SOME INEQUALITIES FOR THE CSISZÁR ϕ-DIVERGENCE WHEN ϕ IS AN L - LIPSCHITZIAN FUNCTION AND APPLICATIONS

S.S. DRAGOMIR

Abstract

Some inequalities of Jessen's type for vector valued Lipschitzian functions and applications for the discrete Csiszár ϕ-divergence are given.

1. Introduction

Given a convex function $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, the Φ - divergence functional

$$
\begin{equation*}
I_{\Phi}(p, q):=\sum_{i=1}^{n} q_{i} \Phi\left(\frac{p_{i}}{q_{i}}\right), \tag{1.1}
\end{equation*}
$$

was introduced in Csiszár [1], 2] as a generalized measure of information, a "distance function" on the set of probability distributions \mathbb{P}^{n}. The restriction here to discrete distribution is only for convenience, similar results hold for general distributions.

As in Csiszár [2], we interpret undefined expressions by

$$
\begin{aligned}
\Phi(0) & =\lim _{t \rightarrow 0+} \Phi(t), \quad 0 \Phi\left(\frac{0}{0}\right)=0, \\
0 \Phi\left(\frac{a}{0}\right) & =\lim _{\varepsilon \rightarrow 0+} \Phi\left(\frac{a}{\varepsilon}\right)=a \lim _{t \rightarrow \infty} \frac{\Phi(t)}{t}, a>0 .
\end{aligned}
$$

The following results were essentially given by Csiszár and Körner [3.
Theorem 1. If $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is convex, then $I_{\Phi}(p, q)$ is jointly convex in p and q.
The following lower bound for the Φ-divergence functional also holds.
Theorem 2. Let $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be convex. Then for every $p, q \in \mathbb{R}_{+}^{n}$, we have the inequality:

$$
\begin{equation*}
I_{\Phi}(p, q) \geq \sum_{i=1}^{n} q_{i} \Phi\left(\frac{\sum_{i=1}^{n} p_{i}}{\sum_{i=1}^{n} q_{i}}\right) . \tag{1.2}
\end{equation*}
$$

If Φ is strictly convex, equality holds in (1.2) iff

$$
\begin{equation*}
\frac{p_{1}}{q_{1}}=\frac{p_{2}}{q_{2}}=\ldots=\frac{p_{n}}{q_{n}} . \tag{1.3}
\end{equation*}
$$

[^0]Corollary 1. Let $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be convex and normalized, i.e.,

$$
\begin{equation*}
\Phi(1)=0 \tag{1.4}
\end{equation*}
$$

Then for any $p, q \in \mathbb{R}_{+}^{n}$ with

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i} \tag{1.5}
\end{equation*}
$$

we have the inequality

$$
\begin{equation*}
I_{\Phi}(p, q) \geq 0 \tag{1.6}
\end{equation*}
$$

If Φ is strictly convex, the equality holds in (1.6) iff $p_{i}=q_{i}$ for all $i \in\{1, \ldots, n\}$.
In particular, if p, q are probability vectors, then (1.5) is assured. Corollary 1 then shows, for strictly convex and normalized $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
I_{\Phi}(p, q) \geq 0 \text { for all } p, q \in \mathbb{P}^{n} \tag{1.7}
\end{equation*}
$$

The equality holds in (1.7) iff $p=q$.
These are "distance properties". However, I_{Φ} is not a metric: It violates the triangle inequality, and is asymmetric, i.e, for general $p, q \in \mathbb{R}_{+}^{n}, I_{\Phi}(p, q) \neq$ $I_{\Phi}(q, p)$.

In the examples below we obtain, for suitable choices of the kernel Φ, some of the best known distance functions I_{Φ} used in mathematical statistics [4]-5], information theory [6]- 8] and signal processing [9]-10].
Example 1. (Kullback-Leibler) For

$$
\begin{equation*}
\Phi(t):=t \log t, t>0 \tag{1.8}
\end{equation*}
$$

the Φ-divergence is

$$
\begin{equation*}
I_{\Phi}(p, q)=\sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right) \tag{1.9}
\end{equation*}
$$

the Kullback-Leibler distance [11]-[12].
Example 2. (Hellinger) Let

$$
\begin{equation*}
\Phi(t)=(1-\sqrt{t})^{2}, t>0 \tag{1.10}
\end{equation*}
$$

Then I_{Φ} gives the Hellinger distance [13]

$$
\begin{equation*}
I_{\Phi}(p, q)=\sum_{i=1}^{n}\left(\sqrt{p_{i}}-\sqrt{q_{i}}\right)^{2} \tag{1.11}
\end{equation*}
$$

which is symmetric.
Example 3. (Renyi) For $\alpha>1$, let

$$
\begin{equation*}
\Phi(t)=t^{\alpha}, t>0 \tag{1.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
I_{\Phi}(p, q)=\sum_{i=1}^{n} p_{i}^{\alpha} q_{i}^{1-\alpha} \tag{1.13}
\end{equation*}
$$

which is the α-order entropy [14].

Example 4. (χ^{2}-distance) Let

$$
\begin{equation*}
\Phi(t)=(t-1)^{2}, t>0 \tag{1.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
I_{\Phi}(p, q)=\sum_{i=1}^{n} \frac{\left(p_{i}-q_{i}\right)^{2}}{q_{i}} \tag{1.15}
\end{equation*}
$$

is the χ^{2}-distance between p and q.
Finally, we have
Example 5. (Variational distance). Let $\Phi(t)=|t-1|, t>0$. The corresponding divergence, called the variational distance, is symmetric,

$$
I_{\Phi}(p, q)=\sum_{i=1}^{n}\left|p_{i}-q_{i}\right|
$$

For other examples of divergence measures, see the paper [22] by J.N. Kapur, where further references are given.
2. Some Inequalities for Lipschitzian Mappings. The Case of

$$
l_{\infty}-\mathrm{NORM}
$$

2.1. Some Inequalities. We start with the following result.

Theorem 3. Let X, Y be two normed linear spaces with the norms $\|\cdot\|$ and $|\cdot|$ respectively. If $F: X \rightarrow Y$ is L - Lipschitzian, that is,

$$
\begin{equation*}
|F(x)-F(y)| \leq L\|x-y\| \quad \text { for all } x, y \in X \tag{2.1}
\end{equation*}
$$

then for all $x_{i} \in X, p_{i} \geq 0$ with $\sum_{i=1}^{n} p_{i}=1(i=1, \ldots, n)$, we have the inequality

$$
\begin{equation*}
\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} F\left(x_{i}\right)\right| \leq L \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \sum_{i, j=1}^{n} p_{i} p_{j}|i-j| \tag{2.2}
\end{equation*}
$$

Proof. As F is L-Lipschitzian, we can choose $x=\sum_{i=1}^{n} p_{i} x_{i}$ and $y=x_{j}(j=1, \ldots, n)$ in (2.1) to get

$$
\begin{align*}
& \left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-F\left(x_{j}\right)\right| \leq L\left\|\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right\| \tag{2.3}\\
= & L\left\|\sum_{i=1}^{n} p_{i}\left(x_{i}-x_{j}\right)\right\| \leq L \sum_{i=1}^{n} p_{i}\left\|x_{i}-x_{j}\right\| .
\end{align*}
$$

Multiplying (2.3) by $p_{j} \geq 0$ and summing over j from 1 to n, we deduce

$$
\begin{equation*}
\sum_{j=1}^{n} p_{j}\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-F\left(x_{j}\right)\right| \leq L \sum_{i, j=1}^{n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| \tag{2.4}
\end{equation*}
$$

By the generalised triangle inequality we have

$$
\begin{equation*}
\sum_{j=1}^{n} p_{j}\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-F\left(x_{j}\right)\right| \geq\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{j=1}^{n} p_{j} F\left(x_{j}\right)\right| . \tag{2.5}
\end{equation*}
$$

Also, it is obvious that

$$
\begin{equation*}
\sum_{i, j=1}^{n} p_{i} p_{j}\left\|x_{i}-x_{j}\right\|=2 \sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| \tag{2.6}
\end{equation*}
$$

Now, observe that, for $i<j$, we have

$$
x_{j}-x_{i}=\sum_{k=i}^{j-1} \Delta x_{k}
$$

where $\Delta x_{k}:=x_{k+1}-x_{k}$ is the forward difference.
Therefore, by the generalised triangle inequality we have

$$
\begin{align*}
& \sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| \tag{2.7}\\
&= \sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|\sum_{k=i}^{j-1} \Delta x_{k}\right\| \leq \sum_{1 \leq i<j \leq n} p_{i} p_{j} \sum_{k=i}^{j-1}\left\|\Delta x_{k}\right\| \\
& \leq \sum_{1 \leq i<j \leq n} p_{i} p_{j}(j-i) \\
&= \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \\
&=\left\|x_{k}\right\| \sum_{1 \leq i<j, n-1} p_{i} p_{j}(j-i) \\
&= \frac{1}{2} \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \sum_{i, j=1}^{n} p_{i} p_{j}|j-i| .
\end{align*}
$$

Using (2.4) - (2.7) we deduce the desired inequality (2.2).
Corollary 2. With the above assumptions for F and $x_{i}(i=1, \ldots, n)$, we have the inequality

$$
\begin{equation*}
\left|F\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} F\left(x_{i}\right)\right| \leq L \cdot \frac{n^{2}-1}{3 n} \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \tag{2.8}
\end{equation*}
$$

Proof. We choose $p_{i}=\frac{1}{n}(i=1, \ldots, n)$ in (2.2) and have to compute

$$
I:=\sum_{i, j=1}^{n}|i-j|
$$

We observe that

$$
\begin{aligned}
\sum_{j=1}^{n}|i-j| & =\sum_{j=1}^{i}|i-j|+\sum_{j=i+1}^{n}|i-j|=\sum_{j=1}^{i}(i-j)+\sum_{j=i+1}^{n}(j-i) \\
& =i^{2}-\frac{i(i+1)}{2}+\sum_{j=1}^{n} j-i(n-i) \\
& =i^{2}-(n+1) i+\frac{n(n+1)}{2}=\frac{n^{2}-1}{4}+\left(i-\frac{n+1}{2}\right)^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
I & =\sum_{i=1}^{n}\left(\sum_{j=1}^{n}|i-j|\right)=\sum_{i=1}^{n}\left[i^{2}-(n+1) i+\frac{n(n+1)}{2}\right] \\
& =\frac{(n-1) n(n+1)}{3}
\end{aligned}
$$

and the inequality (2.8) is proved.
The following corollary provides a counterpart of the generalised triangle inequality in normed spaces.
Corollary 3. Let $(X,\|\cdot\|)$ be a normed space and $x_{i} \in X, p_{i} \geq 0(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$. Then we have the inequality

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n} p_{i}\left\|x_{i}\right\|-\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\| \leq \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \sum_{i, j=1}^{n} p_{i} p_{j}|j-i| \tag{2.9}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n}\left\|x_{i}\right\|-\left\|\sum_{i=1}^{n} x_{i}\right\| \leq \frac{n^{2}-1}{3} \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \tag{2.10}
\end{equation*}
$$

The proof is obvious by Theorem 3 on choosing $F: X \rightarrow \mathbb{R}, F(X)=\|x\|$ which is L-Lipschitzian with $L=1$ as

$$
|\|x\|-\|y\|| \leq\|x-y\| \quad \text { for all } x, y \in X
$$

2.2. Applications for Csiszár ϕ-Divergence. The following theorem holds.

Theorem 4. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be L-Lipschitzian on \mathbb{R}_{+}. Then for all $p, q \in \mathbb{R}_{+}^{n}$, we have the inequality

$$
\begin{equation*}
\left|I_{\phi}(p, q)-Q_{n} \phi\left(\frac{P_{n}}{Q_{n}}\right)\right| \leq L \max _{k=1, \ldots, n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| \tag{2.11}
\end{equation*}
$$

Proof. We apply inequality (2.2) for $F=\phi$ and $p_{i}=\frac{q_{i}}{Q_{n}}, x_{i}=\frac{p_{i}}{q_{i}}$ to get

$$
\begin{aligned}
& \left|\phi\left(\frac{\sum_{i=1}^{n} p_{i}}{Q_{n}}\right)-\frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i} \phi\left(\frac{p_{i}}{q_{i}}\right)\right| \\
\leq & L \max _{k=1, \ldots, n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| \frac{1}{Q_{n}^{2}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| .
\end{aligned}
$$

from where we obtain (2.11).
Corollary 4. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be L-Lipschitzian and normalised. Then for any $p, q \in \mathbb{R}_{+}^{n}$ with $P_{n}=Q_{n}$, we have the inequality

$$
\begin{equation*}
0 \leq\left|I_{\phi}(p, q)\right| \leq L \max _{k=1, \ldots, n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| \tag{2.12}
\end{equation*}
$$

Corollary 5. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be differentiable convex, with a bounded derivative, that is, $\left\|\phi^{\prime}\right\|_{\infty}:=\sup _{t \geq 0}\left|\phi^{\prime}(t)\right|<\infty$. Then we have the inequality:

$$
\begin{align*}
0 & \leq I_{\phi}(p, q)-Q_{n} \phi\left(\frac{P_{n}}{Q_{n}}\right) \tag{2.13}\\
& \leq\left\|\phi^{\prime}\right\|_{\infty} \max _{k=1, \ldots, n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| .
\end{align*}
$$

Moreover, if ϕ is normalised and $P_{n}=Q_{n}$, then

$$
\begin{equation*}
0 \leq I_{\phi}(p, q) \leq\left\|\phi^{\prime}\right\|_{\infty} \max _{k=1, \ldots, n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| \tag{2.14}
\end{equation*}
$$

Recall the Kullback-Leibler distance given by (1.9)

$$
\begin{equation*}
K L(p, q):=\sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right) . \tag{2.15}
\end{equation*}
$$

We observe that, for the convex mapping $\phi(t):=-\log (t), t>0$,

$$
\begin{equation*}
I_{\phi}(p, q)=\sum_{i=1}^{n} q_{i}\left[-\log \left(\frac{p_{i}}{q_{i}}\right)\right]=\sum_{i=1}^{n} q_{i} \log \left(\frac{q_{i}}{p_{i}}\right)=K L(q, p) \tag{2.16}
\end{equation*}
$$

The following proposition for the Kullback-Leibler distance holds.
Proposition 1. Let $p, q \in \mathbb{R}_{+}^{n}$ satisfy the condition

$$
\begin{equation*}
0<m \leq r_{k}:=\frac{p_{k}}{q_{k}} \quad \text { for all } k=1, \ldots, n \tag{2.17}
\end{equation*}
$$

Then, we have the inequality

$$
\begin{align*}
0 & \leq K L(q, p)-Q_{n} \log \left(\frac{Q_{n}}{P_{n}}\right) \tag{2.18}\\
& \leq \frac{1}{m} \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j|
\end{align*}
$$

Proof. As $\phi(t)=-\log (t)$, then $\phi^{\prime}(t)=-\frac{1}{t}, t>0$. The restriction of ϕ^{\prime} in the interval $[m, \infty)$ is bounded and $\left\|\phi^{\prime}\right\|_{\infty}=\sup _{t \in[m, \infty)}\left|\frac{1}{t}\right|=\frac{1}{m}<\infty$. Applying the inequality (2.13), we deduce (2.18).

Remark 1. If we assume that $P_{n}=Q_{n}$, then $m \leq 1$ and (2.18) becomes

$$
\begin{equation*}
0 \leq K L(q, p) \leq \frac{1}{m} \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| . \tag{2.19}
\end{equation*}
$$

We also know that for $\phi(t)=t \log t, t>0$, the Csiszár ϕ-divergence is (see (1.9)), $\phi(p, q)=K L(p, q)=\sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)$.

The following proposition also holds.

Proposition 2. Let $p, q \in \mathbb{R}_{+}^{n}$ satisfy the condition

$$
\begin{equation*}
0<m \leq r_{k} \leq M<\infty \quad \text { for all } k=1, \ldots, n \tag{2.20}
\end{equation*}
$$

Then we have the inequality

$$
\begin{align*}
0 \leq & K L(q, p)-P_{n} \log \left(\frac{P_{n}}{Q_{n}}\right) \tag{2.21}\\
\leq & \max \{|\log (M l)|,|\log (m l)|\} \\
& \times \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| .
\end{align*}
$$

Proof. For the mapping $\phi(t)=t \log t, t>0$, we have $\phi^{\prime}(t)=\log (t)+1$. On the interval $[m, M$] we have

$$
\log (m)+1 \leq \phi^{\prime}(M) \leq \log (M)+1, \quad t \in[m, M]
$$

Applying the inequality (2.13), we deduce (2.21).
Remark 2. If we assume that $P_{n}=Q_{n}$, then $m \leq 1 \leq M$ and (2.21) becomes

$$
\begin{align*}
0 \leq & K L(q, p) \tag{2.22}\\
\leq & \max \{|\log (M l)|,|\log (m l)|\} \\
& \times \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j|
\end{align*}
$$

Let $\phi(t)=(\sqrt{t}-1)^{2}, t>0$. Then I_{ϕ} gives the Hellinger distance

$$
H_{e}(p, q)=\sum_{i=1}^{n}\left(\sqrt{p_{i}}-\sqrt{q_{i}}\right)^{2} .
$$

Using Corollary [5, we can state the following proposition.
Proposition 3. Let $p, q \in \mathbb{R}_{+}^{n}$ satisfy the condition (2.20). Then we have the inequality

$$
\begin{align*}
0 \leq & H_{e}(p, q)-\left(\sqrt{P_{n}}-\sqrt{Q_{n}}\right)^{2} \tag{2.23}\\
\leq & \max \left\{\frac{|\sqrt{m}-1|}{\sqrt{m}}, \frac{|\sqrt{M}-1|}{\sqrt{M}}\right\} \\
& \times \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j|
\end{align*}
$$

Proof. As $\phi(t)=(\sqrt{t}-1)^{2}, t>0$, then $\phi^{\prime}(t)=1-\frac{1}{\sqrt{t}}$. If we consider the mapping ϕ^{\prime} restricted to the interval $[m, M] \subset(0, \infty)$, then we observe that

$$
\frac{|\sqrt{m}-1|}{\sqrt{m}} \leq \phi^{\prime}(t) \leq \frac{|\sqrt{M}-1|}{\sqrt{M}}, t \in[m, M]
$$

and thus

$$
\left\|\phi^{\prime}\right\|_{\infty} \leq \max \left\{\frac{|\sqrt{m}-1|}{\sqrt{m}}, \frac{|\sqrt{M}-1|}{\sqrt{M}}\right\}
$$

Remark 3. If we assume that $P_{n}=Q_{n}$, then $m \leq 1 \leq M$ and (2.23) becomes

$$
\begin{align*}
0 \leq & H_{e}(p, q) \tag{2.24}\\
\leq & \max \left\{\frac{|1-\sqrt{m}|}{\sqrt{m}}, \frac{|\sqrt{M}-1|}{\sqrt{M}}\right\} \\
& \times \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j| .
\end{align*}
$$

Consider now the mapping $\phi(t)=t^{\alpha}, \alpha>1, t>0$ and the α-order entropy by Rényi $\operatorname{Re}_{\alpha}(p, q):=\sum_{i=1}^{n} p_{i}^{\alpha} q_{i}^{1-\alpha}$.

We can state the following proposition.
Proposition 4. Let $p, q \in \mathbb{R}_{+}^{n}$ be such that

$$
\begin{equation*}
0<r_{k} \leq M<\infty \quad \text { for all } k=1, \ldots, n \tag{2.25}
\end{equation*}
$$

Then we have the inequality

$$
\begin{align*}
0 & \leq \operatorname{Re}_{\alpha}(p, q)-P_{n}^{\alpha} Q_{n}^{1-\alpha} \tag{2.26}\\
& \leq \alpha M^{\alpha-1} \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j|
\end{align*}
$$

In particular, if $P_{n}=Q_{n}$, then $M \geq 1$ and (2.26) becomes

$$
\begin{align*}
0 & \leq \operatorname{Re}_{\alpha}(p, q)-Q_{n} \tag{2.27}\\
& \leq \alpha M^{\alpha-1} \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j|
\end{align*}
$$

The proof is obvious by Corollary 5 applied for $\phi(t)=t^{\alpha}$, and we omit the details.

Finally, if we consider the χ^{2}-distance (see (1.15))

$$
D_{\chi^{2}}(p, q)=\sum_{i=1}^{n} \frac{\left(p_{i}-q_{i}\right)^{2}}{q_{i}}
$$

obtained from the Csiszár ϕ-divergence for the choice $\phi(t)=(t-1)^{2}, t>0$, then we can state the following proposition as well.

Proposition 5. Let $p, q \in \mathbb{R}_{+}^{n}$ fulfill the properties of (2.20). Then we have the converse inequality

$$
\begin{align*}
0 \leq & D_{\chi^{2}}(p, q)-\frac{1}{Q_{n}}\left(P_{n}-Q_{n}\right)^{2} \tag{2.28}\\
\leq & 2 \max \{|m-1|,|M-1|\} \\
& \times \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j|
\end{align*}
$$

In particular, if $P_{n}=Q_{n}$, then $m \leq 1 \leq M$ and (2.28) becomes

$$
\begin{align*}
0 \leq & D_{\chi^{2}}(p, q) \tag{2.29}\\
\leq & 2 \max \{1-m, M-1\} \\
& \times \max _{k=1, \ldots, n-1}\left|r_{k+1}-r_{k}\right| \frac{1}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|i-j|
\end{align*}
$$

3. The Case of l_{1}-Norm

3.1. Some Inequalities. We start with the following result.

Theorem 5. Let X, Y be two normed linear spaces with the norms $\|\cdot\|$ and $|\cdot|$ respectively. If $F: X \rightarrow Y$ is L - Lipschitzian, that is,

$$
\begin{equation*}
|F(x)-F(y)| \leq L\|x-y\| \quad \text { for all } x, y \in X \tag{3.1}
\end{equation*}
$$

then for all $x_{i} \in X, p_{i} \geq 0$ with $\sum_{i=1}^{n} p_{i}=1(i=1, \ldots, n)$, we have the inequality

$$
\begin{equation*}
\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} F\left(x_{i}\right)\right| \leq L \sum_{i=1}^{n} p_{i}\left(1-p_{i}\right) \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| . \tag{3.2}
\end{equation*}
$$

Proof. As F is L-Lipschitzian, we can state (see the proof of Theorem 3) that

$$
\begin{equation*}
\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{j=1}^{n} p_{j} F\left(x_{j}\right)\right| \leq 2 L \sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| \tag{3.3}
\end{equation*}
$$

in (3.1). Now, observe that, for $i<j$, we have

$$
x_{j}-x_{i}=\sum_{k=i}^{j-1} \Delta x_{k}
$$

where $\Delta x_{k}:=x_{k+1}-x_{k}$ is the forward difference.
Therefore, as in the proof of Theorem 3, we have

$$
\begin{align*}
& \sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| \tag{3.4}\\
= & \sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|\sum_{k=i}^{j-1} \Delta x_{k}\right\| \leq \sum_{1 \leq i<j \leq n} p_{i} p_{j} \sum_{k=i}^{j-1}\left\|\Delta x_{k}\right\| \\
\leq & \sum_{1 \leq i<j \leq n} p_{i} p_{j} \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| .
\end{align*}
$$

Now, if we put

$$
I=\sum_{1 \leq i<j \leq n} p_{i} p_{j}
$$

we observe that

$$
1=\sum_{i, j=1}^{n} p_{i} p_{j}=2 \sum_{1 \leq i<j \leq n} p_{i} p_{j}+\sum_{i=1}^{n} p_{i}^{2}=2 I+\sum_{i=1}^{n} p_{i}^{2}
$$

from where we deduce

$$
I=\frac{1}{2} \sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)
$$

Now, using (3.3) - (3.4) we deduce the desired inequality (2.2).
Corollary 6. With the above assumptions for F and $x_{i}(i=1, \ldots, n)$, we have the inequality

$$
\begin{equation*}
\left|F\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} F\left(x_{i}\right)\right| \leq L \cdot \frac{n-1}{n} \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| . \tag{3.5}
\end{equation*}
$$

The proof is obvious by the above theorem, choosing $p_{i}=\frac{1}{n}(i=1, \ldots, n)$.
The following corollary provides a counterpart of the generalised triangle inequality.
Corollary 7. Let $(X,\|\cdot\|)$ be a normed space and $x_{i} \in X, p_{i} \geq 0(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$. Then we have the inequality

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n} p_{i}\left\|x_{i}\right\|-\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\| \leq \sum_{i=1}^{n} p_{i}\left(1-p_{i}\right) \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| \tag{3.6}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n}\left\|x_{i}\right\|-\left\|\sum_{i=1}^{n} x_{i}\right\| \leq(n-1) \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| \tag{3.7}
\end{equation*}
$$

The proof is obvious by Theorem 5 on choosing $F: X \rightarrow \mathbb{R}, F(X)=\|x\|$ which is L-Lipschitzian with $L=1$ as

$$
|\|x\|-\|y\|| \leq\|x-y\| \quad \text { for all } x, y \in X
$$

3.2. Applications for Csiszár ϕ-Divergence. The following theorem holds.

Theorem 6. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be L-Lipschitzian on \mathbb{R}_{+}. Then for all $p, q \in \mathbb{R}_{+}^{n}$, we have the inequality

$$
\begin{equation*}
\left|I_{\phi}(p, q)-Q_{n} \phi\left(\frac{P_{n}}{Q_{n}}\right)\right| \leq \frac{L}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| . \tag{3.8}
\end{equation*}
$$

Proof. We apply inequality (3.2) for $F=\phi$ and $p_{i}=\frac{q_{i}}{Q_{n}}, x_{i}=\frac{p_{i}}{q_{i}}(i=1, \ldots, n)$ to get

$$
\left|\phi\left(\frac{P_{n}}{Q_{n}}\right)-\frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i} \phi\left(\frac{p_{i}}{q_{i}}\right)\right| \leq L \sum_{i=1}^{n} \frac{q_{i}\left(Q_{n}-q_{i}\right)}{Q_{n}^{2}} \sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| .
$$

from where we obtain (3.8).
Corollary 8. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be L-Lipschitzian and normalised. Then for any $p, q \in \mathbb{R}_{+}^{n}$ with $P_{n}=Q_{n}$, we have the inequality

$$
\begin{equation*}
0 \leq\left|I_{\phi}(p, q)\right| \leq \frac{L}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| \tag{3.9}
\end{equation*}
$$

Corollary 9. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be differentiable convex, with a bounded derivative. Then we have the inequality:

$$
\begin{equation*}
0 \leq I_{\phi}(p, q)-Q_{n} \phi\left(\frac{P_{n}}{Q_{n}}\right) \leq \frac{\left\|\phi^{\prime}\right\|_{\infty}}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| \tag{3.10}
\end{equation*}
$$

Moreover, if ϕ is normalised and $P_{n}=Q_{n}$, then

$$
\begin{equation*}
0 \leq I_{\phi}(p, q) \leq \frac{\left\|\phi^{\prime}\right\|_{\infty}}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right| . \tag{3.11}
\end{equation*}
$$

Now, let us recall the Kullback-Leibler distance

$$
\begin{equation*}
K L(p, q):=\sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right) \tag{3.12}
\end{equation*}
$$

We observe that, for the convex mapping $\phi(t):=-\log (t), t>0$,

$$
\begin{equation*}
I_{\phi}(p, q)=\sum_{i=1}^{n} q_{i}\left[-\log \left(\frac{p_{i}}{q_{i}}\right)\right]=\sum_{i=1}^{n} q_{i} \log \left(\frac{q_{i}}{p_{i}}\right)=K L(q, p) \tag{3.13}
\end{equation*}
$$

The following proposition for the Kullback-Leibler distance holds.
Proposition 6. Let $p, q \in \mathbb{R}_{+}^{n}$ satisfy the condition

$$
\begin{equation*}
0<m \leq r_{k}:=\frac{p_{k}}{q_{k}} \quad \text { for all } k=1, \ldots, n \tag{3.14}
\end{equation*}
$$

Then, we have the inequality

$$
\begin{align*}
0 & \leq K L(q, p)-Q_{n} \log \left(\frac{Q_{n}}{P_{n}}\right) \tag{3.15}\\
& \leq \frac{1}{m Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

Proof. As $\phi(t)=-\log (t)$, then $\phi^{\prime}(t)=-\frac{1}{t}, t>0$. The restriction of ϕ^{\prime} in the interval $[m, \infty)$ is bounded and $\left\|\phi^{\prime}\right\|_{\infty}=\sup _{t \in[m, \infty)}\left|\frac{1}{t}\right|=\frac{1}{m}<\infty$. Applying the inequality (3.10), we deduce (3.15).

Remark 4. If we assume that $P_{n}=Q_{n}$, then $m \leq 1$ and (3.15) becomes

$$
\begin{equation*}
0 \leq K L(q, p) \leq \frac{1}{m Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right| \tag{3.16}
\end{equation*}
$$

We also know that for $\phi(t)=t \log t, t>0$, the Csiszár ϕ-divergence is

$$
\phi(p, q)=K L(p, q)=\sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)
$$

The following proposition also holds.
Proposition 7. Let $p, q \in \mathbb{R}_{+}^{n}$ satisfy the condition

$$
\begin{equation*}
0<m \leq r_{k} \leq M<\infty \quad \text { for all } k=1, \ldots, n \tag{3.17}
\end{equation*}
$$

Then we have the inequality
(3.18) $0 \leq K L(q, p)-P_{n} \log \left(\frac{P_{n}}{Q_{n}}\right)$

$$
\leq \frac{\max \{|\log (M l)|,|\log (m l)|\}}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
$$

Proof. For the mapping $\phi(t)=t \log t, t>0$, we have $\phi^{\prime}(t)=\log (t)+1$. On the interval $[m, M$] we have

$$
\log m+1 \leq \phi^{\prime}(t) \leq \log M+1, \quad t \in[m, M]
$$

and hence

$$
\left|\phi^{\prime}(t)\right| \leq \max \{|\log (M l)|,|\log (m l)|\}, \quad t \in[m, M]
$$

Applying the inequality (3.10), we deduce (3.18).
Remark 5. If we assume that $P_{n}=Q_{n}$, then (2.21) becomes

$$
\begin{align*}
0 & \leq K L(q, p) \tag{3.19}\\
& \leq \frac{\max \{|\log (M l)|,|\log (m l)|\}}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

Let $\phi(t)=(\sqrt{t}-1)^{2}, t>0$. Then I_{ϕ} gives the Hellinger distance

$$
H e(p, q)=\sum_{i=1}^{n}\left(\sqrt{p_{i}}-\sqrt{q_{i}}\right)^{2}
$$

Using Corollary 9, we may state the following proposition.
Proposition 8. Assume that $p, q \in \mathbb{R}_{+}^{n}$ satisfy the condition (3.17). Then we have the inequality

$$
\begin{align*}
& 0 \leq H e(p, q)-\left(\sqrt{P_{n}}-\sqrt{Q_{n}}\right)^{2} \tag{3.20}\\
\leq & \max \left\{\frac{|\sqrt{m}-1|}{\sqrt{m}}, \frac{|\sqrt{M}-1|}{\sqrt{M}}\right\} \frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

Proof. As $\phi(t)=(\sqrt{t}-1)^{2}, t>0$, then $\phi^{\prime}(t)=1-\frac{1}{\sqrt{t}}$. If we consider the mapping ϕ^{\prime} restricted to the interval $[m, M] \subset(0, \infty)$, then we observe that

$$
\frac{|\sqrt{m}-1|}{\sqrt{m}} \leq \phi^{\prime}(t) \leq \frac{|\sqrt{M}-1|}{\sqrt{M}}, t \in[m, M]
$$

and thus

$$
\left\|\phi^{\prime}\right\|_{\infty} \leq \max \left\{\frac{|\sqrt{m}-1|}{\sqrt{m}}, \frac{|\sqrt{M}-1|}{\sqrt{M}}\right\}
$$

Remark 6. If we assume that $P_{n}=Q_{n}$, then $m \leq 1 \leq M$ and (2.23) becomes

$$
\begin{align*}
& 0 \leq H e(p, q) \tag{3.21}\\
\leq & \max \left\{\frac{1-\sqrt{m}}{\sqrt{m}}, \frac{\sqrt{M}-1}{\sqrt{M}}\right\} \frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

Consider now the mapping $\phi(t)=t^{\alpha}, \alpha>1, t>0$ and the α-order entropy by Rényi $\operatorname{Re}_{\alpha}(p, q):=\sum_{i=1}^{n} p_{i}^{\alpha} q_{i}^{1-\alpha}$.

We can state the following proposition.

Proposition 9. Let $p, q \in \mathbb{R}_{+}^{n}$ be such that

$$
\begin{equation*}
0<r_{k} \leq M<\infty \quad \text { for all } k=1, \ldots, n \tag{3.22}
\end{equation*}
$$

Then we have the inequality

$$
\begin{align*}
0 & \leq \operatorname{Re}_{\alpha}(p, q)-P_{n}^{\alpha} Q_{n}^{1-\alpha} \tag{3.23}\\
& \leq \alpha M^{\alpha-1} \frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

In particular, if $P_{n}=Q_{n}$, then $M \geq 1$ and (3.23) becomes

$$
\begin{align*}
0 & \leq \operatorname{Re}_{\alpha}(p, q)-Q_{n} \tag{3.24}\\
& \leq \alpha M^{\alpha-1} \frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

The proof is obvious by Corollary 9 applied for $\phi(t)=t^{\alpha}$, and we omit the details.

Finally, if we consider the $\chi^{2}-$ distance

$$
D_{\chi^{2}}(p, q):=\sum_{i=1}^{n} \frac{\left(p_{i}-q_{i}\right)^{2}}{q_{i}}
$$

obtained from the Csiszár ϕ-divergence for the choice $\phi(t)=(t-1)^{2}$, then we can state the following proposition too.

Proposition 10. Let $p, q \in \mathbb{R}_{+}^{n}$ fulfill the conditions of (2.20). Then we have the inequality

$$
\begin{align*}
0 & \leq D_{\chi^{2}}(p, q)-\frac{1}{Q_{n}}\left(P_{n}-Q_{n}\right)^{2} \tag{3.25}\\
& \leq 2 \max \{|m-1|,|M-1|\} \frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

In particular, if $P_{n}=Q_{n}$, then (3.25) becomes

$$
\begin{align*}
0 & \leq D_{\chi^{2}}(p, q) \tag{3.26}\\
& \leq 2 \max \{1-m, M-1\} \frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i}\left(Q_{n}-q_{i}\right) \sum_{k=1}^{n-1}\left|r_{k+1}-r_{k}\right|
\end{align*}
$$

4. The Case of $l_{p}-$ Norm
4.1. Some Inequalities. We start with the following result.

Theorem 7. Let $X, Y, F,\left(p_{i}\right)_{i=\overline{1, n}}$ be as in Theorem 5. Then we have the inequality:

$$
\begin{equation*}
\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} F\left(x_{i}\right)\right| \leq L \sum_{i, j=1}^{n} p_{i} p_{j}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{p}\right)^{\frac{1}{p}} \tag{4.1}
\end{equation*}
$$

where $p>1, \frac{1}{p}+\frac{1}{q}=1$.

Proof. As in the proof of Theorem 3, we have

$$
\begin{equation*}
\left|F\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{j=1}^{n} p_{j} F\left(x_{j}\right)\right| \leq 2 L \sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| \tag{4.2}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| \leq \sum_{1 \leq i<j \leq n} p_{i} p_{j} \sum_{k=i}^{j-1}\left\|\Delta x_{k}\right\| \tag{4.3}
\end{equation*}
$$

Using Hölder's discrete inequality, we may write for $p>1, \frac{1}{p}+\frac{1}{q}=1$, that

$$
\begin{aligned}
\sum_{k=i}^{j-1}\left\|\Delta x_{k}\right\| & \leq\left(\sum_{k=i}^{j-1} 1\right)^{\frac{1}{q}}\left(\sum_{k=i}^{j-1}\left\|\Delta x_{k}\right\|^{p}\right)^{\frac{1}{p}}=(j-i)^{\frac{1}{q}}\left(\sum_{k=i}^{j-1}\left\|\Delta x_{k}\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq(j-i)^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

and then, by (4.3), we get

$$
\begin{aligned}
\sum_{1 \leq i<j \leq n} p_{i} p_{j}\left\|x_{j}-x_{i}\right\| & \leq \sum_{1 \leq i<j \leq n} p_{i} p_{j}(j-i)^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{p}\right)^{\frac{1}{p}} \\
& =\frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Using (4.2) we deduce (4.1).

Corollary 10. Let $(X,\|\cdot\|)$ be a normed space and $x_{i} \in X, p_{i} \geq 0(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$. Then we have the inequality:

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n} p_{i}\left\|x_{i}\right\|-\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\| \leq \sum_{i, j=1}^{n} p_{i} p_{j}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{p}\right)^{\frac{1}{p}} \tag{4.4}
\end{equation*}
$$

4.2. Applications for Csiszár ϕ-Divergence. The following result for Csiszár f-divergence holds.
Theorem 8. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be L-Lipschitzian on \mathbb{R}_{+}. Then for all $p, q \in \mathbb{R}_{+}^{n}$, we have the inequality:

$$
\begin{equation*}
\left|I_{\phi}(p, q)-Q_{n} \phi\left(\frac{P_{n}}{Q_{n}}\right)\right| \leq \frac{L}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right|^{p}\right)^{\frac{1}{p}} \tag{4.5}
\end{equation*}
$$

where $p>1, \frac{1}{p}+\frac{1}{q}=1$.

Proof. We apply inequality (4.1) for $F=\phi, p_{i}=\frac{q_{i}}{Q_{n}}, x_{i}=\frac{p_{i}}{q_{i}}$ to get

$$
\begin{aligned}
& \left|\phi\left(\frac{P_{n}}{Q_{n}}\right)-\frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i} \phi\left(\frac{p_{i}}{q_{i}}\right)\right| \\
\leq & L \sum_{i, j=1}^{n} \frac{q_{i}}{Q_{n}} \cdot \frac{q_{j}}{Q_{n}}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

from where we obtain (4.5).
Corollary 11. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be L-Lipschitzian and normalised. Then for all $p, q \in \mathbb{R}_{+}^{n}$ with $P_{n}=Q_{n}$, we have

$$
\begin{equation*}
0 \leq\left|I_{\phi}(p, q)\right| \leq \frac{c}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right|^{p}\right)^{\frac{1}{p}} \tag{4.6}
\end{equation*}
$$

Corollary 12. Let $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be differentiable convex with a bounded derivative. Then

$$
\begin{align*}
0 & \leq I_{\phi}(p, q)-Q_{n} \phi\left(\frac{P_{n}}{Q_{n}}\right) \tag{4.7}\\
& \leq \frac{\left\|\phi^{\prime}\right\|_{\infty}}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right|^{p}\right)^{\frac{1}{p}} .
\end{align*}
$$

Moreover, if ϕ is normalised and $P_{n}=Q_{n}$, then

$$
\begin{equation*}
0 \leq I_{\phi}(p, q) \leq \frac{\left\|\phi^{\prime}\right\|_{\infty}}{Q_{n}} \sum_{i, j=1}^{n} q_{i} q_{j}|j-i|^{\frac{1}{q}}\left(\sum_{k=1}^{n-1}\left|\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}\right|^{p}\right)^{\frac{1}{p}} \tag{4.8}
\end{equation*}
$$

Remark 7. Inequalities for particular divergences as in the previous two sections can be stated, but we omit the details.

References

[1] I. CSISZÁR, Information measures: A critical survey, Trans. 7th Prague Conf. on Info. Th., Statist. Decis. Funct., Random Processes and 8th European Meeting of Statist., Volume B, Academia Prague, 1978, 73-86.
[2] I. CSISZÁR, Information-type measures of difference of probability functions and indirect observations, Studia Sci. Math. Hungar, 2 (1967), 299-318.
[3] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
[4] J.H. JUSTICE (editor), Maximum Entropy and Bayssian Methods in Applied Statistics, Cambridge University Press, Cambridge, 1986.
[5] J.N. KAPUR, On the roles of maximum entropy and minimum discrimination information principles in Statistics, Technical Address of the 38th Annual Conference of the Indian Society of Agricultural Statistics, 1984, 1-44.
[6] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy functions, IEEE Transactions on Information Theory, 28 (1982), 489-495.
[7] R.G. GALLAGER, Information Theory and Reliable Communications, J. Wiley, New York, 1968.
[8] C.E. SHANNON, A mathematical theory of communication, Bull. Sept. Tech. J., 27 (1948), 370-423 and 623-656.
[9] B.R. FRIEDEN, Image enhancement and restoration, Picture Processing and Digital Filtering (T.S. Huang, Editor), Springer-Verlag, Berlin, 1975.
[10] R.M. LEAHY and C.E. GOUTIS, An optimal technique for constraint-based image restoration and mensuration, IEEE Trans. on Acoustics, Speech and Signal Processing, 34 (1986), 1692-1642.
[11] S. KULLBACK, Information Theory and Statistics, J. Wiley, New York, 1959.
[12] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Annals Math. Statist., 22 (1951), 79-86.
[13] R. BERAN, Minimum Hellinger distance estimates for parametric models, Ann. Statist., 5 (1977), 445-463.
[14] A. RENYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Statist. Prob., Vol. 1, University of California Press, Berkeley, 1961.
[15] S.S. DRAGOMIR and N.M. IONESCU, Some converse of Jensen's inequality and applications, Anal. Num. Theor. Approx., 23 (1994), 71-78.
[16] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen's discrete inequality for differentiable convex mappings and applications in information theory, Math. Comput. Modelling, 24 (2) (1996), 1-11.
[17] S.S. DRAGOMIR and C.J. GOH, Some counterpart inequalities in for a functional associated with Jensen's inequality, J. of Ineq. E Appl., 1 (1997), 311-325.
[18] S.S. DRAGOMIR and C.J. GOH, Some bounds on entropy measures in information theory, Appl. Math. Lett., 10 (1997), 23-28.
[19] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen's continuous inequality and applications in information theory, RGMIA Preprint, http://matilda.vu.edu.au/~rgmia/InfTheory/Continuse.dvi
[20] M. MATIĆ, Jensen's inequality and applications in Information Theory (in Croatian), Ph.D. Thesis, Univ. of Zagreb, 1999.
[21] S.S. DRAGOMIR, J. ŠUNDE and M. SCHOLZ, Some upper bounds for relative entropy and applications, Comp. and Math. with Appl. (in press).
[22] J.N. KAPUR, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3 (1984), No. 1, 1-16.
[23] S.S. DRAGOMIR, Some inequalities for the Csiszár Φ-divergence, submitted.

School of Communications and Informatics, Victoria University of Technology, Melbourne City MC, Victoria 8001, Australia.

E-mail address: sever@matilda.vu.edu.au
$U R L$: http://rgmia.vu.edu.au/SSDragomirWeb.html

[^0]: Date: June 20, 2000.
 1991 Mathematics Subject Classification. Primary 26D15, 46A99.
 Key words and phrases. Csiszár ϕ-Divergence, L - Lipschitzian Function.

