
OTHER INEQUALITIES FOR CSISZÁR DIVERGENCE AND
APPLICATIONS

S.S. DRAGOMIR

Abstract. In this paper we point out some new inequalities for Csiszár f−divergence
and apply them for particular instances of distances between two probability
distributions.

1. Introduction

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [1], Kullback and Leibler [2],
Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea and
Rao [7], Rao [8], Lin [9], Csiszár [10], Ali and Silvey [12], Vajda [13], Shioya and
Da-te [40] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [8],
genetics [14], finance, economics, and political science [15], [16], [17], biology [18],
the analysis of contingency tables [19], approximation of probability distributions
[20], [21], signal processing [22], [23] and pattern recognition [24], [25]. A number of
these measures of distance are specific cases of Csiszár f -divergence and so further
exploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Assume that a set χ and the σ−finite measure µ are given. Consider the set of all
probability densities on µ to be Ω :=

{

p|p : χ → R, p (x) ≥ 0,
∫

χ p (x) dµ (x) = 1
}

.

The Kullback-Leibler divergence [2] is well known among the information diver-
gences. It is defined as:

DKL (p, q) :=
∫

χ
p (x) log

[

p (x)
q (x)

]

dµ (x) , p, q ∈ Ω,(1.1)

where log is to base 2.
In Information Theory and Statistics, various divergences are applied in addition

to the Kullback-Leibler divergence. These are the: variation distance Dv, Hellinger
distance DH [1], χ2−divergence Dχ2 , α−divergence Dα, Bhattacharyya distance
DB [2], Harmonic distance DHa, Jeffreys distance DJ [1], triangular discrimination
D∆ [35], etc... They are defined as follows:

Dv (p, q) :=
∫

χ
|p (x)− q (x)| dµ (x) , p, q ∈ Ω;(1.2)
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DH (p, q) :=
∫

χ

[
√

p (x)−
√

q (x)
]2

dµ (x) , p, q ∈ Ω;(1.3)

Dχ2 (p, q) :=
∫

χ
p (x)

[

(

q (x)
p (x)

)2

− 1

]

dµ (x) , p, q ∈ Ω;(1.4)

Dα (p, q) :=
4

1− α2

[

1−
∫

χ
[p (x)]

1−α
2 [q (x)]

1+α
2 dµ (x)

]

, p, q ∈ Ω;(1.5)

DB (p, q) :=
∫

χ

√

p (x) q (x)dµ (x) , p, q ∈ Ω;(1.6)

DHa (p, q) :=
∫

χ

2p (x) q (x)
p (x) + q (x)

dµ (x) , p, q ∈ Ω;(1.7)

DJ (p, q) :=
∫

χ
[p (x)− q (x)] ln

[

p (x)
q (x)

]

dµ (x) , p, q ∈ Ω;(1.8)

D∆ (p, q) :=
∫

χ

[p (x)− q (x)]2

p (x) + q (x)
dµ (x) , p, q ∈ Ω.(1.9)

For other divergence measures, see the paper [5] by Kapur or the book on line [6]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszár f−divergence is defined as follows [10]

Df (p, q) :=
∫

χ
p (x) f

[

q (x)
p (x)

]

dµ (x) , p, q ∈ Ω,(1.10)

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived. All the above distances (1.1) − (1.9), are particular instances of Csiszár
f−divergence. There are also many others which are not in this class (see for
example [5] or [6]). For the basic properties of Csiszár f−divergence see [7]-[10].

2. The Results

We start with the following result.

Theorem 1. Let φ : [0,∞) → R be a convex mapping on the interval [r,R] ⊂
[0,∞) with r ≤ 1 ≤ R. If p, q ∈ Ω and r ≤ p(y)

q(y) ≤ R for all y ∈ χ, then we have
the inequality

Iφ (p, q) ≤ R− 1
R− r

· φ (r) +
1− r
R− r

· φ (R) .(2.1)

Proof. As φ is convex on [r,R], we may write that

φ (tr + (1− t) R) ≤ tφ (r) + (1− t) φ (R)(2.2)

for all t ∈ [0, 1].
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Choose t = R−x
R−r , x ∈ [r,R]. Then 1 − t = x−r

R−r and from (2.2) we deduce (see
also [46, p. 98])

φ (x) ≤ R− x
R− r

· φ (r) +
x− r
R− r

· φ (R)(2.3)

for all x ∈ [r,R], as a simple calculation shows that R−x
R−r · r + x−r

R−r ·R = x. Put in

(2.3) x = p(y)
q(y) , y ∈ χ, to get

φ
(

p (y)
q (y)

)

≤
R− p(y)

q(y)

R− r
· φ (r) +

p(y)
q(y) − r

R− r
· φ (R)(2.4)

for all y ∈ χ.
If we multiply (2.4) by q (y) ≥ 0, integrate on χ and take into account that

∫

χ
p (y) dµ (y) =

∫

χ
q (y) dµ (y) = 1

then by (2.4) we obtain (2.1).

The following result also holds.

Theorem 2. Let φ : [0,∞) → R be differentiable convex on [r,R] and p, q be as in
Theorem 1. Then we have the inequality:

0 ≤ R− 1
R− r

· φ (r) +
1− r
R− r

· φ (R)− Iφ (p, q)(2.5)

≤ φ′ (R)− φ′ (r)
R− r

·
[

(R− 1) (1− r)−Dχ2 (p, q)
]

≤ 1
4

(R− r)
[

φ′ (R)− φ′ (r)
]

,

where Dχ2 (·, ·) is the chi-square divergence.

Proof. Since the mapping φ is differentiable convex, we can write

φ (u)− φ (v) ≥ φ′ (v) (u− v)(2.6)

for all u, v ∈ (r,R).
Now, assume that α, β ≥ 0 and α + β > 0. Then, by (2.6), we have

φ
(

αa + βb
α + β

)

− φ (a) ≥ φ′ (a)
(

αa + βb
α + β

− a
)

(2.7)

=
β

α + β
· φ′ (a) (b− a)

and

φ
(

αa + βb
α + β

)

− φ (b) ≥ φ′ (b)
(

αa + βb
α + β

− b
)

(2.8)

= − α
α + β

· φ′ (b) (b− a) .

Now, if we multiply (2.7) by α and (2.8) by β and add the obtained results, we get

(α + β) φ
(

αa + βb
α + β

)

− αφ (a)− βφ (b) ≥ αβ
α + β

(b− a)
(

φ′ (a)− φ′ (b)
)
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which is equivalent to:

0 ≤ αφ (a) + βφ (b)
α + β

− φ
(

αa + βb
α + β

)

(2.9)

≤ αβ

(α + β)2
(

φ′ (b)− φ′ (a)
)

(b− a) .

Now, if in (2.9) we choose α = R− x, β = x− r, a = r, b = R, then we obtain

0 ≤ (R− x)φ (r) + (x− r)φ (R)
R− r

− φ (x)(2.10)

≤ (R− x) (x− r)
R− r

(

φ′ (R)− φ′ (r)
)

.

If in (2.10), we choose x = p(y)
q(y) and then multiply with q (y) we get

(Rq (y)− p (y))φ (r) + (p (y)− rq (y)) φ (R)
R− r

− q (y)φ
(

p (y)
q (y)

)

(2.11)

≤ (Rq (y)− p (y)) (p (y)− rq (y))
(R− r) q (y)

(

φ′ (R)− φ′ (r)
)

for all y ∈ χ.
If we integrate (2.11) on χ and take into consideration that

∫

χ
p (y) dµ (y) =

∫

χ
q (y) dµ (y) = 1,

we get

(R− 1)φ (r) + (1− r)φ (R)
R− r

− Iφ (p, q)(2.12)

≤
(

φ′ (R)− φ′ (r)
)

R− r

∫

χ

(Rq (y)− p (y)) (p (y)− rq (y))
q (y)

dµ (y) .

However,

0 ≤
∫

χ

(Rq (y)− p (y)) (p (y)− rq (y))
q (y)

dµ (y)

= R−
∫

χ

p2 (y)
q (y)

dµ (y)− rR + r = R + r − rR− 1−Dχ2 (p, q)

= (R− 1) (1− r)−Dχ2 (p, q) .

As

(R− 1) (1− r) ≤ 1
4

(R− r)2 and Dχ2 (p, q) ≥ 0,

the last inequality is obvious.

The following results also holds.

Theorem 3. Assume that the function Ψ : [0,∞) → R is twice differentiable on
[r,R] and

m ≤ Ψ′′ (t) ≤ M for all t ∈ [r,R] .(2.13)
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If the probability distributions p, q ∈ Ω satisfy the conditions of Theorem 1, then we
have the inequality:

1
2
m

[

(R− 1) (1− r)−Dχ2 (p, q)
]

(2.14)

≤ R− 1
R− r

·Ψ(r) +
1− r
R− r

·Ψ(R)− IΨ (p, q)

≤ 1
2
M

[

(R− 1) (1− r)−Dχ2 (p, q)
]

.

Proof. Define the function Φm : [0,∞) → R, Φm (t) = Ψ (t) − 1
2mt2. Then Φm is

twice differentiable and Φ′′m (t) = Ψ′′ (t) −m ≥ 0, t ∈ [r,R], which shows that Φm

is convex on [r,R].
If we write the inequality (2.1) for the convex mapping Φm, we obtain

IΨ− 1
2 m(·)2 (p, q) ≤ R− 1

R− r

[

Ψ (r)− 1
2
mr2

]

+
1− r
R− r

[

Ψ(R)− 1
2
mR2

]

.(2.15)

However,

IΨ− 1
2 m(·)2 (p, q)

= IΨ (p, q)− 1
2
m

[∫

χ

p2 (y)
q (y)

dµ (y)− 1 + 1
]

= IΨ (p, q)− 1
2
mDχ2 (p, q)− 1

2
m

and then, by (2.15), we can get
R− 1
R− r

·Ψ (r) +
1− r
R− r

·Ψ(R)− IΨ (p, q)(2.16)

≥ 1
2
mR2 · (1− r)

R− r
+

1
2
mr2 · (R− 1)

R− r
− 1

2
mDχ2 (p, q)− 1

2
m

Nonetheless, the right hand side of (2.16) is
1
2
m

[

(R− 1) (1− r)−Dχ2 (p, q)
]

and the first inequality in (2.14) is obtained.
The second inequality follows by a similar argument applied for the mapping

Φm (t) := 1
2Mt2 −Ψ(t). We omit the details.

Corollary 1. With the assumptions in Theorem 3, and if m ≥ 0, then

0 ≤ 1
2
m

[

(R− 1) (1− r)−Dχ2 (p, q)
]

(2.17)

≤ R− 1
R− r

·Ψ (r) +
1− r
R− r

·Ψ(R)− Iφ (p, q) .

Proof. We only have to prove the fact that

Dχ2 (p, q) ≤ (R− 1) (1− r) ,(2.18)

which follows by the fact that (see the proof of Theorem 2)

0 ≤
∫

χ

(Rq (y)− p (y)) (p (y)− rq (y))
q (y)

dµ (y)

= (R− 1) (1− r)−Dχ2 (p, q) .
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3. Applications for Particular Divergences

Before we point out some applications of the above results, we would like to
recall the following special means:

L (α, β) :=







β if α = β;

β−α
ln β−ln α if β 6= α, α, β > 0 (logarithmic mean)

and

I (α, β) :=











β if α = β;

1
e

(

ββ

αα

) 1
β−α

if β 6= α, (identric mean).

1. Kullback-Leibler Divergence. Consider the convex mapping φ : (0,∞) → R,
φ (t) = t ln t. Then

Iφ (p, q) =
∫

χ
p (x) ln

[

p (x)
q (x)

]

dµ (x) = D (p, q) ,

where D (p, q) is the Kullback-Leibler distance.

Proposition 1. Let p, q ∈ Ω with the property that:

r ≤ p (y)
q (y)

≤ R for all y ∈ χ.(3.1)

Then we have the inequality

D (p, q) ≤ ln I (r,R)− G2 (r,R)
L (r,R)

+ 1,(3.2)

where I (·, ·) is the identric mean, L (·, ·) is the logarithmic mean and G (·, ·)
is the usual geometric mean.

Proof. We apply Theorem 1 for φ (t) = t ln t to get

D (p, q) ≤ R− 1
R− r

r ln r +
1− r
R− r

R ln R

=
R ln R− r ln r

R− r
− rR · ln R− ln r

R− r

= ln I (r,R) + 1− G2 (r,R)
L (r,R)

and the inequality (3.2) is proved.

Proposition 2. With the assumptions of Proposition 1, we have

0 ≤ ln I (r,R)− G2 (r,R)
L (r,R)

+ 1−D (p, q)(3.3)

≤
(R− 1) (1− r)−Dχ2 (p, q)

L (r,R)
.

The proof follows by Theorem 2 applied for φ (t) = t ln t, and taking into
account that

φ′ (R)− φ′ (r)
R− r

=
1

L (r,R)
.
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Using Theorem 3, we may be able to improve the inequality (3.3) as follows.

Proposition 3. Let p, q ∈ Ω satisfy the condition (3.1). Then we have the
inequality:

1
2R

[

(R− 1) (1− r)−Dχ2 (p, q)
]

(3.4)

≤ ln I (r,R)− G2 (r,R)
L (r,R)

+ 1−D (p, q)

≤ 1
2r

[

(R− 1) (1− r)−Dχ2 (p, q)
]

.

Proof. We have φ′′ (t) = 1
t , t ∈ [r,R] and then

1
R
≤ φ′′ (t) ≤ 1

r
, t ∈ [r,R] .

Applying Theorem 3 for φ (t) = t ln t, we obtain (3.4).

Now, assume that φ (t) = − ln t, which is a convex mapping as well.
We have

Iφ (p, q) = −
∫

χ
q (y) ln

[

p (y)
q (y)

]

dµ (y)

=
∫

χ
q (y) ln

[

q (y)
p (y)

]

dµ (y) = D (q, p) .

Using Theorem 1, we may state the following proposition.

Proposition 4. Let p, q ∈ Ω with the property that (3.1) holds. Then we
have the inequality:

D (q, p) ≤ ln I
(

1
r
,

1
R

)

− 1
L (r,R)

+ 1.(3.5)

Proof. Applying the inequality (2.1) for φ (t) = − ln t, we may write that

D (q, p)

≤ (R− 1) (− ln r) + (1− r) (− ln R)
R− r

=
r ln R−R ln r

R− r
− ln R− ln r

R− r
=

rR
( 1

R ln R− 1
r ln r

)

R− r
− 1

L (r,R)

=
1
r ln 1

r −
1
R ln 1

R
1
r −

1
R

− 1
L (r,R)

= ln I
(

1
r
,

1
R

)

+ 1− 1
L (r,R)

and the inequality (3.5) is proved.

Proposition 5. Let p, q be as in Proposition 1. Then

0 ≤ ln I
(

1
r
,

1
R

)

− 1
L (r,R)

+ 1−D (q, p)(3.6)

≤ 1
G2 (r,R)

[

(R− 1) (1− r)−Dχ2 (p, q)
]

.
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The proof follows by Theorem 2 applied for the function φ (t) = − ln t, and
taking into account that

φ′ (R)− φ′ (r)
R− r

=
1

rR
=

1
G2 (r,R)

.

The inequality (3.6) can be improved as follows.

Proposition 6. Let p, q be as in Proposition 1. Then

1
2R2

[

(R− 1) (1− r)−Dχ2 (p, q)
]

(3.7)

≤ ln I
(

1
r
,

1
R

)

− 1
L (r,R)

+ 1−D (q, p)

≤ 1
2r2

[

(R− 1) (1− r)−Dχ2 (p, q)
]

.

The proof is obvious by Theorem 3, taking into account that φ′′ (t) = 1
t2

and 1
R2 ≤ φ′′ (t) ≤ 1

r2 for all t ∈ [r,R].
2. Hellinger discrimination. Consider the convex mapping φ : [0,∞) → R,

φ (t) = 1
2

(√
t− 1

)2
. Then

Iφ (p, q) =
1
2

∫

χ
q (x)

(√

p (x)
q (x)

− 1

)2

dµ (x)

=
1
2

∫

χ

(
√

p (x)−
√

q (x)
)2

dµ (x) = h2 (p, q) ,

where h2 (p, q) is the Hellinger discrimination.

Proposition 7. With the assumptions of Proposition 1, we have

h2 (p, q) ≤

(√
R− 1

)

(1−
√

r)
√

R +
√

r
.(3.8)

Proof. We apply Theorem 1 for φ (t) = 1
2

(√
t− 1

)2
to get

h2 (p, q)

≤
(R− 1) 1

2 (
√

r − 1)2 + (1− r) 1
2

(√
R− 1

)2

R− r

=
1
2

(√
R− 1

)

(
√

r − 1)

R− r

[(√
R + 1

)

(

1−
√

r
)

+
(

1 +
√

r
)

(√
R− 1

)]

=

(√
R− 1

)

(
√

r − 1)
(√

R−
√

r
)

R− r
=

(√
R− 1

)

(1−
√

r)
√

R +
√

r
,

and the inequality (3.8) is proved.

Using Theorem 2, we may state the following proposition as well.
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Proposition 8. With the assumptions of Proposition 1, we have

0 ≤

(√
R− 1

)

(1−
√

r)
√

R +
√

r
− h2 (p, q)(3.9)

≤ 1

4 (r −R)A
(√

r,
√

R
)

[

(R− 1) (1− r)−Dχ2 (p, q)
]

,

where A (·, ·) is the arithmetic mean.

The proof is obvious by Theorem 2 applied for φ (t) = 1
2

(√
t− 1

)2
, taking

into account that φ′ (t) = 1
2 −

1
2
√

t
, and

φ′ (R)− φ′ (r)
R− r

=

√
R−

√
r

2
√

rR (R− r)
=

1

2
√

rR
(√

R +
√

r
) .

Finally, by the use of Theorem 3, we may state:

Proposition 9. Assume that p, q ∈ Ω are as in Proposition 1. Then
1

8
√

R3

[

(R− 1) (1− r)−Dχ2 (p, q)
]

(3.10)

≤

(√
R− 1

)

(1−
√

r)
√

R +
√

r
− h2 (p, q)

≤ 1

8
√

r3

[

(R− 1) (1− r)−Dχ2 (p, q)
]

.

The proof follows by Theorem 3 applied for the mapping φ (t) = 1
2

(√
t− 1

)2

for which φ′′ (t) = 1
4
√

t3
and, obviously,

1

4
√

R3
≤ φ′′ (t) ≤ 1

4
√

r3
for all t ∈ [r,R] .
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[10] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect
observations, Studia Math. Hungarica, 2 (1967), 299-318.



10 S.S. DRAGOMIR
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