
SOME INEQUALITIES FOR THE CSISZÁR φ−DIVERGENCE
WHEN φ IS AN L- LIPSCHITZIAN FUNCTION AND

APPLICATIONS

S.S. DRAGOMIR

Abstract. Some inequalities of Jessen’s type for vector valued Lipschitzian
functions and applications for the discrete Csiszár φ−divergence are given.

1. Introduction

Given a convex function Φ : R+ → R+, the Φ- divergence functional

(1.1) IΦ (p, q) :=
n

∑

i=1

qiΦ
(

pi

qi

)

,

was introduced in Csiszár [1], [2] as a generalized measure of information, a “dis-
tance function” on the set of probability distributions Pn. The restriction here to
discrete distribution is only for convenience, similar results hold for general distri-
butions.

As in Csiszár [2], we interpret undefined expressions by

Φ (0) = lim
t→0+

Φ (t) , 0Φ
(

0
0

)

= 0,

0Φ
(a

0

)

= lim
ε→0+

Φ
(a

ε

)

= a lim
t→∞

Φ(t)
t

, a > 0.

The following results were essentially given by Csiszár and Körner [3].

Theorem 1. If Φ : R+ → R is convex, then IΦ (p, q) is jointly convex in p and q.

The following lower bound for the Φ−divergence functional also holds.

Theorem 2. Let Φ : R+ → R+ be convex. Then for every p, q ∈ Rn
+, we have the

inequality:

(1.2) IΦ (p, q) ≥
n

∑

i=1

qiΦ









n
∑

i=1
pi

n
∑

i=1
qi









.

If Φ is strictly convex, equality holds in (1.2) iff

(1.3)
p1

q1
=

p2

q2
= ... =

pn

qn
.
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Corollary 1. Let Φ : R+ → R be convex and normalized, i.e.,

(1.4) Φ (1) = 0.

Then for any p, q ∈ Rn
+ with

(1.5)
n

∑

i=1

pi =
n

∑

i=1

qi

we have the inequality

(1.6) IΦ (p, q) ≥ 0.

If Φ is strictly convex, the equality holds in (1.6) iff pi = qi for all i ∈ {1, ..., n}.
In particular, if p, q are probability vectors, then (1.5) is assured. Corollary 1

then shows, for strictly convex and normalized Φ : R+ → R,

(1.7) IΦ (p, q) ≥ 0 for all p, q ∈ Pn.

The equality holds in (1.7) iff p = q.
These are “distance properties”. However, IΦ is not a metric: It violates the

triangle inequality, and is asymmetric, i.e, for general p, q ∈ Rn
+, IΦ (p, q) 6=

IΦ (q, p).
In the examples below we obtain, for suitable choices of the kernel Φ, some of the

best known distance functions IΦ used in mathematical statistics [4]-[5], information
theory [6]-[8] and signal processing [9]-[10].
Example 1. (Kullback-Leibler) For

(1.8) Φ (t) := t log t, t > 0

the Φ−divergence is

(1.9) IΦ (p, q) =
n

∑

i=1

pi log
(

pi

qi

)

,

the Kullback-Leibler distance [11]-[12].
Example 2. (Hellinger) Let

(1.10) Φ (t) =
(

1−
√

t
)2

, t > 0.

Then IΦ gives the Hellinger distance [13]

(1.11) IΦ (p, q) =
n

∑

i=1

(
√

pi −
√

qi)
2 ,

which is symmetric.
Example 3. (Renyi) For α > 1, let

(1.12) Φ (t) = tα, t > 0.

Then

(1.13) IΦ (p, q) =
n

∑

i=1

pα
i q1−α

i ,

which is the α−order entropy [14].
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Example 4. (χ2−distance) Let

(1.14) Φ (t) = (t− 1)2 , t > 0.

Then

(1.15) IΦ (p, q) =
n

∑

i=1

(pi − qi)
2

qi

is the χ2−distance between p and q.

Finally, we have

Example 5. (Variational distance). Let Φ(t) = |t− 1| , t > 0. The corre-
sponding divergence, called the variational distance, is symmetric,

IΦ (p, q) =
n

∑

i=1

|pi − qi| .

For other examples of divergence measures, see the paper [22] by J.N. Kapur,
where further references are given.

2. Some Inequalities for Lipschitzian Mappings. The Case of
l∞−Norm

2.1. Some Inequalities. We start with the following result.

Theorem 3. Let X,Y be two normed linear spaces with the norms ‖·‖ and |·|
respectively. If F : X → Y is L - Lipschitzian, that is,

(2.1) |F (x)− F (y)| ≤ L ‖x− y‖ for all x, y ∈ X,

then for all xi ∈ X, pi ≥ 0 with
∑n

i=1 pi = 1 (i = 1, ..., n), we have the inequality

(2.2)

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

−
n

∑

i=1

piF (xi)

∣

∣

∣

∣

∣

≤ L max
k=1,...,n−1

‖∆xk‖
n

∑

i,j=1

pipj |i− j| .

Proof. As F is L−Lipschitzian, we can choose x =
∑n

i=1 pixi and y = xj (j = 1, ..., n)
in (2.1) to get

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

− F (xj)

∣

∣

∣

∣

∣

≤ L

∥

∥

∥

∥

∥

n
∑

i=1

pixi − xj

∥

∥

∥

∥

∥

(2.3)

= L

∥

∥

∥

∥

∥

n
∑

i=1

pi (xi − xj)

∥

∥

∥

∥

∥

≤ L
n

∑

i=1

pi ‖xi − xj‖ .

Multiplying (2.3) by pj ≥ 0 and summing over j from 1 to n, we deduce

(2.4)
n

∑

j=1

pj

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

− F (xj)

∣

∣

∣

∣

∣

≤ L
n

∑

i,j=1

pipj ‖xj − xi‖ .

By the generalised triangle inequality we have

(2.5)
n

∑

j=1

pj

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

− F (xj)

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

−
n

∑

j=1

pjF (xj)

∣

∣

∣

∣

∣

∣

.
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Also, it is obvious that

(2.6)
n

∑

i,j=1

pipj ‖xi − xj‖ = 2
∑

1≤i<j≤n

pipj ‖xj − xi‖ .

Now, observe that, for i < j, we have

xj − xi =
j−1
∑

k=i

∆xk,

where ∆xk := xk+1 − xk is the forward difference.
Therefore, by the generalised triangle inequality we have

∑

1≤i<j≤n

pipj ‖xj − xi‖(2.7)

=
∑

1≤i<j≤n

pipj

∥

∥

∥

∥

∥

j−1
∑

k=i

∆xk

∥

∥

∥

∥

∥

≤
∑

1≤i<j≤n

pipj

j−1
∑

k=i

‖∆xk‖

≤
∑

1≤i<j≤n

pipj (j − i) max
k=1,...,n−1

‖∆xk‖

= max
k=1,...,n−1

‖∆xk‖
∑

1≤i<j≤n

pipj (j − i)

=
1
2

max
k=1,...,n−1

‖∆xk‖
n

∑

i,j=1

pipj |j − i| .

Using (2.4) - (2.7) we deduce the desired inequality (2.2).

Corollary 2. With the above assumptions for F and xi (i = 1, ..., n), we have the
inequality

(2.8)

∣

∣

∣

∣

∣

F

(

1
n

n
∑

i=1

xi

)

− 1
n

n
∑

i=1

F (xi)

∣

∣

∣

∣

∣

≤ L · n2 − 1
3n

max
k=1,...,n−1

‖∆xk‖ .

Proof. We choose pi = 1
n (i = 1, ..., n) in (2.2) and have to compute

I :=
n

∑

i,j=1

|i− j| .

We observe that

n
∑

j=1

|i− j| =
i

∑

j=1

|i− j|+
n

∑

j=i+1

|i− j| =
i

∑

j=1

(i− j) +
n

∑

j=i+1

(j − i)

= i2 − i (i + 1)
2

+
n

∑

j=1

j − i (n− i)

= i2 − (n + 1) i +
n (n + 1)

2
=

n2 − 1
4

+
(

i− n + 1
2

)2

.



CSISZÁR φ−DIVERGENCE 5

Then

I =
n

∑

i=1





n
∑

j=1

|i− j|



 =
n

∑

i=1

[

i2 − (n + 1) i +
n (n + 1)

2

]

=
(n− 1) n (n + 1)

3
,

and the inequality (2.8) is proved.

The following corollary provides a counterpart of the generalised triangle in-
equality in normed spaces.

Corollary 3. Let (X, ‖·‖) be a normed space and xi ∈ X, pi ≥ 0 (i = 1, ..., n) with
∑n

i=1 pi = 1. Then we have the inequality

(2.9) 0 ≤
n

∑

i=1

pi ‖xi‖ −

∥

∥

∥

∥

∥

n
∑

i=1

pixi

∥

∥

∥

∥

∥

≤ max
k=1,...,n−1

‖∆xk‖
n

∑

i,j=1

pipj |j − i|

and in particular

(2.10) 0 ≤
n

∑

i=1

‖xi‖ −

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

≤ n2 − 1
3

max
k=1,...,n−1

‖∆xk‖ .

The proof is obvious by Theorem 3 on choosing F : X → R, F (X) = ‖x‖ which
is L−Lipschitzian with L = 1 as

|‖x‖ − ‖y‖| ≤ ‖x− y‖ for all x, y ∈ X.

2.2. Applications for Csiszár φ−Divergence. The following theorem holds.

Theorem 4. Let φ : R+ → R be L−Lipschitzian on R+. Then for all p, q ∈ Rn
+,

we have the inequality

(2.11)
∣

∣

∣

∣

Iφ (p, q)−Qnφ
(

Pn

Qn

)∣

∣

∣

∣

≤ L max
k=1,...,n−1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

1
Qn

n
∑

i,j=1

qiqj |i− j| .

Proof. We apply inequality (2.2) for F = φ and pi = qi
Qn

, xi = pi
qi

to get
∣

∣

∣

∣

∣

φ
(∑n

i=1 pi

Qn

)

− 1
Qn

n
∑

i=1

qiφ
(

pi

qi

)

∣

∣

∣

∣

∣

≤ L max
k=1,...,n−1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

1
Q2

n

n
∑

i,j=1

qiqj |i− j| .

from where we obtain (2.11).

Corollary 4. Let φ : R+ → R be L−Lipschitzian and normalised. Then for any
p, q ∈ Rn

+ with Pn = Qn, we have the inequality

(2.12) 0 ≤ |Iφ (p, q)| ≤ L max
k=1,...,n−1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

1
Qn

n
∑

i,j=1

qiqj |i− j| .
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Corollary 5. Let φ : R+ → R be differentiable convex, with a bounded derivative,
that is,

∥

∥φ′
∥

∥

∞ := sup
t≥0

∣

∣φ′ (t)
∣

∣ < ∞. Then we have the inequality:

0 ≤ Iφ (p, q)−Qnφ
(

Pn

Qn

)

(2.13)

≤
∥

∥φ′
∥

∥

∞ max
k=1,...,n−1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

1
Qn

n
∑

i,j=1

qiqj |i− j| .

Moreover, if φ is normalised and Pn = Qn, then

(2.14) 0 ≤ Iφ (p, q) ≤
∥

∥φ′
∥

∥

∞ max
k=1,...,n−1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

1
Qn

n
∑

i,j=1

qiqj |i− j| .

Recall the Kullback-Leibler distance given by (1.9)

(2.15) KL (p, q) :=
n

∑

i=1

pi log
(

pi

qi

)

.

We observe that, for the convex mapping φ (t) := − log (t), t > 0,

(2.16) Iφ (p, q) =
n

∑

i=1

qi

[

− log
(

pi

qi

)]

=
n

∑

i=1

qi log
(

qi

pi

)

= KL (q, p) .

The following proposition for the Kullback-Leibler distance holds.

Proposition 1. Let p, q ∈ Rn
+ satisfy the condition

(2.17) 0 < m ≤ rk :=
pk

qk
for all k = 1, . . . , n.

Then, we have the inequality

0 ≤ KL (q, p)−Qn log
(

Qn

Pn

)

(2.18)

≤ 1
m

max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

Proof. As φ (t) = − log (t), then φ′ (t) = − 1
t , t > 0. The restriction of φ′ in the

interval [m,∞) is bounded and
∥

∥φ′
∥

∥

∞ = sup
t∈[m,∞)

∣

∣
1
t

∣

∣ = 1
m < ∞. Applying the

inequality (2.13), we deduce (2.18).

Remark 1. If we assume that Pn = Qn, then m ≤ 1 and (2.18) becomes

(2.19) 0 ≤ KL (q, p) ≤ 1
m

max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

We also know that for φ (t) = t log t, t > 0, the Csiszár φ−divergence is (see (1.9)),

φ (p, q) = KL (p, q) =
∑n

i=1 pi log
(

pi
qi

)

.

The following proposition also holds.
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Proposition 2. Let p, q ∈ Rn
+ satisfy the condition

(2.20) 0 < m ≤ rk ≤ M < ∞ for all k = 1, . . . , n.

Then we have the inequality

0 ≤ KL (q, p)− Pn log
(

Pn

Qn

)

(2.21)

≤ max {|log (Ml)| , |log (ml)|}

× max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

Proof. For the mapping φ (t) = t log t, t > 0, we have φ′ (t) = log (t) + 1. On the
interval [m,M ] we have

log (m) + 1 ≤ φ′ (M) ≤ log (M) + 1, t ∈ [m,M ] .

Applying the inequality (2.13), we deduce (2.21).

Remark 2. If we assume that Pn = Qn, then m ≤ 1 ≤ M and (2.21) becomes

0 ≤ KL (q, p)(2.22)

≤ max {|log (Ml)| , |log (ml)|}

× max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

Let φ (t) =
(√

t− 1
)2

, t > 0. Then Iφ gives the Hellinger distance

He (p, q) =
n

∑

i=1

(
√

pi −
√

qi)
2 .

Using Corollary 5, we can state the following proposition.
Proposition 3. Let p, q ∈ Rn

+ satisfy the condition (2.20). Then we have the
inequality

0 ≤ He (p, q)−
(
√

Pn −
√

Qn

)2
(2.23)

≤ max







|
√

m− 1|√
m

,

∣

∣

∣

√
M − 1

∣

∣

∣

√
M







× max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

Proof. As φ (t) =
(√

t− 1
)2

, t > 0, then φ′ (t) = 1− 1√
t
. If we consider the mapping

φ′ restricted to the interval [m,M ] ⊂ (0,∞), then we observe that

|
√

m− 1|√
m

≤ φ′ (t) ≤

∣

∣

∣

√
M − 1

∣

∣

∣

√
M

, t ∈ [m,M ]

and thus
∥

∥φ′
∥

∥

∞ ≤ max







|
√

m− 1|√
m

,

∣

∣

∣

√
M − 1

∣

∣

∣

√
M







.
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Remark 3. If we assume that Pn = Qn, then m ≤ 1 ≤ M and (2.23) becomes

0 ≤ He (p, q)(2.24)

≤ max







|1−
√

m|√
m

,

∣

∣

∣

√
M − 1

∣

∣

∣

√
M







× max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

Consider now the mapping φ (t) = tα, α > 1, t > 0 and the α−order entropy by
Rényi Reα (p, q) :=

∑n
i=1 pα

i q1−α
i .

We can state the following proposition.

Proposition 4. Let p, q ∈ Rn
+ be such that

(2.25) 0 < rk ≤ M < ∞ for all k = 1, . . . , n.

Then we have the inequality

0 ≤ Reα (p, q)− Pα
n Q1−α

n(2.26)

≤ αMα−1 max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

In particular, if Pn = Qn, then M ≥ 1 and (2.26) becomes

0 ≤ Reα (p, q)−Qn(2.27)

≤ αMα−1 max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

The proof is obvious by Corollary 5 applied for φ (t) = tα, and we omit the
details.

Finally, if we consider the χ2−distance (see (1.15))

Dχ2 (p, q) =
n

∑

i=1

(pi − qi)
2

qi

obtained from the Csiszár φ−divergence for the choice φ (t) = (t− 1)2, t > 0, then
we can state the following proposition as well.

Proposition 5. Let p, q ∈ Rn
+ fulfill the properties of (2.20). Then we have the

converse inequality

0 ≤ Dχ2 (p, q)− 1
Qn

(Pn −Qn)2(2.28)

≤ 2max {|m− 1| , |M − 1|}

× max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .
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In particular, if Pn = Qn, then m ≤ 1 ≤ M and (2.28) becomes

0 ≤ Dχ2 (p, q)(2.29)

≤ 2max {1−m,M − 1}

× max
k=1,...,n−1

|rk+1 − rk|
1

Qn

n
∑

i,j=1

qiqj |i− j| .

3. The Case of l1−Norm

3.1. Some Inequalities. We start with the following result.
Theorem 5. Let X,Y be two normed linear spaces with the norms ‖·‖ and |·|
respectively. If F : X → Y is L - Lipschitzian, that is,

(3.1) |F (x)− F (y)| ≤ L ‖x− y‖ for all x, y ∈ X,

then for all xi ∈ X, pi ≥ 0 with
∑n

i=1 pi = 1 (i = 1, ..., n), we have the inequality

(3.2)

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

−
n

∑

i=1

piF (xi)

∣

∣

∣

∣

∣

≤ L
n

∑

i=1

pi (1− pi)
n−1
∑

k=1

‖∆xk‖ .

Proof. As F is L−Lipschitzian, we can state (see the proof of Theorem 3) that

(3.3)

∣

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

−
n

∑

j=1

pjF (xj)

∣

∣

∣

∣

∣

∣

≤ 2L
∑

1≤i<j≤n

pipj ‖xj − xi‖ .

in (3.1). Now, observe that, for i < j, we have

xj − xi =
j−1
∑

k=i

∆xk,

where ∆xk := xk+1 − xk is the forward difference.
Therefore, as in the proof of Theorem 3, we have

∑

1≤i<j≤n

pipj ‖xj − xi‖(3.4)

=
∑

1≤i<j≤n

pipj

∥

∥

∥

∥

∥

j−1
∑

k=i

∆xk

∥

∥

∥

∥

∥

≤
∑

1≤i<j≤n

pipj

j−1
∑

k=i

‖∆xk‖

≤
∑

1≤i<j≤n

pipj

n−1
∑

k=1

‖∆xk‖ .

Now, if we put
I =

∑

1≤i<j≤n

pipj ,

we observe that

1 =
n

∑

i,j=1

pipj = 2
∑

1≤i<j≤n

pipj +
n

∑

i=1

p2
i = 2I +

n
∑

i=1

p2
i

from where we deduce

I =
1
2

n
∑

i=1

pi (1− pi) .
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Now, using (3.3) - (3.4) we deduce the desired inequality (2.2).

Corollary 6. With the above assumptions for F and xi (i = 1, ..., n), we have the
inequality

(3.5)

∣

∣

∣

∣

∣

F

(

1
n

n
∑

i=1

xi

)

− 1
n

n
∑

i=1

F (xi)

∣

∣

∣

∣

∣

≤ L · n− 1
n

n−1
∑

k=1

‖∆xk‖ .

The proof is obvious by the above theorem, choosing pi = 1
n (i = 1, ..., n).

The following corollary provides a counterpart of the generalised triangle in-
equality.
Corollary 7. Let (X, ‖·‖) be a normed space and xi ∈ X, pi ≥ 0 (i = 1, ..., n) with
∑n

i=1 pi = 1. Then we have the inequality

(3.6) 0 ≤
n

∑

i=1

pi ‖xi‖ −

∥

∥

∥

∥

∥

n
∑

i=1

pixi

∥

∥

∥

∥

∥

≤
n

∑

i=1

pi (1− pi)
n−1
∑

k=1

‖∆xk‖

and in particular

(3.7) 0 ≤
n

∑

i=1

‖xi‖ −

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

≤ (n− 1)
n−1
∑

k=1

‖∆xk‖ .

The proof is obvious by Theorem 5 on choosing F : X → R, F (X) = ‖x‖ which
is L−Lipschitzian with L = 1 as

|‖x‖ − ‖y‖| ≤ ‖x− y‖ for all x, y ∈ X.

3.2. Applications for Csiszár φ−Divergence. The following theorem holds.
Theorem 6. Let φ : R+ → R be L−Lipschitzian on R+. Then for all p, q ∈ Rn

+,
we have the inequality

(3.8)
∣

∣

∣

∣

Iφ (p, q)−Qnφ
(

Pn

Qn

)∣

∣

∣

∣

≤ L
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

.

Proof. We apply inequality (3.2) for F = φ and pi = qi
Qn

, xi = pi
qi

(i = 1, . . . , n) to
get

∣

∣

∣

∣

∣

φ
(

Pn

Qn

)

− 1
Qn

n
∑

i=1

qiφ
(

pi

qi

)

∣

∣

∣

∣

∣

≤ L
n

∑

i=1

qi (Qn − qi)
Q2

n

n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

.

from where we obtain (3.8).

Corollary 8. Let φ : R+ → R be L−Lipschitzian and normalised. Then for any
p, q ∈ Rn

+ with Pn = Qn, we have the inequality

(3.9) 0 ≤ |Iφ (p, q)| ≤ L
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

.

Corollary 9. Let φ : R+ → R be differentiable convex, with a bounded derivative.
Then we have the inequality:

(3.10) 0 ≤ Iφ (p, q)−Qnφ
(

Pn

Qn

)

≤
∥

∥φ′
∥

∥

∞
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

.
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Moreover, if φ is normalised and Pn = Qn, then

(3.11) 0 ≤ Iφ (p, q) ≤
∥

∥φ′
∥

∥

∞
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

.

Now, let us recall the Kullback-Leibler distance

(3.12) KL (p, q) :=
n

∑

i=1

pi log
(

pi

qi

)

.

We observe that, for the convex mapping φ (t) := − log (t), t > 0,

(3.13) Iφ (p, q) =
n

∑

i=1

qi

[

− log
(

pi

qi

)]

=
n

∑

i=1

qi log
(

qi

pi

)

= KL (q, p) .

The following proposition for the Kullback-Leibler distance holds.
Proposition 6. Let p, q ∈ Rn

+ satisfy the condition

(3.14) 0 < m ≤ rk :=
pk

qk
for all k = 1, . . . , n.

Then, we have the inequality

0 ≤ KL (q, p)−Qn log
(

Qn

Pn

)

(3.15)

≤ 1
mQn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

Proof. As φ (t) = − log (t), then φ′ (t) = − 1
t , t > 0. The restriction of φ′ in the

interval [m,∞) is bounded and
∥

∥φ′
∥

∥

∞ = sup
t∈[m,∞)

∣

∣
1
t

∣

∣ = 1
m < ∞. Applying the

inequality (3.10), we deduce (3.15).

Remark 4. If we assume that Pn = Qn, then m ≤ 1 and (3.15) becomes

(3.16) 0 ≤ KL (q, p) ≤ 1
mQn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

We also know that for φ (t) = t log t, t > 0, the Csiszár φ−divergence is

φ (p, q) = KL (p, q) =
n

∑

i=1

pi log
(

pi

qi

)

.

The following proposition also holds.
Proposition 7. Let p, q ∈ Rn

+ satisfy the condition

(3.17) 0 < m ≤ rk ≤ M < ∞ for all k = 1, . . . , n.

Then we have the inequality

0 ≤ KL (q, p)− Pn log
(

Pn

Qn

)

(3.18)

≤ max {|log (Ml)| , |log (ml)|}
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .
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Proof. For the mapping φ (t) = t log t, t > 0, we have φ′ (t) = log (t) + 1. On the
interval [m,M ] we have

log m + 1 ≤ φ′ (t) ≤ log M + 1, t ∈ [m,M ]

and hence
∣

∣φ′ (t)
∣

∣ ≤ max {|log (Ml)| , |log (ml)|} , t ∈ [m,M ] .

Applying the inequality (3.10), we deduce (3.18).

Remark 5. If we assume that Pn = Qn, then (2.21) becomes

0 ≤ KL (q, p)(3.19)

≤ max {|log (Ml)| , |log (ml)|}
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

Let φ (t) =
(√

t− 1
)2

, t > 0. Then Iφ gives the Hellinger distance

He (p, q) =
n

∑

i=1

(
√

pi −
√

qi)
2 ,

Using Corollary 9, we may state the following proposition.
Proposition 8. Assume that p, q ∈ Rn

+ satisfy the condition (3.17). Then we have
the inequality

0 ≤ He (p, q)−
(
√

Pn −
√

Qn

)2
(3.20)

≤ max







|
√

m− 1|√
m

,

∣

∣

∣

√
M − 1

∣

∣

∣

√
M







1
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

Proof. As φ (t) =
(√

t− 1
)2

, t > 0, then φ′ (t) = 1− 1√
t
. If we consider the mapping

φ′ restricted to the interval [m,M ] ⊂ (0,∞), then we observe that

|
√

m− 1|√
m

≤ φ′ (t) ≤

∣

∣

∣

√
M − 1

∣

∣

∣

√
M

, t ∈ [m,M ]

and thus

∥

∥φ′
∥

∥

∞ ≤ max







|
√

m− 1|√
m

,

∣

∣

∣

√
M − 1

∣

∣

∣

√
M







.

Remark 6. If we assume that Pn = Qn, then m ≤ 1 ≤ M and (2.23) becomes

0 ≤ He (p, q)(3.21)

≤ max

{

1−
√

m√
m

,

√
M − 1√

M

}

1
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

Consider now the mapping φ (t) = tα, α > 1, t > 0 and the α−order entropy by
Rényi Reα (p, q) :=

∑n
i=1 pα

i q1−α
i .

We can state the following proposition.
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Proposition 9. Let p, q ∈ Rn
+ be such that

(3.22) 0 < rk ≤ M < ∞ for all k = 1, . . . , n.

Then we have the inequality

0 ≤ Reα (p, q)− Pα
n Q1−α

n(3.23)

≤ αMα−1 1
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

In particular, if Pn = Qn, then M ≥ 1 and (3.23) becomes

0 ≤ Reα (p, q)−Qn(3.24)

≤ αMα−1 1
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

The proof is obvious by Corollary 9 applied for φ (t) = tα, and we omit the
details.

Finally, if we consider the χ2−distance

Dχ2 (p, q) :=
n

∑

i=1

(pi − qi)
2

qi

obtained from the Csiszár φ−divergence for the choice φ (t) = (t− 1)2, then we can
state the following proposition too.

Proposition 10. Let p, q ∈ Rn
+ fulfill the conditions of (2.20). Then we have the

inequality

0 ≤ Dχ2 (p, q)− 1
Qn

(Pn −Qn)2(3.25)

≤ 2max {|m− 1| , |M − 1|} 1
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

In particular, if Pn = Qn, then (3.25) becomes

0 ≤ Dχ2 (p, q)(3.26)

≤ 2max {1−m, M − 1} 1
Qn

n
∑

i=1

qi (Qn − qi)
n−1
∑

k=1

|rk+1 − rk| .

4. The Case of lp−Norm

4.1. Some Inequalities. We start with the following result.

Theorem 7. Let X, Y, F, (pi)i=1,n be as in Theorem 5. Then we have the inequality:

(4.1)

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

−
n

∑

i=1

piF (xi)

∣

∣

∣

∣

∣

≤ L
n

∑

i,j=1

pipj |j − i|
1
q

(

n−1
∑

k=1

‖∆xk‖p

)
1
p

,

where p > 1, 1
p + 1

q = 1.
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Proof. As in the proof of Theorem 3, we have

(4.2)

∣

∣

∣

∣

∣

∣

F

(

n
∑

i=1

pixi

)

−
n

∑

j=1

pjF (xj)

∣

∣

∣

∣

∣

∣

≤ 2L
∑

1≤i<j≤n

pipj ‖xj − xi‖ .

Also,

(4.3)
∑

1≤i<j≤n

pipj ‖xj − xi‖ ≤
∑

1≤i<j≤n

pipj

j−1
∑

k=i

‖∆xk‖ .

Using Hölder’s discrete inequality, we may write for p > 1, 1
p + 1

q = 1, that

j−1
∑

k=i

‖∆xk‖ ≤

(j−1
∑

k=i

1

)
1
q

(j−1
∑

k=i

‖∆xk‖p

)
1
p

= (j − i)
1
q

(j−1
∑

k=i

‖∆xk‖p

)
1
p

≤ (j − i)
1
q

(

n−1
∑

k=1

‖∆xk‖p

)
1
p

and then, by (4.3), we get

∑

1≤i<j≤n

pipj ‖xj − xi‖ ≤
∑

1≤i<j≤n

pipj (j − i)
1
q

(

n−1
∑

k=1

‖∆xk‖p

)
1
p

=
1
2

n
∑

i,j=1

pipj |j − i|
1
q

(

n−1
∑

k=1

‖∆xk‖p

)
1
p

.

Using (4.2) we deduce (4.1).

Corollary 10. Let (X, ‖·‖) be a normed space and xi ∈ X, pi ≥ 0 (i = 1, . . . , n)
with

∑n
i=1 pi = 1. Then we have the inequality:

(4.4) 0 ≤
n

∑

i=1

pi ‖xi‖ −

∥

∥

∥

∥

∥

n
∑

i=1

pixi

∥

∥

∥

∥

∥

≤
n

∑

i,j=1

pipj |j − i|
1
q

(

n−1
∑

k=1

‖∆xk‖p

)
1
p

.

4.2. Applications for Csiszár φ−Divergence. The following result for Csiszár
f−divergence holds.

Theorem 8. Let φ : R+ → R be L−Lipschitzian on R+. Then for all p, q ∈ Rn
+,

we have the inequality:

(4.5)
∣

∣

∣

∣

Iφ (p, q)−Qnφ
(

Pn

Qn

)∣

∣

∣

∣

≤ L
Qn

n
∑

i,j=1

qiqj |j − i|
1
q

(

n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

p
)

1
p

,

where p > 1, 1
p + 1

q = 1.
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Proof. We apply inequality (4.1) for F = φ, pi = qi
Qn

, xi = pi
qi

to get
∣

∣

∣

∣

∣

φ
(

Pn

Qn

)

− 1
Qn

n
∑

i=1

qiφ
(

pi

qi

)

∣

∣

∣

∣

∣

≤ L
n

∑

i,j=1

qi

Qn
· qj

Qn
|j − i|

1
q

(

n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

p
)

1
p

from where we obtain (4.5).

Corollary 11. Let φ : R+ → R be L−Lipschitzian and normalised. Then for all
p, q ∈ Rn

+ with Pn = Qn, we have

(4.6) 0 ≤ |Iφ (p, q)| ≤ c
Qn

n
∑

i,j=1

qiqj |j − i|
1
q

(

n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

p
)

1
p

.

Corollary 12. Let φ : R+ → R be differentiable convex with a bounded derivative.
Then

0 ≤ Iφ (p, q)−Qnφ
(

Pn

Qn

)

(4.7)

≤
∥

∥φ′
∥

∥

∞
Qn

n
∑

i,j=1

qiqj |j − i|
1
q

(

n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

p
)

1
p

.

Moreover, if φ is normalised and Pn = Qn, then

(4.8) 0 ≤ Iφ (p, q) ≤
∥

∥φ′
∥

∥

∞
Qn

n
∑

i,j=1

qiqj |j − i|
1
q

(

n−1
∑

k=1

∣

∣

∣

∣

pk+1

qk+1
− pk

qk

∣

∣

∣

∣

p
)

1
p

.

Remark 7. Inequalities for particular divergences as in the previous two sections
can be stated, but we omit the details.
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[3] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memory-
less Systems, Academic Press, New York, 1981.

[4] J.H. JUSTICE (editor), Maximum Entropy and Bayssian Methods in Applied Statistics,
Cambridge University Press, Cambridge, 1986.

[5] J.N. KAPUR, On the roles of maximum entropy and minimum discrimination information
principles in Statistics, Technical Address of the 38th Annual Conference of the Indian Society
of Agricultural Statistics, 1984, 1-44.

[6] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy
functions, IEEE Transactions on Information Theory, 28 (1982), 489-495.

[7] R.G. GALLAGER, Information Theory and Reliable Communications, J. Wiley, New York,
1968.

[8] C.E. SHANNON, A mathematical theory of communication, Bull. Sept. Tech. J., 27 (1948),
370-423 and 623-656.

[9] B.R. FRIEDEN, Image enhancement and restoration, Picture Processing and Digital Filter-
ing (T.S. Huang, Editor), Springer-Verlag, Berlin, 1975.



16 S.S. DRAGOMIR

[10] R.M. LEAHY and C.E. GOUTIS, An optimal technique for constraint-based image restora-
tion and mensuration, IEEE Trans. on Acoustics, Speech and Signal Processing, 34 (1986),
1692-1642.

[11] S. KULLBACK, Information Theory and Statistics, J. Wiley, New York, 1959.
[12] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Annals Math. Statist.,

22 (1951), 79-86.
[13] R. BERAN, Minimum Hellinger distance estimates for parametric models, Ann. Statist., 5

(1977), 445-463.
[14] A. RENYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math.

Statist. Prob., Vol. 1, University of California Press, Berkeley, 1961.
[15] S.S. DRAGOMIR and N.M. IONESCU, Some converse of Jensen’s inequality and applica-

tions, Anal. Num. Theor. Approx., 23 (1994), 71-78.
[16] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen’s discrete inequality for differen-

tiable convex mappings and applications in information theory, Math. Comput. Modelling,
24 (2) (1996), 1-11.

[17] S.S. DRAGOMIR and C.J. GOH, Some counterpart inequalities in for a functional associated
with Jensen’s inequality, J. of Ineq. & Appl., 1 (1997), 311-325.

[18] S.S. DRAGOMIR and C.J. GOH, Some bounds on entropy measures in information theory,
Appl. Math. Lett., 10 (1997), 23-28.

[19] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen’s continuous inequality and ap-
plications in information theory, RGMIA Preprint,
http://matilda.vu.edu.au/~rgmia/InfTheory/Continuse.dvi
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