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Abstract. We consider the approximation of the Csiszár f–divergence of two

probability distributions over a finite alphabet when the first (or second) de-
rivative of f is absolutely continuous and the second (respectively third) es-

sentially bounded. The approximants are suggested by results from numerical

integration theory, which also provides the means of deriving error bounds.
Tools are also developed for obtaining tight bounds.

1. Introduction

A common situation in information theory concerns an alphabet {ai}n
i=1 on

which two probability distributions p = (p1, . . . , pn), q = (q1, . . . , qn) are defined.
For example, pi, qi may represent respectively the frequency with which the symbol
ai occurs before and after transmission through a noisy channel.

A variety of divergence or discrimination measures are in common use for quan-
tifying the difference between such a pair p, q. The authors give a number of these
in [4]. Two of these, that we shall invoke shortly in this introduction, are the
chi–squared and (absolute) chi–cubed measures, which are given by

D|χ|m(p, q) :=
n∑

i=1

|pi − qi|m

qm−1
i

for m = 2 and m = 3 respectively. The diversity of the measures appearing in the
literature is remarkable. Csiszár [1]–[3] has systematised the field by showing that
a majority of these can be represented in the form

If (p, q) =
n∑

i=1

qif(pi/qi)

for a suitable choice of function f . Typically but not invariably f(1) = 0 and f is
nonnegative and strictly convex. With these assumptions, If automatically carries
the physically natural properties that If (p, p) = 0 and If (p, q) > 0 for p and q
distinct.

A basic question is that of approximation: how closeness of f and g is reflected
in closeness of If and Ig. As an illustrative example, the following was considered
in [5].

Suppose that there exist distinct real numbers r, R with

(1.1) 0 < r ≤ pi/qi ≤ R < ∞ for all i ∈ {1, ..., n}.
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We suppose also that f : [r, R] → R is such that f
′

is absolutely continuous on
[r, R] and f

′′ ∈ L∞[r, R], that is,∥∥∥f
′′
∥∥∥
∞

:= ess sup
t∈[r,R]

∣∣∣f ′′
(t)

∣∣∣ < ∞.

Define g : [r, R] → R by

g(u) := f(1) + (u− 1)f
′
(1).

Then

|If (p, q)− Ig(p, q)| ≤ (R− r)2

8

∥∥∥f
′′
∥∥∥
∞

.

Similarly if f
′′

is absolutely continuous on [r, R] and f
′′′ ∈ L∞[r, R], and we

define g : [r, R] → R by

g(u) := f(1) + (u− 1)f
′
(1) +

1
2
(u− 1)2f

′′
(1),

then

|If (p, q)− Ig(p, q)| ≤ (R− r)3

48

∥∥∥f
′′′

∥∥∥
∞

.

These examples are prompted naturally by consideration of Taylor series. How-
ever, even within the same framework of assumptions on derivatives, substantially
stronger results exist. The following were established in [5] with the choice g = f∗,
where

f∗(u) := f(1) + (u− 1)f
′
(

1 + u

2

)
.

Theorem A. Suppose that (1.1) holds and assume that f : [r, R] → R is such that
f
′
is absolutely continuous on [r, R] and f

′′ ∈ L∞[r, R]. Then

|If (p, q)− If∗(p, q)| ≤ 1
4

∥∥∥f
′′
∥∥∥
∞

Dχ2(p, q)

≤ 1
4

∥∥∥f
′′
∥∥∥
∞

(R− 1)(1− r)

≤ 1
16

∥∥∥f
′′
∥∥∥
∞

(R− r)2.

Theorem B. Suppose that (1.1) holds and assume that f : [r, R] → R is such that
f
′′

is absolutely continuous on [r, R] and f
′′′ ∈ L∞[r, R]. Then

|If (p, q)− If∗ (p, q)| ≤ 1
24

∥∥∥f
′′′∥∥∥

∞
D|χ|3(p, q)

≤ 1
24

∥∥∥f
′′′∥∥∥

∞

(R− 1)(1− r)
R− r

[
(1− r)2 + (R− 1)2

]
≤ 1

192

∥∥∥f
′′′

∥∥∥
∞

(R− r)3.

The constants are best–possible.
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In this article, we show that these ideas can be pushed further, again without
extending the raft of assumptions. We assume (1.1) throughout without further
comment and keep the assumption that r, R are distinct, which is easily seen to
entail that r < 1 < R. Suppose f† : [r, R] → R is given by

f†(u) := f(1) +
u− 1

2
f
′
(u).

In Section 2 we derive Theorems 1 and 2, which are versions of Theorems A and
B with f† in place of f∗. Theorem 1 has a tighter error bound than Theorem A
and Theorem B a less tight bound than Theorem B. The first bound in Theorem
1 is quite complicated. In Section 3 we introduce one– and two–point distributions
and show how these may be used to clarify the bounds in Theorem 1 and indeed
also to produce best–possible functional improvements of the bounds, in terms of
r and R only, in both theorems. These take into account the detailed structure
of the function f . In Section 4, we codify these ideas into a pair of connected
geometric constructions. We conclude in Section 5 by illustrating the ideas involved
by reference to some choices of f in common use.

2. Basic theorems

The analogue of Theorem A we are about to derive is based on the Iyengar
inequality [7], which states the following.

Theorem C. Suppose g : [a, b] → R is absolutely continuous on [a, b] and g
′

:
[a, b] → R is essentially bounded, that is, g

′ ∈ L∞[a, b]. Then∣∣∣∣∣∣
b∫

a

g(t)dt− 1
2
(b− a)[g(a) + g(b)]

∣∣∣∣∣∣
≤ 1

4

∥∥∥g
′
∥∥∥
∞

(b− a)2 − 1
4 ‖g′‖∞

[g(b)− g(a)]2.

We shall also make use of Proposition 1 of [5], which provides the following.

Proposition A. Suppose that (1.1) is satisfied with r < R and that m ≥ 1. Then

D|χ|m(p, q) ≤ (R− 1)(1− r)
R− r

[
(1− r)m−1 + (R− 1)m−1

]
≤

(
R− r

2

)m

.

The first inequality is an equality if and only if p, q form a boundary pair with
respect to r and R, that is, for each i either pi/qi = r or pi/qi = R. The second
inequality is an equality if and only if R + r = 2, that is, r and R are equidistant
from unity.

We now proceed to our first basic result. We shall make use of f0 : [r, R] → R
given by

f0(u) :=
[
f
′
(u)− f

′
(1)

]2

.
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Theorem 1. Suppose f : [r, R] → R with f
′

absolutely continuous on [r, R] and
f
′′ ∈ L∞[r, R]. Then∣∣If (p, q)− If†(p, q)

∣∣ ≤ 1
4

∥∥∥f
′′
∥∥∥
∞

Dχ2(p, q)− 1
4 ‖f ′′‖∞

If0(p, q)(2.1)

≤ 1
4

∥∥∥f
′′
∥∥∥
∞

Dχ2(p, q)

≤ 1
4

∥∥∥f
′′
∥∥∥
∞

(R− 1)(1− r)

≤ 1
16

∥∥∥f
′′
∥∥∥
∞

(R− r)2.

Proof. We choose a = 1, b = x and g = f
′
in Theorem C to obtain∣∣∣∣∣∣

x∫
1

f
′
(t)dt− 1

2
(x− 1)

[
f
′
(1) + f

′
(x)

]∣∣∣∣∣∣
≤ 1

4

∥∥∥f
′′
∥∥∥
∞

(x− 1)2 − 1
4 ‖f ′′‖∞

f0(x),

or equivalently ∣∣∣∣f(x)− f(1)− 1
2
f
′
(1)(x− 1)− 1

2
f
′
(x)(x− 1)

∣∣∣∣
≤ 1

4

∥∥∥f
′′
∥∥∥
∞

(x− 1)2 − 1
4 ‖f ′′‖∞

f0(x)

for all x ∈ [r, R].
If we choose x = pi/qi, multiply by qi and sum over i from 1 to n, we derive the

first inequality in (2.1) via the extended triangle inequality. The second inequality
is immediate, since f0 and so also If0 is nonnegative. The remaining inequalities
are given by Proposition A with m = 2. �

Corollary 1. Suppose the assumptions of Theorem 1 hold. If ε > 0 and

0 ≤ R− r ≤ 4 ·
√

ε/ ‖f ′′‖∞,

then ∣∣If (p, q)− If†(p, q)
∣∣ ≤ ε.

The following corollary emphasizes the approximation aspect of Theorem 1 for
distributions p and q which are close.

Corollary 2. Let f : [0, 2] → R be such that f
′
: [0, 2] → R is absolutely continuous

and f
′′ ∈ L∞[0, 2]. If η ∈ (0, 1) and p(η), q(η) satisfy

(2.2)
∣∣∣∣pi(η)
qi(η)

− 1
∣∣∣∣ ≤ η for all i ∈ {1, ..., n} ,

then

(2.3) If (p(η), q(η)) = If† (p(η), q(η)) + Rf (p, q, η)
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and the remainder Rf (p, q, η) satisfies

Rf (p, q, η) ≤ 1
4

∥∥∥f
′′
∥∥∥
∞

η2.

Proof. Choose r = 1− η, R = 1 + η in Theorem 1. �

Our other basic theorem makes use of the trapezoid inequality

(2.4)

∣∣∣∣∣∣
b∫

a

g (t) dt− 1
2
(b− a) [g(a) + g(b)]

∣∣∣∣∣∣ ≤ 1
12

(b− a)3
∥∥∥g

′′
∥∥∥
∞

from numerical integration, which holds provided g
′′ ∈ L∞[a, b].

Theorem 2. If f : [r, R] → R with f
′′

absolutely continuous on [r, R] and f
′′′ ∈

L∞[r, R], then∣∣If (p, q)− If†(p, q)
∣∣ ≤ 1

12

∥∥∥f
′′′∥∥∥

∞
D|χ|3(p, q)(2.5)

≤ 1
24

∥∥∥f
′′′∥∥∥

∞

(R− 1)(1− r)
R− r

[
(1− r)2 + (R− 1)2

]
≤ 1

96

∥∥∥f
′′′

∥∥∥
∞

(R− r)3.

The constants on the right are best–possible.

Proof. The first inequality is derived from (2.4) along the same lines as the first
inequality in Theorem 1. The remaing inequalities follow from Proposition A with
m = 3.

For f(u) = |u− 1|3 we have If (p, q) = D|χ|3(p, q). Also f†(u) = (3/2)f(u), so as
I is linear in f we have

|If (p, q)− If†(p, q)| = 1
2
D|χ|3(p, q).

Since
∥∥∥f

′′′
∥∥∥ = 6, the first inequality in (2.5) is thus an equality for this choice of f

and the corresponding constant is best–possible. That the following constants are
best–possible is inherited from Proposition A. �

Corollary 3. Let f be as in Theorem 2. If ε > 0 and

0 ≤ R− r ≤ 2 · 3

√
12ε/ ‖f ′′′‖∞,

then ∣∣If (p, q)− If†(p, q)
∣∣ ≤ ε.

Also, the following approximation result holds.
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Corollary 4. Let f : [0, 2] → R with f
′′

absolutely continuous on [0, 2] and f
′′′ ∈

L∞[0, 2]. If η ∈ (0, 1) and p(η), q(η) are such that (2.2) holds, then we have the
representation (2.3) and the remainder Rf (p, q, η) satisfies

|Rf (p, q, η)| ≤ 1
12

∥∥∥f
′′′

∥∥∥
∞

η3.

Remark 1. The last bound in Theorem 2 is tighter than that of Theorem 1 if

6
∥∥∥f

′′
∥∥∥
∞

‖f ′′′‖∞
> R− r,

while the reverse is true if

6
∥∥∥f

′′
∥∥∥
∞

‖f ′′′‖∞
< R− r.

As we shall see in Section 5, both possibilities can arise in practice. In the examples
we consider, Theorem 2 gives the better bound when r/R is large and Theorem 1
when it is small.

3. One– and two–point distributions

Suppose we wish to obtain the error bound involved in estimating If (p, q) by
Ig(p, q) for some function g. Since

If (p, q)− Ig(p, q) = If−g(p, q),

we wish to find sup |Ih(p, q)|, where h = f − g and the supremum is taken over
all n–point probability distribution pairs (p, q) satisfying (1.1). In this section we
approach this question directly and establish some basic results. We shall find it
convenient for clarity and succinctness to adopt the notation Ih,n(p, q) and to write
ui := pi/qi for i ∈ {1, 2, . . . , n} in this and the following section.
Proposition 1. Let n ≥ 1 and assume p, q are n–point distributions all of whose
components are nonzero.
(a) There exist k–point distributions pU , qU , where k takes one of the values 1 or
2 and pU , qU depend on p and q, such that

pU
i /qU

i ∈ {u1, . . . , un} for i = 1, . . . , k

and
Ih,k(pU , qU ) ≥ Ih,n(p, q).

(b) There exist k–point distributions pL, qL, where k takes one of the values 1 or 2
and pL, qL depend on p and q, such that

pL
i /qL

i ∈ {u1, . . . , un} for i = 1, . . . , k

and
Ih,k(pL, qL) ≤ Ih,n(p, q).

Proof. Consider the first half of the enunciation. If there are j distinct values
u(1), u(2), . . . , u(j) (1 ≤ j ≤ n), then for each such we may sum the associated values
qi to obtain q

(j)
1 , q

(j)
2 , . . . , q

(j)
j . Likewise we derive p

(j)
` associated with u(`) (1 ≤ ` ≤

j). We have at once that p
(j)
` /q

(j)
` = u(`), and that p(j) = (p(j)

1 , . . . , p
(j)
j ) and
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q(j) = (q(j)
1 , . . . , q

(j)
j ) are j–point probability distributions for which Ih,j(p(j), q(j))

has the same value as Ih,n(p, q).
To derive the desired result (a) by mathematical induction, we need to show that

if m is such that 3 ≤ m ≤ j then there exist (m− t)–point probability distributions
p(m−t), q(m−t) (with t equal to 1 or 2) depending on p(m) and q(m) with

p
(m−t)
` /q

(m−t)
` = u(`) (1 ≤ ` ≤ m− t)

and
Ih,m−t(p(m−t), q(m−t)) ≥ Ih,j(p(m), q(m)).

We may without loss of generality assume that there are at least three distinct
values ui, for otherwise there is nothing to prove.

To achieve the induction, we shall show that such a reduction from m–point
support to (m− t)–point support can be brought about by replacing the last three
components of p(m) by two suitably chosen components and a zero or one suitably
chosen component and two zeros, with a corresponding replacement in q(m), the
zeros being in the same position or positions.

For notational convenience, put v1 := u(m−2), v2 := u(m−1), v3 := u(m). With
relabelling if necessary, we may assume v1 < v2 < v3. Likewise we put p

(m)
m−2 = ρ1,

p
(m)
m−1 = ρ2, p

(m)
m = ρ3 and q

(m)
m−2 = σ1, q

(m)
m−1 = σ2, q

(m)
m = σ3, so that ρi/σi = vi for

i = 1, 2, 3. Define

λ :=
v3 − v2

v3 − v1
,

so that 0 < λ, 1−λ < 1 and v2 = λv1 +(1−λ)v3. We address in turn three possible
cases.

(i) If h(v2) ≤ λh(v1) + (1− λ)h(v3), then

3∑
i=1

σih(vi) ≤
∑

i=1,3

σ′ih(vi),

where σ′1 = σ1 + λσ2 and σ′3 = σ3 + (1− λ)σ2. Note that
∑3

i=1 σi =
∑

i=1,3 σ′i. If
we define ρ′i = σ′ivi for i = 1, 3, then ρ′i/σ′i = vi (i = 1, 3) and

∑
i=1,3

ρ′i =
∑

i=1,3

σivi + σ2[λ1v1 + (1− λ)v3] =
3∑

i=1

σivi =
3∑

i=1

ρi.

This shows that the reduction can be effected in this case with t = 1.

(ii) Next we suppose

(3.1) h(v2) > λh(v1) + (1− λ)h(v3)

with

(3.2) σ1/λ ≤ σ3/(1− λ).

Put

σ′2 := σ2 + σ1/λ, σ′3 := σ3 −
1− λ

λ
σ1.
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Then σ′2 > 0 and by (3.2) σ′3 ≥ 0. Further
∑

i=2,3 σ′i =
∑3

i=1 σi. Also by (3.1),∑
i=2,3

σ′ih(vi) >
σ1

λ
[λh(v1) + (1− λ)h(v3)] + σ2h(v2) +

[
σ3 −

1− λ

λ
σ1

]
h(v3)

=
3∑

i=1

σih(vi).

If we define ρ′i = σ′ivi for i = 2, 3, then ρ′i/σ′i = vi (i = 2, 3) and much as above∑
i=2,3

ρ′i =
3∑

i=1

ρi.

If (3.2) holds with equality, then σ′3 = 0 and the reduction holds with t = 2.
Otherwise it holds with t = 1.

(iii) Finally we have the possibility that (3.1) holds with

(3.3) σ1/λ > σ3/(1− λ).

We may argue as in (ii), this time starting with

σ′1 := σ1 −
λ

1− λ
σ3, σ′2 := σ2 +

1
1− λ

σ3.

Then σ′1, σ′2 are positive and ∑
i=1,2

σ′i =
∑
i=13

σi.

By (3.1), ∑
i=1,2

σ′ih(vi) =
∑

i=1,2

σih(vi) +
σ3

1− λ
[h(v2)− λh(v1)]

>

3∑
i=1

σih)vi).

If ρ′i = σ′ivi for i = 1, 2, then ρ′i/σ′i = vi (i = 1, 2) and∑
i=1,2

ρ′i =
∑

i=1,2

σ′ivi =
∑

i=1,2

σivi +
σ3

1− λ
[v2 − λv1] =

3∑
i=1

σivi =
3∑

i=1

ρi.

Thus we have a reduction with t = 1.

This completes the proof of part (a). Part (b) follows by applying part (a) to
the function −h. �

Suppose h is bounded on [r, R]. By letting pi, qi tend to zero for different
choices of i successively while keeping p`/q` ∈ [r, R] for all ` ∈ {1, 2, . . . , n}, we can
obtain one– and two–point distributions satisfying (1.1) as limiting cases of n–point
distributions. With this convention, the following result is natural.
Proposition 2. Suppose h is continuous and bounded on [r, R]. Then Ih,n achieves
its supremum and infimum over n–point distributions p, q satisfying (1.1). These
are realised by one– or two–point distributions.
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Proof. The first part is immediate. The second follows via Proposition 1, by re-
lating extremum–achieving distributions to Ih evaluated at one– or two–point dis-
tributions at which Ih is dominating (in the supremum case) or dominated (in the
infimum case). �

Corollary 5. The supremum and infimum of Ih subject to (1.1) take one of the
forms

(3.4) qh(u) + (1− q)h
(

1− qu

1− q

)
, h(1),

where u ∈ [r, R].

Proof. The first form in (3.4) is immediate, since if p/q = u, then

1− p

1− q
=

1− qu

1− q
.

The second is trivial, since p/q = 1 when p and q are one–point distributions. �

The ideas of this section provide the means for obtaining tight bounds on |Ih| in
terms of r, R. This we pursue in the following section. In practice the calculations
can be quite intricate even when h has a relatively simple functional form, although
they are suited to efficient numerical implementation, such as by bifurcation search.
For this reason, it is very convenient to have even the largest and second largest
bounds on the right–hand sides of (2.1) and (2.5).

Finite–point distributions have a special role in extremal theory. For a general
discussion, the reader is referred to [6].

4. Evaluating extrema

We now draw together the ideas of the preceding section to codify the treatment
of some broad classes of function h. For notational convenience we introduce

F (x, y) :=
y − 1
y − x

h(x) +
1− x

y − x
h(y),

which gives the value of Ih for two–point distributions p, q with support at u = x, y.
We assume throughout that (1.1) applies and that x, y ∈ [r, R].
Theorem 3. Suppose rT , RT satisfy r ≤ rT < 1 < RT ≤ R and the line joining
(rT , h(rT )) to (RT , h(RT )) lies strictly above the graph of h(u) for u ∈ [r, R] \
{rT , RT }. Then

sup Ih(p, q) = F (rT , RT ).

Proof. Put v1 = rT , v3 = RT and suppose if possible u = v2 ∈ (rT , RT ) is in the
support of one– or two–point distributions p0, q0 for which If realises its supremum.
By assumption

h(v2) < λh(v1) + (1− λ)h(v3)

in the notation of Proposition 1(a) case (i). The argument of case (i) shows that
If (p0, q0) experiences a strict increase if p0, q0 are modified by a suitable redistri-
bution of probability mass from v2 to v1 and v3, a contradiction to the extremality
of If (p0, q0). Thus the support of p0 and q0 must have empty intersection with
(rT , RT ). There is nothing more to prove if rT = r and RT = R. In any case, we
see that since 1 ∈ (rT , RT ), p0 and q0 must have two–point support.
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If RT < R, suppose if possible p0 and q0 have a point of support r0 ∈ (RT , R].
Then (RT , h(RT )) lies above the chord joining (rT , h(rT )) to (r0, h(r0)), so we may
derive a contradiction by the construction of case (ii) or case (iii) of Proposition 1
(a). Since p0 and q0 must have a point of support greater than unity, that point
must therefore be u = RT . A similar argument show that the support point less
than unity must be at u = rT . �

By taking −h in place of h in the preceding theorem, we derive the following
corresponding theorem for infima.

Theorem 4. Suppose rS, RS satisfy r ≤ rS < 1 < RS ≤ R and the line joining
(rS , h(rS)) to (RS , h(RS)) lies strictly below the graph of h(u) for u ∈ [r, R] \
{rS , RS}. Then

inf Ih(p, q) = F (rS , RS).

Whenever the above theorems are applicable, we may derive sup |If (p, q)| from

sup |If (p, q)| = max [sup If (p, q),− inf If (p, q)] .

Some modification to Theorem 3 is necessary if rT < 1 < RT is violated. This
has not been found to occur in the examples we have looked at but could be dealt
with on an ad hoc basis. For this reason we have not seen fit to strive for further
generality in Theorem 3 at the cost of complicating it. The same comment applies
to Theorem 4.

5. Examples

For the mapping f : (0,∞) → R given by f(u) = u lnu, If (p, q) becomes the
Kulback–Leibler distance

D(p, q) :=
n∑

i=1

pi ln(ui).

We have

If (p, q) =
1
2

n∑
i=1

[
ln

(
pi

qi

)
+ 1

]
(pi − qi)

=
1
2

n∑
i=1

(pi − qi) ln
(

pi

qi

)
=

1
2
[D(p, q) + D(q, p)],

n∑
i=1

qif0(ui) =
n∑

i=1

qi [ln (ui)]
2

and ∥∥∥f
′′
∥∥∥
∞

= sup
u∈[r,R]

∣∣∣f ′′
(u)

∣∣∣ = 1/r.
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Consequently Theorem 1 provides

0 ≤ |D(p, q)−D(q, p)|(5.1)

≤ 1
2r

Dχ2(p, q)− r

2

n∑
i=1

qi

[
ln

(
pi

qi

)]2

≤ 1
2r

Dχ2(p, q)

≤ 1
2r

(R− 1)(1− r)

≤ 1
8r

(R− r)2

which measures the asymmetry of the Kullback–Leibler distance.
A simple calculation gives ∥∥∥f

′′′
∥∥∥
∞

= 1/r2,

so that Theorem 2 gives the bounds

0 ≤ |D(p, q)−D(q, p)| ≤ 1
6r2

D|χ|3(p, q) ≤ 1
48r2

(R− r)3.

The last bound here can be seen to be strictly better than that in (5.1) if r > R/7.
Tight bounds for 1

2 |D(p, q) − D(q, p)| involving only r, R can be derived using
the ideas of the previous section. We have

h(u) =
u + 1

2
[lnu− (u− 1)] ,

so that

h
′
(u) =

1
2

[
lnu +

1
u

]
and h

′′
(u) =

u− 1
2u2

.

Thus h
′
(u) > 0 for u ≥ 1. By the elementary inequality

1
u

+ lnu > 1 for 0 < u < 1,

we have that h
′
(u) > 0 holds for 0 < u < 1 as well and so h is strictly increasing

for all u < 0. Also h is strictly concave for 0 < u < 1 and strictly convex for u > 1.
This falls within the scope of Theorems 3 and 4. If r1 is the demonstrably unique

value of u less than unity at which the tangent to the graph of h passes through
(R, h(R)), then we may choose rT = max(r, r1). If R1 is the demonstrably unique
value of u greater than unity at which the tangent to the graph of h passes through
(r, h(r)), then we may choose RT = min(R,R1).

Now consider the mapping f : (0,∞) → R given by f(u) = lnu. We have

If (p, q) =
n∑

i=1

qi ln (ui) = −D(q, p),

n∑
i=1

f
′
(ui) (pi − qi) =

n∑
i=1

qi

pi
(pi − qi) = 1−

n∑
i=1

q2
i

pi
= −Dχ2(q, p),

n∑
i=1

qif0(ui) =
n∑

i=1

qi

(
qi

pi
− 1

)2

=
n∑

i=1

qi(qi − pi)
p2

i

2
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and
∥∥∥f

′′
∥∥∥
∞

= 1/r2.

Consequently, by (2.1), we have

0 ≤
∣∣∣∣D(q, p) +

1
2
Dχ2(q, p)

∣∣∣∣(5.2)

≤ 1
4r2

Dχ2(p, q)− r2

4

n∑
i=1

qi(qi − pi)
p2

i

2

≤ 1
4r2

Dχ2(p, q)

≤ 1
4r2

(R− 1)(1− r)

≤ 1
16r2

(R− r)2.

A simple calculation shows that
∥∥∥f

′′′
∥∥∥
∞

= 2/r3, so that by Theorem 2

0 ≤
[
D(q, p) +

1
2
Dχ2(q, p)

]
≤ 1

6r3
D|χ|3(p, q) ≤ 1

48

(
R

r
− 1

)3

.

The last bound here can be seen to be better than that in (5.2) if r > R/4.
Again we may obtain a tight bound for |D(q, p) − 1

2Dχ2(q, p)| in terms of r, R
alone by use of Theorems 3 and 4. We have

h(u) = lnu− u− 1
2u

,

so that

h
′
(u) =

2u− 1
2u2

and h
′′
(u) =

1− u

u3
.

Thus h is decreasing for 0 < u < 1/2 and increasing for u > 1/2. Further it is
strictly convex for 0 < u < 1 and strictly concave for u > 1, and so is quasiconvex.
We may define rT and RT exactly as in the previous example.

Finally suppose f : (0,∞) → R is given by f(u) = 1
2 (
√

u− 1)2 . Then If (p, q)
becomes the Hellinger discrimination

h2(p, q) :=
1
2

n∑
i=1

qi (
√

ui − 1)2 .

We have
n∑

i=1

f
′
(

pi

qi

)
(pi − qi) =

1
2

n∑
i=1

(qi − pi)
√

qi√
pi

,

n∑
i=1

qif0(ui) =
n∑

i=1

qi

pi
(
√

pi −
√

qi)2

and ∥∥∥f
′′
∥∥∥
∞

= sup
u∈[r,R]

∣∣∣f ′′
(u)

∣∣∣ =
1

4r3/2
.
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Consequently Theorem 1 provides∣∣∣∣∣h2(p, q)− 1
4

n∑
i=1

(qi − pi)
√

qi

pi

∣∣∣∣∣ ≤ 1
16r3/2

Dχ2(p, q)− r3/2
n∑

i=1

qi

pi
(
√

pi −
√

qi)
2

≤ 1
16r3/2

Dχ2(p, q)

≤ 1
16r3/2

(R− 1)(1− r)

≤ 1
64r3/2

(R− r)2.

Also, as f
′′′

(u) = − 3
8u−5/2, we have

∥∥∥f
′′′

∥∥∥
∞

= sup
u∈[r,R]

∣∣∣f ′′′
(u)

∣∣∣ = 3
8r−5/2, and

Theorem 2 gives

(5.3)

∣∣∣∣∣h2(p, q)− 1
4

n∑
i=1

(qi − pi)
√

qi

pi

∣∣∣∣∣ ≤ 1
32r5/2

D|χ|3(p, q) ≤ 1
256r5/2

(R− r)3.

The largest bound here is better than the largest provided by Theorem 1 provided
r > R/5.

The use of Theorems 3 and 4 to obtain an absolute upper bound for the left–
hand side of the first inequality in (5.3) is more complicated than in the previous
examples. We have

h(u) =
(
√

u− 1)3

4
√

u
.

Hence

h
′
(u) =

(
√

u− 1)2

8u3/2

[
2
√

u + 1
]

and h
′′
(u) =

√
u− 1
16u3

[
2 + 3u1/2 + 3u− 6u3/2

]
.

Thus h is strictly increasing for u > 0. It is strictly concave for 0 < u < 1, strictly
convex for 1 < u < u0 and strictly concave for u > u0, where u0 is the unique zero
exceeding unity of the cubic polynomial 2 + 3x + 3x2 − 6x3.

There exist a unique pair of points (r1, h(r1)), (R1, h(R1)) with r1 < 1 < R1 at
which the graph of h has a common tangent which lies above the graph for all u > 0
except at the two osculating points. If r ≤ r1 < R1 ≤ R, we may take rT = r1

and RT = R1. Suppose r1 < r. Then there exists a unique u = R2 > 1 such that
the tangent to the graph at (R2, h(R2)) passes through (r, h(r)) and lies above the
graph for r < u < R2. We may choose rT = r, RT = min(R2, R).

If the join of (r, h(r)) to (R, h(R)) lies below the graph for r < u < R, or is
tangential to the graph at an intermediate point, we may take rS = r, RS = R.
Otherwise, (r, h(r)) lies on the tangent to the graph at a unique point (r2, h(r2))
with 1 < r2 < u0 and this tangent meets the graph again at (r3, h(r3)) with r3 > R.
Similarly (R, h(R)) lies on the tangent to the graph at a unique point (R2, h(R2))
with 1 < R2 < u0 and this tangent meets the graph again at (R3, h(R3)) with
R3 < r. At least one of r2, R2 is not unity. If r2 6= 1, we may take rS = r, RT = r2.
If R2 6= 1, we may take rS = R2, RS = R.
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References

[1] I. Csiszár, A note on Jensen’s inequality, Studia Sci. Math. Hung. 1 (1966), 185–188.
[2] I. Csiszár, Information–type measures of differences of probability distributions and indirect

observation, Studia Sci. Math. Hung. 2 (1967), 299–318.

[3] I. Csiszár, On topological properties of f–divergence, Studia Sci. Math. Hung. 2 (1967), 329–
339.
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