SOME INEQUALITIES FOR TWO CSISZAR DIVERGENCES
AND APPLICATIONS

S.S. DRAGOMIR

ABSTRACT. Some inequalities for the Csiszar divergences of two mappings with
applications to the variational distance, Kullback-Leibler distance, Hellinger
discrimination, Chi-Square distance, Bhattacharyya distance, Jeffreys diver-
gence, etc... are given.

1. INTRODUCTION

Given a convex function f : [0,00) — R, the f—divergence functional

(1.1) 1f@&)=§;%f(z>,

was introduced by Csiszdr [1]-[2] as a generalized measure of information, a “dis-
tance function” on the set of probability distribution P™. The restriction here to
discrete distributions is only for convenience, similar results hold for general distri-
butions. As in Csiszar [1]-[2], we interpret undefined expressions by

F(0) = tim f(t), 0f(§) =0,
0f(§) = lim ef (¢) =alim 52 a>0.

e—0

The following results

(Theorems 1 and 2, and Corollary 1) were essentially given
by Csiszar and Korner [3].

Theorem 1. (Joint Convezity) If f : [0,00) — R is convez, then Iy (p, q) is jointly
convex in p and q.

Theorem 2. (Jensen’s inequality) Let f : [0,00) — R be convex. Then for any

p,q € R with P, := Y p; >0, Qn := ) ¢ >0, we have the inequality

i=1 i=1
P,
(1.2) It (pg) > Quf | 5 )
Qn
If f is strictly convex, equality holds in (1.2) iff
(1.3) n_b_ I
q1 q2 dn

It is natural to consider the following corollary.
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Corollary 1. (Nonnegativity) Let f : [0,00) — R be convex and normalised, i.e.,

(1.4) f@=o0.

Then for any p,q € R with P,, = Q,, we have the inequality
(1.5) Iy (p,q) = 0.

If f is strictly convex, equality holds in (1.5) iff

(1.6) pi=q; forall i€{l,...,n}.

In particular, if p,q are probability vectors, then Corollary 1 shows that, for
strictly convex and normalized f : [0,00) — R that

(1.7) It (p,q) 20 and If (p,q) =0 iff p=ygq.

We now give some more examples of divergence measures in Information Theory
which are particular cases of Csiszar f—divergences.

1. Kullback-Leibler distance ([12]). The Kullback-Leibler distance D (-,-) is

defined by
- pi
(1.8) D(p,q) =Y pilog () :
i=1 g
If we choose f (t) = tlnt, t > 0, then obviously
(1.9) 15 (p,q) = D (pq)-
2. Variational distance (l;—distance). The variational distance V (-,-) is de-
fined by
(1.10) Vip,q) =Y Ipi—ail-
i=1
If we choose f (t) = |t — 1|, t € Ry, then we have
(1.11) Ii (@) =V (p,q) .
3. Hellinger discrimination ([13]). The Hellinger discrimination h%(-,-) is
defined by
1 n
(112) W (pra) =5 > (VPi = v/ai) -
i=1
It is obvious that if f () = % (vt — 1)2, then
(1.13) It (p.q) = h*(p.q)-

4. Triangular discrimination ([24]). We define triangular discrimination be-
tween p and ¢ by

- lpi — Qi|2
1.14 Alp,g) =S Pi_ @l
(114) =3
It is obvious that if f (¢) = (tt_+11)2, t € (0,00), then

(1.15) Iy (p,q) = Ap,q).
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5. x*—distance. We define the x?—distance (chi-square distance) by

n

(1.16) Dy (p.q) == Z(pi;_qi).

i=1
It is clear that if f (£) = (t — 1)%, ¢ € [0,00), then
(1.17) 15 (p,q) = Dz (p, )

6. Rényi a—order entropy ([14]). The a—order entropy (o > 1) is defined by
n
(1.18) Ro (p,q) =) pia "
i=1

It is obvious that if f (¢) =t* (¢t € (0,00)), then
(1.19) Iy (p.q) = Ra (p,q) .-

For other examples of divergence measures, see the paper [22] by J.N. Kapur,
where further references are given.

2. THE RESULTS

In the recent paper [28], the author proved the following inequality for Csiszar
f—divergence:

Theorem 3. Let ® : Ry — R be differentiable conver. Then for all p,q € R} we
have the inequality:

(2.1) D' (1) (Py— Qn) < Ia (p,q) — Qn® (1) < I (Zm) —Is (p,q),

where Py, := > p; >0, Qn := >, ¢ >0 and &' : (0,00) — R is the derivative of
i=1 i=1
.
If & is strictly convex and p;, ¢; > 0 (i =1,...,n), then the equality holds in (2.9)
fp=q,
If we assume that P, = @, and ® is normalised, then we obtain the simpler
inequality

2
(2.2) 0<1Is(p,q) < lor <pq,p> —Io (psq)-

Applications for particular divergences which are instances of Csiszar f—divergence
were also given.

A similar result of the above theorem has been presented in another paper by
the author [29].

Theorem 4. Let ®, p,q be as in Theorem 3. Then we have the inequality

P, ? P,
(2.3) 0< I (p,q) —Qn® (Qn) < g (Z;’p) - @I@ (p,q) -

If ® is strictly convex and p;, q; > 0 (i =1,...,n), then the equality holds in (2.3)
ff L= =B,
a n
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Obviously, if P, = @, and & is normalised, then (2.3) becomes (2.2).

The following result concerning an upper and a lower bound for the Csiszar
f—divergence in terms of the Kullback-Leibler distance D (p, g) holds.

As in [30], we will say that the mapping f: C C R — R, where C is an interval
(in [30], the definition was considered in general normed spaces), is

(i) a—lower convex on C if f — 5 - |-|? is convex on C;
(i) B—upper convex on C' if g : ||2 — f is convex on C;
(#i7) (m, M) —convex on C (with m < M) if it is both m—lower convex and

M —upper convex.

In [30], amongst others, the author has proved the following result for Csiszar
f—divergence.

Theorem 5. Let ® : Ry — R and p,q € R} with P, = Q.

(i) If ® is a-lower conver on Ry, then we have the inequality

% Dy (p,q) < Is (p,q) — Qu® (1).

(i) If @ is B—upper conver on Ry, then we have the inequality

(2.4)

B
(2.5) Io (pa) = @u®(1) < 5 - Dy (p9)-
(i5i) If ® is (m, M) —convex on Ry, then we have the following sandwich inequality
m M
(2.6) 5 D) s1e(p,g) —@n® (1) < — - Dy (p,9),
where D,z (-,-) is the x*—divergence.

Of course, if @ is normalised, i.e., ® (1) = 0 and p, ¢ are probability distributions,
then we get the simpler inequalities:

o B
(2.7) 5 De (p,q) <Ie (p.q), Is(p,q) < 5 Dy (p, q)
and
m M
(2.8) 5 Dy (p,q) <Is (p,q) < 5 Dy (P q)-

In [30], some applications for particular instances of Csiszdr f—divergences were
also given.
We start with the following result.

Theorem 6. Let f,g:[0,00) — R be two mappings such that f (1) =g (1) =0. If
there exists the real constants m, M such that

(2.9) ml|f(@) = fWl < lg@)—gW@l<M|f(x)-f()
forallz,y € |[r,R]C (0,00),

then we have the inequality:

(2.10) mlg (p,q) < Lig (p.q) < M1y (p.q)

for all p, q probability distributions with 0 < r < % < R< oo forallie{l,..,n}.



INEQUALITIES FOR TWO CSISZAR DIVERGENCES 5

Proof. By (2.9) it follows that

()] = wfr(5) 105 p(2) |- p(3)
e (&) el =2 (5)
for all ¢ € {1,...,n}.

If we multiply (2.11) by ¢; > 0 and sum the obtained inequalities, we may deduce
(2.10). 1

IN

Corollary 2. Assume that the mappings f,g : [0,00) — R are as above and f,g
are differentiable on (r, R) with f'(t) #0 fort € (r, R) and

SOy (20
7Ol & 7@

then we have the inequality (2.10) for all p,q as above.

(2.12) —00 <m =
te(r,R)

‘:M<oo7

Proof. We use the following Cauchy’s theorem:
If v,¢ : [a,b] — R are continuous and differentiable on (a,b) and ¢’ (t) # 0 for
all t € (a,b), then there exists a ¢ € [a, b] such that
() =v(a) (o)
¢(b)—(a) ¢ (c)
Now, suppose that z,y € [r, R] and x < y. Then, by Cauchy’s theorem, we have
(v) ‘ _ |9
W 1)

and then we can conclude that for any x,y € [r, R] we have

m|f (@)= fWl<lg@) —gWl<M|f(=)—fy)l-
Applying Theorem 6, we deduce (2.10). I

g(x)—g
mS’f(w)—f

The following corollary for the variational distance holds.

Corollary 3. Let g:[0,00) — R be a mapping such that g (1) = 0. If there exists
the real constants n, N such that

(2.13) nle—yl <lg@)—g@| <Nz -yl foralzyelrR],

then we have the inequality

(2.14) nV (p,q) < g (p,q) < NV (p,q)

for any probability distribution p,q with 0 < r < % <R< oo forallie{l,..n}.
The proof is obvious by Theorem 6, choosing f (z) = z — 1.

Corollary 4. Assume that the mapping g is continuous on [a,b] and differentiable
on (a,b) and

—oco<n= inf |¢' (t)], sup |¢' (t)]=N < oo.
te(r,R) te(r,R)

Then we have the inequality (2.14) for all p,q as above.
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3. SOME PARTICULAR CASES IN TERMS OF THE VARIATIONAL DISTANCE
We start with the following result.

Proposition 1. Let 0 < r < % <R< o (i=1,..,n). Then we have the inequal-
ity /

ImR+1]V (p,q) if r>el,
(3.1) 0< KL(p,q) <

max{ln R+ 1;[ImnR+ 1}V (p,q) if r<e’.

Proof. Consider the mapping g : (0,00) — R, g(¢) = tlnt. Then ¢’ (t) = Int + 1
and obviously,

InR+1 if r>el,
M= suwp |g (5] =
te(rR) max{ln R+ 1;|In R+ 1|} if r<e L

Applying Corollary 4, we can state

Zn:Qi P (m>l <NV (p,q).

P R0 qi

By the generalised triangle inequality, we have

In <zl>‘ <NV (p,q)

. Di - Di
KL(p,g) =) piln <q) = piln (q)
i=1 v i=1 v

and the inequality (3.1) is proved. I

n
< sz’
i=1

Let us introduce the modified Kullback-Leibler distance
In <m) ‘ .
qi
Then obviously,

(3.2) K (p,q) < |KL|(p,q) forall p,q € P".

n
KL (p,q) = > pi
=1

For this modified distance, we may prove the following as well.

Proposition 2. Let 0 < r < 2’—; <R< oo (i=1,..,n). Then we have the inequal-
ity

(3-3) (Inr+1)V(p,q) <|KL|(p,q) < (InR+ 1)V (p,q),

provided that r > e 1.

Proof. The second inequality in (2.11) has been proven above.
For the first inequality, we can apply Corollary 4 by observing that for g (t) =
tint, and r > e 1,

inf |¢’ ()] =1 1.
nt 1o (0] =+

We omit the details. i

The following proposition also holds.
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Proposition 3. Let 0 <r < % <R< oo (i=1,....,n). Then we have the inequal-
ity:

(3.4) KL(q,p) < %V (p,q) -

Proof. Consider the mapping g : (0,00) — R, g(t) = Int. Then ¢’ (t) = } and
obviously,

1
M= sup |g ()] = 1.
te[r,R] r

Applying Corollary 3, we can state:

K(qp) = iqﬂn(fj):

IA
ling
=

and the proposition is proved. I
The following result for the modified Kullback-Leibler distance also holds.

Proposition 4. Let p,q be as above in Proposition 3. Then we have the inequality

(35) =V (0.0 < KL (0:0) < 5V (9,0).

Proof. The second inequality in (3.5) has been proven above. The first inequality
follows by the first inequality in Corollary 4 by taking into account that
1

= inf |¢ (t)| = =.
m= it |g ()] =

Now, the following result for Hellinger discrimination holds.

Proposition 5. Let 0 <r < Z’—f <R< o (i=1,..,n). Then we have the inequal-
ity:

(3.6) \/i/;fR‘/; - \/f\/%/; — % V(p.q)

VR—\r |[VR+r 1

+
4VrR 4vVrR 2

Proof. Consider the mapping g : (0,00) = R, g (t) = 3 (Vt — 1)2. Then obviously,

< B (p,q) <

1V(p,q)~
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and
no= dnt g ()] = min{lg ()], 1o (R}
_ g O+ (B =g (r)] — 1" (R)]|
2
_ VRV |VREVT 1
 4VrR 4VrR 2
and
N = tes[ugﬂlg'(t)l:max{lg’(r)lv\g'(R)l}
_ @I+ (Bl ()] = " (R)]|
2
«@—ﬁ+ﬂﬂﬁ_;
4VrR WrR 2
respectively.

As g (t) > 0, then obviously

Ligi (p,9) = Iy (p,q) = h* (p.q) -
Using (2.14), we obtain (3.6). 1

Remark 1. The inequality (3.6) is equivalent to

(37) W (p.q) %V(pm < % 5V

Now, we point out some inequalities for the chi-square distance.

Proposition 6. Let 0 <r < 5—2 <R< o0 (i=1,...,n). Then we have the inequal-
ity

(38) [R—r—|R+r—=2]V(p,q) <Dy2(p,q) <[R—7+|R+7—-2|]V (p,q).

Proof. Consider the mapping g : (0,00) — R, g(t) = (t — 1)2. Then obviously
g (t)=2(t—-1)and

nt1g/ ()] = min {lg’ ()] 1o’ (B)]}

R—r—|R+r—2|

n

and
N=R—r+|R+r—-2|].

Using the inequality (2.14), and taking into account that g (t) > 0, t € R, and

(i — i)’

Iy(pg) =) ~— ” “— =Dy (p,q),

i=1 ’
we deduce (3.8). I
Remark 2. The inequality (3.8) is equivalent with
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We point out now some inequalities for the Bhattacharyya distance.

Proposition 7. Let 0 <r < 5—: <R< oo (i=1,....n). Then we have the inequal-

ity:
1
3.10 0<1-B < —=V .
(3.10) < (17,61)_2\/7T (p.9)
Proof. Consider the mapping g (t) = 1 —/t, t € (0,00). Then g (1) =0, ¢’ () =
—2%/{ and

1

1
N= sup |l ()] = sup —= = )
te[r,R] g (@)l teinR) 2Vt 2T

Applying Corollary 4, we may state

S Di 1
1= /= < —=V
;% Vol S 25 (p.q),
which is equivalent to
- 1
3.11 i = VPitil < 57=V (p,q).
(3.11) > lai = Vpidil 55V (P9)
i=1
Using the generalised triangle inequality, we obtain
Z 4 — Vpiai] = Z (¢ — v/Piti)
i=1 i=1

1= B(p,q)l=1-B(p.q).
|
. n
If we define the following distance B (p,q) := Y \/q: |\/(Z — \/pT| , then we may
i=1
state the following proposition as well.

Proposition 8. Assume that p;, q;,r, R are as above. Then

ﬁV(pyq) < B(p,q) < ﬁV(p,Q)-

The proof is obvious by Corollary 3 applied for the mapping g (t) = 1 — /.
Now, let us consider the harmonic distance

n
2piq;
M (p,q) =) ———.
(.a) ;PiJrQi

(3.12)

The following proposition holds.

Proposition 9. Assume that p;, q;,r, R are as above. Then we have the inequality:

2
(3.13) 0<1-M(p,q) < ——=V(pa).
(r+ 1)2
Proof. Consider the mapping g (t) =1 — t% Then g (1) =0, ¢' (t) = — (tf1)2 and
2

N:= sup |¢ (¥)| = )
te[r,R]\ (t)] T
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Applying Corollary 4, we can state that

b 2
qi B = Vv (pa q) ’
Z TE| S ey
which is clearly equivalent to:
qi |Di — i 2
(3.14) Z | < sV (p.q)-

i—1 pi +q; (7”+1)

Using the generalised triangle inequality, we get (3.13). I

If we introduce the divergence measure:

- Qz
4 - =1 (p,q),
=3 st

1=1

where [ (t) = ‘iﬁ‘, t > 0, then we have the following proposition.

Proposition 10. With the above assumptions, we have

(3.15) 2 Vg <M< V(p,0).

(R+1) (r+1)?
Finally, let us consider the Jeffreys distance

z": b hl(qz)'

i=1

The following proposition holds.

Proposition 11. Assume that 0 < r < % < R < 0o. Then we have the inequality:

R_r-i-ln\/R—‘R_T—ln\/rR—l‘
r

(3.16) Vi(p,q)

2rR 2rR
R - IR R —
< J(p,q)SlQTRTJrln 7“+’ R IHVTRl‘

Proof. Consider the mapping ¢ (t) = (¢t —1)Int, ¢ > 0. Then, obviously ¢’ (t) =
Int—1+41, g" (¢t) = 55, which shows that ¢ (-) is strictly increasing on (0, 00) and
g’ (1) =0. Then

Vip,q)-

n = inf |¢ (t)] =min{|g' (r)|,]¢ (R)|}
te(r,R]
R—r IR R+

= | — — —InV -1
2rR o T ‘ 2rR nvrk ’
and

N = sup |¢'(t)] = max{|g'(r),]g' (R)[}

te[r,R)

R—r IR R+r
= S +In TJr‘ R —ln\/rRl‘.
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In addition, as

n
j2
Iy (p,q) = E qi (—1)H <L>’=§ lpi — qil Inp; — Ing;]
=1

= Z(pz —¢i)(Inp; —Ing;) =1 (p,q),

i=1
then by (2.14), we deduce (3.16). I

Remark 3. The above inequality (3.16) is equivalent to
R—7r | R
2rR r

4. OTHER PARTICULAR CASES

(3.17)

J(p,q) — V(p,q)

R+r
<= VR - .
< ‘ 5T InvVrR 1‘ V (p,q)

Let us consider the modified Kullback-Leibler divergence

K| (g, Zqz In (p)}
where p,q € P".

We point out some estimates in terms of |K L.

Proposition 12. Assume that 0 < r < % <R< oo (i=1,..,n). Then we have
the inequality

RRE

/r-T‘

TJ;R—HDVRRTT

+

(41) 0< KL (p,q) < er |KL|(q,p)-

Proof. Consider the mappings ¢ (t) = tlnt, f (¢) =Int, ¢t > 0. Then h () := fcl,gg =
tlnt +t.
We observe that

M

sup |h (t)] = max {[h (r)[, [h (R)[}

te(r,R]

_ R-r /RRJr
o 2 r’

Applying Corollary 2, we may write

Yool (3)| =g

and as, by the generalised triangle inequality, we have

n
sz‘
i=1

the inequality (4.1) is proved. I

TJ;RJrln\/RRTT .

i (2)| = 152l 0

K2

In (Z)] > |KL(p.q) = KL (p.g) > 0,

We now compare the Hellinger discrimination with |K L.
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Proposition 13. Let p;, q;,r, R be as in Proposition 12. Then we have the inequal-

ity:
1|R—r VR-\r r+ R
4. - - - -
1|R—r VR-—\r r+vVR r+R
< h2(p,q)§§ 5~ 2\[+ \[2 - |KL|(q,p)-

Proof. Consider the mappings g (t) = 3 (V/¢ =1Int, ¢t > 0. Then

-1)%,
h(t) = ?8_;<ﬁﬂl>-t_;(\/1)\f t>0.

‘We observe that

m = tir}f |h (t)| = min {|a ()], [ (R)[}
€[r,R]
_ 1|R-r VR-\F |Vr+VR r+R
2 2 2 2 2

and, analogously,

M = teb[u% |h ()] = max {|h (r)[, |k (R)[}
_ 1|R-r VR-r |Vr+VvR r+R
B s ] R R

Now, as g (t) > 0, we have

Lig) (p,9) = Iy (p,q) = B* (p, q)
and then, by Corollary 2, we deduce (4.2). 1

Remark 4. The above inequality is equivalent with

R—?"_\/E—\ﬁ7
2 2

1

2 —_
h* (p,q) 3

‘f—kxﬁ r+ R

(4.3)

1IKL(q,p)I

|KL|(g,p)-

We now compare the Chi-square distance with |K L|. The following proposition
holds.

Proposition 14. Let p;,q;,r, R be as above. Then
(4.4) (R—=r)(R+r—1)— |R+r— (R*+r*)|] IKL|(g,p)
< D,2(p,q) < [(R—r) (R+r—1)+ 4R+T— (R2 +7"2)|] |KL|(q,p) -

Proof. Consider the mappings g (t) = (t—1)%, f(t) = Int, ¢t > 0. Then h(t) =

‘(¢
g =2t (t—1).
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‘We observe that

. 1
m = tel[?,fR}lh(t” = 5[27"(1—7")—!—2R(R—1)—|2r(1—r)—2R(R—l)|]

= [r-r*+R*-R—|r—1"—R*+R|
= R27T27(R71")—‘R+r—(R2+1"2)|
= (R—r)(R+r—1)— |R+r— (R*+17)|

and

M= SElp](h(t)):(Rfr)(R+r—1)+|R+rf (R? +r?)]|.
te[r,R

Now, as g (t) > 0, we have

Ly (psq) = I (p,q) = Dy2 (p,q)

and then, by Corollary 2, we deduce (4.4). 1

Remark 5. The above inequality is equivalent with

(4.5) |Dyz (p,q) = (R=7) (R+7r—1)|KL|(q,p)|

< ‘R—&-T— (R2+T2)| |KL|(q,p).
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