SOME INEQUALITIES FOR TWO CSISZÁR DIVERGENCES AND APPLICATIONS

S.S. DRAGOMIR

ABSTRACT. Some inequalities for the Csiszár divergences of two mappings with applications to the variational distance, Kullback-Leibler distance, Hellinger discrimination, Chi-Square distance, Bhattacharyya distance, Jeffreys divergence, etc... are given.

1. INTRODUCTION

Given a convex function $f:[0,\infty)\to\mathbb{R}$, the f-divergence functional

(1.1)
$$I_f(p,q) = \sum_{i=1}^n q_i f\left(\frac{p_i}{q_i}\right),$$

was introduced by Csiszár [1]-[2] as a generalized measure of information, a "distance function" on the set of probability distribution \mathbb{P}^n . The restriction here to discrete distributions is only for convenience, similar results hold for general distributions. As in Csiszár [1]-[2], we interpret undefined expressions by

$$\begin{split} f\left(0\right) &= \lim_{t \to 0+} f\left(t\right), \ 0 f\left(\frac{0}{0}\right) = 0, \\ 0 f\left(\frac{a}{0}\right) &= \lim_{\varepsilon \to 0+} \varepsilon f\left(\frac{a}{\varepsilon}\right) = a \lim_{t \to \infty} \frac{f(t)}{t}, \ a > 0. \end{split}$$

The following results (Theorems 1 and 2, and Corollary 1) were essentially given by Csiszár and Körner [3].

Theorem 1. (Joint Convexity) If $f : [0, \infty) \to \mathbb{R}$ is convex, then $I_f(p, q)$ is jointly convex in p and q.

Theorem 2. (Jensen's inequality) Let $f : [0, \infty) \to \mathbb{R}$ be convex. Then for any $p, q \in \mathbb{R}^n_+$ with $P_n := \sum_{i=1}^n p_i > 0$, $Q_n := \sum_{i=1}^n q_i > 0$, we have the inequality

(1.2)
$$I_f(p,q) \ge Q_n f\left(\frac{P_n}{Q_n}\right)$$

If f is strictly convex, equality holds in (1.2) iff

(1.3)
$$\frac{p_1}{q_1} = \frac{p_2}{q_2} = \dots = \frac{p_n}{q_n}$$

It is natural to consider the following corollary.

Date: January 24, 2000.

¹⁹⁹¹ Mathematics Subject Classification. Primary 94Xxx; Secondary 26D15.

Key words and phrases. Csiszár f-divergence, Variational distance, Kullback-Leibler distance, Hellinger discrimination.

Corollary 1. (Nonnegativity) Let $f : [0, \infty) \to \mathbb{R}$ be convex and normalised, i.e.,

(1.4)
$$f(1) = 0$$

Then for any $p, q \in \mathbb{R}^n_+$ with $P_n = Q_n$, we have the inequality

(1.5)
$$I_f(p,q) \ge 0$$

If f is strictly convex, equality holds in (1.5) iff

(1.6)
$$p_i = q_i \text{ for all } i \in \{1, ..., n\}$$

In particular, if p, q are probability vectors, then Corollary 1 shows that, for strictly convex and normalized $f: [0, \infty) \to \mathbb{R}$ that

(1.7)
$$I_f(p,q) \ge 0 \text{ and } I_f(p,q) = 0 \text{ iff } p = q.$$

We now give some more examples of divergence measures in Information Theory which are particular cases of Csiszár f-divergences.

1. Kullback-Leibler distance ([12]). The Kullback-Leibler distance $D(\cdot, \cdot)$ is defined by

(1.8)
$$D(p,q) := \sum_{i=1}^{n} p_i \log\left(\frac{p_i}{q_i}\right).$$

If we choose $f(t) = t \ln t, t > 0$, then obviously

(1.9)
$$I_f(p,q) = D(p,q)$$

2. Variational distance (l_1 -distance). The variational distance $V(\cdot, \cdot)$ is defined by

(1.10)
$$V(p,q) := \sum_{i=1}^{n} |p_i - q_i|.$$

If we choose $f(t) = |t - 1|, t \in \mathbb{R}_+$, then we have

(1.11)
$$I_f(p,q) = V(p,q)$$

3. Hellinger discrimination ([13]). The Hellinger discrimination $h^{2}(\cdot, \cdot)$ is defined by

(1.12)
$$h^{2}(p,q) := \frac{1}{2} \sum_{i=1}^{n} \left(\sqrt{p_{i}} - \sqrt{q_{i}} \right)^{2}.$$

It is obvious that if $f(t) = \frac{1}{2} (\sqrt{t} - 1)^2$, then

(1.13)
$$I_f(p,q) = h^2(p,q).$$

4. Triangular discrimination ([24]). We define triangular discrimination between p and q by

(1.14)
$$\Delta(p,q) = \sum_{i=1}^{n} \frac{|p_i - q_i|^2}{p_i + q_i}.$$

It is obvious that if $f(t) = \frac{(t-1)^2}{t+1}$, $t \in (0, \infty)$, then

(1.15)
$$I_f(p,q) = \Delta(p,q).$$

5. χ^2 -distance. We define the χ^2 -distance (chi-square distance) by

(1.16)
$$D_{\chi^2}(p,q) := \sum_{i=1}^n \frac{(p_i - q_i)^2}{q_i}$$

It is clear that if $f(t) = (t-1)^2, t \in [0,\infty)$, then

(1.17)
$$I_f(p,q) = D_{\chi^2}(p,q)$$

6. Rényi α -order entropy ([14]). The α -order entropy ($\alpha > 1$) is defined by

(1.18)
$$R_{\alpha}(p,q) := \sum_{i=1}^{n} p_{i}^{\alpha} q_{i}^{1-\alpha}$$

It is obvious that if $f(t) = t^{\alpha}$ $(t \in (0, \infty))$, then

(1.19)
$$I_f(p,q) = R_\alpha(p,q).$$

For other examples of divergence measures, see the paper [22] by J.N. Kapur, where further references are given.

2. The Results

In the recent paper [28], the author proved the following inequality for Csiszár $f-{\rm divergence:}$

Theorem 3. Let $\Phi : \mathbb{R}_+ \to \mathbb{R}$ be differentiable convex. Then for all $p, q \in \mathbb{R}^n_+$ we have the inequality:

(2.1)
$$\Phi'(1)(P_n - Q_n) \le I_{\Phi}(p,q) - Q_n \Phi(1) \le I_{\Phi'}\left(\frac{p^2}{q}, p\right) - I_{\Phi'}(p,q),$$

where $P_n := \sum_{i=1}^n p_i > 0$, $Q_n := \sum_{i=1}^n q_i > 0$ and $\Phi' : (0, \infty) \to \mathbb{R}$ is the derivative of Φ .

If Φ is strictly convex and p_i , $q_i > 0$ (i = 1, ..., n), then the equality holds in (2.9) iff p = q,

If we assume that $P_n = Q_n$ and Φ is normalised, then we obtain the simpler inequality

(2.2)
$$0 \le I_{\Phi}(p,q) \le I_{\Phi'}\left(\frac{p^2}{q},p\right) - I_{\Phi'}(p,q).$$

Applications for particular divergences which are instances of Csiszár $f-{\rm divergence}$ were also given.

A similar result of the above theorem has been presented in another paper by the author [29].

Theorem 4. Let Φ , p,q be as in Theorem 3. Then we have the inequality

(2.3)
$$0 \le I_{\Phi}(p,q) - Q_n \Phi\left(\frac{P_n}{Q_n}\right) \le I_{\Phi'}\left(\frac{p^2}{q},p\right) - \frac{P_n}{Q_n} I_{\Phi'}(p,q).$$

If Φ is strictly convex and p_i , $q_i > 0$ (i = 1, ..., n), then the equality holds in (2.3) iff $\frac{p_1}{q_1} = ... = \frac{p_n}{q_n}$.

S.S. DRAGOMIR

Obviously, if $P_n = Q_n$ and Φ is normalised, then (2.3) becomes (2.2).

The following result concerning an upper and a lower bound for the Csiszár f-divergence in terms of the Kullback-Leibler distance D(p,q) holds.

As in [30], we will say that the mapping $f: C \subset \mathbb{R} \to \mathbb{R}$, where C is an interval (in [30], the definition was considered in general normed spaces), is

(i) α -lower convex on C if $f - \frac{\alpha}{2} \cdot |\cdot|^2$ is convex on C; (ii) β -upper convex on C if $\frac{\beta}{2} \cdot |\cdot|^2 - f$ is convex on C;

(iii) (m, M) -convex on C (with $m \leq M$) if it is both m-lower convex and M-upper convex.

In [30], amongst others, the author has proved the following result for Csiszár f-divergence.

Theorem 5. Let $\Phi : \mathbb{R}_+ \to \mathbb{R}$ and $p, q \in \mathbb{R}^n_+$ with $P_n = Q_n$.

(i) If Φ is α -lower convex on \mathbb{R}_+ , then we have the inequality

(2.4)
$$\frac{\alpha}{2} \cdot D_{\chi^2}(p,q) \le I_{\Phi}(p,q) - Q_n \Phi(1).$$

(ii) If Φ is β -upper convex on \mathbb{R}_+ , then we have the inequality

(2.5)
$$I_{\Phi}(p,q) - Q_n \Phi(1) \le \frac{\beta}{2} \cdot D_{\chi^2}(p,q).$$

(iii) If Φ is (m, M) -convex on \mathbb{R}_+ , then we have the following sandwich inequality

(2.6)
$$\frac{m}{2} \cdot D_{\chi^2}(p,q) \le I_{\Phi}(p,q) - Q_n \Phi(1) \le \frac{M}{2} \cdot D_{\chi^2}(p,q),$$

where $D_{\chi^2}(\cdot, \cdot)$ is the χ^2 -divergence.

Of course, if Φ is normalised, i.e., $\Phi(1) = 0$ and p, q are probability distributions, then we get the simpler inequalities:

(2.7)
$$\frac{\alpha}{2} \cdot D_{\chi^2}(p,q) \le I_{\Phi}(p,q), \quad I_{\Phi}(p,q) \le \frac{\beta}{2} \cdot D_{\chi^2}(p,q)$$

and

(2.8)
$$\frac{m}{2} \cdot D_{\chi^2}(p,q) \le I_{\Phi}(p,q) \le \frac{M}{2} \cdot D_{\chi^2}(p,q).$$

In [30], some applications for particular instances of Csiszár f-divergences were also given.

We start with the following result.

Theorem 6. Let $f, g: [0, \infty) \to \mathbb{R}$ be two mappings such that f(1) = g(1) = 0. If there exists the real constants m, M such that

(2.9)
$$m |f(x) - f(y)| \leq |g(x) - g(y)| \leq M |f(x) - f(y)|$$

for all $x, y \in [r, R] \subset (0, \infty),$

then we have the inequality:

(2.10)
$$mI_{|f|}(p,q) \le I_{|g|}(p,q) \le MI_{|f|}(p,q)$$

for all p, q probability distributions with $0 < r \le \frac{p_i}{q_i} \le R < \infty$ for all $i \in \{1, ..., n\}$.

4

Proof. By (2.9) it follows that

$$(2.11) \ m \left| f\left(\frac{p_i}{q_i}\right) \right| = m \left| f\left(\frac{p_i}{q_i}\right) - f\left(1\right) \right| \le \left| g\left(\frac{p_i}{q_i}\right) - g\left(1\right) \right| = \left| g\left(\frac{p_i}{q_i}\right) \right|$$
$$\le M \left| f\left(\frac{p_i}{q_i}\right) - f\left(1\right) \right| = M \left| f\left(\frac{p_i}{q_i}\right) \right|$$

for all $i \in \{1, ..., n\}$.

If we multiply (2.11) by $q_i \ge 0$ and sum the obtained inequalities, we may deduce (2.10).

Corollary 2. Assume that the mappings $f, g : [0, \infty) \to \mathbb{R}$ are as above and f, g are differentiable on (r, R) with $f'(t) \neq 0$ for $t \in (r, R)$ and

(2.12)
$$-\infty < m = \inf_{t \in (r,R)} \left| \frac{g'(t)}{f'(t)} \right|, \quad \sup_{t \in (r,R)} \left| \frac{g'(t)}{f'(t)} \right| = M < \infty,$$

then we have the inequality (2.10) for all p, q as above.

Proof. We use the following Cauchy's theorem:

If $\gamma, \phi : [a, b] \to \mathbb{R}$ are continuous and differentiable on (a, b) and $\phi'(t) \neq 0$ for all $t \in (a, b)$, then there exists a $c \in [a, b]$ such that

$$\frac{\gamma\left(b\right) - \gamma\left(a\right)}{\phi\left(b\right) - \phi\left(a\right)} = \frac{\gamma'\left(c\right)}{\phi'\left(c\right)}$$

Now, suppose that $x, y \in [r, R]$ and x < y. Then, by Cauchy's theorem, we have

$$m \le \left| \frac{g(x) - g(y)}{f(x) - f(y)} \right| = \left| \frac{g'(z)}{f'(z)} \right| \le M$$

and then we can conclude that for any $x, y \in [r, R]$ we have

$$m |f(x) - f(y)| \le |g(x) - g(y)| \le M |f(x) - f(y)|.$$

Applying Theorem 6, we deduce (2.10).

The following corollary for the variational distance holds.

Corollary 3. Let $g: [0, \infty) \to \mathbb{R}$ be a mapping such that g(1) = 0. If there exists the real constants n, N such that

(2.13)
$$n|x-y| \le |g(x) - g(y)| \le N|x-y| \text{ for all } x, y \in [r, R],$$

then we have the inequality

(2.14)
$$nV(p,q) \le I_{|g|}(p,q) \le NV(p,q)$$

for any probability distribution p, q with $0 < r \le \frac{p_i}{q_i} \le R < \infty$ for all $i \in \{1, ..., n\}$.

The proof is obvious by Theorem 6, choosing f(x) = x - 1.

Corollary 4. Assume that the mapping g is continuous on [a, b] and differentiable on (a, b) and

$$-\infty < n = \inf_{t \in (r,R)} \left| g'\left(t\right) \right|, \quad \sup_{t \in (r,R)} \left| g'\left(t\right) \right| = N < \infty.$$

Then we have the inequality (2.14) for all p, q as above.

3. Some Particular Cases in Terms of the Variational Distance

We start with the following result.

Proposition 1. Let $0 < r \leq \frac{p_i}{q_i} \leq R < \infty$ (i = 1, ..., n). Then we have the inequality

$$(3.1) \qquad 0 \le KL(p,q) \le \begin{cases} \left[\ln R + 1\right] V(p,q) & \text{if } r \ge e^{-1}, \\ \\ \max\left\{\ln R + 1; \left|\ln R + 1\right|\right\} V(p,q) & \text{if } r < e^{-1}. \end{cases}$$

Proof. Consider the mapping $g: (0, \infty) \to \mathbb{R}$, $g(t) = t \ln t$. Then $g'(t) = \ln t + 1$ and obviously,

$$M := \sup_{t \in (r,R)} |g'(t)| = \begin{cases} \ln R + 1 & \text{if } r \ge e^{-1}, \\ \\ \max \left\{ \ln R + 1; |\ln R + 1| \right\} & \text{if } r < e^{-1}. \end{cases}$$

Applying Corollary 4, we can state

$$\sum_{i=1}^{n} q_i \left| \frac{p_i}{q_i} \ln \left(\frac{p_i}{q_i} \right) \right| \le NV(p,q) \,.$$

By the generalised triangle inequality, we have

$$KL(p,q) = \sum_{i=1}^{n} p_i \ln\left(\frac{p_i}{q_i}\right) = \left|\sum_{i=1}^{n} p_i \ln\left(\frac{p_i}{q_i}\right)\right| \le \sum_{i=1}^{n} p_i \left|\ln\left(\frac{p_i}{q_i}\right)\right| \le NV(p,q)$$

and the inequality (3.1) is proved.

Let us introduce the modified Kullback-Leibler distance

$$|KL|(p,q) = \sum_{i=1}^{n} p_i \left| \ln \left(\frac{p_i}{q_i} \right) \right|.$$

Then obviously,

(3.2)
$$K(p,q) \le |KL|(p,q) \text{ for all } p,q \in \mathbb{P}^n$$

For this modified distance, we may prove the following as well.

Proposition 2. Let $0 < r \leq \frac{p_i}{q_i} \leq R < \infty$ (i = 1, ..., n). Then we have the inequality

(3.3)
$$(\ln r + 1) V(p,q) \le |KL|(p,q) \le (\ln R + 1) V(p,q),$$

provided that $r \ge e^{-1}$.

Proof. The second inequality in (2.11) has been proven above.

For the first inequality, we can apply Corollary 4 by observing that for $g\left(t\right) = t\ln t$, and $r \geq e^{-1}$,

$$\inf_{t \in [r,R]} |g'(t)| = \ln r + 1.$$

We omit the details.

The following proposition also holds.

Proposition 3. Let $0 < r \leq \frac{p_i}{q_i} \leq R < \infty$ (i = 1, ..., n). Then we have the inequality:

(3.4)
$$KL(q,p) \leq \frac{1}{r}V(p,q).$$

Proof. Consider the mapping $g:(0,\infty)\to\mathbb{R}, g(t)=\ln t$. Then $g'(t)=\frac{1}{t}$ and obviously,

$$M := \sup_{t \in [r,R]} |g'(t)| = \frac{1}{r}.$$

Applying Corollary 3, we can state:

$$\sum_{i=1}^{n} q_i \left| \ln \left(\frac{p_i}{q_i} \right) \right| \le \frac{1}{r} V(p,q) \,.$$

By the generalised triangle inequality, we have

$$K(q,p) = \sum_{i=1}^{n} q_i \ln\left(\frac{q_i}{p_i}\right) = \left|\sum_{i=1}^{n} q_i \ln\left(\frac{q_i}{p_i}\right)\right|$$
$$\leq \sum_{i=1}^{n} q_i \left|\ln\left(\frac{p_i}{q_i}\right)\right| \leq \frac{1}{r} V(p,q)$$

and the proposition is proved. \blacksquare

The following result for the modified Kullback-Leibler distance also holds.

Proposition 4. Let p, q be as above in Proposition 3. Then we have the inequality

(3.5)
$$\frac{1}{R}V(p,q) \le |KL|(q,p) \le \frac{1}{r}V(p,q).$$

Proof. The second inequality in (3.5) has been proven above. The first inequality follows by the first inequality in Corollary 4 by taking into account that

$$m = \inf_{t \in (r,R)} |g'(t)| = \frac{1}{R}.$$

_

Now, the following result for Hellinger discrimination holds.

Proposition 5. Let $0 < r \le \frac{p_i}{q_i} \le R < \infty$ (i = 1, ..., n). Then we have the inequality:

(3.6)
$$\left[\frac{\sqrt{R}-\sqrt{r}}{4\sqrt{rR}}-\left|\frac{\sqrt{R}+\sqrt{r}}{4\sqrt{rR}}-\frac{1}{2}\right|\right]V(p,q)$$
$$\leq h^{2}(p,q)\leq \left[\frac{\sqrt{R}-\sqrt{r}}{4\sqrt{rR}}+\left|\frac{\sqrt{R}+\sqrt{r}}{4\sqrt{rR}}-\frac{1}{2}\right|\right]V(p,q).$$

Proof. Consider the mapping $g:(0,\infty)\to\mathbb{R}, g(t)=\frac{1}{2}\left(\sqrt{t}-1\right)^2$. Then obviously,

$$g'(t) = \frac{1}{2} \cdot \frac{\sqrt{t-1}}{\sqrt{t}}, t \in (0,\infty)$$

and

$$n = \inf_{t \in [r,R]} |g'(t)| = \min \{|g'(r)|, |g'(R)|\}$$
$$= \frac{|g'(r)| + |g'(R)| - ||g'(r)| - |g'(R)||}{2}$$
$$= \frac{\sqrt{R} - \sqrt{r}}{4\sqrt{rR}} - \left|\frac{\sqrt{R} + \sqrt{r}}{4\sqrt{rR}} - \frac{1}{2}\right|$$

and

$$N = \sup_{t \in [r,R]} |g'(t)| = \max \{|g'(r)|, |g'(R)|\}$$
$$= \frac{|g'(r)| + |g'(R)| + ||g'(r)| - |g'(R)||}{2}$$
$$= \frac{\sqrt{R} - \sqrt{r}}{4\sqrt{rR}} + \left|\frac{\sqrt{R} + \sqrt{r}}{4\sqrt{rR}} - \frac{1}{2}\right|$$

respectively.

As $g(t) \ge 0$, then obviously

$$I_{|g|}(p,q) = I_g(p,q) = h^2(p,q).$$

Using (2.14), we obtain (3.6). \blacksquare

Remark 1. The inequality (3.6) is equivalent to

(3.7)
$$\left|h^{2}\left(p,q\right) - \frac{\sqrt{R} - \sqrt{r}}{4\sqrt{rR}}V\left(p,q\right)\right| \leq \left|\frac{\sqrt{R} + \sqrt{r}}{4\sqrt{rR}} - \frac{1}{2}\right|V\left(p,q\right)$$

Now, we point out some inequalities for the chi-square distance.

Proposition 6. Let $0 < r \leq \frac{p_i}{q_i} \leq R < \infty$ (i = 1, ..., n). Then we have the inequality

(3.8)
$$[R-r-|R+r-2|]V(p,q) \le D_{\chi^2}(p,q) \le [R-r+|R+r-2|]V(p,q).$$

Proof. Consider the mapping $g: (0,\infty) \to \mathbb{R}$, $g(t) = (t-1)^2$. Then obviously g'(t) = 2(t-1) and

$$n = \inf_{t \in [r,R]} |g'(t)| = \min \{ |g'(r)|, |g'(R)| \}$$

= $R - r - |R + r - 2|$

and

$$N = R - r + |R + r - 2|.$$

Using the inequality (2.14), and taking into account that $g(t) \ge 0, t \in \mathbb{R}$, and

$$I_{g}(p,q) = \sum_{i=1}^{n} \frac{(p_{i} - q_{i})^{2}}{q_{i}} = D_{\chi^{2}}(p,q),$$

we deduce (3.8).

Remark 2. The inequality (3.8) is equivalent with

(3.9)
$$|D_{\chi^2}(p,q) - (R-r)V(p,q)| \le |R+r-2|V(p,q).$$

We point out now some inequalities for the Bhattacharyya distance.

Proposition 7. Let $0 < r \leq \frac{p_i}{q_i} \leq R < \infty$ (i = 1, ..., n). Then we have the inequality:

(3.10)
$$0 \le 1 - B(p,q) \le \frac{1}{2\sqrt{r}}V(p,q).$$

Proof. Consider the mapping $g(t) = 1 - \sqrt{t}$, $t \in (0, \infty)$. Then g(1) = 0, $g'(t) = -\frac{1}{2\sqrt{t}}$ and

$$N = \sup_{t \in [r,R]} |g'(t)| = \sup_{t \in [r,R]} \frac{1}{2\sqrt{t}} = \frac{1}{2\sqrt{r}}.$$

Applying Corollary 4, we may state

$$\sum_{i=1}^{n} q_i \left| 1 - \sqrt{\frac{p_i}{q_i}} \right| \le \frac{1}{2\sqrt{r}} V\left(p,q\right),$$

which is equivalent to

(3.11)
$$\sum_{i=1}^{n} |q_i - \sqrt{p_i q_i}| \le \frac{1}{2\sqrt{r}} V(p,q) \,.$$

Using the generalised triangle inequality, we obtain

$$\sum_{i=1}^{n} |q_i - \sqrt{p_i q_i}| \geq \left| \sum_{i=1}^{n} (q_i - \sqrt{p_i q_i}) \right| \\ = |1 - B(p, q)| = 1 - B(p, q)$$

_	

If we define the following distance $\tilde{B}(p,q) := \sum_{i=1}^{n} \sqrt{q_i} \left| \sqrt{q_i} - \sqrt{p_i} \right|$, then we may state the following proposition as well.

Proposition 8. Assume that p_i, q_i, r, R are as above. Then

(3.12)
$$\frac{1}{2\sqrt{R}}V(p,q) \le \tilde{B}(p,q) \le \frac{1}{2\sqrt{r}}V(p,q).$$

The proof is obvious by Corollary 3 applied for the mapping $g(t) = 1 - \sqrt{t}$. Now, let us consider the *harmonic distance*

$$M(p,q) := \sum_{i=1}^{n} \frac{2p_i q_i}{p_i + q_i}.$$

The following proposition holds.

Proposition 9. Assume that p_i, q_i, r, R are as above. Then we have the inequality:

(3.13)
$$0 \le 1 - M(p,q) \le \frac{2}{(r+1)^2} V(p,q)$$

Proof. Consider the mapping $g(t) = 1 - \frac{2t}{t+1}$. Then g(1) = 0, $g'(t) = -\frac{2}{(t+1)^2}$ and

$$N := \sup_{t \in [r,R]} |g'(t)| = \frac{2}{(r+1)^2}.$$

Applying Corollary 4, we can state that

$$\sum_{i=1}^{n} q_i \left| 1 - \frac{2\frac{p_i}{q_i}}{\frac{p_i}{q_i} + 1} \right| \le \frac{2}{(r+1)^2} V(p,q),$$

which is clearly equivalent to:

(3.14)
$$\sum_{i=1}^{n} \frac{q_i |p_i - q_i|}{p_i + q_i} \le \frac{2}{(r+1)^2} V(p,q).$$

Using the generalised triangle inequality, we get (3.13).

If we introduce the divergence measure:

$$\tilde{M}(p,q) := \sum_{i=1}^{n} q_i \cdot \frac{|p_i - q_i|}{p_i + q_i} = I_l(p,q),$$

where $l(t) = \frac{|t-1|}{t+1}$, t > 0, then we have the following proposition.

Proposition 10. With the above assumptions, we have

(3.15)
$$\frac{2}{(R+1)^2}V(p,q) \le \tilde{M}(p,q) \le \frac{2}{(r+1)^2}V(p,q).$$

Finally, let us consider the Jeffreys distance

$$J(p,q) = \sum_{i=1}^{n} (p_i - q_i) \ln\left(\frac{p_i}{q_i}\right).$$

The following proposition holds.

Proposition 11. Assume that $0 < r \leq \frac{p_i}{q_i} \leq R < \infty$. Then we have the inequality:

(3.16)
$$\left[\frac{R-r}{2rR} + \ln\sqrt{\frac{R}{r}} - \left|\frac{R-r}{2rR} - \ln\sqrt{rR} - 1\right|\right]V(p,q)$$
$$\leq J(p,q) \leq \left[\frac{R-r}{2rR} + \ln\sqrt{\frac{R}{r}} + \left|\frac{R-r}{2rR} - \ln\sqrt{rR} - 1\right|\right]V(p,q).$$

Proof. Consider the mapping $g(t) = (t-1) \ln t$, t > 0. Then, obviously $g'(t) = \ln t - \frac{1}{t} + 1$, $g''(t) = \frac{t+1}{t^2}$, which shows that $g'(\cdot)$ is strictly increasing on $(0, \infty)$ and g'(1) = 0. Then

$$n = \inf_{t \in [r,R]} |g'(t)| = \min \{|g'(r)|, |g'(R)|\}$$
$$= \frac{R-r}{2rR} + \ln \sqrt{\frac{R}{r}} - \left|\frac{R+r}{2rR} - \ln \sqrt{rR} - 1\right|$$

and

$$N = \sup_{t \in [r,R]} |g'(t)| = \max \{ |g'(r)|, |g'(R)| \}$$
$$= \frac{R-r}{2rR} + \ln \sqrt{\frac{R}{r}} + \left| \frac{R+r}{2rR} - \ln \sqrt{rR} - 1 \right|.$$

10

In addition, as

$$I_{|g|}(p,q) = \sum_{i=1}^{n} q_i \left| \left(\frac{p_i}{q_i} - 1 \right) \right| \left| \ln \left(\frac{p_i}{q_i} \right) \right| = \sum_{i=1}^{n} |p_i - q_i| |\ln p_i - \ln q_i|$$
$$= \sum_{i=1}^{n} (p_i - q_i) (\ln p_i - \ln q_i) = I(p,q),$$

then by (2.14), we deduce (3.16).

Remark 3. The above inequality (3.16) is equivalent to

$$(3.17) \quad \left| J\left(p,q\right) - \left[\frac{R-r}{2rR} + \ln\sqrt{\frac{R}{r}} \right] V\left(p,q\right) \right| \le \left| \frac{R+r}{2rR} - \ln\sqrt{rR} - 1 \right| V\left(p,q\right).$$

4. Other Particular Cases

Let us consider the modified Kullback-Leibler divergence

$$|KL|(q,p) := \sum_{i=1}^{n} q_i \left| \ln \left(\frac{p_i}{q_i} \right) \right|,$$

where $p, q \in \mathbb{P}^n$.

We point out some estimates in terms of |KL|.

Proposition 12. Assume that $0 < r \le \frac{p_i}{q_i} \le R < \infty$ (i = 1, ..., n). Then we have the inequality

(4.1)
$$0 \le KL(p,q) \le \left[\frac{R-r}{2} + \ln\sqrt{\frac{R^R}{r^r}} + \left|\frac{r+R}{2} + \ln\sqrt{R^Rr^r}\right|\right] |KL|(q,p).$$

Proof. Consider the mappings $g(t) = t \ln t$, $f(t) = \ln t$, t > 0. Then $h(t) := \frac{g'(t)}{f'(t)} = t \ln t + t$.

We observe that

$$M = \sup_{t \in [r,R]} |h(t)| = \max \{ |h(r)|, |h(R)| \}$$
$$= \frac{R-r}{2} + \ln \sqrt{\frac{R^R}{r^r}} + \left| \frac{r+R}{2} + \ln \sqrt{R^R r^r} \right|$$

Applying Corollary 2, we may write

$$\sum_{i=1}^{n} q_i \left| \frac{p_i}{q_i} \ln \left(\frac{p_i}{q_i} \right) \right| \le M \sum_{i=1}^{n} q_i \left| \ln \left(\frac{p_i}{q_i} \right) \right| = M \left| KL \right| (q, p)$$

and as, by the generalised triangle inequality, we have

$$\sum_{i=1}^{n} p_i \left| \ln \left(\frac{p_i}{q_i} \right) \right| \ge |KL(p,q)| = KL(p,q) \ge 0,$$

the inequality (4.1) is proved.

We now compare the Hellinger discrimination with |KL|.

Proposition 13. Let p_i, q_i, r, R be as in Proposition 12. Then we have the inequality:

$$(4.2) \qquad \frac{1}{2} \left[\frac{R-r}{2} - \frac{\sqrt{R} - \sqrt{r}}{2} - \left| \frac{\sqrt{r} + \sqrt{R}}{2} - \frac{r+R}{2} \right| \right] |KL|(q,p) \\ \leq h^{2}(p,q) \leq \frac{1}{2} \left[\frac{R-r}{2} - \frac{\sqrt{R} - \sqrt{r}}{2} + \left| \frac{\sqrt{r} + \sqrt{R}}{2} - \frac{r+R}{2} \right| \right] |KL|(q,p)|$$

Proof. Consider the mappings $g(t) = \frac{1}{2} (\sqrt{t} - 1)^2$, $f(t) = \ln t$, t > 0. Then

$$h(t) := \frac{g'(t)}{f'(t)} = \frac{1}{2} \left(\frac{\sqrt{t} - 1}{\sqrt{t}} \right) \cdot t = \frac{1}{2} \left(\sqrt{t} - 1 \right) \sqrt{t}, \ t > 0.$$

We observe that

$$m = \inf_{t \in [r,R]} |h(t)| = \min\{|h(r)|, |h(R)|\}$$
$$= \frac{1}{2} \left[\frac{R-r}{2} - \frac{\sqrt{R} - \sqrt{r}}{2} - \left| \frac{\sqrt{r} + \sqrt{R}}{2} - \frac{r+R}{2} \right| \right]$$

and, analogously,

$$M = \sup_{t \in [r,R]} |h(t)| = \max\{|h(r)|, |h(R)|\}$$
$$= \frac{1}{2} \left[\frac{R-r}{2} - \frac{\sqrt{R} - \sqrt{r}}{2} + \left| \frac{\sqrt{r} + \sqrt{R}}{2} - \frac{r+R}{2} \right| \right].$$

Now, as $g(t) \ge 0$, we have

$$I_{|g|}(p,q) = I_g(p,q) = h^2(p,q)$$

and then, by Corollary 2, we deduce (4.2).

Remark 4. The above inequality is equivalent with

(4.3)
$$\left| h^{2}(p,q) - \frac{1}{2} \left[\frac{R-r}{2} - \frac{\sqrt{R} - \sqrt{r}}{2} \right] |KL(q,p)| \right|$$
$$\leq \left| \frac{\sqrt{r} + \sqrt{R}}{2} - \frac{r+R}{2} \right| |KL|(q,p).$$

We now compare the Chi-square distance with |KL|. The following proposition holds.

Proposition 14. Let p_i, q_i, r, R be as above. Then

$$(4.4) \qquad \left[(R-r) \left(R+r-1 \right) - \left| R+r-\left(R^{2}+r^{2} \right) \right| \right] |KL| (q,p) \\ \leq \quad D_{\chi^{2}} (p,q) \leq \left[(R-r) \left(R+r-1 \right) + \left| R+r-\left(R^{2}+r^{2} \right) \right| \right] |KL| (q,p) \,.$$

Proof. Consider the mappings $g(t) = (t-1)^2$, $f(t) = \ln t$, t > 0. Then $h(t) = \frac{g'(t)}{f'(t)} = 2t(t-1)$.

We observe that

$$m = \inf_{t \in [r,R]} |h(t)| = \frac{1}{2} \left[2r(1-r) + 2R(R-1) - |2r(1-r) - 2R(R-1)| \right]$$

= $\left[r - r^2 + R^2 - R - |r - r^2 - R^2 + R| \right]$
= $R^2 - r^2 - (R-r) - |R + r - (R^2 + r^2)|$
= $(R-r)(R+r-1) - |R + r - (R^2 + r^2)|$

and

$$M = \sup_{t \in [r,R]} (h(t)) = (R-r)(R+r-1) + |R+r-(R^2+r^2)|$$

Now, as $g(t) \ge 0$, we have

$$I_{|g|}(p,q) = I_g(p,q) = D_{\chi^2}(p,q)$$

and then, by Corollary 2, we deduce (4.4).

Remark 5. The above inequality is equivalent with

(4.5)
$$|D_{\chi^2}(p,q) - (R-r)(R+r-1)|KL|(q,p)|$$

$$\leq |R+r - (R^2+r^2)||KL|(q,p).$$

References

- I. CSISZÁR, Information measures: A critical survey, Trans. 7th Prague Conf. on Info. Th., Statist. Decis. Funct., Random Processes and 8th European Meeting of Statist., Volume B, Academia Prague, 1978, 73-86.
- [2] I. CSISZÁR, Information-type measures of difference of probability functions and indirect observations, Studia Sci. Math. Hungar, 2 (1967), 299-318.
- [3] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
- [4] J.H. JUSTICE (editor), Maximum Entropy and Bayssian Methods in Applied Statistics, Cambridge University Press, Cambridge, 1986.
- [5] J.N. KAPUR, On the roles of maximum entropy and minimum discrimination information principles in Statistics, Technical Address of the 38th Annual Conference of the Indian Society of Agricultural Statistics, 1984, 1-44.
- [6] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy functions, *IEEE Transactions on Information Theory*, 28 (1982), 489-495.
- [7] R.G. GALLAGER, Information Theory and Reliable Communications, J. Wiley, New York, 1968.
- [8] C.E. SHANNON, A mathematical theory of communication, Bull. Sept. Tech. J., 27 (1948), 370-423 and 623-656.
- [9] B.R. FRIEDEN, Image enhancement and restoration, *Picture Processing and Digital Filter*ing (T.S. Huang, Editor), Springer-Verlag, Berlin, 1975.
- [10] R.M. LEAHY and C.E. GOUTIS, An optimal technique for constraint-based image restoration and mensuration, *IEEE Trans. on Acoustics, Speech and Signal Processing*, **34** (1986), 1692-1642.
- [11] S. KULLBACK, Information Theory and Statistics, J. Wiley, New York, 1959.
- [12] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Annals Math. Statist., 22 (1951), 79-86.
- [13] R. BERAN, Minimum Hellinger distance estimates for parametric models, Ann. Statist., 5 (1977), 445-463.
- [14] A. RENYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Statist. Prob., Vol. 1, University of California Press, Berkeley, 1961.
- [15] S.S. DRAGOMIR and N.M. IONESCU, Some converse of Jensen's inequality and applications, Anal. Num. Theor. Approx., 23 (1994), 71-78.

S.S. DRAGOMIR

- [16] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen's discrete inequality for differentiable convex mappings and applications in information theory, *Math. Comput. Modelling*, 24 (2) (1996), 1-11.
- [17] S.S. DRAGOMIR and C.J. GOH, Some counterpart inequalities in for a functional associated with Jensen's inequality, J. of Ineq. & Appl., 1 (1997), 311-325.
- [18] S.S. DRAGOMIR and C.J. GOH, Some bounds on entropy measures in information theory, *Appl. Math. Lett.*, **10** (1997), 23-28.
- [19] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen's continuous inequality and applications in information theory, *RGMIA Preprint*, 101 (1911) 1011 (1911) 1011 (1911) 101 (1911) 1011 (1911) 101 (1911) 1011 (1911) 1011 (1911) 1011
 - http://matilda.vu.edu.au/~rgmia/InfTheory/Continuse.dvi
- [20] M. MATIĆ, Jensen's inequality and applications in Information Theory (in Croatian), Ph.D. Thesis, Univ. of Zagreb, 1999.
- [21] S.S. DRAGOMIR, J. ŠUNDE and M. SCHOLZ, Some upper bounds for relative entropy and applications, *Comp. and Math. with Appl.* (in press).
- [22] J.N. KAPUR, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3 (1984), No. 1, 1-16.
- [23] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- [24] F. TOPSOE, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll. RGMIA, 2 (1) (1999), 85-98.
- [25] D. DACUNHA-CASTELLE, Ecole d'ete de Probabilités de Saint-Fleour, III-1997, Berlin, Heidelberg: Springer 1978.
- [26] H. JEFFREYS, An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. London, Ser. A, 1986 (1946), 453-461.
- [27] A. BHATTACHARYYA, On a measure of divergence between two statistical populations defined by their probability distributions, *Bull. Calcutta Math. Soc.*, **35** (1943), 99-109.
- [28] S.S. DRAGOMIR, Some inequalities for the Csiszár Φ -divergence, submitted.
- [29] S.S. DRAGOMIR, A converse inequality for the Csiszár Φ-divergence, submitted.
- [30] S.S. DRAGOMIR, Some inequalities for (m, M)-convex mappings and applications for the Csiszár Φ -divergence in information theory, *submitted*.

School of Communications and Informatics, P.O. Box 14428, Victoria University of Technology

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html