, we have

l (a;b) b—a/f
< (%) (esm <s+2>)1/q _(“*”

q
}dt

1 1
TSI

5+2

q 1/q
e <a>|q)

&

b a\ 1/a
+(|f’(b)yq+(s+1) (a; ) ) ] (3.2.24)
Now, since|f’|? is s-convex ona, b}, for anyt € [0, 1], then by (2.3.23) we have
[ (@ B\ @I+ )
—_— . 2.2
2 f( 2 ) - s+1 (3.2.25)

A combination of (3.2.24) and (3.2.25), we get
' (a T b) /
[z
b—a 2 Va [
= ( 8 )((8+1)5+2) ((8+1)
,(a+Db
) 2
2 1/q |:

< ) |
(17 o+ 41 ) 1/1
5
;

q 1/q
e <a>|‘1)

,(a+Db
()

f
< (b;a) ((s+1) s+2) (2 (1F @ + £ (B))7) + |f (a)]7) "
(7 @2 (F @ + 17 O]

_ [(b-a 2 Va 1—s T 9l | £ (py|9L e
a ( 8 ><(s+1)(s+2)) [{(2 I @ +27 1 O)F)
{7 ) [0 2| (a)lq}l/q] .

which is required, and the proof is complete. O
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Corollary 3.2.18. Let f : I C R, — R, be a differentiable mapping off such that
f € Lla,b], wherea,b € I witha < b. If |f’|? is an s-convex ora, b], for some fixed

s € (0,1] andg > 1, then the following inequality holds:

) o« (o)

x {207 (2 )L @)+ 1 0))-

Proof. We consider the inequality (3.2.23), i.e.,
b 1 /
a-+
‘f( 5 )—b_a/f(a:)da:

4 1/q 1/q
: (bs )(<s+1>2<s+2>> @+ DI @ 2 o)}
@D OF 42 @]

Leta; = 75+ 1) |f (a)|%, by = 2775/ (B)|?, as = 2'7°|f (a)|* and by =
(2" +1)|f' (b)|". Here,0 < 1/q < 1, for ¢ > 1. Using the fact

Z(CLZ +bl)T S Zaf +Zb:,
=1 =1

i=1

for0 <r <1,a4,ao,..,a, > 0andb, bs, ..., b, > 0, we obtain

s o] « () )

% [((2173 I 1) I (a)|" + 245 | (b)’q)l/q
T @ @) )

< (%) (rverm)

x {20 @7 ) S @)+ 17 0,

which gives the required result. O

Now, we give the following midpoint type inequality for caae mappings.
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Theorem 3.2.19.Let f : I C R, — R, be a differentiable mapping off such that
f € Lla,b], wherea,b € I witha < b. If |f’|? is an s-convex ora, b], for some fixed

€ (0,1] andg > 1, then the following inequality holds:
a+b
(539t f s
b—a qg—1 3a+0b
<
< (59 T
Proof. From Lemma 3.2.11 and using thélder inequality forg > 1 andp = ﬁ we
b 1 /
a+
f( 5 )—b_a/f(w)dx
b 1 b
< ;a [/t f’(ta; —i—(l—t)a)‘dt

f(m(”)a;b)dt]

+/1(1—t)
1 p ;4 1/q
<b4a</t”dt) ( /(tCL—gl)—l—(lt)a)th)
’(tb+(1—t)a;b>

1 Up /1
+b;a (/(lt)pdt> (

It can be easily checked that
L g—1
—1d 1 —t q- 1 dt = .
/ / 2g —1

We note that, sincgf|? is concave offu, b], and using the power mean inequality,

4

f (a * 3b> H . (3.2.27)

obtain

1/q
q
dt)

we have

I Qe+ 1=ty > Af @ + A=t [f ()
A @+ A=) WD Voy€lab].

v
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Hence,

1Az + A =t)y)[ = Af @)+ Q=0 (Y],

so|f’| is also concave.

By the Jensen integral inequality, we have

fl(t“T“’Jr(l—t)a)dt

1
q
dt < ( / todt) f -
0

f (ta;b—l—(l—t)a)

/

[ todt
0
3a+b\|?
!
< [ ()
and analogously,
/ b\ | b\ |
/f’ th+ (1—1) 0N e < | (453
2 4
0
Combining all obtained inequalities, we get the requiredites O

3.3 INEQUALITIES VIA QUASI-CONVEX FUNCTIONS

In the following theorem we shall propose new upper boundittier right-hand side
of Hadamard’s inequality via quasi-convex mappings whislegnew result different

from lon’s result (2.3.27).

Theorem 3.3.1.Let f : I € R — R be a differentiable mapping off such that
' € Lla,b], wherea,b € I witha < b. If |f'] is a quasi-convex ofu, b], then the

following inequality holds:

f@rfm) 1
—b_a/f(:v)dx

2
,(a+Db
(%)

b—a[ {
< max
8

(3.3.1)

1r ot}

,(a+Db
r(5)

mﬂmn}+nmx{
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Proof. From Lemma 3.2.1, we have

f<“>§f(b)—bia/bf<x>dx
!}—ﬂf(lgta+1;todt+!}f(1+t 1;20dt.

Since|f’| is quasi-convex oifu, b|, for anyt € [0, 1] we have

f(a);rf(b)bla/bf(;c)d:c
<232 ficonl (St 154
e (e 5o
{5 e
+0/1tmax{ ()] <>}]
e T e T

which completes the proof. O

Corollary 3.3.2. Let f as in Theorem 3.3.1, if in addition

1. |f'| is increasing, then we have

IR

f(a;b)u.(aaa
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2. |f’| is decreasing, then we have

Proof. It follows directly by Theorem 3.3.1 O

Another similar result may be extended in the following tiegn.

Theorem 3.3.3.Let f : I C R — R be a differentiable mapping off such that
f € Lla,b], wherea,b € I witha < b. If ||/~ is an quasi-convex ofu, b], for

p > 1, then the following inequality holds:

b
f(a)+ f(b) 1
5 —b_a/f(x)dx

b—a 0t b\ [P/eD) N D
ST (;H))l/p [(mx{ ( - ) Af @ >}>

p/r-1) e
, (a —2|— b) : ’f/ (a)‘P/(P—l)}> ] . (334)

Proof. From Lemma 3.2.1 and using the well knowilHer integral inequality, we have

b

) /
“{/ (gt )
'/ <t%+z%>idt]
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() (s
) (s

ol 2]
(e { L <b>|Q})1/q] ,

b—a
- 4(p+1)1/p

,(a+0b
()

wherel/p + 1/q = 1, which completes the proof. O

Corollary 3.3.4. Let f as in Theorem 3.3.3, if in addition

1. |f'|/®*=Y is increasing, then we have

(b—a)
C4(p+ 1)1/p

[RCR

7 (“;b) H . (3.3.5)

2. |f'|P/®=1) is decreasing, then we have

(b—a)

T 4(p+ 1)t

Ir @l +

/ (a;b) H . (3.3.6)

Remark 3.3.5. We note that the inequalities (3.3.1) and (3.3.4) are two refimements

for the trapezoid inequality for the quasi-convex funcsion

A generalization of Theorem 3.3.1 is given in the followirgult.
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Theorem 3.3.6.Let f : I° C R — R be a differentiable mapping off, a,b € I° with

a < b. If|f’|" is an quasi-convex ofa, b], ¢ > 1, then the following inequality holds:

f(“);f@bla/bf(x)dx
0t | (o ()
(o

q,|f’(b)|q})%

which completes the proof. O

Remark 3.3.7. For ¢ = 1 this reduces to Theorem 3.3.1. Fpe=p/(p — 1) (p > 1) we
have an improvement of the constants in Theorem 3.3.3, ¢tneep + 1 if p > 1 and

accordingly
1

< —.
A(p+1)"7

ool =
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Corollary 3.3.8. Let f as in Theorem 3.3.6, if in addition

1. |f'| is increasing, then (3.3.2) holds.

2. |f'| is decreasing, then (3.3.3) holds.

Remark 3.3.9. One can use Lemma 3.2.11 to obtain several inequalities dpamt

type via quasi-convex mappings.
3.4 INEQUALITIES VIA R-CONVEX FUNCTIONS

We begin with the following theorem.

Theorem 34.1.Let f : I C R — R, be a differentiable mapping off such that
f' € Lla,b], wherea,b € I witha < b. If | f//|”*~Y is r-convex ora, b], for p > 1,

then the following inequality holds:

b
fla)+f(®) 1
—b_a/f(x)dx

2
_ (»—1)/p
f/ <a—|—b> p/(p—1) ’f’ (b)|p/(p1)})
2 )

L - {(L{
4(p+1)1/p
p/(p=1) =1)/p
S (a)\p“”‘”}) ] . (34.1)

+<Lr{f’(a;b)

where,L, (-, -) is the generalized logarithmic mean.

Proof. From Lemma 3.2.1 and using the well knowilHer integral inequality, we have

JOHI0 1 [ [/M (a5

2 2
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1
14+t 11—t
,—
+l/ﬂﬂ f ( 5 b+ 5 a) di
0
1 1/1’ 1 q 1/q
b—a 1+1¢ 1—t
< P !
< b (/tdt) (/f( SR dt)
0 0
1 1/p 1 . 1/q
14+t 11—t
P
(/) ( (Lt 5t) )
0 0

Since|f’[?/=1) is r-convex, then by (2.3.30), we have

14+¢ 1—¢ \|? a—+0b\l|?
! <L ! ! q
(a5 @< {|r ()| 17 wr)
and
1
_ q q
/’ (1+¢ 1 ta) dt<lL{Lf()\ (a+b) }_
2 2
0
Therefore,
b—a

wherep > 1, % + é = 1, which completes the proof. O

Corollary 3.4.2. Let f : I C R — R, be a differentiable mapping off such that
f' € L[a,b], wherea, b € I witha < b. If |f/[”/*~ is a log-convex o, b], for p > 1,

then the following inequality holds:

fl@+fm) 1
5 —b_a/f(x)dx

/(p-1) (r-1)/p
 (at+b\[ 1 (py P/ (1)
r()) e

p/(p-1) >=1/p
| (a ; b) Af <a>\p/(’"”}> . (34.2)

where,p > 1, and L(-, -) is the log-mean.
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Theorem 3.4.3.Letf : I C R — R, be a differentiable mapping oft, a, b € I° with

a < b. If|f'| isr-convex(r > 1) on|a, b], then the following inequality holds:

fl@+fm 1]
5 —b_a/f(x)dx

(b—a)-r
~4(143r+2r2)

i@ (Y] e

+ (r27" +2) |f (b)]]

1 L2
T-(TZ_T+T2_T+2>
< (b—
-9 — a5 199

[ @)+ 1 )] (3.4.4)

Proof. From Lemma 3.2.1 and sin¢¢'| is r-convex, we have

OE /b
“[/ < >!dt

b—a ! 1+ . a+b
< .
< L[5 ‘+(z)< )l
! 1+t 1—t a+b\|"1""
t- || — " ()" —_— ! dt » .
el pors (5 (57)]
Using the fact thad (a; + b;)" < > aF + S 0k for0 < k < 1, ay, as, ..., a, > 0 and
=1 =1 =1
by, b, ..., b, > 0, we obtain

(3.4.5)

dt

(% @i (%)/ Iz (“jb)‘
(o (2 (2

)[(r2‘”””+2)|f @+ |f (““’)‘ rz-1/r+2)|f'<b>|],

_ (b—a)-r
o A(1+3r+2r2
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which proves (3.4.3). To prove (3.4.4) and simge is r-convex,r > 1, then we have

1/r / /

Thus, substitute (3.4.6) in (3.4.5), we get

f@+fo) 1
| 2 _b—a/f(x)dx

(b—a)-r

/ a+b —1/r !
—4(143r+2r? f( 2 )'+(r2 /+2)|f O -
(b—a)-r

STt 3+ 29 (7“2; +r2'7r + 2) " (@) + 1" ()]

) [(r2—1/7“ +2) | (a)| + rol=r

which completes the proof. O

Therefore, we deduce the following trapezoid inequality.

Corollary 3.4.4. Letf : I C R — R, be a differentiable mapping oft, a,b € I° with

<

a < b. If | f'| is convex ora, b], then the following inequality holds:
(b—a)
48

|f(a)—2|-f(b)b1a/bf<x)dm f’(a;rb>’+5\f/(b)\]
(b—a)

g (@l +1f @) (3.4.7)

517 (@l +

IN

Also, we may state the following trapezoid inequality :

Corollary 3.4.5. Letf : I C R — R, be a differentiable mapping off, a,b € I° with
a < b, which satisfie§” (a) = f'(b) = 0. If || is convex orja, b], then the following
inequality holds:

f(a);f(b)bla/bf@)dx f’(a;bﬂ (3.4.8)

Remark 3.4.6. One can use Lemma 3.2.11 to obtain several inequalities dypomt

@)

(b—
<
- 48

type viar-convex mappings.
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3.5 APPLICATIONS TO TRAPEZOIDAL FORMULA

In the classical Trapezoid rule (2.3.9), it is clear thathié tmappingf is not twice
differentiable or the second derivative is not boundedam), then (2.3.9) cannot be
applied. In this section, we choose two results in the sest83 and 3.4 to derive some
new error estimates for the trapezoidal rule in terms of diestvative, similarly one can

deduce several error estimates by using different inetigmli

Proposition 3.5.1.Let f : I C R — R be a differentiable mapping off such that
I € Lla,b], wherea,b € I with a < b. Assume thalt/’| is a quasi-convex ofu, b]. If
P:=a=u2y<mz <---<uz, = bis apartition of the intervala, b], h; = z;11 — x;,
fori=0,1,2,--- ,n—1and

T, (f,P) = i f (zi) +2f (Tiy1) s,

1
=0

then

f (%) ,|f'(=%’i+1)|}

(=) el

Proof. Applying Theorem 3.3.1 on the subintervéls, z;,+], fori = 0,1, ....n — 1 of

the divisionP, we get

\%wa:ffwM—EUfﬂ

T

< h? {max{

+max{

f (i) + f (ziga)
2

()| s @t}

() e
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Summing overi from 0 to n — 1 and taking into account thaf’| is quasi-convex, we

deduce that
14 x; + 7
=0
r [ Ti + x; /
puac | (S22 ol ]
which completes the proof. O

Proposition 3.5.2.Let f : I C R — R, be a differentiable mapping off such that
f' € Lla,b], wherea,b € I with a < b. Assume thatf’| is convex ona,b] and
flx) = fllryq) =0. FP:=a =2y <z <--+ < x, = bis a partition of the

interval [a, b], h; = ;41 — x;, fori =0,1,2,--- ,n— 1 and

n—1
T, (f, P) = Z f (i) +2f (it1) hy,
i=0

then

f@ﬁ&—ﬂﬂﬁpﬂg

;[ Ti+ Tiq
Jr (5|

Proof. The proof can be done similar to that of Proposition 3.5.1 asidg Corollary

3.4.4. 0

3.6 SUMMARY AND CONCLUSION

In the presented chapter, inequalities for differentiabtenvex (concave), quasi-convex,
r-convex and log-convex mappings that are connected withalbiesides of celebrated
Hermite—Hadamard integral inequality are establishede iflea of these are results

summed and manifested by writing the differences

f<a);f(b)—bia/bf<$>d% f(a;rb)_bia/bf(g;)dx

1
in terms of [ p(¢) f' (ta+ (1 — ) b) dt, wherep (¢) is a suitable Peano kernel, after
0

that using the convexity condition dff’| we obtain the desirable results. Several
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generalizations, refinements and improvements for thespanding version for powers
of these inequalities are considered by applying th@der and the power mean

inequalities.

In this way, we highlight the role of convexity to obtain seerefinements
for the Hermite—Hadamard’s inequality and thus for the raidpand the trapezoid
inequalities. More precisely, the obtained trapezoid tymeualities (3.2.1)—(3.2.12)
via s-convex functions, refine and improve Kirmaci results (243-(2.3.26), where
the obtaining constants in our results are better than Kirmesults. Similarly, the
presented midpoint type inequalities (3.2.15)—(3.2.2&)reew fors-convex functions.
For quasi-convex functions, the presented inequalitie3.13-(3.3.7) are new and
different from (2.3.27)—(2.3.28). In the same sense, /fa@onvex functions, the
inequalities (3.4.1)—(3.4.4) and (3.4.7)—(3.4.8) are.nevgeneral, along the presented

chapter our results are new and in some cases is better thaidthesults.



CHAPTER IV

OSTROWSKI'S TYPE INEQUALITIES

4.1 INTRODUCTION

In this section, the classical Ostrowski’s inequality rsolith weaker conditions.
Several inequalities of Ostrowski’s type via concavegonvex, quasi-convex and
r-convex functions are introduced. Some bounds for therdiffee between the integral
mean of a functiory defined on the intervdk, b] and it is value in the midpointt®
are provided. Therefore, the inequalities are relatededeft hand side of Hadamard
inequality. In this way, a generalizations and improvenfenta previous inequalities
in the literature for functiong with |f| (or |f|?,q > 1) convex. The proofs follow
from standard arguments and a Montgomery-type equalityallyi some inequalities

between some special means are derived.

4.2 ON THE OSTROWSKI'S INEQUALITY

We start by giving another proof for the well known Ostroviskiequality:

Theorem 4.2.1.Let f : I — R be a differentiable mapping off such thatf’ € Lia, b],

wherea, b € I witha < b and f" is bounded i.e.|| f'||., = sup [f'(y)] < oco. If fis

y€(a,b)
concave on, then we have
1 b 1 (x—“—J’b)2
_ . < (b — ! X 27 2.
Fe - [ rwn] <o-wir, e @2

forall z € I°.
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Proof. Sincef is differentiable orn/° and concave oi, then for anyz,t € I°

fx) = f @)

Tx—1

< f'(t).
It follows that

f) < ft)+(x—1) f ().

Integrating both sides oveéd, b], with respect ta, we get

(b—a)f /f dt+/ (x— 1) F' (1) dt,

which is equivalent to write

() =

/bf(t)dtg ! /b(x—t)f’(t)dt.

b—a /, b—a /,

Therefore, sincg’ is bounded, then we have

rw-i ks [rwal <[ [e-or @

e IS ICIL

< _a;}i}i)'f |/\x—t\dt
< U< )dt+/x (t—:z:)dt]

S%B(w—a)%%(b—x)?}

x — i)’
= (b—a)|lf']l EJrﬁ]

which completes the proof. O

Using the same technique, we may state the following resuRfemann-Stieltjes

integral.

Theorem 4.2.2.Let f asin Theorem 4.2.1. Let : I° — R, be defined ori° such that
g € Lla,bl. If ¢’ is bounded i.e.||¢'||,, = sup |¢' (z)| < oo, then we have

z€(a,b)

Pl -g@l- [ 10| <1711 [@_a) e ] 422

for eachz € I.
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Proof. Sincef is concave function o, then for anyz, ¢ € [a, b]
)< )+ @—1) f(1).
Sinceg’ > 0, multiplying both side by (¢), we get
@) g () < ft)g @)+ (@—1)f{t)g (t).
Integrating both sides ovéd, b], with respect ta, we get

b
f(@)lg /f dt+f()/ (x—t)g (t) dr,

which is equivalent to write

f(x)[g(b)—g(a)]—/ f(t)dgs/ (1) (1) g (1) dt.

Therefore, sincg’, ¢’ are bounded, then we have

f(@)[g(b) —g(a)] —/ f(@) dg' <[] (@=t)f@#)g ) dt’

< / e — )1 (O]9 (&) dt

< swp |f ()] sup |g (¢ |/rx—t|dt

te(a,b) te(a,b)

1l [(““) t-a) ] ,

2

which is required. O

A new Ostrowski’s type inequality, which gives the weightffierence between

the integrands of a functiofiand it is first derivative, is considered as follows:

Theorem 4.2.3.Let f : I € R — R be a twice differentiable mapping off

wherea,b € I with a < b. Assume thatf and f' are concave ona,b). If

If'll = sup |f (t)] < oo and|f’||,, = sup |f"(t)] < oo then the following
te(a,b)

te(a,b)

inequality holds:

b — a .fL'—a2 —33'2
- [ 1] < DO gk, (B0 ’]
FIFL [(y e eSS

wherex,y € (a,b).
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Proof. Sincef is concave ora, b] and f’ is concave orfa, b) then for anys, t € (a,b)

fl)<fO)+ -1, (4.2.4)

and

fr ) < (s)+(y—s)f"(s), (4.2.5)

Integrating both sides of (4.2.4) over, b|, with respect td, and (4.2.5) ovefa, b], with

respeCt tCB, we get
(b—a)f /f dt+/ (x—1t) f'(¢)dt, (4.2.6)
and
b b b
/ £ (y)ds < / F(s)ds + / (y—s) f" (s) ds (4.2.7)

Adding (4.2.6), (4.2.7), we get

(b—a)f /f
<FO)-f@-b-af @+ [ a-0fOds [ o979 @28

Therefore, since || = sup |f' (t)] < oo and| f’||., = sup |f”(t)] < oo, then
z€(a,b) z€(a,b)
we have

-fai[}unﬂs'igggﬁﬁ—f@ﬂ+géglﬂm—ﬂwanw

1 b
i [ sl s

S'M ‘ ”fH /| — t| dt
||f”H /
ly — s|ds
sﬁﬂ%jgil F@| 417 r ?@iffx>]

for x,y € (a,b), which completes the proof. O
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Remark 4.2.4.In the inequality (4.2.3), one can see that when— b, then we have

b
_bia/ f(z)dx

<[P g+ C5 - 11 @29
similarly, whent, y — a™, then we have
b
Fa) -5 [ fas
f ) (b_ a) / "
<[ PO=LO o)+ B+ 171 @20

Also, fort = y = “2, we have

,<a42rb> _bia/bf(l’)dfc

'fTa) f<a+b)‘ (b_a) 11 e + 1F710) (4.2.11)

2

In the following result we propose an error estimation far finst derivative in

terms of convexity.

Theorem 4.2.5. Consider the assumptions in Theorem 4.2.3. Then the following

inequality holds:

rw - O L@ <y Oy [@_“) *_(b)_y)],

(4.2.12)

Vy € (a,b).

Proof. Integrating the both sides of (4.2.8) overb| with respect tar, we get
b
(b—a)zf’(y)—(b—a)/ or
<(b-a)(f () - b—a/f

// (x — 1) d:z:dt+(b—a)/a(y—s)f”(s)ds,
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and we write

F'y) - b—a/f dt<f<b—a b—a/f

// (x —t) f' (t) dxdt

b_&[<y—@f%$w,

which follows that

f’(y)—f(bl)):g(a)gbia/ — ) f"( ds—// (x —t) f (t) ddt.

Sincef’ and f” are bounded, then we have

b)
- IO IO L [y otass [ [ el 0lasa
\m|/‘_m+mu//u 4 dodt
bh—
swwm[< ;@_; >]
1 / b‘tdt
—a) 4 (b— b—a)’
:=wwm[( Z@tz)y>-+wwm(3”,
Yy € (a,b), which completes the proof. O
Remark 4.2.6. In the inequality (4.2.12), we have
pry— O Ty Ol Co9 w2y
b) — f(a b—a)? b—a
O e B R e N R XP)
and
Jfatb FO) = f@)|_ L 0—a) 0 (b—a)
() - L0 L iy L 25 2

Using the same technique in the proof of Theorem 4.2.3, wegeasralize the

inequality (4.2.3) fom-times differentiable mappings as follows:
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Corollary 4.2.7. Let f : I C R — R ben-times differentiable mapping off where

a,b € I witha < b. Assume thaf and f"~!) are concave;y > 2 on (a,b). If

1/l = sup |f(t)] < coand||f™|_ = sup |f™ ()| < oo, then the following
z€(a,b)

) - z€(ab)
inequality holds:

f2(b) = f*72 (a)

)=t [T <[ EEBEEE0 )
e [“_?(bf(f)_ Ll [(y_§)<b+_(§>_ ’ ] - 4210

forn > 2andt,y € (a,b).
Proof. The proof goes likewise the proof of Theorem 4.2.3, we ondtdhtails. O

Next result gives an Ostrowski type inequality involvingoguct of two

functions, which is different from (2.3.39).

Theorem 4.2.8.Let f,¢g : I — R, be two bounded differentiable mapping thsuch
that f/, ¢’ € L[a,b], wherea,b € T with a < b whose derivativeg’, ¢’ are bounded. If

f is concave and/ = m(a%) {If @)|,|f (@)],lg(z)],|d (x)|}, then we have
z€(a,

/f<x>g<x>dw—<b—a>f<t>g<s>

SM[(t_a)2+<b_t)2+(3—(1)2+(b—5)2+b3_a3

2 3
b? — a? (t;s)3, s<t
—— (t+s)+ts(b—a)+ . , (4.2.17)
(=t 4 <s

wheret, s € [a, b].

Proof. Sincef andg are concave function oh then for anyz, ¢ € (a, b)

fl@) < ft)+@—1) f(t)

and

g(x) <g(s)+(z—s)g (s)
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Multiplying the above inequalities, we get
f@)g@) <[fO)+@—=t)fO)]g(s)+ (x—s)g (s)]

=) g(s)+@—1)f (1) g(s)
+ @) (=59 (s)+ (x—1) [ (1) (x = 5) g ()]

Integrating both sides ovéd, b], with respect taz, we get

/1° dx<b—@f®g@ﬂ4%ﬂwﬁ/kw—wm

+f@m%@/‘@—@dw+f&w%$/<x—w@—smx

a

which is equivalent to write
/f v)de— (b—a) £ (£)g(s)
b
f()()/(x—wm+fum%@/<m—@m:

HIOF6) [ @) s)ds

Therefore, we have

z)dr —(b—a) f(t)g(s)

<M[/ \m—t\da:—F/ ]:c—s\da:+/ & —t] |o — 5| da
8

B t—a)’+0b—1t)° (s—a)+ (-
[ttt

2

13— 3 0, s<t , B—d P-a
-2 -t — t
+ 3 s° + 3 5
1, t<s
b2 — 2 0, s<t
— 5 s —t2s +ts® +tsb —tsa + 2 25
1, t<s
0, s<t 2 0, s<t
t3—|—§ '83
1, t<s 1, t<s

Wl
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iy (t—a)2—2|—(b—t)2+(s—a)2—2|—(b—s)2+b3ga3

b? — a?

(t+s)+ts(b—a)+
2 (Sft)B

which is required. O

4.3 OSTROWSKI'S TYPE INEQUALITIES VIA CONVEX FUNCTIONS

In the following, we introduce some inequalities of Ostr&ifgstype via s-convex
function (in the second sense). We note that the functiopsamng in the main results
are in terms of the first derivatives whichssonvex in the second sense. As we note in
Chapter Il, thes-convexity is a weaker condition than the usual convexity emincides

in the cases = 1.

Lemma4.3.1.Letf : I C R — R be a differentiable mapping off wherea,b € I
witha < 0. If f" € L|a, b], then the following equality holds:

/f ) = ( b—a)/ P F (ta+(1—Db)dt  (43.1)

for eacht € [0, 1], where

t, te [0, 2]
for all z € [a, b].

Proof. Integrating by parts

I:/lp(t)f’(ta+(1—t)b)dt

b—zx 1

:/b_atf’(ta+(1—t)b)dt+/) (t=1) ' (ta+ (1 ~)b) df

b—

ISHES]

b—z

~a _/ﬁ f(ta+(1—t)b)dt
0 0 a—b

8

fta+ (1—1)b)

=1
a—>

flta+1—1)b
a—2b

f (ta+ (1 —t)b)
b—x a—>

dt

+ (t—1)

Q
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_ b—$2f(x)_/oﬂf(ta+(1—t)b)dt+ r—a f (@)

(b—a) a—2>b (b—a)2
1 J—
_/ f(ta+ (1 t)b)dt
l;:_z a—>b
1 1 b
=il @G | Fa
Thus,(b — a) - I, gives the desired representation (4.3.1). O

An Ostrowski-like inequality may be stated as follows:

Theorem 4.3.2.Letf : I C R — R be a differentiable mapping off such that
f' € Lla,b], wherea,b € I witha < b. If |f’| is convex ora, b], then the following

inequality holds:

i (9(2:2)2—4(2:"2)3—6 = +2> |f’(b)|] ,
(4.3.2)

for eachz € [a,b]. The constant is best possible in the sense that it cannot be replaced

by a smaller value.

Proof. Using triangle inequality in Lemma 4.3.1 and sin¢é is convex, then we have

rw -t [

§(b—a)/omﬂf’(tcu—(1—t)b)|dt

+o-a) [, A=0f Ga+ - at

b—

ISH LS
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b—x

<O [T eI @+ 0 =017 Ol
HO=a) [, =01 @]+ (=01 6

) L b P
- L= - = L= o

1., (b—x)° 1, ., (b—x)°
+3 |f"(D)] (1— (b_a)3> —glf (a)] (1— (b—a)3)
_(b—1x)

1, ., z)? , (b—2z)?
1) (1 (b_a)2> 17 ) (1—

b= z) )]+

b ay
ol (1-5=2),
which follows that
ro- it [
<0-a) E(z:x>—;<2:x>+é @)

L (b—a) 2 (b—x 3+§ b—ux Z_b—x+l
“ 3\b—a 2\b—a b—a 3

and we can write

) 2 o (2) o]

To prove that the constant/6 is best possible, let us assume that (4.3.2) holds with

constant’ > 0, i.e.,

r@- it [
<Clb-a) [(4(2j§)3—3(2j2)2+1> 7 (a)
+<9 (z:z>2—4(z:z>3—6(2:z> +2> ]f’(b)\].
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Let f(z) = x, and then set = a, we get

a— a+b‘ <Cb-a)[(4—-3+1)-1+(9—-4-6+2)-1]
therefore
b= sch—a).
which givesC' > % and the inequality (4.3.2) is proved. O

One can deduce an Ostrowski like inequality for function®séhderivative are

bounded, as follows:

Corollary 4.3.3. In Theorem 4.3.2. Additionally, iff’' (x)] < M, M > 0, then

< M(b—a) [(2:‘2)2— (2:2) +%] (4.3.3)

holds. The consta@{is best possible in the sense that it cannot be replaced byallesm

inequality

\f<x>—ﬁ/abf<u>du

constant.

Proof. In the proof of Theorem , assume thdt (z)| < M we get the required result.

To prove the sharpness we use the identity function. O

The corresponding version for powers of the absolute valtleedirst derivative

is incorporated in the following result:

Theorem 4.34.Let f : I C R — R be a differentiable mapping off such that
f' € Lla,b], wherea,b € I witha < b. If [f/|”/®V is convex ona, b], then the

following inequality holds:

b
bia/ f(u)du

2—1/q ptl
p

(b —a) (p+ 1) o=
ptl

+(@—a)r (If (@ +|f @)]")"

(1f @)+ | ()"

<

\f<x>—

(4.3.4)

for eachz € [a, 0], where; + o = 1.
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Proof. Suppose thap > 1. From Lemma 4.3.1 and using thélder inequality, we

have

r@ - [ e

g(b—a)/obat|f’(ta+(1—t)b)|dt

1
+(b—a)/b__x =1 |f (ta+ (1—t)b)]dt
b—a
b—zx

ba 1/p bz 1/q

< (b—a) (/b“ tpdt) (/b“ If (ta+ (1 —1t) b)th)
1 1/p 1 1/q

+(b—a) (/_m(l—t)pdt> </b_x |f’(ta+(1—t)b)|th> :

Since|f’| is convex, by Hermite-Hadamard inequality (2.3.10), weehav

b—x

/“ I (ta+ (1 — 1) 0)| dt <

Y

[/ (@) + |/ (0)]
2

and
/_ P as (- ppjar < L@ L
Therefore,
o=t [ o [0 F wr o ron
Fa—a)T (P @+ @],
where; + - = 1. This completes the proof. O

Corollary 4.3.5. In Theorem 4.3.4. Additionally, iff’' (x)|] < M, M > 0, then
inequality

(b—x)%l—k (a:—al)%
(p+1)7 (b a)?

'f(az)—ﬁ [ rwad <. (435)

1 _
holds, Where}% +o=1
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Corollary 4.3.6. In Theorem 4.3.4, choose= “T“’ then
f a+b 1 /bf( d
2 b—a /, ) o

(b—a)
= 4(p+ 1)1/p [(

q 1/q
s <b>|Q)

a\ 1/a
f’(a;b) ) ] (4.3.6)

Theorem 4.3.7.Let f : I C R — R be a differentiable mapping off such that

,(a+Db
r(5)

+ (17 @r+

f' € L[a,b], wherea,b € I witha < b. If |f/[”/*~Y is concave ora, ], then the

- (151:1;)/? [(Z:D@H)/p p (b;x)‘

. r— )\ PtO/P - a4+
b—a 2

following inequality holds:

rw- it [

. (4.3.7)

for eachx € [a, b], wherep > 1.

Proof. Suppose thap > 1. From Lemma 4.3.1 and using thedlder inequality, we

have

r@ - [ e

g(b—a)/ob_at|f’(ta+(1—t)b)|dt

+(b—a)[)x t— 1| |f (fa + (1 — £)b)| dt

b—a

b—zx

b—x 1/p b—z 1/q
<(b—a) (/b” tpdt) (/ba If (ta+ (1 —1t) b)th)
1 1/p 1 1/q
+(b—a) (/b_z(l—t)pdt> </b_ |f’(ta+(1—t)b)|th> |

b—a b—a

Since|f’|? is concave orja, b], by Hermite-Hadamard’s inequality (2.3.10), we get

,(b+2x
(%)

q

bz
/“ 1 (ta+ (1= £)b)[" dt <
0
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and
1 q
Jo 7 e+ = oppar < | (457
b—a
Therefore,
1 b (b—a) b—a\"P|  bta
- <
r0- g [ < [(b_a) r("5Y)
. r— )\ PtO/P / a+z
b—a 2
This completes the proof. O

Corollary 4.3.8. In Theorem 4.3.7, choose= %, then

(e22) st o
S

1)

()

()] oo

for eachz € [a, b], wherep > 1.

The following result refines the above inequality (4.3.7).

Theorem 4.39.Let f : I C R — R be a differentiable mapping off such that

f' € L[a,b], wherea,b € I witha < b. If |f/|”/*Y is concave ora, ], then the
following inequality holds:
(b— )

b—a)(p+1)" f(b;x)’

(b _(j)@fl)up f (a ; x) ‘ (4.3.9)

‘f(x)—ﬁ/:f(wdu’g(

for eachz € [a, b], wherep > 1.

Proof. Suppose thap > 1. From Lemma 4.3.1 and using theédlder inequality, we
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have

r@- i [ e

g(b—a)/ob_at|f’(ta+(1—t)b)|dt

+(b—a)/b1_m [t =1/ |f (ta + (1 —t)b)| dt
b—a
b—zx

b—x 1/p bz 1/q
< (b—a) (/b tpdt) (/b f (ta+ (1 —t) b)th)
1 1/p 1 1/q
+(b—a) (/J(l—t)”dt) (/b_x yf'(ta+(1—t)b)|th> :

b—a b—a
Since|f’|? is concave orja, b], we can use the Jensen’s integral inequality to obtain

b—zx b—x

/b_a |f’(ta+(1—t)b)|th§/mt0|f’(ta+(1—t)b)|th
0

0

b—zx
mod !
<</ tt)f
,(b+x\|?
()
1

/b__x |f (ta+ (1 —¢)b)|"dt < ﬁ_x 01 f (ta+ (1 — ) b)|* dt

b—a b—a

1 1 1
< tOdt | |f / ta+ (1 —1)b)dt
(L;Z >tf T o s (0 1200
b—a

o
8| p—

Jo ~@ todt

bz
/b_a (ta+ (1 —t)b)dt

o

b—=x
b—a

and

b—a

q

r—al,(fa+x
:b—af< 2 )
Therefore,
. 1 b o) di (b—x)° ,<b+x)‘
1@t [ rwa] s S (5
(x —a)®

w—amp+n”pf(a;wﬂ

This completes the proof. O
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Corollary 4.3.10. In Theorem 4.3.9, choose= “T“’ then

()i i
< (b—a)1 {
4(p+ 1)

for eachx € [a, b], wherep > 1.

] . (4.3.10)

()

,(3a+0b
(%)

A different approach for powers of the absolute value of tts flerivative leads

to the following result:
Theorem 4.3.11.Llet f : [ C R — R be a differentiable mapping off such that

" € Lla,b], wherea,b € I witha < b. If |f'|?is convex ona,b], ¢ > 1, and

|f' (z)| < M, x € [a,b], then the following inequality holds:

r@ - [

1

Lh—a?\ “[[(1h-2? 10-27) . .,
<o-0 (=) (R e

for eachz € [a,b].

Proof. Suppose thag > 1. From Lemma 4.3.1 and using the well known power mean

inequality, we have

r@ - [ e

g(b—a)/obat]f’(taJr(l—t)b)\dt

+(b—a)/b__x [t — 1| |f" (ta + (1 —t)b)| dt

b—a



87

bz 1-1/q bz 1/q
< (b—a) (/b“tdt> (/batf’(ta—l—(lt)b)th)
. 1-1/q L 1/q
+(b—a) (/b_x (1—t)dt> (/b_x (1—t)|f’(m+(1—t)b)yth> .

b—a b—a
Since|f’|? is convex, we have

b—x b

[ aguras [ fr @F 0o ol o

_ 1(6—1’)2_1(5—%)3 / q l(b_x)g ik
—(Q(b_a)z 0 a3>|f(b>|+3(b_a)3|f()l

and
ﬂlu_wuwm+u—wmwﬁ
g/b (L) [t1f @+ (1= )| ()]t
(1 EZ:Z;;) - (1 - %) + (1 - %)] 7 ()
+ [; (1— EZ:i) = (1— E’;:;)] 7 @)
Therefore, we have

r@ -t [

1@-@21% Lh—a? 10-2P\,, .y
tiC I (G I

Lo—2)" . 4 . 1 (b—z) 1(b—2) 1y
= 00 <§_<b_a)+§(b_a)2>

X . —M — —M _(b—x) ()
{[3 (1 <b—a)‘°’> (1 <b—a>2>+ ! (b—a))] £ )]

1 (b—$)2 1 (b— x)g N 1
ey (- 0=) -5 (1 =) o

which is required. U
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Corollary 4.3.12. In Theorem 4.3.11, choose= “*b , then

<(b-a)—s 165 {(\f (@) +2|f (b>\q)3 +21f @]+ |f (b);qﬁ (4.3.12)

For instance, ify = 1, then (4.3.12) becomes
i(45) i [

In the following, we may refine the inequalities (4.3.7) aA®B(9):

)

S

(1 (@) + [ (0)]) -

Theorem 4.3.13.Let f : I C [0,00) — R be a differentiable mapping off such that
f € Lla,b], wherea,b € I witha < b. If |f'|? is concave orja,b], ¢ > 1, then the

following inequality holds:

r@ - [ <

AN
N}
=
~
2
—~~
f—pl
|
s
N~—
1
7N
o> | o
[ ]|
ISE S
~_
(3%

7 (“ + 2‘”) u . (4.3.13)

for eachx € [a,b].

Proof. First, we note that by concavity ¢f'|? and the power-mean inequality, we have

[ (e + (1= a)y)l" = al|f @) + (1= a) |f )"

Hence,

[f (ex+ (1 —a)y)| = | f (z)| + (1 =) [f (y)].
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so,|f’| is also concave.

r@ - [ e

§(b—a)/omt|f’(ta+(1—t)b)|dt

+=a) [, = 1]1f (tar (1 - 0)0)]de

b—a

b—a 1-1/q b—z 1/q
< (b—a) (/batdt) (/batf'(ta—i-(lt)b)th)
1 1-1/q 1 1/q
+(b-a) (/b_ (1—t)dt> (ﬂ (1) ]f’(ta+(1—t)b)|th> |

b—a b:—a
Accordingly, by Lemma 4.3.1 and the Jensen integral inetyuale have

_ q
- b—x

b—z b b—a
/bat\f’ (ta+ (1 —t)b)|"dt < (/ba tdt) f Jo t<mb:(l mULL
° ° [ tay
1/b—x\" , (b4 2z
- (=) b (57)
S = 01F 0t (1= )

b—a
. [o—s (1—1t) (ta+ (1 —t)b) dt
- </Z— (1_t)dt> ! fis (1— ) dt

and

q

q

Therefore,

r@- i [ e

<ro-a[=0)r (452)
(=) ()

which completes the proof. O

Finally, a midpoint type inequalities may be deduced a®vall
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Corollary 4.3.14. In Theorem 4.3.13, choose= “T“’ we get

b
(5ot o
<

2—1/a

=)

)

f <2a; b) H . (4.3.14)

For instance ifg = 1, then

\f(@;b) —bia/abfw)du

(b—a) [

<
- 8

(52

4.4 OSTROWSKI'S TYPE INEQUALITIES VIA S-CONVEX FUNCTIONS

, (2a+D
()] wsas

In this section, we consider some inequalities of Ostrowskipe for s-convex

(concave) functions. We start with the following result:

Theorem 4.4.1.Letf : I C R, — R, be a differentiable mapping off such that
f" € Lla,b], wherea,b € I witha < b. If | f'| is s-convex in the second sense|an]
for some fixeds € (0,1] and|f’ (z)| < M, z € [a,b], then the following inequality
holds:

r@ - [ e

M (xr —a)’+ (b—x)

for eachz € [a,b] .

Proof. By Lemma 2.3.23 and sind¢’| is s-convex, then we have

r@- it [

(x = a)’

ﬁ/Otyf (b + (1— 1) a)| dt

%/Ot]f’(tswr(l—t)bﬂdt

<

_|_
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< S [ @l 0=l @) a
= [ @l - ot o a

M(z—a)’ [ 1 1
T (s+2+(s+1)(8+2))
Mb-—2)° [ 1 1
* b—a (s+2+(s+1)(s+2))

(:c—a)2+(b—x)2] 7

s+1

b—a '
where we have used the fact that

! 1 ! 1
5t dt = and / tl-tyYdt= —— .
/0 s+ 2 0 ( ) (s+1)(s+2)

This completes the proof. O

The corresponding version for powers of the absolute vdltieedirst derivative

is incorporated in the following result:

Theorem 4.4.2.Letf : I C R, — R, be a differentiable mapping off such that
[ € Lla,b], wherea,b € I witha < b. If |f'|? is s-convex in the second sense|an)]
for some fixed € (0,1], p,¢ > 1, ; + ¢ = Land|f (z)] < M,z € [a,b], then the

following inequality holds:

ro- it [

LM ( 2 )5[(96—@)2“5_95)2], (4.4.2)

(1+p)7 \s+1 b—a

for eachz € [a,b)].

Proof. Suppose that > 1. From Lemma 2.3.23 and using thélder inequality, we
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have

r@ - [ e

a

2

< <”’”b__‘;) /01t|f’(ta:+(1—t)a)|dt
+%/Olt|f’(m+(1—t)b)|dt
< %:?2 (/Oltpdt)% (/01|f’(tx+(1—t)a)]th>%

+ (bb__‘z)z (/Oltpdt); (/01 f (tz + (1 —t)b)|th);.

Since|f’|? is s-convex in the second sense drfitl(x)| < M, then we have

/O\f’(t:v+(1—t)a)!th§/o 1 @) + 1= 1) |f ()] dt

_ @+ [f (@) 2Me
s+ 1 T s+1

and

/O ' (tr (1= )b dt < / [/ (@) + (1 — )" | ()]

_ @I el 2me
s+ 1 ~s+1

Therefore, we have

ol ]

wherel/p 4+ 1/q = 1, which is required. O

rw - [ e

The previous observation can be formulated in caseftlimtonvex as follows:

Corollary 4.4.3. Let f : I C R, — R, be a differentiable mapping off such that
f € L[a,b], wherea,b € I witha < b. If |f'|”/®V is convex orfa,b], p > 1, and

|f' (z)| < M, x € [a,b], then the following inequality holds:

1 b M |(z—a)’+(b—2x)
b—a/a f(u)du Sb a[ (1+p)% ] (4.4.3)

\f<:c>—

for eachx € [a,b].
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A different approach for powers of the absolute value of th& fierivative is

obtained in the following result:

Theorem 4.4.4.Letf : I C R, — R, be a differentiable mapping off such that
f’ € Lla,b], wherea,b € I witha < b. If |f'|* is s-convex in the second sense|an)]
for some fixeds € (0,1] andqg > 1, and|f’ (z)| < M, = € [a,b], then the following

inequality holds:

r@ - [ e

2\ (r —a)+ (b—x)
SM(S+1) [ 20—a) ] (4.4.4)

for eachz € [a,b)].

Proof. Suppose thaj > 1. From Lemma 2.3.23 and using the well known power mean

inequality, we have

r@ - [ e

%/Ot]f’(ter(l—t)a)]dt
%/Oﬂf’(ter(l—t)bﬂdt

<

1-1

N
q (/Olt]f’(t:c+(1—t)a)|th)%

< (:2:2)2 (/Oltdt) 1 |
+ (bb__?z (/Oltdt)l_q (/01t|f’ (tx + (1 — 1) b)|th)q.

Since|f’|? is s-convex, we have

AtW@wHL%MWﬁSA[ﬁﬂf®W+ﬂb%ﬂf@ﬂﬁ

_ @+ D[ (@) o M
(s+1)(s+2) T s+ 1

and

AtW@wHL%MWﬁSA[Wﬂf@W+HL%Wf@ﬂﬁ

_ @+ DO M
(s+1)(s+2) s+ 1
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Therefore, we have

bia/abf(u)du SM(é)l—é (Sil); [(x—a)Zirc(Lb—xf]’

which is required. U

‘f(w) -

Remark 4.4.5. Since(1 + p)% < 2 foranyp > 1, then we observe that the inequality
(4.4.4) is better than the inequality (4.4.2) meaning tiet approach via power mean

inequality is a better approach than the one througbld¢r’s inequality.

A midpoint type inequality for functions whose derivativesabsolute value are

s-convex in the second sense may be obtained from the prergsults as follows:

Corollary 4.4.6. If in (4.4.4) we choose = “T“’ then we have

'f(“;b)—bia/bﬂmdu sM<b“‘)( 2 ) i>1.  (445)

4 s+1
wheres € (0,1] and|f’|? is s-convex in the second sense(ary], ¢ > 1.

Now, we obtain an Ostrowski’s type inequality for the follog result holds for

s-concave mapping.

Theorem 4.4.7.Let f : I C R, — R, be a differentiable mapping off such that
I’ € Lla,b], wherea,b € I witha < b. If | f'|?is s-concave ofa, b] p,q > 1, %Jﬁ =1,

then the following inequality holds:

b
10 [ rwa
2(s—1)/q

(S

(1+p)7" (b—a) [(x_af ! <b;x)H . (4.4.6)

for eachz € [a,b] .

Proof. Suppose thag > 1. From Lemma 2.3.23 and using thélder inequality, we
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have
10 [ @
g%/o t1f (tz + (1 —t)a)| dt
+%/lt|f'(m+(1—t)b)|dt

< % (/Oltpdt)l/p (/01 |f (tx + (1 —t)a)|th)l/q
+ (bb__‘?z (/01 tpdt) " (/01 I (tz + (1 — 1) b)|th) l/q.

But since| f’|? is concave, using the inequality (2.3.23), we have

, [T+ a
(%)
,(b+x
r(5)

A combination of the above numbered inequalities, we get

q

Y

/1 I (tz + (1 — t)a)|"dt < 257
0

and

q

/1 |f' (tr + (1 —t)b)|*dt < 2571
0

b
rw - [
2(s=1)/q

=07 6—a) [(““)2 ! (x;a>‘+<6_”2 f(b?)ﬂ

This completes the proof. O

Therefore, we can deduce the following midpoint type inditguéor functions

whose derivatives in absolute value areoncave in the second sense:
Corollary 4.4.8. If in (4.4.6) we choose = 1 andx = “T*” then we have
f a+b 1 /b f(u)d
_ u U
2 b—a/,

(b—a) [

T A1+t

,(3a+0b
r())

7 <a Z‘%) H . (4.47)

where,

f'|*is concave offa, b], p > 1.
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4.5 OSTROWSKI'S TYPE INEQUALITIES FOR QUASI-CONVEX FUNCTIONS

In this section, we follows the same techniques by obtaisegeral Ostrowski's type
inequalities for quasi-convex functions which are différeom (2.3.37). Let begin with

the following result:

Theorem 45.1.Letf : I C R — R be a differentiable mapping off such that
f' € Lla,b], wherea,b € I witha < b. If |f'| is quasi-convex offu, b], then the

following inequality holds:

b R
10 - s [ rwa < Sl @)L o)
(I_G)Q / /
+mmax{\f (@), [ (a)]}, (45.1)

for eachz € [a, ).

Proof. By Lemma 2.3.23 and sing¢’| is quasi-convex, then we have

b
10 - [ rwa
bz
g(b—a)/b“t|f’(ta+(1—t)b)|dt

1
+(b—a)/)_z it —1[|f (ta+ (1 — t)b)| dt
b—a
b—x

< (b—a)/ob_at-maX{lf’(xH,|f’(b)l}dt
[ max (1 @)L 1 (@)} at
e
— (b— a) max {|/" (x)|,|f’(b)|}/0mtdt
+ (o= apmax{| @) | @]} [,_, (1~ 1) d

(¢ —a)”
2(b—a)

B (b—x)2

- L2 masc{|f' ()] .1 (@)}

max {|f (x)[, [/ (0)[} +

This completes the proof. O
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Corollary 4.5.2. In Theorem 4.5.1. Additionally, if’ is bounded ona, b}, i.e., there
existsM > 0 such that /' (x)| < M, = € [a, b], then inequality (2.3.31) holds.

Corollary 4.5.3. In Theorem 4.5.1, Additionally, if

1. |f'| is increasing, then we have

r0 -5 [Tl < S e i @)L 652
2. |f’| is decreasing, then we have
10 [Tl < Sl i @l @8

Corollary 4.5.4. In Theorem 4.5.1, choose= “T“’ then

‘f (a+b> i
< (b;a) {max{

Therefore, we have

’(b)|} +max{

() o)

(4.5.4)

"
(5]

1. If |f’| is increasing, then we have

]f(“;”’) —bia/abﬂu)du

Ji (“;b)u (4.5.5)
2. If|f'| is decreasing, then we have
b b b
‘f(“+ )—bia/a f (w) du f/(“;r )H (4.5.6)

The corresponding version for powers via quasi-convex nmggap incorporated

b—a |
e KCE

b—a |,
<230 @i+

in the following result:

Theorem 4.5.5.Let f : I € R — R be a differentiable mapping off such that

' € Lla,b], wherea,b € I with a < b. If |f’| is quasi-convex offu, b], then the
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following inequality holds:

b
10 - [ rwa
(b_x)pH v )| )| %
< (oo ) (o oy

+ (( (x —a)’ ))p [maX{|f N 1F ( )|q}}%7 (4.5.7)

b—a)(p+1

for eachz € [a, 0], where, + - = 1.

Proof. Suppose thap > 1. From Lemma 4.3.1 and using theélder inequality, we

have

r@- [ e

g(b—a)/Omt|f’(ta+(1—t)b)|dt

1
+(b—a)/b__x [t — 1] | (ta + (1 — t) b)| dt
b—a
b—zx

b—zx 1/p b—x 1/q
< (b—a) (/” tpdt) (/b If (ta+ (1 — 1) b)th)
1 1/p 1 1/q
+(b—a) (/b__m(l—t)pdt> </b__z |f’(ta+(1—t)b)|th)

b—a b—a
pt+l
=5 fmax {1 @ 0

(b—a)? (p+1)7

p+1

(v —a) P

+ T T [max {|f' ()|, (a)|"}]""
(b—a)r (p+1)r

This completes the proof. O

Corollary 4.5.6. In Theorem 4.5.5, Additionally, if
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1. |f'| is increasing, then we have

‘ ?) b—a/f
ptl p+l

Sp— [(b—x) O -7 1f @], @58)
(b—a)¥ (p+ 1)¥

2. |f’| is decreasing, then we have

pt1 ptl

{w—x) C @) @) | @] . @5.9)

IN

(b—a)? (p+1)r

Corollary 4.5.7. In Corollary 4.5.6, choose = “T“’ then we have

()

u) du

Q=

()
)

(b— a) { {
< — = max
21/p (p + 1)1/17

—|—max{

Therefore, we have

1. |f'| is increasing, then we have

o(57) e s

- a)
< oA IO

7 (“;Lb) H . (4.5.11)

2. |f'| is decreasing, then we have

() e v

(- a)
S ST Ir @l +

I (a;b) H . (45.12)

A different approach leads to the following result:
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Theorem 4.5.8.Let f : I C R — R be a differentiable mapping off such that
f" € Lla,b], wherea,b € I witha < b. If |f'|? is quasi-convex offu,b], ¢ > 1, and

|f' ()] < M,z € [a,b], then the following inequality holds:

‘ x) b—a/f ) du )2

< 5 (max {17 @)1 1 a)l"})"

(b—ff)z
o=

7 (max {J @)1 1 (& D[})7 (4.5.13)

for eachx € [a,b].

Proof. Suppose thaj > 1. From Lemma 4.3.1 and using the well known power mean

inequality, we have

r@ - [ e

§(b—a)/omt|f’(ta+(1—t)b)|dt

HO-a) [ =117 k(1= DY) di
b—a
b—z

b—z 1-1/q bz 1/q
< (b—a) (/b tdt) (/“tf’(m+<1t)b)th)
L 1-1/q 1 1/q
+(b-a) (/b_ (1—t)dt> (A (1) ]f’(ta+(1—t)b)]th> |

b—a EEE
Since|f’|? is quasi-convex, we have

b—x b—x

t-max {[ " (z)|", [f" (b)["} dt

= " . max{|f/ ()" 1f (b)|q}

and

1

[)I(1—t)|f’(ta+(1—t)b)\th§/ (1—t)-max {|f (a)|*,|f (x)|"} dt

b—a b—a
B (:E—a)2

3o e Al @117 @
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Therefore, we have

b z—a)’ 1
‘f(a:)— = [ @] < S (17 @I @)
F s G {1 @1 @D
which is required. U

Corollary 4.5.9. In Theorem 4.5.8, Additionally, if

1. |f'| is increasing, then (4.5.2) holds.

2. |f’| is decreasing, then (4.5.3) holds.

Corollary 4.5.10. In Theorem 4.5.8, choose= “T“’ then
() -5 [ e
2 b—a /,
- (b;a) [(max{ f,(a—2|—b>
+ (max{

i <b>rQ})I/q
7 (“;b) q,yf’ (a)\q}>1/q] . (4.5.14)

Therefore, we have

1. If |f'| is increasing, then (4.5.5) holds.

2. If|f'| is decreasing, then (4.5.6) holds.

4.6 OSTROWSKI'S TYPE INEQUALITIES FOR R-CONVEX FUNCTIONS

In this section we consider some inequalities of Ostrowgkpe viar-convex functions.

The type of these results are obtained for the first time.

We begin with the following theorem.
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Theorem 4.6.1.Let f : I C R — R, be a positive differentiable mapping dh such

that / € L[a,b], wherea,b € I witha < b. If [f/|/®V, p > 1is r-convex ora, ],

then the following inequality holds:

b
r0 - [ 1o < E [ P L (1 @)1 @)

(b—a)(p+1)
+ (b0 —2)* L/ (If ()|, 1f 0)1")]

for eachx € [a,b], wherep > 1, and L, (-, -) is the generalized log-mean.

Proof. By Lemma 2.3.23 and sind¢’|? is r-convex, then we have

ro- it [

s(xb__‘;) /0t|f’(tx+(1—t)a)|dt
(b— =)’

+

2. /0 EIF (t + (1 — ) b)) dt

< % /Oltpdt)l/p (/01 If (tz + (1 —t)a)|th)l/q

+ (bb__"z)z (/Oltpdt) " (/01 I (tr+ (1= 1) b)|th) "

Since|f’|? is r-convex, by (2.3.30), we have

ALﬂm+a4mwwsuuﬁm%wwm

and

ALﬁm+a4wWﬁsmamm%W@m.

Combining all above inequalities, we get

rw-i s [ o
< 1

(b—a)(p+1)

7 @ =) LT (If ()", 1 (a)])

(4.6.1)

+ =) LY (If (@), |f ®)])],

wherel/p + 1/q = 1, which completes the proof.
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In the following we obtain an inequality of Ostrowski’s tyfer log-convex
mappings which is different from (2.3.38) as follows:
Corollary 4.6.2. Let f : I C R — R, be a positive differentiable mapping @h such

that f' € L[a,b], wherea,b € I witha < b. If | f/[”/®~, p > 1 is log-convex otia, b],

then the following inequality holds:

_L ' 1 m_a2 1/q " ()] ()]
1@ [ 10w < ot (e U @IS @)
+ (0 =)’ LY (If (@), [f (0))] (4.6.2)

for eachx € [a,b], wherep > 1, andL(-, -) is the log-mean.

Proof. The proof goes likewise the proof of Theorem 4.6.1, and u&rig} 29). O

Corollary 4.6.3. If in Theorem 4.6.1, choose= “T“’
a+b 1 b
1(50) -t [ s
(b_a) / / q ,(atb !
< st e (e | (S52)])
revr(|r () ror)]. asa
For instance, forr = 0, the result holds for log-convex functions, and
a+b 1 b
‘f( ! )—b_a/a f () du
e [ (ror e (557)])]
S F@ (=
LV ( f (“;b) By (b)yqn . (46.4)

Theorem 4.6.4.Let f : I C R — R, be a positive differentiable mapping @f such

that /' € Lla, b}, wherea,b € I witha < b. If |f'| is r-convex { > 1), on|a, b], then

the following inequality holds:

ro- it [

(x—a)Q , r , 7'2
gﬁ @f ($)|1+27n+|f (a)|(1+r)(1+27")}
G @l o)

7,,2

(1+7)(142r)

] , (4.6.5)

for eachzx € [a, b].
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Proof. By Lemma 2.3.23 and sind¢’| is r-convex, then we have

F@) =t [ f )

(¢ —a)’

/01t|f’(tx+(1—t)a)|dt

+ (bb__g;)Q /01t|f’ (tz + (1 —t)b)| dt

(2 = a)’

/0 L[ @) + (=) |7 @] dt

(b—2)’
b—a

|t @r+a-oiron”a

Using the fact thad (a; + b;)" < S aF + S 0 for0 < k < 1, ay, as, ..., a, > 0 and
i=1 =1 =1
by, b, ..., b, > 0, we obtain

rw -t [rwa] < S0 (00 @ - ot 7 @)
$ O (@ ra -0t o)
= (:2__?2 {'J: (@)1 —:27“ Il +T)7”(21 + 27“)}
C i @ g + 1 O 3
which completes the proof. -

Corollary 4.6.5. If in Theorem 4.6.4, there i8/ > 0 such that|f’' (x)| < M, for all

x € |a, b], then the inequality (4.6.5), becomes

f(x)— ﬁ/a f(u)du| < (b]\—Ja) (7"4711) [(x —a) + (b—x)z] ,  (4.6.6)
forr > 1.

Corollary 4.6.6. If in Theorem 4.6.4, choose= “T“’ then we have

a-+b 1 b
‘f( : )—b_a/a““)d“
(b_a’) 20 ¢t
< 2 1
STty | [F (@l +2r (r+1)
for » > 1. For instance, forr = 1, we have

\f(a;b) —bia/abﬂu)du
(b )
24

r(0) ol @

<

I (“ b)‘ e (b)\} . (468)

@il (4
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We note that, Yang et al. (2004) proved that the inequalitg.8} holds for
convex mappings (see Theorem 2.3.10). In Corollary 4.6.6 evexglize Yang et al.
(2004) result (2.3.20) for-convex mappings( > 1), which is weaker than the usual

convexity.

4.7 APPLICATIONS TO MIDPOINT FORMULA

In the classical Midpoint rule (2.3.8), it is clear that ifetmappingf is not twice
differentiable or the second derivative is not bounded am), then (2.3.8) cannot be
applied. In this section, we derive some new error estimiamethe midpoint rule in

terms of first derivative.

Proposition 4.7.1.Let f : I C R — R, be a positive differentiable mapping df
such thatf’ € L[a, b], wherea, b € I with a < b. Assume thaltf’| is ar-convex { > 1)
onla,b]. f P:=a =2y <y < --- < x, = bis a partition of the intervala, b],

hz‘:$i+1—$i,f0ri:0,1,2,"' ,n—1and

n—1
T+ x;
then

1B, (f.P)| =

-1
< 2 |
_4(1+r ) (1 + 2r) Z { " (i) +2r (r + 1)

+r2 | ' (xig1)]] -

Ti+ Tt
2

Proof. Applying Corollary 4.6.6 on the subintervdls;, z; 4], fori = 0,1,...,n — 1 of
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the divisionP, we get

B (f.P)] = /abf(w)dx—Mn(f,P)‘

Tit1

=| [ rwde-np (2
i h? / , [ Ti + Tita
§4(1+T)(1+2r){TQIf(l’i)H?T(TJrl)f<—2 )‘

+r? | f (zig1)]] -

Summing ovet from 0 to n — 1 and taking into account that’| is r-convex ¢ > 1),

we deduce that

n—1
M 1 2 | 2y (Tt Tip
< 2, . Li T Lit1
+r2 | f (@in)]
which completes the proof. O

Corollary 4.7.2. In Proposition 4.7.1, iff is convex orja, b], then we have

g2 ) = | [ @ - p)
<L e @t a | () 17 ]

Proof. In the proof of Proposition 4.7.1 setting1, we get the required result.  [J

Proposition 4.7.3.Let f : I C R — R be a differentiable mapping off such that
/" € Lla,b], wherea, b € I witha < b. Assume thatf’|? (¢ > 1) is concave offa, b]. If
P:=a=uzy <z <--+ <z, =bis apartition of the intervala, b], h; = z;11 — x;,
fori=0,1,2,--- ,n—1and
M, (f p)_nz_lh..f<M)
=0 n

then

BY (1, P)| = /abf<x>dx—Mn<f,P>]

2—1/q 2x; + x;
r(F))

n—1
4 z_;fﬂ{

IN

T+ 210
(=)l
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Proof. The proof can be done similar to that of Proposition 4.7.1 asidg Corollary

4.3.14. 0

Proposition 4.7.4.Let f : I C R — R be a differentiable mapping off such that
f" € Lla,b], wherea,b € I with a < b. Assume thatf’| is a quasi-convex ofu, b]. If
P:=a=zy <z <--- <z, =bis apartition of the intervala, b], h; = z;11 — x;,

fori=0,1,2,--- ,n—1and

then

1f )l

17 @}

y o Tit+ Tip
r(*5)
’ Ii‘i‘xi_t,_l
()

4.8 APPLICATIONS TO SPECIAL MEANS

In this section, we obtain some error estimates for someaapeeans of real numbers.

1. Considerf : [a,b] — R, (0 < a <), f(z) =2",r € R\ {-1,0}. Then,

b
o [ @=L,

(a) Using the inequality (4.3.3), we get

2" — L' < (b—a) iy (a,b) ll_i_(b—x) + (x —a)

)

3 3(b—a)?

where,

rbt, r>1
Hor (a,b) =
|p|a7‘71’ re (—O0,0)U(O,l)\{—l}

For instance, if we choose



I. = = A, then we get
A" = L] <

ii. =G, then we get

1
3

|Gr _L:| S (b_a’)/lr (avb) [_ +

iii. = H,then we get

T~ L] < (b~ a) e (D) |
iv. x = 1I,then we get

1

(" = Ly < (b—a) pr (a,b)

v. x = L, then we get

1

LT =L < (b—a)ur(a,0) | 3

(b) Using the inequality (4.3.5), we get

(b—yc)pi%1 +(x—a) P

5(b—
12
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) fir (@, b)),

b—G)°+(G—-a)
3(b—a)’ ’

3+

5t

—+

(b— H)* + (H —a)®
3(b—a)’ ’

(b—1)*+ (I —a)’
3(b—a)’ ’

(-1 +(L—a)
3(b—a)? ‘

pt+1

|$T - L:' S Hor ((Z, b)

1 1 ’

(p+1)7 (b— )

where,p > 1. For instance, if we choose

I. x = A, then we get

pt+1 p+1

b—A)r +(A—a)r

A" = L7] < pir (@, D)

1 1 ’

(p+1)7 (b—a)r

ii. =G, then we get

G = Ly| < pr (a,)

pt+1 p+1

b-G) P +(G—a)r

1 1 ’

(p+1)7 (b—a)r

iii. x = H,then we get

b—H)» +(H—a)>

p+1 p+1

H = 1] < o (a,5) &

1 1 )

(p+1)r (b—a)r
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iv. x = 1I,then we get

b-DF (-0

, , b—1I1)r +(I—a)?P

|I _LT‘SMT<a7b) 1 1 5
b+ 1)7 (b a)r

v. x = L, then we get

3
+
—

-0 +(L-a)7
, . b—L)p» +(L—a)r
L= L] < oy (ah) til-a)r

(b+1)7 (b—a)?

2. Considerf : [a,b] C (0,00) — R, (0 < a < b), f(z) = Inz, then,

b
1
m/f(x) dr =1In1 (a,b) :=Inl,

(a) Using the inequality (4.3.7), we get

9 (b— x)(pﬂ)/p (z — a)(pﬂ)/p
+ .
(b—a)’?(p+1)"" b+ r+a

Inz —Inl| <

where,xz # I andp > 1. For instance, if we choose
I. x = A, then we get

2
b=+ 1)

InA—Inl| <
[n A —In 1| < b+ A A+a

(b— A)(p+1)/p (A— a)(p+1)/p]

ii. =G, then we get

2

InG—-—Inl| <
| =m0

br G Gra

(b— G)(p+1)/p (G — a)(p+1)/p]

iii. = H,thenwe get

InH —Inl| <

2 (b o H)(p+1)/p (H _ a)(p+1)/p
(b—a) -+ [ b+H Hta |

iv. x = L, thenwe get

InL —1Inl| <

92 (b _ L)(p+1)/p (L i a)(p+1)/p
(b—a)’? (p+1)'/7 b+ L L+a '
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(b) Using the inequality (4.3.13), we get

3.9 14
(b~a)

b-2f , (o—af
b+ 2x a4+ 2

Inz —Inl| <

)

where,x # I andg > 1. For instance, if we choose

I. z = A, then we get

3.27V4 | (b— A  (A—a)
InA—1Inl|<
A=Indl s G\ ot agaa |
ii. =G, thenwe get
\lnG—ln[|<3'27l/q (b—G)2+(G—a)2
~ (b—a) | b+2G  a+2G |’
iii. = H,then we get
3-27V4 | (b—H)* (H—a)’
— <
i =l < = | o T o |
iv. x = L, then we get
3.27V4 | (b—L)* (L—a)
InL—Inl| < .
Il —Indls 5= 155 o

4.9 SUMMARY AND CONCLUSION

In the presented chapter, Ostrowski’s type inequalities differentiable convex,
concave,s-convex (concave), quasi-convexsconvex and log-convex mappings are
established. In section 4.2, for differentiable concaveppirag, the well known
inequality

f(x)— f (o) < f (o) (z — ).

is used to obtain new inequalities of Ostrowski’s type. kulethe type of the
inequalities (4.2.3) and (4.2.12) are presented for thé fiinse. Additionally, the
inequality (4.2.2) is a new refinement for Ostrowski inegydior Riemann-Stieltjes

integral, which is different than (2.3.33). In the sectidgh8-4.6, new inequalities
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of Ostrowski’'s type via convexs-convex, quasi-convex ancconvex functions are
considered. In fact, the new Montgomery-type identity (3and Lemma 2.3.23
are used to obtain the required results. Several gendrahsa refinements and
improvements for concave functions and for the correspundiersion for powers
of these inequalities are considered by applying th@der and the power mean
inequalities. Choosing = “T*b in the obtained inequalities, several midpoint type
inequalities are deduced. In this way, we highlight the rofeconvexity in the

Ostrowski’s inequality.



CHAPTER V
SIMPSON'S TYPE INEQUALITIES

5.1 INTRODUCTION

In this chapter, we obtain several inequalities of Simpstype and thus giving explicit
error bounds in the Simpson’s rules and deduced variousiaigigs for some special
means, using Peano type kernels and results from the maddeonytof inequalities.
Although bounds through the use of Peano kernels have beamet in some research
papers on Simpson’s inequality (see Chapter 1), howeveagipeoach presented here
using s-convex, quasi-convex ang-convex functions in terms of at most second

derivatives are obtained for the first time.

5.2 INEQUALITIES OF SIMPSON'S TYPE FOR S—-CONVEX

In order to prove our main theorems regarding Simpson’suakiy via s-convex

functions, we need the following lemma:

Lemmab5.2.1.Letf : I C R — R be differentiable mapping off wherea, b € I with

a < b. Then the following equality holds:

Hf<a>+4f(“§”> +f<b>} —bia/abf@s)dx

— (b—a) /Olp ) F (th+(1—t)a)dt (5.2.1)

where,
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Proof. We note that

[:/Olp(t)f’(tb+(1—t)a)dt _ /01/2(t—é)f’(tb+(1—t)a)dt

+/1/12 (t—g) £ (th+ (1= t)a) dt.

Integrating by parts, we get

V2P pb+ (1-ta)

B 1\ fb+(1—t)a)
I = (t 6) b—a 0 0 b—a dat
+<t_§)f(tb+(1—t)a)1 e f(tb+(1—t)a)dt
6 b—a 1/2 b—a
B 1 a+b LE@b+ (1 —t)a)
~ somalfor () ] EE
Settingz = tb + (1 — t) a, anddx = (b — a)dt, gives
b
v-a1=g 1@+ (1) 1 0)] - 2 [T
which gives the desired representation (5.2.1). O

The next theorem gives a new refinement of the Simpson iniggue s-convex

functions.

Theorem 5.2.2.Let f : I C R, — R, be differentiable function oi#° anda,b € I
with @ < b. If |f’| is s-convex ona, b], for some fixed: € (0, 1], then the following

inequality holds:

‘é {”a”‘lf <QT+b>+f<b>} —bia/abfwx

675 —9(2) "+ (5675 + 35 — 12
18 (s2 4+ 3s+2)

1" (@] + 1/ ®)]. (5.2.2)

Proof. From Lemma 5.2.1, and singeis s-convex, we have

Hf(a)%f(“;b)w } /f

/Ols(t)f’(tb+(1—t)a)dt’

(- a) //

IN

(b—a)

IN

(t—%)‘|f’(ib—l—(1—t)a)|dt
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+(b—a (t-%)'u th+ (1 —t)a)| dt
<00 ”2 (t—é)\w )+ (1= )" 1f (a)]) de
o) [ (—g)w 4 (=07 1 (@) de

1/6
- 0-a (——t) 1 O+ (-2 @) di
1/2
+<b—a>/ (t=5) @lrmi+a-o17 @D

1/6

TSN ety “p
-0 [ (F-) @l o+ a0l @)

1/2

! 5 S / S !/
w00 [ (1=3) @@l 0= @
675 —9(2) "+ (5675 + 35 — 12

= (b-a) 18(s2 + 35 + 2)

1 (@) + [ ()]

which completes the proof. O

Therefore, we can deduce the following result.

Corollary 5.2.3. Let f : I C R, — R, be differentiable function o° anda,b € I

witha < b. If | f'| is convex orja, b], then the following inequality holds:

sl () <1 }——/f -

= 1" @)+ 1/ ®)]. (5.2.3)

Applying Holder inequality on the previous theorem, a similar resudimbodied

in the following theorem:

Theorem 5.2.4.Let f : I C R, — R, be differentiable function o° anda,b € I

with a < b. If |f/|/®~Y is s-convex or{a, b], for some fixed € (0,1] andp > 1, then
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the following inequality holds:

‘é {f(a)+4f (QTH’) +f(b)} —ﬁ/abf(:v)dx

1+2p+1 1/P 1 , g

(r(3)

la+b\ |\
"))

q 1/q
+]f’(b)]q) ] (5.2.4)

1 1 _
Where,z—v +,= 1.

Proof. From Lemma 5.2.1, and singéis s-convex, we have

o () r0] -5 i@
/Ols(t)f’(tb—l—(l—t)a)dt‘

oo [
+<b—a)/l/12

IN

(b—a)

IN

(t—é)'|f’(tb+(1—t)a)\dt

(t—%>’|f’(tb+(1—t)a)|dt

(b—a) (/01/2 <t—é) pdt)l/p (/01/2|f’(tb+(1—t)a)|th>
+(b—a) (/1/12 (t—g) pdt>1/p( 1/12|f’(tb+(1—t)a)]th>l/q
= (b—a) (/01/6 (é—t)pdt+/1:;2 (t—é)pdt>l/p

12 1/
x(/o |f’(tb—|—(1—t)a)|th>
+(b—a) </1;/6 (g—t>pdt+/5:6 <t—%)pdt>

X ( 1 ]f’(tb+(1—t)a)]th)1/q.

1/2

1/q

IN

1/p

Sincef is s—convex by (2.3.23), we have

@)+ | (<82)]

5.25
s+1 ( )

1/2
/ (bt (1— o) dt <
0
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and

/1 1f (tb+ (1 —t)a)|dt < 7 (GTH))}J; i (b)lq. (5.2.6)
1/2 S

Therefore, by (5.2.5) and (5.2.6), we get

'é{f(a)+4f(a;b)+f(b)]—bia/abf(x)dl’
< b-a) (%)/ﬁ [(If’ @+ (450
i

()] +ror) 1/1

which completes the proof. O

Q) 1/q

Corollary 5.2.5. Let f : I € R — R be differentiable mapping off anda,b € I

with a < b. If |f/[”/*~" is convex ora, b], for some fixegp > 1, then the following
inequality holds:

‘é @ (50) + £ —bia/abf@)das

<271 (b a) (Glﬁ(—;il))/ l(\f’ ()] +

(e

la+b\ |\
(7))

q 1/q
s W) ] . (527)

1 1 _
Where,:; +,= 1.

Our next result gives another refinement for the Simpsoequality:

Theorem 5.2.6.Letf : I C R, — R, be differentiable mapping off anda,b € I

with a < b. If | f'|? is s-convex ora, b], for some fixed € (0,1] andg > 1, then the
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following inequality holds:

bl a(c52)s0] -t 1o
(b—a) 5\

= [216 (s? +33+2)] (72)
AE™) @277) +3s(27) +327) [ 1/ O
+[5°2379217 — 65 (27°) — 21 (27°) + 65 — 24] |/ (a)|)"*
+([(37) 27) +3s(277) +327) [ 1 (@)

[543t~ 6s (27) — 21 (27%) + 65— 24] [/ (1)) '} (5.2.8)

Proof. From Lemma 5.2.1, and singeis s-convex, we have

bl (52) 0] 2 e

< G-al[ o rwra-nou

< w-af” (1 ——)‘|f (th+ (1~ 1) o) dr
>/ (e=3)|ir@+a-nala

<

</ ’t—— dt) (/0 <t6)f’(tb+<1t>a>th>l/q
+ (b~ )(/ (t—g) )Uq(/1:2’(15_2>'\f’(tb+(1—t)a)\qczt>l/q.

Since|f'|? is s-convex therefore, we have

[16-3

lf (tb+ (1 —t)a)|*dt

: /0 : (é ‘t> (17 O + (1= |f (a)]") dt
+/// (t=5) @1r @+ -1 @)

_ 3@ +3s(217 )+3(2*S)| ()
B 36 (s + 35+ 2) /
|53 65 (27) —21(27) 465 — 24

36 (s2 + 35+ 2)

[/ (@) (5.2.9)
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and

1
I,

(t—%>'|f’(tb+(1—t)a)|th

< [T G- eirora-pirene

/2
! 5 S / q S /! q
[ (=3) e orea-yirwr
@ a3
36 (s2 435+ 2)
552375215 — G5 (27%) — 21 (27°) + 65 — 24
* 36 (s2 + 35+ 2)

1/2 1 1
fo|(=8)]a=]
0 6 1/2

Combination of (5.2.9), (5.2.10) and (5.2.11), gives theunegl result which completes

[ (®)|" (5.2.10)

Also, we note that

) )
- = = —. 211
(1= )= (5.2.11)

the proof. O

Corollary 5.2.7. Let f be as in Theorem 5.2.6, let= 1, therefore the inequality holds

for convex functions:

e (552) 0] [

_a 1-1/q 1/q
< % (75_2> (@917 @) +611f (@)]")"

+(61]f ()] +29f (a)|‘Z)1/"} (5.2.12)

Moreover, if| f' (z)| < M, Vx € I, then we have

o () rm] - [ rwa] < 2050 s2ay

Remark 5.2.8. We note that, the inequality (5.2.13) with= 1 gives an improvement
for the inequality (2.3.42).

Therefore, we can give the following refinements for (5.2a8)follows:



119

Corollary 5.2.9. Let f as in Theorem 5.2.6, then the following inequality holds:
1 a+b 1
slr@rar () i) -5 [T

(b—a) 5\, ,
: [216 (s2 + 35 + 2)] /¢ (5) P17 0D
{1(37°) (2"°) +3s (2' %) + 3 (277)] "/
) —2

+ [554-23—321—3 — 6s (2—3 1 (2—3) + 65 — 24]1/q} (5214)

Moreover, ifs = 1, we have

‘% {f(a)+4f (a;b>+f(b)} —bia/abf(w)dx

5 (1668)"/ (1 ,
< (s (6180)7" (b —a)(If' (a)|+]f (B)]) (5.2.15)

Proof. We consider the inequality (5.2.8), for> 1, ¢ = p/(p — 1). Let
ap = [(37°) (2'7%) + 35 (2'7°) + 3(27°)] 1/ (B)I,
by = [5"+237°217° — 65 (27°) — 21 (27°) + 65 — 24] | /' (a)|",
az = [(37%) (2'7°) + 35 (2'7°) + 3 27)] [ (a)I",
andb, = [5572375217% — 65 (27%) — 21 (27%) + 65 — 24] | (b)|"

Here,0 < 1/q < 1, for ¢ > 1. Using the fact

n

Z (a; +b;)" <Za —i—Zb

i=1

for0 <r < 1,ay,as,...,a, > 0andby, by, ...,b, > 0, (in our caser = 2), we obtain

]% {f<a> if (a;b) +f<b>} —b%a/abﬂx)dx

(b—a) (%)11/q {[(3_5) (21—5) 13 (21—5) 13 (2—5)]1/q

T [216/(s2 + 3s + 2)]"*
+ [5°7237521 7 — 65 (27°) — 21 (27°) + 65 — 24]1/9}

< (I (@) + 1 ()
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which completes the proof. O

The next result, gives an inequality of Simpson’s type faraave functions.

Theorem 5.2.10.Let f : I C R, — R, be differentiable function o° anda,b € I
with a < b. If |f'|* is concave orla,b], for some fixed; > 1, then the following

inequality holds:

o () r0) - [ @
S5(6—@) [f,<296;)61a)‘+ f,<61b—|—29a)H‘ (5.2.16)

72 90
Proof. From Lemma 5.2.1, we have

'é {f(a)”f (%b) +f<b>} —bia/abf@)d:c

/Olp(t)f’(thr(l—t)a)dt‘
g(b—a)/om <t—%)‘|f’(tb+(1—t)a)|dt

+(b—a)/1/12

We note that by concavity df"’|? and the power-mean inequality, we have

< (b—a)

(t—%)‘|f’(tb+(1—t)a)|dt.

[ (ex+ (1 =a)y)* = a|f (@)]"+ (L= a) |f )"

Hence,

[ (x4 (1=a)y)| Z a|f' ()] + (1 =) [f ()]

so,|f'| is also concave.

Accordingly, by the Jensen integral inequality, we have

1/2
/

frtb+ (1 —t)a)dt

1/2 1
< / t——‘dt
0 6

1
f— =
6

/ (f&” [t — L[ tb+ (1 —t)a] dt>

f01/2 ‘t - %‘ dt

_5
72

, {290+ 61la
p(Be00) o
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and

1
/.

)
t— 2

f(th+ (1 —t)a)dt
f<ﬁkﬁ—aﬁhu1—w@ﬁ>
Sy |t =3l dt
> f(g&iﬁﬁ

< ([, -)
- = - )'.(521&

A combination of the above numbered inequalities gives ¢iselt, that is

‘é [f(a)+4f (“;b) +f<b>} —ﬁ/jf(w)dm
f,(61b;)29a>ul

5(b—a) |, /29 +6la
< ()|

which completes the proof. O

Another result is considered as follows:

Theorem 5.2.11.Let f : I C R, — R, be differentiable function oi° anda,b € I
with a < b. If |f'|? is concave ora,b], for some fixed; > 1, then the following

inequality holds:
o () r0] - [ rww
<o-a(g) (7 “) Jr ()]

Proof. From Lemma 5.2.1, we have
‘é[f(a)%f(“;b)w }

o

< o-af |
+(b—a)/1/2

Using Holder inequality, fory > 1 andp = q_il we obtain

- a) //
< @—a)(AUQ

, b+ 3a
f< 1 )H (5.2.19)

/f

t—%wf@h+ﬂ—ﬂaﬂﬁ

t—gwfun+u—ﬂanﬁ

t—%“f@h+ﬂ—ﬂaﬂﬁ

q_ldt>q_1 (/1/2|f’(tb+ (1 —t)a)|th>

t 1 1/q
6
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and

(b—a)/1/12
< (b-a) </1/12

It is easy to check that
q
1

1/2 ! 5| 1 —1 g—1
/ dt:/ t— 2" ar = qu(q )(24 +1)
0 1/2 6 6a-1 2 —1

Since| f’|? is concave orfa, b] we can use the integral Jensen’s inequality to obtain

t—%‘]f’(tb+(1—t)a)|dt

b}
t— =

" T 1 . 1/q
i dt) </1/2|f(tb+(1—t)a)\dt> :

1
t— =
6

1/2 1/2
/ \f’(tb+(1—t)a)yth:/ tO1f (tb+ (1 —t)a)|"dt
0 0

1/2 U2 (th+ (1 —t)a)dt |’
0 /
(47 e ()

f (2 /01/2 (th+ (1—1)a) dt)
, (b+3a) ¢
4

3b+a
o (5]

1 q

2

Analogously,

/\f (tb+ (1 —t)a)|"dt <

1/2

Combining all obtained inequalities we get

il (50) s 0] 10
L (1) () () I () ()
<o (524) () (55 ()]

which completes the proof. O

Theorem 5.2.12.Let f : I C [0,00) — R be differentiable function of® anda,b € 1

with a < b. If |f'|? is s—concave orfa, b], for some fixed € (0, 1] andg > 1, then the
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following inequality holds:
1 a—+b
s () 0] - [ e
_ 1 qg—1
§(b—a)2(5 1)/q 21( )(2(1 +1)
o \20 -1

X {f’ (3aj b>’+ ’(az?’b)H . (5.2.20)

Proof. We proceed similarly as in the proof of Theorem 5.2.11, bpgi§2.3.23) instead

of the Jensen’s integral inequality for concave functidfw. | f'| s—concave, we have
3a+b\|?
/
r(%57)
,(a+3b\|*
(=)

Y

1/2
/ If b+ (1 —t)a)|"dt <2°7*
0

and

Y

1
/ If (tb+ (1 —t)a)|"dt <2°*
1/2

so that,
s lr@rar(“5) v }——/f
<02 (52) (7 o) o () o (50) ]

which completes the proof. O

5.3 INEQUALITIES OF SIMPSON’S TYPE FOR QUASI-CONVEX FUNCTIONS

In order to prove our main theorems, we need the followingheam

Lemma5.3.1.Let /' : I C R — R be a absolutely continuous mapping Shwhere

a,b € I with a < b. Then the following equality holds:

bia/abf(w)dw—% [f( ) +4f (Hb)w(b)}

:(b—a)2/0 p(t) f"(tb+ (1 —t)a)dt (5.3.1)

where,
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Proof. We note that

I:/Olp(t)f//(tb+(1—t)a)dt = %/01/215(375—l)f"(thr(l—t)a)dt
1 [ "
+6/1/2(t—1)(3t—2)f (th+ (1 —t)a) d.

Integrating by parts, we get
1/2

frtb+(1—t)a)

1/2_ {_t+1(3t—1)} fb+(1—t)a)

1
I=—-t3t-1
Bt =1)

b—a 0 2 6 (b—a)? o
V2 f(tb+(1—1t)a) 1 frtb+1—ta)
0 oy dt+ = (t—1) (3t - 2) - y
1 1 ftb+ 1 —-t)a)| Lftb+(1—1)a)
- {5 (t—1)+6(3t—2)} b—ay 1/2+ o b—ay dt

() () 1 f( V2t +(1—1)a)

T2 b—a _§(b_a)2_6(b_a)2+/0 (b— a)? dt
LS p(s) 1) (-t
6(b—a)? 24 b-a 30b-a Jip (b—a)

S /Olf(tbm_t)a)dt_ﬁ o+ ().

Settingz = tb + (1 — t) a, anddx = (b — a)dt, gives

-0 1=t [ g @ (5 0],

which gives the desired representation (5.3.1).

The next theorem gives a new refinement of the Simpson’s aligufor
guasi-convex functions.

Theorem 5.3.2.Let f' : I C R — R be an absolutely continuous function éhand

a,b € I witha < b. If | f"| is quasi-convex ofu, b], for some fixed € (0, 1], then the

following inequality holds:

L[ @ g [r@ s (S0) + )

b—a
(b—a)’
162

<

VACINCER
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Proof. By Lemma 5.3.1 and sind¢”| is quasi-convex, then we have

]é @ (50) 41 0) —bia/abf@dx
(b—a)’
6

<

1
/2t|3t—1Hf”(tb+(1—t)a)]dt

(b—a)’
6

1
/1|t—1||3t—2||f”(tb+(1—t)a)|dt
2

f”<a;b>'} (/Oét(1—3t)dt+ﬁ t(3t—1)dt>
(%5 ol (/ (1-1) (2~ 31)di

+/§1(1—t)(3t—2)dt>

2

(0} o () o)

which completes the proof. O

N =

(b_CL)z "
< O3 {11 @,

L0 _6a)2 -max{

< Lt T {15 @,

Corollary 5.3.3. In Theorem 5.3.2, Additionally, if

1. |f"] is increasing, then we have

’é {f(a)+4f (a;b)Jrf(b)} _bia/abf@)dx

<lot M (0o 639

2. |f”| is decreasing, then we have

o () r0] - [ o
(b—a)’ 1% (‘“2”’) H . (6.34)

162
As a special case, we refine the following midpoint type irsdiy for

<

[ @i

guasi-convex functions:
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Corollary 5.3.4. In Theorem 5.3.2, Additionally, if (a) = f (“t2) = f(b), then we

have,
1 b a+b
=IRCLIC S|
b—a)? a+b a+b
< gt fmax{i @ [ (52 |+ max{ | (%5 1 o}
(5.3.5)
For instance, forM > 0, if | f” (x)| < M, for all z € [a, b], then we have
1 b a+b (b—a)?
m/ﬂf{x}dm—f( 5 )‘g a1 M. (5.3.6)

The corresponding version for powers of the absolute valfuéhe second
derivative is incorporated in the following result:
Theorem 5.3.5.Let f' : I C R — R be an absolutely continuous function éhand

a,b € I'witha < b. If | f//|”*~Y is quasi-convex ofu, b], for some fixegh > 1, then the

following inequality holds:

‘é @ (50) £ —bia/abf@)das

43" +3(2) " (p— 1)) b
12 (2+ 3p + p?)

(b—a)’

<
- 6

: (3_p_lﬁ(p +1,p+ 1)+

/(1) 5
[<max{ g (—;b) BRNTE (b)\p“’"”})
p/(p—1) =
+ (mx{ /" (— 7 b) A1 <a>|”“”‘”}>

for p > 1, where, wherej(x, y) is the Beta function of Euler type.

(5.3.7)

|

Proof. From Lemma 5.3.1, and singeis quasi-convex, we have

‘1 {f(a)+4f (a+b> +f(b)] —bia/abf(w)dw

6 2
(b-a? [3
< /Oty3t_1||f (th+ (1 —t)a)|dt
(b—a)2 ! "
g /%]t—lHi%t—QHf (tb+ (1 —t)a)|dt
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< “"6“)2 (/02 (]3¢ pdt) (/ b+ (1= 1) )th)
“"‘”2 (/ll(y 1\|3t—2]pdt> (/ P (b + (1 — 1) )|th)
3#’ pdt+/12tp(3t1)pdt)

3

( |f” tb+ (1 —1) )th)

1
1

(1—1) 2—3t)pdt+/

3

[\

(1—1¢)" (3t —2)" dt)

X (/1 |f”(tb+(1—t)a)|th)q

Sincef is quasi-convex, we have

1/2
/ lf" (tb+ (1 —t)a)|"dt < max{
0

1 (a)\‘I}7 (5.3.8)

and

1

s (a+b\|?
(45

I (a + b) 1

1/2 2

Therefore,

’é [f(a)+4f (a;b) +f(b)] —bia/abf(:v)dx

< (b_6a)2 : (3‘p‘1ﬁ(p+ Lp+1)+ 18) "+3@) " 1>)

12(2+3p+p?)
p/(p-1) 5
[(max{ " <aT+b> , ’f// (b)|p/(p—1)}>
+ (max{

b\ /@D N\
() e ’}) ] ,

for p > 1, where we have used the fact that
3 1
/ (1 —3t)" dt —/2 (1=t (Bt —2)Pdt=3""8(p+1,p+1),
0

3

" (tb+ (1 —t)a)|*dt < max{

1 <b>rq}. (5.3.9)

S
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and
1 2
: 3 4(3)7+3@2) (1)
p -1 p — 1— p 2 _ p —
/% tP (3t — 1) dt /% (1—¢t)"(2—-3t)"dt 122+ 3p 1 ) ,
for details see Gradshteyn and Ryzhik (2007), which complie proof. O

Corollary 5.3.6. Let f be as in Theorem 5.3.5. Additionally, if

1. |f'| is increasing, then we have

E[f“*“”(ggé)+f@ﬂ—bia[fﬂwdx

(b—a)’
6

M@W+wmﬂ@—w>i
12 (2 + 3p + p?)

f (“ b) ‘ +|f (b)|) . (5.3.10)

< -(3plﬂ(p+1,p+1)+

“(
2. |f'| is decreasing, then we have

’é {f(“)“f (a;b) +f(b>} —bia/abf(:c)dx

(b—a)’
6

2

uaw+wmw@—m>%
12(2+43p+p?)

7 (“"2”’) D . (5:3.11)

Another refinement for the Midpoint inequality via quasihgex functions may

<

: (3_p_1ﬁ(p +1p+1)+

< (17 @1+

be stated as follows:

Corollary 5.3.7. In Theorem 5.3.5, Additionally, if (a) = f (%t2) = f(b), then we

have,

ﬁ/ﬂbﬂx)daz—f(“;b)‘

(b= a)*
6

uap+wmp@—n>%
12(2+ 3p + p?)

, o
p/(p—1) |f” (b)|p/(p—1)}>

,(a+b g
()

p/(p—1) o
Jf”@ﬂ”@_”}> ].(5312)

<

- (3""16(19 +Lp+1)+
({9
(]
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A generalization of (5.3.2) is given in the following theore

Theorem 5.3.8.Let f' : I C R — R be an absolutely continuous function éhand
a,b € IT'witha < b. If | f'|? is quasi-convex ofu, b], ¢ > 1, then the following inequality
holds:

‘é {f(a)+4f (a;rb> +f(b)] - bia/abf@)dx
<t [(mX{ (=D ror))
+ (max{ f! <GT+b> T (a)lq});] . (5.3.13)

Proof. From Lemma 5.3.1, and singeis quasi-convex, we have

‘% {f(a)+4f <a42rb>+f(b)] _bia/abf(x)dx

1
(b—a)2 2 "
<= /Ot|3t—1||f (th+ (1 —t)a)|dt
(b—a)2 ! "
+ 2o /%|t—1||3t—2||f (th+ (1 —t) )| dt

A

1

g(b;a) (/02t3t1dt) (/02t|3t1f”(tb+(1t)a)|th)
b 2 1 1‘%
. _6a) (/1 |t—1||3t—1|dt)
><<[|t—1|\3t—1\yf”(tb+(1—t)a)\th>q
2
_-ap . AR
-0 (/0 " 3t)dt+/%t(3t 1)dt>
x(/2t|3t1f”(tb—|—(1t)a)th)
0

Wl
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1

+ (b%a)z (ﬁ (1t)(23t)dt+/21(1t><3f2)dt)

2 3

xu ]t—l\\3t—2|]f”(tb+(1—t)a)|th>q

Sincef is quasi-convex, we have

1
/2t|3t—1||f”(tb+(1—t)a)|th
0

1 L (a+b\|"
= ﬁmax{ ( 5 ) Af (a)|q} (5.3.14)
and
1
/ [t — 1|13t = 2||f' (tb+ (1 —t) a)|’ dt
1/2
1 (a+b\|"
= ﬁmax{ ( 5 ) N f (b)\q} (5.3.15)
where, we used the fact
1/2 1 1
/ t]3t—1|dt:/ |t —1||3t — 2| dt = (5.3.16)
0 1/2 27

Combination of (5.3.14), (5.3.15) and (5.3.16), gives thqumed result which

completes the proof. O

Corollary 5.3.9. Let f be as in Theorem 5.3.8. Additionally, if

1. |f'| is increasing, then (5.3.3) holds.

2. |f’| is decreasing, then (5.3.4) holds.

Proof. It follows directly by Theorem 5.3.8. ]

Corollary 5.3.10. In Theorem 5.3.8, Additionally, if (a) = f (%2) = f (b), then we

L (1)

- (b a)” ,{max{w( (“*b) } (5.3.17)

162
(S0 o]

—|—max{
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Remark 5.3.11. For

4<3>—”+3<2>—p<p—1>)%7 .

h(p) = (3""1ﬁ (p+1p+1)+

12(2 + 3p + p?)
we have
1
li =
Jim b (p) = 5,
using the fact that

; (CLZ' + bz>r S ia; + ib:,
i=1 =1 =1

for0 <r <1,ay,as,..,a, > 0andb,bs,...,b, > 0, we obtain

1 1 1
_ _l l 4_ -1 - 2 —1 _1 -
lim A (p) < lim 3 v 3p (p+1,p+1)+ lim r(3) 1+3p( ) (p : )P

1 1
=g lm gr(p+1p+1)+1,

p—00

also, Stirling’s approximation gives the asymptotic folanu

1 1
xmfiyyfi
By = Vor———,
(z+y)"2
limﬁp(p+1,p+1)%“\/27rhm(p+—)3:lirn Y ”3 - =0,
e TR 2p+ )T TR (@7 (p+1)?

so that,lim h (p) — 1, thereforeh(p) satisfies

p—00

1
— < < 1.
27_h(p)_1

Therefore, since
h(p) <162, Vp > 1,

then we observe that the inequality (5.3.13) is better thanrtbquality (5.3.7) meaning
that the approach via power mean inequality is a better apginaan the one through

Holder’s inequality.
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5.4 INEQUALITIES OF SIMPSON'S TYPE FOR R-CONVEX FUNCTIONS

The next theorem gives a new refinement for the Simpson’suiléy via r-convex

functions.

Theorem 5.4.1.Let f : I C R — R, be differentiable function of° anda,b € I
with a < b. If |f/|/®V is r-convex ora, b], for some fixegh > 1, then the following

inequality holds:

‘é {f(a)+4f (a;b) +f(b)} —ﬁ/jﬂx)dm
< (b—a) (6;?(—%) " {(L { f (a : b) v I (b),p/@—n}) 5
+<Lr{f'(a;b) v

(5.4.1)

p/(p=1) »
@

where,p > 1, and L, is the generalized log-mean.

|

Proof. From Lemma 5.2.1, and singéis r-convex, we have

\é [f<a>+4f (;b) +f<b>} —ﬁ/abf@)dx

/Olp(t)f’(thr(l—t)a)dt‘

<b—a>/01/2
+(b—a)/1/12

IN

(b—a)

IN

(t—é>'|f'(tb+(1—t)a)|dt

(t—%)‘|f’(tb+(1—t)a)|dt

(b—a) (/01/2 <t—é) pdt>1/p (/OI/Qf’(thr(lt)a)th)l/q
+(b—a) </1/12 (t—g) pdt>1/p (/1:2|f’(tb+(1—t)a)yth>l/q
= (b—a) (/01/6 (%—t)pdwr/l:f <té)pdt>l/p

IN




« (/01/2|f’ (tb+(1t)a)th)1/q
+(b—a) (/1/5:6 (%—t)pdt+/5/l6 (tZ)pdt>l/p

« (/1/12|f’(tb—|—(1—t)a)|th)1/q.

Sincef is r-convex by (2.3.30), we have

[Firesa-nora o]y ()] rar}.
and

[ rwsa-naras | (S50 o}
Therefore,

‘é[f() 4f( +b)+f(b)]—bia/abf(x)dx
co-nl) (e
+<Lr{ '(“;Fb)

(p—1)
7 (®) |”/<“’}

p/(p—1)
£ (@

where,L, (-, -) is the generalized log-mean, which completes the proof.
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(5.4.2)

(5.4.3)

p—1
P

p

|

O

Corollary 5.4.2. Let f : I C R — R, be differentiable function oi° anda,b € I

with a < b. If | f/[”/*~") is log-convex orfa, b], for some fixegh > 1, then the following

inequality holds:

Sl () o) —bia/abfwx
co-nlr) [ e
+<L{ 7 (a;b>

where,p > 1 and L(-, -) is the log-mean.

71 X
(p—1) |p/p 3 })
p/(p—1)

| ( )’P/(P 1)})

] |
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Proof. In the proof of Theorem 4.5.1, using (2.3.29) instead of .@0R therefore, the
result holds. O

Theorem 5.4.3.Letf : I C R — R, be differentiable function of° anda, b € I with

a < b. If | f'| isr-convex ona, b], r > 1, then the following inequality holds:

s () sro| - [ rwa

b-a) |" (T (6)7% —27(2)7F r — 5dr + 125 (5)7 (6) 7" + 18)
- |/ (0)]
108 (6r2 +5r +1)

2 <—1627" + 18 4 325r (5)% (6)_% +25 (5)% (6)_%>

(6r3 + 1172 +6r + 1)

_|_

e (17r (6)7% +5 (6)7% — 135r (2)’% — 97 (2)%)

(6r% + 1172 + 67 + 1) Fale 644

+

Proof. From Lemma 5.2.1, and singeis r-convex ¢ > 1), we have

o () +r0] - [ rww

<t-o| [ p0rw+a-nou

g(b—co/om (t—é)'|f’(tb+(1—t)a)|dt
<b—a>/1

(t——)' PO+ =01 @) dr
( 2| el or a0l @ a

( __)'|f (th+ (1—t)a)|dt

S(b—a)

b—a

Using the fact thad_ (a; + b;)* < S aF + S 0k for0 < k < 1, ay, as, ..., a, > 0 and
=1 =1

=1
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by, b, ..., b, > 0, we obtain

‘%{f(aﬂzlf(c‘;b)w } b_&/f
<[ [ |(e=3) e or +a-oir@rya
b—at/ (1=3)|Ciror+a-oir @) a

(-3 (o o7 @) a
b—a[l(t D (Frir o7y @) a

(b—a) r (7’ (6) r —=27(2) rr
108 62+ 5r + 1)

S(b—a)

1
T

1 1
— B4r + 1257 (5)7 (6) T + 18)
|

/(0]

72 (—1627‘ + 18 + 325r (5)% (6)_% +25 (5)% (6)_%)

* (6r3 + 1172 + 61 + 1)

1
"

+

r? (17r (6)_% +5(6) " — 1357 (2)_% — 27 (2)_%)
(6r3 4+ 11r2 +6r + 1) | ()l

Y

which gives the required result and the proof is complete. O

Corollary 5.4.4. In Theorem 5.4.3, choose= 1, the result holds for convex functions,

ie.,

sl (552) s r0] 25 [ s
_ (-
- 7776

(R1L[f" ()] + 329" (B)]) -

5.5 APPLICATIONS TO SIMPSON’S FORMULA

Let P be a division or partition of the intervéd, b], i.e.,.d : a = 90 < 71 < ... <

Tp_1 < Tp = b, hy = (x;41 — x;)/2 and consider the Simpson’s formula

)_.

n—

f (i) +4f (v + hy) + f (wig1)

Su(F.P) = :

(Tip1 — x4). (5.5.1)

I
o
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It is well known that if the mapping : [a,b] — R, is differentiable such that® (z)

exists on(a, b) and K = mex, | f® (z)| < oo, then
3:6 a

1= / f (FP)+ ES (F.P), (55.2)

where the approximation errdc? (f, P) of the integrall by the Simpson’s formula

Sy, (f, P) satisfies

,_.

n—

K
90

7

|E; (f,P)] < (wis1 — @)’ (5.5.3)

I\
o

In the classical Simpson’s rule (5.5.2), It is clear thathi tmappingf is not fourth
differentiable or the fourth derivative is not bounded (@anb), then (5.5.2) cannot be
applied. In this section, we derive some new error estimatethe Simpson’s rule in

terms of first and second derivatives.

Proposition 5.5.1.Let f : I € R — R be differentiable mapping of° such that
f' € Lla,b], wherea,b € I witha < b. If |f'| is convex orja, b, then in (5.5.2), for

every divisiornd of [a, b], the following holds:

H

n—

5

B (5P < 5 > @i — ) [If ()] + 1F (i)

I§
o

[

Proof. Applying Corollary 5.2.3 on the subintervals;, z;.1], (i = 0,1,...,n — 1) of
the divisionP, we get

Ti+1

Lg_%)(f(xi)vulf <%)+JC(%+1))_ /f(x)dx

T
b ($i+1 - Iz‘)s

<
N 72

1 ()l + 1 ()]

Summing over from 0 to n—1 and taking into account thaf’| is s—convex, we deduce,

by the triangle inequality, that

L(f,P) - /f

which completes the proof. O

2| < (xz'+1 =)’ [|f (@)l + 1 f (zisn) ).
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Proposition 5.5.2.Let /' : I € R — R be differentiable mapping of° such that
f’ € La,b], wherea,b € I witha < b. If |f’|*is concave offu, b], for some fixeq > 1,

then in (5.5.2), for every divisioR of [a, b], the following holds:

29z,.1 + 61z, 61lx;.1 + 29z;
/ i+1 i / i+1 7
" )| =l () )

90
Proof. The proof can be done similar to that of Proposition 5.5.1u#sidg the proof of

Theorem 5.2.10. O

n—1

|ES (f.d)] < %Z(%H — ;) {
=0

Proposition 5.5.3.Let /' : I C R — R be an absolutely continuous mapping th
such thatf” € La, b], wherea,b € I witha < b. If |f”| is quasi-convex ofu, b}, then
in (5.5.2), for every divisior® of [a, b], the following holds:

b

B (.P)| =[S (5. - [ F @)

a

n—1

1

f! (%)’7”%5@#1)’}

(=) ]

Proof. The proof can be done similar to that of Proposition 5.5.1u#sidg the proof of

Theorem 5.3.2. O

Proposition 5.5.4.Let f : I € R — R be differentiable mapping of° such that
f' € Lla,b], wherea,b € I witha < b. If |f'| is convex orja, b, then in (5.5.2), for
every divisionP of [a, b], the following holds:

n—1

D (@i — @) UL f ()] + 239 [ f (i)

1=0

1

S [
B (£, P)] < ——

Proof. The proof can be done similar to that of Proposition 5.5.1u#sidg the proof of

Theorem 5.4.4. O
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5.6 APPLICATIONS TO SPECIAL MEANS

Lets € (0, 1] andu, v, w € R. We define a functiotf : [0,00) — [0, 00) as

vt +w, t > 0.

If v > 0and0 < w < u, thenf € K2 (see Example (2.2.17)). Hence, for= w = 0,

v =1, we havef : [a,b] — [0,00), f (t) =t°, f € K2

In the following some new inequalities are derived for thexabmeans.

1. Considerf : [a,b] — R, (0 < a < b), f(z) = 2% s € (0,1]. Then,

b
1
e [ f@dr = Lia).

fla) + f(b)
2

f(a;_b>:As(a,b).

(a) Using the inequality (5.2.2), we get

= A(a®,b%),

SA,B) + A% a,) — L3 (a1

67 —9(2)° 4 (567" + 35 — 12

<s(b—-
ss(b-a) 18 (52 +3s +2)

|:|a|871 + |b|871:| )

For instance, it = 1 then we get

5}
[Ala,b) = L(a.b)] < = (b—a).

(b) Using the inequality (5.2.4), we get

1 2
‘gA (a®,0°) + gAS (a,b) — L3 (a, b)‘

14 2vH \P S . . 1/
<(b—a) (6p+1 <p+1)) (S_H)l/q [(]a 1|q+ \A 1(@,6)\‘1) q

FAT @) )
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where,p > 1 and; + ¢ = 1. For instance, it = 1 then we get

- 1+2p+1 1/p
|A(a,b) = L(a,b)| <27V (b —a) (m) P> L

2. Considerf : [a,b] C (0,00) — R, (0 < a <), f(z) = & € K? (by Theorem

2.2.20),s € (0,1]. Then,

b
1
b_a/f(x)da::Ls_s(a,b),

a b
F@10) _ ()

f(a;b):As(a,b).

(a) Using the inequality (5.2.2), we get

1 2
‘gA (a=,b7°) + gA’S (a,b) — L?  (a, b)‘

675 —9(2)  + (5675 + 35 — 12
18 (s2 +3s +2)

<s(b—a) [lal =" + o771

For instance, it = 1 then we get
| N S ) 2 2
§A (ah071) + gA (a,b) — L_y (a,b)| < ™ (b—a)[la| "+ 6] "]

(b) Using the inequality (5.2.4), we get

AL+ A7 ) - 1 )
14 9vt1 N\ /P S _s—1]4 —s—1 a\1/q
<0-0 (gGaprn) oy e T+l @l

+ (‘Afsq (a, b)}q 4 ‘bfsfl}Q)l/Q} 7

where,p > 1 and% + % = 1. For instance, it = 1 then we get

‘%A (a7 071 + %A_l (a,b) — L_4 (a, b)’
14920t \YP 1 —21q —2 a\1/q
<6-0 (Gpyn) g (14 @)

+(|A72 (a,b)|" + }b‘Q\q)l/q] L p> 1.
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5.7 SUMMARY AND CONCLUSION

In the presented chapter, Simpson’s type inequalities dowex, concaves-convex
(concave), quasi-convex;convex and log-convex mappings in terms of at most second
derivative are established. In fact, the approaches cereddhere using convexities
are considered for the first time. In the sections 5.2-5& attproaches that used are

summed by writing the difference

‘é [f(a)+4f (“;b)ﬂ(b)} —bia/abﬂw)dw

1
in terms of [ p(¢) /' (ta + (1 — ) b) dt, wherep (¢) is a suitable Peano kernel, after
0

that using the convexity condition dff’| we obtain the desirable results. Several
generalizations, refinements and improvements for thespanding version for powers
of these inequalities are considered by applying th@der and the power mean

inequalities.



CHAPTER VI
FURTHER RESEARCH

6.1 INEQUALITIES FOR CONVEX MAPPINGS

In 1976, a generalization of Ostrowski’s inequality fertimes differentiable mappings
was proved by Mitrinové et al. (1994) (see Chapter II). In special case, they prdwed t

following inequality regarding a twice differentiable nmpgs.

R ]b_a/f 4
TN

4

(b—a) 12 (b_;)Z

for all x € [a,b], such thatf” : (a,b) — R is bounded, i.e.||f"| . = sup |f" (¢)| <
t€la,b]
Q.

In Cheng (2001), considered this inequality for differeblga mappings.
Recently, a generalizations of Ostrowski type inequalityfémctions of Lipschitzian
type are established in Liu (2007b). In future, we will stullis inequality for convex

mappings.

In 2002, Guessab and Schmeisser, studied the companion tdWSki
inequality. Indeed, they have proved among others, theiatlg companion of

Ostrowski’s inequality:

f($)+f(2a+b—$) —/abf(t)dt' - [;_'_2(336_?) ] (b—a)M (6.1.2)
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foranyx € |a, “T“’], where, f is assumed to satisfies the Lipschitz condition on [a,b],

e, |f@t)—f(s)| < M|t —s| forallt,s € [a,b].

In Dragomir (2005), some companions of Ostrowski’'s integnaquality for
absolutely continuous functions. Also, in Dragomir (2002pme inequalities for
the this companion for mappings of bounded variation. Régemtiu (2009),
introduced some companions of an Ostrowski type integradjuality for functions
whose derivatives are absolutely continuous. In futureaesh, we will continue our

study to consider this inequality for convex type mappings.

6.2 INEQUALITIES FOR TWO OR MORE VARIABLES

Although important for applications, numerical integoatin two or more dimensions
is still a much less developed area than its one-dimensicoahterpart, which has
been worked on intensively. In the recent study Hanna (2008)find the author

introduce some important inequalities of Ostrowski's tyral used it to study some
cubature rules from a generalized Taylor perspective. @mther hand, for Ostrowski,
Hermite—Hadamard and Simpson inequalities the mapping&@for more variables

which is of bounded variation, Lipschitzian, absolutelynttouous and etc, have not
been discussed yet. For further researches we refer therremdnastassiou (1997),
Anastassiou (2002), Anastassiou and Goldstein (2007)starsiou (2007) and Hanna
(2009)

Finally, we recommend other researchers to go inside te tar develop these
and other types of inequalities and so that to reach a veeyasting applications in the

numerical integrations.
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