APPROXIMATING CSISZÁR f-DIVERGENCE VIA TWO INTEGRAL IDENTITIES AND APPLICATIONS

N.S. BARNETT, P. CERONE, S. S. DRAGOMIR, AND J. ROUMELIOTIS

Abstract

Some approximations of the Csiszár f-divergence via the use of the integral identities obtained in [8] and [9] and applications are given.

1. Introduction

One of the important issues in many applications of Probability Theory is finding an appropriate measure of distance (or difference or discrimination) between two probability distributions. A number of divergence measures for this purpose have been proposed and extensively studied by Jeffreys [23], Kullback and Leibler [32], Rényi [42], Havrda and Charvat [21], Kapur [26], Sharma and Mittal [15], Burbea and Rao [5], Rao [41], Lin [34], Csiszár [14], Ali and Silvey [1], Vajda [51], Shioya and Da-te [45] and others (see for example [26] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [37], genetics [39], finance, economics, and political science [47], [48], [43], biology [39], the analysis of contingency tables [20], approximation of probability distributions [27], [24], signal processing [25], [3] and pattern recognition [10], [53]. A number of these measures of distance are specific cases of Csiszár f-divergence and so further exploration of this concept will have a flow on effect to other measures of distance and to areas in which they are applied.

Assume that a set χ and the σ-finite measure μ are given. Consider the set of all probability densities on μ to be $\Omega:=\left\{p \mid p: \chi \rightarrow \mathbb{R}, p(x) \geq 0, \int_{\chi} p(x) d \mu(x)=1\right\}$. The Kullback-Leibler divergence [32] is well known among the information divergences. It is defined as:

$$
\begin{equation*}
D_{K L}(p, q):=\int_{\chi} p(x) \log \left[\frac{p(x)}{q(x)}\right] d \mu(x), \quad p, q \in \Omega \tag{1.1}
\end{equation*}
$$

where \log is to base 2 .
In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler divergence. These are the: variation distance D_{v}, Hellinger distance $D_{H}[22], \chi^{2}$-divergence $D_{\chi^{2}}$, α-divergence D_{α}, Bhattacharyya distance D_{B} [4], Harmonic distance $D_{H a}$, Jeffreys distance $D_{J}[23]$, triangular discrimination D_{Δ} [49], etc... They are defined as follows:

$$
\begin{equation*}
D_{v}(p, q):=\int_{\chi}|p(x)-q(x)| d \mu(x), \quad p, q \in \Omega \tag{1.2}
\end{equation*}
$$

[^0]\[

$$
\begin{gather*}
D_{H}(p, q):=\int_{\chi}[\sqrt{p(x)}-\sqrt{q(x)}]^{2} d \mu(x), p, q \in \Omega \tag{1.3}\\
D_{\chi^{2}}(p, q):=\int_{\chi} p(x)\left[\left(\frac{q(x)}{p(x)}\right)^{2}-1\right] d \mu(x), p, q \in \Omega \tag{1.4}\\
D_{\alpha}(p, q):=\frac{4}{1-\alpha^{2}}\left[1-\int_{\chi}[p(x)]^{\frac{1-\alpha}{2}}[q(x)]^{\frac{1+\alpha}{2}} d \mu(x)\right], p, q \in \Omega ; \tag{1.5}\\
D_{B}(p, q):=\int_{\chi} \sqrt{p(x) q(x)} d \mu(x), p, q \in \Omega \tag{1.6}\\
D_{H a}(p, q):=\int_{\chi} \frac{2 p(x) q(x)}{p(x)+q(x)} d \mu(x), p, q \in \Omega \tag{1.7}\\
D_{J}(p, q):=\int_{\chi}[p(x)-q(x)] \ln \left[\frac{p(x)}{q(x)}\right] d \mu(x), p, q \in \Omega \tag{1.8}\\
D_{\Delta}(p, q):=\int_{\chi} \frac{[p(x)-q(x)]^{2}}{p(x)+q(x)} d \mu(x), p, q \in \Omega . \tag{1.9}
\end{gather*}
$$
\]

For other divergence measures, see the paper [26] by Kapur or the book on line [46] by Taneja. For a comprehensive collection of preprints available on line, see the RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszár f-divergence is defined as follows [14]

$$
\begin{equation*}
I_{f}(p, q):=\int_{\chi} q(x) f\left[\frac{p(x)}{q(x)}\right] d \mu(x), \quad p, q \in \Omega \tag{1.10}
\end{equation*}
$$

where f is convex on $(0, \infty)$. It is assumed that $f(u)$ is zero and strictly convex at $u=1$. By appropriately defining this convex function, various divergences are derived. All the above distances (1.1) - (1.9), are particular instances of Csiszár f-divergence. There are also many others which are not in this class (see for example [26] or [46]). For the basic properties of Csiszár f-divergence see [12][16].

The main aim of this paper is to point out some representations of Csiszár f-divergence for the function which has the $(n-1)$-derivative $(n \geq 1)$ absolutely continuous by employing two recent integral identities from [8] and [9] involving interior point and end point identities. Estimates for the remainder are also provided.

2. Representation of Csiszár f-Divergence

In [8] (see also [6]), the authors proved the following integral identity generalising the mid-point rule.

Lemma 1. Let $g:[a, b] \rightarrow \mathbb{R}$ be a function such that $g^{(n-1)}$ is absolutely continuous. Then for all $x \in[a, b]$, we have the identity:

$$
\begin{align*}
\int_{a}^{b} g(t) d t= & \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(b-x)^{k+1}+(-1)^{k}(x-a)^{k+1}\right] g^{(k)}(x) \tag{2.1}\\
& +(-1)^{n} \int_{a}^{b} K_{n}(x, t) g^{(n)}(t) d t,
\end{align*}
$$

where the kernel $K_{n}:[a, b]^{2} \rightarrow \mathbb{R}$ is given by

$$
K_{n}(x, t):=\left\{\begin{array}{cl}
\frac{(t-a)^{n}}{n!}, & a \leq t \leq x \leq b \tag{2.2}\\
\frac{(t-b)^{n}}{n!}, & a \leq x<t \leq b
\end{array}\right.
$$

In particular, if $x=\frac{a+b}{2}$, then

$$
\begin{align*}
\int_{a}^{b} g(t) d t= & \sum_{k=0}^{n-1} \frac{1}{2^{k+1}}\left[\frac{1+(-1)^{k}}{(k+1)!}\right](b-a)^{k+1} g^{(k)}\left(\frac{a+b}{2}\right) \tag{2.3}\\
& +(-1)^{n} \int_{a}^{b} M_{n}(t) g^{(n)}(t) d t
\end{align*}
$$

where

$$
M_{n}(t):= \begin{cases}\frac{(t-a)^{n}}{n!}, & a \leq t \leq \frac{a+b}{2} \tag{2.4}\\ \frac{(t-b)^{n}}{n!}, & \frac{a+b}{2}<t \leq b\end{cases}
$$

Another integral identity generalising the trapezoid rule is embodied in the following lemma (see [9] or [7]).
Lemma 2. Let $g:[a, b] \rightarrow \mathbb{R}$ be as in Lemma 1. Then for all $x \in[a, b]$, we have the representation

$$
\begin{align*}
& \int_{a}^{b} g(t) d t \tag{2.5}\\
= & \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(x-a)^{k+1} g^{(k)}(a)+(-1)^{k}(b-x)^{k+1} g^{(k)}(b)\right] \\
& +\frac{1}{n!} \int_{a}^{b}(x-t)^{n} g^{(n)}(t) d t
\end{align*}
$$

In particular, if $x=\frac{a+b}{2}$, then

$$
\begin{align*}
\int_{a}^{b} g(t) d t= & \sum_{k=0}^{n-1} \frac{1}{2^{k+1}(k+1)!}(b-a)^{k+1}\left[g^{(k)}(a)+(-1)^{k} g^{(k)}(b)\right] \tag{2.6}\\
& +\frac{(-1)^{n}}{n!} \int_{a}^{b}\left(t-\frac{a+b}{2}\right)^{n} g^{(n)}(t) d t
\end{align*}
$$

Let us consider $x=(1-\lambda) a+\lambda b, \lambda \in[0,1]$, then from (2.1) we obtain

$$
\begin{align*}
& \int_{a}^{b} g(t) d t \tag{2.7}\\
= & \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(1-\lambda)^{k+1}+(-1)^{k} \lambda^{k+1}\right](b-a)^{k+1} g^{(k)}((1-\lambda) a+\lambda b) \\
& +(-1)^{n} \int_{a}^{b} K_{n}((1-\lambda) a+\lambda b, t) g^{(n)}(t) d t,
\end{align*}
$$

and from (2.5) we obtain

$$
\begin{align*}
& \int_{a}^{b} g(t) d t \tag{2.8}\\
= & \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[\lambda^{k+1} g^{(k)}(a)+(-1)^{k}(1-\lambda)^{k+1} g^{(k)}(b)\right](b-a)^{k+1} \\
& +\frac{1}{n!} \int_{a}^{b}[(1-\lambda) a+\lambda b-t]^{n} g^{(n)}(t) d t
\end{align*}
$$

We are now able to state and prove the following representation result for the Csiszár f-divergence.
Theorem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f^{(n)}$ is absolutely continuous on any $[a, b] \subset \mathbb{R}$. If $p, q \in \Omega$, then

$$
\begin{align*}
& I_{f}(p, q) \tag{2.9}\\
= & f(1)+\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(1-\lambda)^{k+1}+(-1)^{k} \lambda^{k+1}\right] \\
& \times I_{(\cdot-1)^{k+1} f^{(k+1)}[(1-\lambda)+\lambda \cdot]}(p, q)+(-1)^{n} \int_{\Gamma} q(x) \\
& \times\left(\int_{1}^{\frac{p(x)}{q(x)}} K_{n}\left[\frac{(1-\lambda) q(x)+\lambda p(x)}{q(x)}, t\right] f^{(n+1)}(t) d t\right) d \mu(x), \lambda \in[0,1]
\end{align*}
$$

and

$$
\begin{align*}
& I_{f}(p, q) \tag{2.10}\\
= & f(1)+\sum_{k=0}^{n-1} \frac{\lambda^{k+1}}{(k+1)!} f^{(k+1)}(1) D_{k}(p, q) \\
& +\sum_{k=0}^{n-1} \frac{(-1)^{k}(1-\lambda)^{k+1}}{(k+1)!} I_{(\cdot-1)^{k+1} f^{(k+1)}(\cdot)}(p, q)+\frac{1}{n!} \int_{\Gamma}[q(x)]^{-n+1} \\
& \times\left(\int_{1}^{\frac{p(x)}{q(x)}}[\lambda p(x)+[(1-\lambda)-t] q(x)]^{n} f^{(n+1)}(t) d t\right) d \mu(x)
\end{align*}
$$

where

$$
D_{k}(p, q)=\int_{\Gamma}[p(x)-q(x)]^{k}[q(x)]^{-k+1} d \mu(x)
$$

Proof. If we apply the identity (2.7) for f^{\prime}, we get

$$
\begin{align*}
f(b)= & f(a)+\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(1-\lambda)^{k+1}+(-1)^{k} \lambda^{k+1}\right] \tag{2.11}\\
& \times(b-a)^{k+1} f^{(k+1)}((1-\lambda) a+\lambda b) \\
& +(-1)^{n} \int_{a}^{b} K_{n}[(1-\lambda) a+\lambda b, t] f^{(n+1)}(t) d t .
\end{align*}
$$

If in (2.11) we choose $b=\frac{p(x)}{q(x)}, x \in \Gamma$ and $a=1$, we get

$$
\begin{align*}
& f\left(\frac{p(x)}{q(x)}\right) \tag{2.12}\\
= & f(1)+\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(1-\lambda)^{k+1}+(-1)^{k} \lambda^{k+1}\right] \\
& \times \frac{(p(x)-q(x))^{k+1}}{[q(x)]^{k+1}} \cdot f^{(k+1)}\left[\frac{(1-\lambda) q(x)+\lambda p(x)}{q(x)}\right] \\
& +(-1)^{n} \int_{1}^{\frac{p(x)}{q(x)}} K_{n}\left[\frac{(1-\lambda) q(x)+\lambda p(x)}{q(x)}, t\right] f^{(n+1)}(t) d t
\end{align*}
$$

for all $x \in \Gamma$.
If we multiply (2.12) by $q(x) \geq 0(x \in \Gamma)$, integrate on Γ and take into account that $\int_{\Gamma} q(x) d \mu(x)=1$, then we get the representation (2.9).

If we apply the identity (2.8) for f^{\prime}, we get

$$
\begin{align*}
f(b)= & f(a)+\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[\lambda^{k+1} f^{(k+1)}(a)\right. \tag{2.13}\\
& \left.+(-1)^{k}(1-\lambda)^{k+1} f^{(k+1)}(b)\right](b-a)^{k+1} \\
& +\frac{1}{n!} \int_{a}^{b}[(1-\lambda) a+\lambda b-t]^{n} f^{(n+1)}(t) d t .
\end{align*}
$$

If in (2.13) we choose $b=\frac{p(x)}{q(x)}, x \in \Gamma$ and $a=1$, we get

$$
\begin{align*}
& f\left(\frac{p(x)}{q(x)}\right) \tag{2.14}\\
= & f(1)+\sum_{k=0}^{n-1} \frac{\lambda^{k+1}}{(k+1)!} f^{(k+1)}(1)\left(\frac{p(x)}{q(x)}-1\right)^{k+1} \\
& +\sum_{k=0}^{n-1} \frac{(-1)^{k}(1-\lambda)^{k+1}}{(k+1)!} f^{(k+1)}\left(\frac{p(x)}{q(x)}\right)\left(\frac{p(x)}{q(x)}-1\right)^{k+1} \\
& +\frac{1}{n!} \int_{1}^{\frac{p(x)}{q(x)}}\left[\frac{(1-\lambda) q(x)+\lambda p(x)}{q(x)}-t\right]^{n} f^{(n+1)}(t) d t
\end{align*}
$$

for all $x \in \Gamma$.
If we multiply (2.14) by $q(x) \geq 0(x \in \Gamma)$, integrate on Γ and take into account that $\int_{\Gamma} q(x) d \mu(x)=1$, we get the representation (2.10).

Remark 1. If in (2.9) we choose $\lambda=0$ or, $\lambda=1$ or, $\lambda=\frac{1}{2}$, we get, respectively

$$
\begin{align*}
& I_{f}(p, q) \tag{2.16}\\
= & f(1)+\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(k+1)!} I_{(\cdot-1)^{k+1} f^{(k+1)}(\cdot)}(p, q) \\
& +(-1)^{n} \int_{\Gamma} q(x)\left(\int_{1}^{\frac{p(x)}{q(x)}} K_{n}\left(\frac{p(x)}{q(x)}, t\right) f^{(n+1)}(t) d t\right) d \mu(x)
\end{align*}
$$

and

$$
\begin{align*}
& I_{f}(p, q) \tag{2.17}\\
= & f(1)+\sum_{k=0}^{n-1}\left[\frac{1+(-1)^{k}}{2^{k+1}(k+1)!}\right] I_{(\cdot-1)^{k+1} f^{(k+1)}\left(\frac{1+\cdot}{2}\right)}(p, q) \\
& +(-1)^{n} \int_{\Gamma} q(x)\left(\int_{1}^{\frac{p(x)}{q(x)}} K_{n}\left(\frac{q(x)+p(x)}{2 q(x)}, t\right) f^{(n+1)}(t) d t\right) d \mu(x) .
\end{align*}
$$

Remark 2. If in (2.10) we choose $\lambda=0$, or $\lambda=1$ or, $\lambda=\frac{1}{2}$, we get, respectively

$$
\begin{align*}
I_{f}(p, q)= & f(1)+\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(k+1)!} I_{(\cdot-1)^{k+1} f^{(k+1)}(\cdot)}(p, q) \tag{2.18}\\
& +\frac{1}{n!} \int_{\Gamma} q(x)\left(\int_{1}^{\frac{p(x)}{q(x)}}(1-t)^{n} f^{(n+1)}(t) d t\right) d \mu(x), \\
I_{f}(p, q)= & f(1)+\sum_{k=0}^{n-1} \frac{f^{(k+1)}(1)}{(k+1)!} D_{k}(p, q)+\frac{1}{n!} \int_{\Gamma}[q(x)]^{-n+1} \tag{2.19}\\
& \times\left(\int_{1}^{\frac{p(x)}{q(x)}}(p(x)-t q(x))^{n} f^{(n+1)}(t) d t\right) d \mu(x)
\end{align*}
$$

and

$$
\begin{align*}
& I_{f}(p, q) \tag{2.20}\\
= & f(1)+\sum_{k=0}^{n-1} \frac{f^{(k+1)}(1)}{2^{k+1}(k+1)!} D_{k}(p, q) \\
& +\sum_{k=0}^{n-1} \frac{(-1)^{k}}{2^{k+1}(k+1)!} I_{(-1)^{k+1} f^{(k+1)}(\cdot)}(p, q)+\frac{1}{n!} \int_{\Gamma}[q(x)]^{-n+1} \\
& \times\left(\int_{1}^{\frac{p(x)}{q(x)}}\left[\frac{1}{2} p(x)+\left(\frac{1}{2}-t\right) q(x)\right]^{n} f^{(n+1)}(t) d t\right) d \mu(x)
\end{align*}
$$

3. Bounds for the Remainder

In this section we point out some bounds for the remainders in the representations (2.9) and (2.10), i.e.,

$$
\begin{align*}
R_{f}(p, q): & =(-1)^{n} \int_{\Gamma} q(x) \times\left(\int_{1}^{\frac{p(x)}{q(x)}} K_{n}\left[\frac{(1-\lambda) q(x)+\lambda p(x)}{q(x)}, t\right]\right. \tag{3.1}\\
& \left.\times f^{(n+1)}(t) d t\right) d \mu(x)
\end{align*}
$$

and

$$
\begin{align*}
\tilde{R}_{f}(p, q): & =\frac{1}{n!} \int_{\Gamma}[q(x)]^{-n+1} \times\left(\int_{1}^{\frac{p(x)}{q(x)}}[\lambda p(x)+\right. \tag{3.2}\\
& {\left.[(1-\lambda)-t] q(x)]^{n} f^{(n+1)}(t) d t\right) d \mu(x) }
\end{align*}
$$

where $p, q \in \Omega, \lambda \in[0,1]$ and $K_{n}(\cdot, \cdot)$ is the kernel defined in equation (2.2).
For $a, b \in \mathbb{R}$, let us denote

$$
\|f\|_{[a, b], p}:=\left.\left.\left|\int_{a}^{b}\right| f(t)\right|^{p} d t\right|^{\frac{1}{p}}, \quad p \geq 1
$$

and

$$
\|f\|_{[a, b], \infty}:=\text { ess } \sup _{\substack{t \in[a, b] \\(t \in[b, a])}}|f(t)| .
$$

In order to obtain bounds on $R_{f}(p, q)$ as given in (3.1), we need to consider integrals of the form

$$
I_{1}(z):=\int_{1}^{z} K_{n}[(1-\lambda) \cdot 1+\lambda z, t] f^{(n+1)}(t) d t, \quad z \in(0, \infty)
$$

Thus

$$
\begin{aligned}
\left|I_{1}(z)\right| & \leq\left|\int_{1}^{z}\right| K_{n}[(1-\lambda) \cdot 1+\lambda z, t]| | f^{(n+1)}(t)|d t| \\
& \leq\left\|f^{(n+1)}\right\|_{[1, z], \infty}\left|\int_{1}^{z}\right| K_{n}((1-\lambda) \cdot 1+\lambda z, t)|d t|^{n} \mid \\
& \left.=\frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], \infty}\left|\int_{1}^{(1-\lambda) \cdot 1+\lambda z}\right| t-\left.1\right|^{n} d t+\int_{(1-\lambda) \cdot 1+\lambda z}^{z}|t-z|^{n} d t \right\rvert\, \\
& =\frac{1}{n!}\left[\frac{|(1-\lambda)+\lambda z-1|^{n+1}+|z-(1-\lambda) \cdot 1-\lambda z|^{n+1}}{n+1}\right]\left\|f^{(n+1)}\right\|_{[1, z], \infty} \\
& =\frac{1}{n!}\left[\frac{\lambda^{n+1}|z-1|^{n+1}+(1-\lambda)^{n+1}|z-1|^{n+1}}{n+1}\right]\left\|f^{(n+1)}\right\|_{[1, z], \infty} \\
& =\frac{|z-1|^{n+1}}{(n+1)!}\left[\lambda^{n+1}+(1-\lambda)^{n+1}\right]\left\|f^{(n+1)}\right\|_{[1, z], \infty}
\end{aligned}
$$

Using Hölder's inequality, we may write for $\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1$, that:

$$
\left|I_{1}(z)\right| \leq\left.\left.\left\|f^{(n+1)}\right\|_{[1, z], \beta}\left|\int_{1}^{z}\right| K_{n}((1-\lambda) \cdot 1+\lambda z, t)\right|^{\alpha} d t\right|^{\frac{1}{\alpha}}
$$

However,

$$
\begin{aligned}
& \left.\left.\left|\int_{1}^{z}\right| K_{n}((1-\lambda) \cdot 1+\lambda z, t)\right|^{\alpha} d t\right|^{\frac{1}{\alpha}} \\
= & \frac{1}{n!}\left|\int_{1}^{(1-\lambda) \cdot 1+\lambda z}\right| t-\left.1\right|^{\alpha n} d t+\left.\int_{(1-\lambda) \cdot 1+\lambda z}^{z}|t-z|^{\alpha n} d t\right|^{\frac{1}{\alpha}} \\
= & \frac{1}{n!}\left[\frac{|(1-\lambda)+\lambda z-1|^{\alpha n+1}+|z-(1-\lambda) \cdot 1-\lambda z|^{\alpha n+1}}{\alpha n+1}\right]^{\frac{1}{\alpha}} \\
= & \frac{1}{n!}\left[\frac{\lambda^{\alpha n+1}|z-1|^{\alpha n+1}+(1-\lambda)^{\alpha n+1}|z-1|^{\alpha n+1}}{\alpha n+1}\right]^{\frac{1}{\alpha}} \\
= & \frac{|z-1|^{n+\frac{1}{\alpha}}}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left[\lambda^{\alpha n+1}+(1-\lambda)^{\alpha n+1}\right]^{\frac{1}{\alpha}}
\end{aligned}
$$

and then:

$$
\left|I_{1}(z)\right| \leq\left\|f^{(n+1)}\right\|_{[1, z], \beta} \frac{|z-1|^{n+\frac{1}{\alpha}}}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left[\lambda^{\alpha n+1}+(1-\lambda)^{\alpha n+1}\right]^{\frac{1}{\alpha}}
$$

Finally, we observe that

$$
\begin{aligned}
& \sup _{t \in[1, z]}\left|K_{n}((1-\lambda) \cdot 1+\lambda z, t)\right| \\
= & \frac{1}{n!} \max \left\{((1-\lambda)+\lambda z-1)^{n}+(z-(1-\lambda) \cdot 1-\lambda z)^{n}\right\} \\
= & \frac{1}{n!}(z-1)^{n}(\max \{\lambda, 1-\lambda\})^{n} \\
= & \frac{1}{n!}|z-1|^{n}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{n}
\end{aligned}
$$

and then

$$
\left|I_{1}(z)\right| \leq \frac{1}{n!}|z-1|^{n}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{n}\left\|f^{(n+1)}\right\|_{[1, z], 1}
$$

Using the above inequalities, we may state the following result

$$
\left|I_{1}(z)\right| \leq\left\{\begin{array}{c}
\frac{|z-1|^{n+1}}{(n+1)!}\left[\lambda^{n+1}+(1-\lambda)^{n+1}\right]\left\|f^{(n+1)}\right\|_{[1, z], \infty} \tag{3.3}\\
\frac{|z-1|^{n+\frac{1}{\alpha}}}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left[\lambda^{\alpha n+1}+(1-\lambda)^{\alpha n+1}\right]^{\frac{1}{\alpha}}\left\|f^{(n+1)}\right\|_{[1, z], \beta} \\
\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 \\
\frac{1}{n!}|z-1|^{n}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{n}\left\|f^{(n+1)}\right\|_{[1, z], 1}
\end{array}\right\}=: \kappa(z, n)
$$

for all $z>0, n \in \mathbb{N}$.

We are now able to state the following theorem pertaining to the remainder $R_{f}(p, q)$.
Theorem 2. Assume that the function f is as in Theorem 1. If $p, q \in \Omega$, then we have the inequality

$$
\begin{align*}
& \left(\frac{1}{(n+1)!}\left[\lambda^{n+1}+(1-\lambda)^{n+1}\right]\right. \tag{3.4}\\
& \times \int_{\Gamma}\left\{[q(x)]^{-n}|p(x)-q(x)|^{n+1}\left\|f^{(n+1)}\right\|_{\left[1, \frac{p(x)}{q(x)}\right], \infty}\right\} d \mu(x) \\
& \leq A:=\left\{\begin{array}{r}
\frac{1}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left[\lambda^{\alpha n+1}+(1-\lambda)^{\alpha n+1}\right]^{\frac{1}{\alpha}} \int_{\Gamma}\left\{[q(x)]^{-n-\frac{1}{\alpha}+1}\right. \\
\left.\quad \times|p(x)-q(x)|^{n+\frac{1}{\alpha}}\left\|f^{(n+1)}\right\|_{\left[1, \frac{p(x)}{q(x)}\right], \beta}\right\} d \mu(x)
\end{array}\right. \\
& \text { where } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 \text {; } \\
& \begin{aligned}
& \frac{1}{n!}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{n} \int_{\Gamma}[q(x)]^{-n+1}|p(x)-q(x)|^{n} \\
& \times\left\|f^{(n+1)}\right\|_{\left[1, \frac{p(x)}{q(x)}\right], 1} d \mu(x) .
\end{aligned}
\end{align*}
$$

Moreover, if we assume that $0 \leq r \leq \frac{p(x)}{q(x)} \leq R<\infty, x \in \Gamma$, then the second term in (3.4) can be upper bounded by

$$
\begin{align*}
& \left\{\begin{array}{rl}
\frac{1}{(n+1)!}\left[\lambda^{n+1}+(1-\lambda)^{n+1}\right] & \|
\end{array} f^{(n+1)} \|_{[r, R], \infty} .\right. \tag{3.5}\\
& :=\left\{\frac{1}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left[\lambda^{\alpha n+1}+(1-\lambda)^{\alpha n+1}\right]^{\frac{1}{\alpha}}\left\|f^{(n+1)}\right\|_{[r, R], \beta}\right. \\
& \times \int_{\Gamma}[q(x)]^{-n-\frac{1}{\alpha}+1}|p(x)-q(x)|^{n+\frac{1}{\alpha}} d \mu(x) \\
& \text { if } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 \text {; } \\
& \frac{1}{n!}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{n}\left\|f^{(n+1)}\right\|_{[r, R], 1} \int_{\Gamma}[q(x)]^{-n+1}|p(x)-q(x)|^{n} d \mu(x) \\
& \leq C:=\left\{\begin{array}{l}
\frac{1}{(n+1)!}\left[\lambda^{n+1}+(1-\lambda)^{n+1}\right]\left\|f^{(n+1)}\right\|_{[r, R], \infty}(R-r)^{n+1} \\
\frac{1}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left[\lambda^{\alpha n+1}+(1-\lambda)^{\alpha n+1}\right]^{\frac{1}{\alpha}}\left\|f^{(n+1)}\right\|_{[r, R], \beta}(R-r)^{n+\frac{1}{\alpha}} \\
\text { if } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 ; \\
\frac{1}{n!}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{n}\left\|f^{(n+1)}\right\|_{[r, R], 1}(R-r)^{n} .
\end{array}\right.
\end{align*}
$$

The proof of (3.4) follows by the inequality (3.3) choosing $z=\frac{p(x)}{q(x)}$ and integrating.

The proof of (3.5) follows by the fact that $\left|\frac{p(x)}{q(x)}-1\right| \leq R-r$ for all $x \in \Gamma$.
We omit the details.

The following corollary may be useful in practical applications.
Corollary 1. With the assumptions of Theorem 2, we have the inequality:

$$
\begin{align*}
& \left|I_{f}(p, q)-f(1)-\sum_{k=0}^{n-1} \frac{f^{(k+1)}(1)}{(k+1)!} D_{k}(p, q)\right| \tag{3.6}\\
\leq & \left\{\begin{array}{r}
\frac{1}{(n+1)!} \int_{\Gamma}[q(x)]^{-n}|p(x)-q(x)|^{n+1}\left\|f^{(n+1)}\right\|_{\left[1, \frac{p(x)}{q(x)}\right], \infty} d \mu(x) \\
\frac{1}{n!(\alpha n+1)^{\frac{1}{\alpha}} \int_{\Gamma}[q(x)]^{-n-\frac{1}{\alpha}+1}} \\
\times|p(x)-q(x)|^{n+\frac{1}{\alpha}}\left\|f^{(n+1)}\right\|_{\left[1, \frac{p(x)}{q(x)}\right], \beta} d \mu(x) \\
\text { where } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 ;
\end{array}\right. \\
= & : M_{1} .
\end{align*}
$$

Furthermore, if we assume that $r \leq \frac{p(x)}{q(x)} \leq R<\infty, x \in \Gamma$, then we have

$$
\begin{aligned}
& M_{1} \leq\left\{\begin{array}{r}
\frac{1}{(n+1)!}\left\|f^{(n+1)}\right\|_{[r, R], \infty} \int_{\Gamma}[q(x)]^{-n}|p(x)-q(x)|^{n+1} d \mu(x) \\
\frac{1}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left\|f^{(n+1)}\right\|_{[r, R], \beta} \int_{\Gamma}[q(x)]^{-n-\frac{1}{\alpha}+1} \\
\times|p(x)-q(x)|^{n+\frac{1}{\alpha}} d \mu(x) \\
\text { where } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 ; \\
\\
\frac{1}{n!}\left\|f^{(n+1)}\right\|_{[r, R], 1} \int_{\Gamma}[q(x)]^{-n+1}|p(x)-q(x)|^{n} d \mu(x)
\end{array}\right. \\
& =: M_{2} \\
& \leq\left\{\begin{array}{c}
\frac{1}{(n+1)!}\left\|f^{(n+1)}\right\|_{[r, R], \infty}(R-r)^{n+1} \\
\frac{1}{n!(\alpha n+1)^{\frac{1}{\alpha}}}\left\|f^{(n+1)}\right\|_{[r, R], \beta}(R-r)^{n+\frac{1}{\alpha}} \\
\text { where } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 ; \\
\frac{1}{n!}\left\|f^{(n+1)}\right\|_{[r, R], 1}(R-r)^{n}
\end{array}\right\}=: M_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|I_{f}(p, q)-f(1)-\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(k+1)!} I_{(\cdot-1)^{k+1} f^{(k+1)}(\cdot)}(p, q)\right| \\
\leq & M_{1} \leq M_{2} \leq M_{3}
\end{aligned}
$$

and if $0 \leq r \leq \frac{p(x)}{q(x)} \leq R<\infty, x \in \Gamma$, then

$$
\begin{aligned}
& \left|I_{f}(p, q)-f(1)-\sum_{k=0}^{n-1}\left[\frac{1+(-1)^{k}}{2^{k+1}(k+1)!}\right] I_{(\cdot-1)^{k+1} f^{(k+1)}\left(\frac{1++}{2}\right)}(p, q)\right| \\
\leq & \frac{1}{2^{n}} M_{1} \leq \frac{1}{2^{n}} M_{2} \leq \frac{1}{2^{n}} M_{3} .
\end{aligned}
$$

Now, to obtain the bound on $\tilde{R}_{f}(p, q)$ as defined in (3.2), consider the integral

$$
I_{2}(z):=\frac{1}{n!} \int_{1}^{z}((1-\lambda) \cdot 1+\lambda z-t)^{n} f^{(n+1)}(t) d t
$$

from which we have

$$
\begin{aligned}
\left|I_{2}(z)\right|= & \left.\left\|f^{(n+1)}\right\|_{[1, z], \infty} \frac{1}{n!}\left|\int_{1}^{z}\right|(1-\lambda) \cdot 1+\lambda z-\left.t\right|^{n} \right\rvert\, d t \\
= & \left.\frac{1}{n!}\right|_{1} ^{(1-\lambda) \cdot 1+\lambda z}|(1-\lambda) \cdot 1+\lambda z-t|^{n} d t \\
& +\int_{(1-\lambda) \cdot 1+\lambda z}^{z}|(1-\lambda) \cdot 1+\lambda z-t|^{n} d t \mid\left\|f^{(n+1)}\right\|_{[1, z], \infty} \\
= & \frac{1}{n!} \cdot\left[\frac{|(1-\lambda) \cdot 1+\lambda z-1|^{n+1}+|(1-\lambda) \cdot 1+\lambda z-z|^{n+1}}{n+1}\right] \\
& \times\left\|f^{(n+1)}\right\|_{[1, z], \infty} \\
= & \frac{(z-1)^{n+1}}{(n+1)!} \cdot\left[\lambda^{n+1}+(1-\lambda)^{n+1}\right] \cdot\left\|f^{(n+1)}\right\|_{[1, z], \infty}
\end{aligned}
$$

Using Hölder's inequality, we may write, for $\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1$, that

$$
\begin{aligned}
\left|I_{2}(z)\right|= & \frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], \beta}\left|\int_{1}^{z}\right|(1-\lambda) \cdot 1+\lambda z-\left.\left.t\right|^{n \alpha} d t\right|^{\frac{1}{\alpha}} \\
= & \left.\frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], \beta}\right|_{1} ^{(1-\lambda) \cdot 1+\lambda z}|(1-\lambda) \cdot 1+\lambda z-t|^{n \alpha} d t \\
& +\left.\int_{(1-\lambda) \cdot 1+\lambda z}^{z}|(1-\lambda) \cdot 1+\lambda z-t|^{n \alpha} d t\right|^{\frac{1}{\alpha}} \\
= & \frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], \beta}\left[\frac{|(1-\lambda)+\lambda z-1|^{n \alpha+1}+|z-(1-\lambda)-\lambda z|^{n \alpha+1}}{n \alpha+1}\right]^{\frac{1}{\alpha}} \\
= & \frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], \beta}\left[\frac{\lambda^{\alpha n+1}|z-1|^{\alpha n+1}+(1-\lambda)^{\alpha n+1}|z-1|^{\alpha n+1}}{\alpha n+1}\right]^{\frac{1}{\alpha}} \\
= & \frac{|z-1|^{n+\frac{1}{\alpha}}}{n!(\alpha n+1)^{\frac{1}{\alpha}}} \cdot\left[\lambda^{\alpha n+1}+(1-\lambda)^{\alpha n+1}\right]^{\frac{1}{\alpha}} \cdot\left\|f^{(n+1)}\right\|_{[1, z], \beta} \cdot
\end{aligned}
$$

Finally, we observe that

$$
\begin{aligned}
&\left|I_{2}(z)\right| \leq \frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], 1} \sup _{t \in[1, z]}|(1-\lambda) \cdot 1+\lambda z-t|^{n} \\
&=\frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], 1} \max \left\{|(1-\lambda)+\lambda z-1|^{n}+|z-(1-\lambda) \cdot 1-\lambda z|^{n}\right\} \\
&=\frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], 1}(z-1)^{n}(\max \{\lambda, 1-\lambda\})^{n} \\
&=\frac{1}{n!}\left\|f^{(n+1)}\right\|_{[1, z], 1}|z-1|^{n}\left[\frac{1}{2}+\left|\lambda-\frac{1}{2}\right|\right]^{n}
\end{aligned}
$$

Using the above inequalities, we may state that

$$
\begin{equation*}
\left|I_{2}(z)\right| \leq \kappa(n, z) \tag{3.7}
\end{equation*}
$$

where $\kappa(n, z)$ is defined in (3.3). That is, the bounds for $R_{f}(p, q)$ and $\tilde{R}_{f}(p, q)$ are the same.

We may now state the following theorem concerning a bound for the remainder $\tilde{R}_{f}(p, q)$.
Theorem 3. Assume that the function f is as in Theorem 1. If $p, q \in \notin$, then we have the inequality:

$$
\begin{equation*}
\left|\tilde{R}_{f}(p, q)\right| \leq A \tag{3.8}
\end{equation*}
$$

where A is given in (3.4).
Moreover, if we assume that $0 \leq r \leq \frac{p(x)}{q(x)} \leq R<\infty, x \in \Gamma$, then

$$
\begin{equation*}
A \leq B \leq C \tag{3.9}
\end{equation*}
$$

with B and C being as defined in (3.5).
The following corollary may be useful in practical applications.
Corollary 2. With the above assumptions, we have

$$
\begin{align*}
& \quad\left|I_{f}(p, q)-f(1)-\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(k+1)!} I_{(\cdot-1)^{k+1} f^{(k+1)}(\cdot)}(p, q)\right| \tag{3.10}\\
& \leq \quad M_{1} \leq M_{2} \leq M_{3} \tag{3.11}\\
& \quad\left|I_{f}(p, q)-f(1)-\sum_{k=0}^{n-1} \frac{f^{(k+1)}(1)}{(k+1)!} D_{k}(p, q)\right| \\
& \quad \leq \quad M_{1} \leq M_{2} \leq M_{3}
\end{align*}
$$

and

$$
\begin{align*}
& \quad \left\lvert\, I_{f}(p, q)-f(1)-\sum_{k=0}^{n-1} \frac{f^{(k+1)}(1)}{2^{k+1}(k+1)!} D_{k}(p, q)\right. \tag{3.12}\\
& \left.-\sum_{k=0}^{n-1} \frac{(-1)^{k}}{2^{k+1}(k+1)!} I_{(\cdot-1)^{k+1} f^{(k+1)}(\cdot)}(p, q) \right\rvert\, \\
& \leq \quad \frac{1}{2^{n}} M_{1} \leq \frac{1}{2^{n}} M_{2} \leq \frac{1}{2^{n}} M_{3}
\end{align*}
$$

for $r \leq \frac{p(x)}{q(x)} \leq R, x \in \Gamma$, where $M_{i} \quad(i=\overline{1,3})$ are as defined in Corollary 1.

Remark 3. If in all the above results we choose f to be a particular function generating the divergences listed at (1.2) - (1.9), then we can obtain many interesting approximations for the above distances. We omit the details.

References

[1] S.M. ALI and S.D. SILVEY, A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Sec B, 28 (1966), 131-142.
[2] N.S. BARNETT, S.S. DRAGOMIR and A. SOFO, Better bounds for an inequality of the Ostrowski type with applications, RGMIA Research Report Collection, 3 (1) (2000), Article 1.
[3] M. BETH BASSAT, f-entropies, probability of error and feature selection, Inform. Control, 39 (1978), 227-242.
[4] A. BHATTACHARYYA, On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc., 35 (1943), 99-109.
[5] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy function, IEEE Trans. Inf. Th., 28 (3) (1982), 489-495.
[6] P. CERONE and S.S. DRAGOMIR, Midpoint type rules from an inequalities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, N.Y., (2000), 135-200.
[7] P. CERONE and S.S. DRAGOMIR, Trapezoidal type rules from an inequalities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, N.Y., (2000), 65-134.
[8] P. CERONE, S.S. DRAGOMIR, and J. ROUMELIOTIS, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32(2) (1999), 697-712.
[9] P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS, and J. ŠUNDE, A new generalisation of the trapezoid formula for n-time differentiable mappings and applications, Demonstratio Math., in press.
[10] C.H. CHEN, Statistical Pattern Recognition, Rocelle Park, New York, Hoyderc Book Co., 1973.
[11] C.K. CHOW and C.N. LIN, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inf. Th., 14 (3) (1968), 462-467.
[12] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
[13] I. CSISZÁR, A note on Jensen's inequality, Studia Sci. Math. Hung., 1 (1966), 185-188.
[14] I. CSISZÁR, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-339.
[15] I. CSISZÁR, A note on Jensen's inequality, Studia Sci. Math. Hung., 1 (1966), 185-188.
[16] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
[17] D. DACUNHA-CASTELLE, Ecole d'ete de Probability de Saint-Flour, III-1977, Berlin, Heidelberg: Springer 1978.
[18] S.S. DRAGOMIR and S. MABIZELA, Some error estimates in the trapezoidal quadrature rule, RGMIA Research Report Collect., 2 (1999), No. 5, Article 6 (http://rgmia.vu.edu.au/v2n5.html)
[19] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for special means and for some numerical quadrature rules, Comp. Math. Appl., 33 (1997), No. 11, 15-20.
[20] D.V. GOKHALE and S. KULLBACK, Information in Contingency Tables, New York, Marcel Dekker, 1978.
[21] J.H. HAVRDA and F. CHARVAT, Quantification method classification process: concept of structural α-entropy, Kybernetika, 3 (1967), 30-35.
[22] E. HELLINGER, Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. für reine and Augeur. Math., 36 (1909), 210-271.
[23] H. JEFFREYS, An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London, 186 A (1946), 453-461.
[24] T.T. KADOTA and L.A. SHEPP, On the best finite set of linear observables for discriminating two Gaussian signals, IEEE Trans. Inf. Th., 13 (1967), 288-294.
[25] T. KAILATH, The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Comm. Technology., Vol COM-15 (1967), 52-60.
[26] J.N. KAPUR, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3 (1984), 1-16.
[27] D. KAZAKOS and T. COTSIDAS, A decision theory approach to the approximation of discrete probability densities, IEEE Trans. Perform. Anal. Machine Intell., 1 (1980), 61-67.
[28] J.H.B. KEMPERMAN, On the optimum note of transmitting information, Ann. Math. Statist., 40 (1969), 2158-2177.
[29] C. KRAFT, Some conditions for consistency and uniform consistency of statistical procedures, Univ. of California Pub. in Statistics, 1 (1955), 125-142.
[30] S. KULLBACK, A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. Th., 13 (1967), 126-127.
[31] S. KULLBACK, Correction to a lower bound for discrimination information in terms of variation, IEEE Trans. Inf. Th., 16 (1970), 771-773.
[32] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
[33] L. LECAM, Asymptotic Methods in Statistical Decision Theory, New York: Springer, 1986.
[34] J. LIN, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Th., $\mathbf{3 7}$ (1) (1991), 145-151.
[35] J. LIN and S.K.M. WONG, A new directed divergence measure and its characterization, Int. J. General Systems, 17 (1990), 73-81.
[36] H.P. McKEAN, JR., Speed of approach to equilibrium for Koc's caricature of a Maximilian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367.
[37] M. MEI, The theory of genetic distance and evaluation of human races, Japan J. Human Genetics, 23 (1978), 341-369.
[38] C.E.M. PEARCE, J. PEČARIĆ, N. UJEVIĆ and S. VAROS̆ANEC, Generaliasations of some inequalities of Ostrowski-Grüss type, Math. Ineq. \& Appl., 3 (2000), No. 1, 25-34.
[39] E.C. PIELOU, Ecological Diversity, Wiley, New York, 1975.
[40] M.S. PINSKER, Information and Information Stability of Random variables and processes, (in Russian), Moscow: Izv. Akad. Nouk, 1960.
[41] C.R. RAO, Diversity and dissimilarity coefficients: a unified approach, Theoretic Population Biology, 21 (1982), 24-43.
[42] A. RÉNYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Stat. and Prob., University of California Press, 1 (1961), 547-561.
[43] A. SEN, On Economic Inequality, Oxford University Press, London 1973.
[44] B.D. SHARMA and D.P. MITTAL, New non-additive measures of relative information, Journ. Comb. Inf. Sys. Sci., 2 (4)(1977), 122-132.
[45] H. SHIOYA and T. DA-TE, A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 37-40.
[46] I. J. TANEJA, Generalised Information Measures and their Applications (http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html).
[47] H. THEIL, Economics and Information Theory, North-Holland, Amsterdam, 1967.
[48] H. THEIL, Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.
[49] F. TOPSOE, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll., RGMIA, 2 (1) (1999), 85-98.
[50] G.T. TOUSSAINT, Sharper lower bounds for discrimination in terms of variation, IEEE Trans. Inf. Th., 21 (1975), 99-100.
[51] I. VAJDA, Note on discrimination information and variation, IEEE Trans. Inf. Th., 16 (1970), 771-773.
[52] I. VAJDA, Theory of Statistical Inference and Information, Dordrecht-Boston, Kluwer Academic Publishers, 1989.
[53] V.A. VOLKONSKI and J. A. ROZANOV, Some limit theorems for random function -I, (English Trans.), Theory Prob. Appl., (USSR), 4 (1959), 178-197.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC 8001, Australia

E-mail address: neil@matilda.vu.edu.au
$U R L:$ http://sci.vu.edu.au/staff/neilb.html
E-mail address: pc@matilda.vu.edu.au
$U R L:$ http://sci.vu.edu.au/staff/peterc.html
E-mail address: sever@matilda.vu.edu.au
URL: http:// rgmia.vu.edu.au/SSDragomirWeb.html
E-mail address: john.roumeliotis@vu.edu.au
URL: http://dingo.vu.edu.au/~johnr/

[^0]: Date: September 27, 2000.
 1991 Mathematics Subject Classification. Primary 94A99; Secondary 26D15.
 Key words and phrases. Csiszár f-divergence, Analytic Inequalities.

