
Introduction

We will briefly present the main results of the five chapters of this work. The
chapters can be read independently. Throughout the presentation of Chapter 1 to
4, by operator we mean a linear operator on a finite dimensional, real or complex
Hilbert space H. Chapter 5 is specific to infinite dimensional spaces.

Given an operator A on H and a (ortho)projection E onto a subspace E , we
recall that the compression of A onto E , denoted by AE , is the restriction of EAE
to E .

Chapter 1 ([6])

Recall that a continuous function f : (a, b) −→ R is operator convex if

f((A+B)/2) ≤ (f(A) + f(B))/2

for every Hermitians A, B with spectra in (a, b). The simplest nontrivial examples
of operator convex functions are t −→ t2 on the whole real line and t −→ t−1

on the positive half-line. It is obvious that (AE)2 ≤ (A2)E for every Hermitian
operator A and every subspace E . Moreover, if A ≥ 0, a basic result in Matrix
Theory states that

(AE)−1 ≤ (A−1)E . (B)

More generally, a remarkable fact, due to C. Davis, states that a function f on
(a, b) is operator convex if and only if for every subspace E and every Hermitian
operator A whose spectrum lies in (a, b) one has

f(AE) ≤ f(A)E . (D)

F. Hansen and G.K. Pedersen showed that davis’ characterization is equivalent to
the noncommutative Jensen’s Inequality

f(
∑

i

Z∗i AiZi) ≤
∑

i

Z∗i f(Ai)Zi. (J)

for all Hermitians {Ai}m
i=1 with spectra in [a, b] and all isometric column {Zi}m

i=1
Here, isometric column means that

∑m
i=1 Z

∗
i Zi = I. If 0 ∈ [a, b], f(0) ≤ 0, and A
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is a Hermitian with spectrum in [a, b)], then (J) entails its contractive version

f(Z∗AZ) ≤ Z∗f(A)Z. (C)

for all contractions Z. In fact, Hansen-Pedersen first showed (C).

What can be said about convex, not operator convex functions ? An immediate
application of Jensen’s inequality shows that

f(〈h,Ah〉) ≤ 〈h, f(A)h〉

for all norm vectors h. One may deduce Berezin’s inequality

Tr f(AE) ≤ Tr f(A)E ,

that is Davis’ inequality remains valid inside the trace. Similarly (J) remains valid
inside the trace (Hansen-Pedersen) as well as (C) (Brown-Kosaki). We will prove
that, under simple additional assumptions, these trace inequalities are strenght-
ened as eigenvalues inequalities. Let g be operator convex on [a, b] and let φ be
a nondecreasing, convex function on g([a, b]). Then, f = φ ◦ g is convex and we
say that f is unitary convex on [a, b]. Since t −→ −t is trivially operator convex,
we note that the class of unitary convex functions contains the class of monotone
convex functions. The following result holds:

Theorem 1.1. Let f be a monotone, or more generally unitary, convex function
on [a, b], let A be a Hermitian whose spectrum lies in [a, b] and let E be a subspace.
Then, there exists a unitary U on E such that

f(AE) ≤ Uf(A)EU∗.

If A acts on an infinite dimensional space and E is an infinite dimensional subspace,
then the right hand side needs an additional rI term, where I is the identity and
r > 0 is arbitrarily small. We do not kwnow wether such an additional rI term is
necessary. The same remark holds for the following related result. Recall that an
isometric column {Zi}m

i=1 means that
∑m

i=1 Z
∗
i Zi = I.

Theorem 1.2. Let f be a monotone, or more generally unitary, convex function
on [a, b] and let {Ai}m

i=1 be Hermitians with spectra in [a, b]. If {Zi}m
i=1 is an

isometric column, then there exists a unitary U such that

f(
∑

i

Z∗i AiZi) ≤ U{
∑

i

Z∗i f(Ai)Zi}U∗.

In particular, if A, B are two Hermitians with spectrum in [a, b], the above result
says

f

(
A+B

2

)
≤ U · f(A) + f(B)

2
· U∗.
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Such an inequality does not extend to all convex functions, a simple counterexam-
ple being the absolute value.

Corollary 1.3. Let f be a monotone, or more generally unitary, convex function
on [a, b] and let A be a Hermitian with spectrum in [a, b]. If Z is a contraction,
0 ∈ [a, b] and f(0) ≤ 0, then there exists a unitary U such that

f(Z∗AZ) ≤ UZ∗f(A)ZU∗.

The preceding results can be rephrased as eigenvalues inequalities; for instance,
Corollary 1.3 claims that λk(f(Z∗AZ) ≤ λk(Z∗f(A)Z) (where {λk(·)} stands for
the sequence of eigenvalues arranged in decreasing order and counted with their
multiplicities). Since a general convex function f can be approached by the sum
of an affine function and a monotone convex function, we get the Brown-Kosaki
Inequality

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z. (1)

By definition, Z is an expansive operator if Z∗Z is greater than or equal to the
identity. We will prove that (1) admits the following companion result:

Theorem 1.4. Let A be a positive operator and let Z be an expansive operator.
Let f be a convex function defined on [0, b], b ≥ ‖Z∗AZ‖∞, with f(0) ≤ 0. Then,

Tr f(Z∗AZ) ≥ TrZ∗f(A)Z. (2)

We will see that (2), contrary to (1), can not be extended to inequalities between
eigenvalues. We will also see that the assumption A ≥ 0 can not be dropped.

Of course if f is concave and f(0) ≥ 0, then inequalities such as (1) and (2) are
reversed. Theorem 2.3 will imply the following

Theorem 1.5. Let A be a positive operator, let Z be an expansive operator and
let f : [0,∞) −→ [0,∞) be a nondecreasing concave function. Then,

‖f(Z∗AZ)‖∞ ≤ ‖Z∗f(A)Z‖∞.

Chapter 2 ([7])

A norm ‖ · ‖ on operators on H is said symmetric if ‖UAV ‖ = ‖A‖ for all
operators A and all unitaries U , V . A basic inequality for symmetric norm is

‖AB‖ ≤ ‖BA‖
for all operators A and B with a normal product AB. When AB is positive we
will establish the more general inequality:
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Theorem 2.1. Let A, B be operators with AB ≥ 0 and let Z be a strictly positive
operator with extremal eigenvalues a and b. Then, for every symmetric norm, the
following sharp inequality holds,

‖ZAB‖ ≤ a+ b

2
√
ab
‖BZA‖.

The above inequality is sharp because, Z being fixed, there is a rank one projection
E for which A = B = E entails equality.

Theorem 2.1 has the following two corollaries where the inequalities are sharp.

Corollary 2.2. Let A be a positive operator and let Z be a strictly positive operator
with extremal eigenvalues a and b. Then,

‖AZ‖∞ ≤ a+ b

2
√
ab
ρ(AZ)

and
‖AZ‖1 ≤

a+ b

2
√
ab

TrAZ.

Corollary 2.3. Let A be a positive contraction and let Z be a strictly positive
operator with extremal eigenvalues a and b. Then,

AZA ≤ (a+ b)2

4ab
Z.

From Corollary 2.3 one may derive a (sharp) reverse inequality to (B), first proved
by B. Mond and J.E. Pecaric:

(ZE)−1 ≥ 4ab
(a+ b)2

(Z−1)E

for every subspace E . A companion result is

Theorem 2.4. Let f : [0,∞) −→ [0,∞) be operator convex and let Z be a strictly
positive operator with extremal eigenvalues a and b. Then, for every subspace E,

f(ZE) ≥
4ab

(a+ b)2
(f(Z))E .

This result is a reverse inequality to Davis inequality (D), and similarly we will give
reverse inequalities to Hansen-Pedersen inequalities (J) and (C). For instance, let
us give a special case of the reverse inequality to (J). If A, B are positive operators
with spectra in [r, 2r], r > 0, then

f(αA+ βB) ≥ 8
9
· {αf(A) + βf(B)}
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for all operator convex functions f : [0,∞) −→ [0,∞) and all α, β > 0 with
α+ β = 1. For f(t) = t2, the constant 8/9 is optimal.

Chapter 3 ([4],[5])

An operator Z on H⊕H or ⊕kH is a dilation of the operator A on H if

Z =
(
A ?
? ?

)
, or Z =


A ? . . .

? ?
. . .

...
. . . . . .

 .

In the above dilations there is a lack of symmetry between the summands in H⊕H
or ⊕kH. We then introduce the following natural notion: An operator Z on ⊕kH
is said to be a total dilation of the operator A on H if the operator diagonal of Z
consists of a repetition of A,

Z =


A ? . . .

? A
. . .

...
. . . . . .

 .

We will establish the following result (the stars hold for unspecified entries):

Theorem 3.1. Let A, B be strictly positive operators on H. Then, the condition
A−1 ≤ B is equivalent to the existence of a strictly positive operator Z on H⊕H
such that

Z =
(
A ?
? A

)
and Z−1 =

(
B ?
? B

)
.

By (B) or (D), it is well-known that the existence of Z entails the relation A−1 ≤ B.
The claim of the theorem is the converse implication.

Theorem 3.1 and some other results will lead us to state two conjectures:

Conjecture 3.2. Let A, B be strictly positive operators on H and let f : (0,∞) −→
(0,∞) be onto, nonlinear and operator convex. Then, the following statements are
equivalent:

(1) A ≤ B.

(2) There exists a strictly positive operator Z on H⊕H such that

A = f(ZH) and B = f(Z)H.

We recall that the above implication (2) ⇒ (1) is Davis’ characterization (D) of
operator convexity. Thus, we conjecture the converse implication. Our second
conjecture is
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Conjecture 3.3. Let A, B be strictly positive operators on a finite dimensional
space H and let f : (0,∞) → (−∞,∞) be strongly convex. Then, the condition
f(A) < B ensures the existence of a strictly positive operator Z on H ⊕ H such
that A = ZH and B = f(Z)H.

Here, f is said to be strongly convex if its epigraph equals the convex hull of its
graph.

If H is a space with an even finite dimension, we then say that the orthonor-
mal decomposition H = F ⊕ F⊥ is a halving decomposition whenever dimF =
(1/2) dimH. A key lemma for a standard proof of the Hausdorff-Toeplitz Theorem
states that any operator A on a two-dimensional space can be written

A =
(
b ?
? b

)
.

with respect to some orthonormal basis. The following more general fact holds:

Theorem 3.4. Let A be an operator on a space H with an even finite dimension.
Then there exists a halving decomposition H = F ⊕ F⊥ for which we have a total
dilation

A =
(
B ?
? B

)
.

To be very precise, this theorem says that AF and A⊥F are unitarily congruent. Its
proof is not an adaption of the two dimensional case. This result raises several
questions about the set of all operators B which can be totally dilated into A.

Chapter 4 ([1] [2])

Many inequalities involving operators occur from the various ways of arranging
the terms of a product. One of the simplest inequality of this kind is

‖AsZAt‖∞ ≤ ‖ZAs+t‖∞. (3)

Here, A is a positive operator (i.e. A = X∗X), Z is a normal operator, s et t are
two nonnegative reals and ‖ · ‖∞ denotes the usual operator norm. This inequality
raises two questions:

Can we replace the pair (As, At) by a more general pair (A,B), maybe at the cost
of a numerical constant ?

The norm of an operator is also its first singular value. Is there a substitute of (3)
for the other singular values ?

To generalize the pairs (As, At), we will say that two positive operators A and
B form a monotone pair if there exist a positive operator C and two nondecreasing
functions f , g, such that A = f(C) and B = g(C).
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Proposition 4.1. Let (A,B) be a monotone pair of positive operators. Let Z be
a positive operator with largest and smallest nonzero eigenvalues a and b. Then

‖AZB‖∞ ≤ a+ b

2
√
ab
‖ZAB‖∞.

If Z is a projection E, the previous inequality reduces to

‖AEB‖∞ ≤ ‖EAB‖∞.

This will imply the following result:

Theorem 4.2. Let (A,B) be a monotone pair of positive operators and let E be
the projection onto a subspace E. Then

Sing(AEB) ≤ Sing(EAB).

Consequently,
Eig(AEBE) ≤ Eig((AB)E) (4)

and
Eig(AEBEAE) ≤ Eig((ABA)E).

Here, Sing(·), resp. Eig(·), stands for the sequence of singular values, resp. eigen-
values, arranged in decreasing order and counted with their multiplicities. An
immediate consequence of (4) is the determinantal inequality

detAE · detAE ≤ det(AB)E

in particular
〈h,Ah〉〈h,Bh〉 ≤ 〈h,ABh〉

for every norm one vector h. Actually, this inequality is the starting point of the
previous results.

Finally, we will prove the following result for the Hilbert-Schmidt (or Frobenius)
norm, ‖ · ‖2.

Theorem 4.3. Let Z be a norm operator and let A and B be two positive opera-
tors. Then:

(1) If (A,B) is monotone,

‖AZB‖2 ≤ ‖ZAB‖2

(2) If (A,B) is antimonotone,

‖AZB‖2 ≥ ‖ZAB‖2. (5)
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Here, we say that (A,B) is antimonotone if there exist a positive operator C and
two functions f , g, one nondecreasing, the other nonincreasing, such that A = f(C)
and B = g(C). Note that (5) may fail in the infinite dimensional setting.

Chapter 5 ([3])

The results of this last chapter are specific to the infinite dimensional setting.
The notion of compression has an obvious extension: If B is an operator on a

space F with dimF ≤ dimH, we still say that B is a compression of A if there is
an isometry V : F −→ H such that B = V ∗AV . Thus, identifying B with V BV ∗

(equivalently, identifiyng F and V (F)), we can write

A =
(
B ?
? ?

)
.

One also says that A dilates B or that A is a dilation of B.
Let H be an infinite dimensional (separable) Hilbert space. We ask the following

question:

What are the operators A on H with the property that any strict contraction X
can be realized as a compression of A ?

We will answer this question and, actually, a more general one. Let us define the
essential numerical range of A as

We(A) = { λ | there is an orthonormal system {en}∞n=1 with lim〈en,Aen〉 = λ}.
Let A be an operator on an infinite dimensional space H and consider an or-

thonormal decomposition H = ⊕∞n=1Hn. Denote by En the projection onto Hn.
We have the pinching

P(A) =
∞⊕

n=1

AHn =
∑

n

EnAEn

The notion of pinching has an obvious extension: if {An} is a sequence of operators
acting on separable Hilbert spaces with An unitarily equivalent to AHn for all n,
we also naturally write

P(A) = ⊕∞n=1An.

Note that We(A) contains the open unit disc D if and only if there is a basis
(or an o.n.s) {en}∞n=1 such that the convex hulls co{〈ek, Aek〉 : k > n} contain D
for all n.

We have the following answer to our question:

Theorem 5.1. Let A be an operator with We(A) ⊃ D and let {An}∞n=1 be a
sequence of operators such that supn ‖An‖∞ < 1. Then, there is a pinching

P(A) =
∞⊕

n=1

An.
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So, we have in particular:

Corollary 5.2. Let A be an operator with We(A) ⊃ D. For any strict contraction
X, there is an isometry V such that X = V ∗AV .
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Chapter 1

Convexity or concavity inequalities for

Hermitian operators

Introduction

Given an operator A on a separable Hilbert space H and a subspace E ⊂ H, we
denote by AE the compression of A onto E , i.e. the restriction of EAE to E , E
being the projection onto E . If E is a finite dimensional subspace, we show that,
for any Hermitian operator A and any monotone convex function f defined on
the spectrum of A, there exits a unitary operator U on E such that the operator
inequality

f(AE) ≤ Uf(A)EU∗.
holds. Here, f(A)E must be read as (f(A))E . This result together with the ele-
mentary method of its proof motivate the whole chapter. In Section 1 we prove
the above inequality and give a version when dim E = ∞. We also study the map
p −→ {(Ap)E}1/p, A ≥ 0, 0 < p <∞.

Section 2 is concerned with eigenvalues inequalities (equivalently operator in-
equalities) which improve some trace inequalities of Brown-Kosaki and Hansen-
Pedersen: Given a monotone convex function f defined on the real line with
f(0) ≤ 0, a Hermitian operator A and a contractive operator Z acting on a fi-
nite dimensional space, there exists a unitary operator U such that

f(Z∗AZ) ≤ UZ∗f(A)ZU∗.

In Section 3, we prove that

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z

for every positive operator A and expansive operator Z on a finite dimensional
space, and every concave function f defined on an interval [0, b], b ≥ ‖Z∗AZ‖∞,
with f(0) ≥ 0 (‖ · ‖∞ denotes the usual operator norm).

The last section deals with unitarily invariant norms inequalities associated with
orthogonal decompositions.



11

1. Compressions and convex functions

By a classical result of C. Davis [6] (see also [1, p. 117-9]), a function f on (a, b)
is operator convex if and only if for every subspace E and every Hermitian operator
A whose spectrum lies in (a, b) one has

f(AE) ≤ f(A)E . (1)

What can be said about convex, not operator convex functions ? Let g be operator
convex on (a, b) and let φ be a nondecreasing, convex function on g((a, b)). Then,
f = φ ◦ g is convex and we say that f is unitary convex on (a, b). Since t −→ −t
is trivially operator convex, we note that the class of unitary convex functions
contains the class of monotone convex functions. The following result holds:

Theorem 1.1. Let f be a monotone convex, or more generally unitary convex,
function on (a, b) and let A be a Hermitian operator whose spectrum lies in (a, b).

(1) If E is a finite dimensional subspace, then there exists a unitary operator U
on E such that

f(AE) ≤ Uf(A)EU∗.

(2) If E is an infinite dimensional subspace and r > 0 is arbitrarily small, then
there exists a unitary operator U on E such that

f(AE) ≤ Uf(A)EU∗ + rI.

Proof. We first consider the case when E has finite dimension d.
We begin by assuming that f is monotone. Let {λk(X)}d

k=1 denote the eigenval-
ues of the Hermitian operator X on E , arranged in decreasing order and counted
with their multiplicities. Let k be an integer, 1 ≤ k ≤ d. There exists a spectral
subspace F ⊂ E for AE (hence for f(AE)), dimF = k, such that

λk[f(AE)] = min
h∈F ; ‖h‖=1

〈h, f(AF )h〉

= min{f(λ1(AF )) ; f(λk(AF ))}
= min

h∈F ; ‖h‖=1
f(〈h,AFh〉)

= min
h∈F ; ‖h‖=1

f(〈h,Ah〉)

where at the second and third steps we use the monotony of f . The convexity of
f implies

f(〈h,Ah〉) ≤ 〈h, f(A)h〉
for all normalized vectors h. Therefore, by the minmax principle,

λk[f(AE)] ≤ min
h∈F ; ‖h‖=1

〈h, f(A)h〉

≤ λk[f(A)E ].
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This statement is equivalent to the existence of a unitary operator U on E satisfying
to the conclusion of the theorem.

If f is unitary convex, f = φ ◦ g with g operator convex and φ nondecreasing
convex; inequality (1) applied to g combined with the fact that φ is nondecreasing
yield a unitary operator V on E for which

φ ◦ g(AE) ≤ V φ[g(A)E ]V ∗.

Applying the first part of the proof to φ gives a unitary operator W on E such
that

φ[g(A)E ] ≤W [φ ◦ g(A)]EW ∗.

We then get the result by letting U = VW .

Now, we turn to the case when E has infinite dimension. Though the proof is
similar to the previous one, we have to be more careful.

Given a Hermitian operator on an infinite dimensional space we may define, as
in the finite dimensional setting, a sequence of numbers {λk(X)}∞k=1 by

λk(X) = sup
{F : dimF=k}

inf
{h∈F : ‖h‖=1}

〈h,Xh〉

We note that {λk(X)}∞k=1 is a nonincreasing sequence whose limit is the upper
bound of the essential spectrum of X. We define another sequence of numbers,
{λ−k(X)}∞k=1 by

λ−k(X) = sup
{F : codimF=k−1}

inf
{h∈F : ‖h‖=1}

〈h,Xh〉.

Then, {λ−k(X)}∞k=1 is a nondecreasing sequence whose limit is the lower bound
of the essential spectrum of X. The following fact (a) is obvious and fact (b) is
proved in the addenda.

(a) IfX and Y are two Hermitian operators such thatX ≤ Y , then λk(X) ≤ λk(Y )
and λ−k(X) ≤ λ−k(Y ) for all k = 1, . . . .

(b) Let r > 0. If X and Y are two Hermitian operators such that λk(X) ≤ λk(Y )
and λ−k(X) ≤ λ−k(Y ) for all k = 1, . . . , then there exists a unitary operator U
such that X ≤ UY U∗ + rI.

From facts (a) and (b) we infer that, given two Hermitian operators X, Y with
X ≤ Y and a nondecreasing continuous function φ, there exists a unitary operator
U such that φ(X) ≤ Uφ(Y )U∗ + rI. This observation allows us, by the same
reasoning as in the first part of the proof, to restrict ourselves to the case when f
is nondecreasing.

From fact (b) we also infer that it suffices to show that λk(f(AE)) ≤ λk(f(A)E)
and λ−k(f(AE)) ≤ λ−k(f(A)E) for all integers k. We consider the case λ−k(·), the
other one being similar. We fix k and distinguish two cases.

1. λ−k(AE) is an eigenvalue of AE . Then, for 1 ≤ j ≤ k, λ−j(f(AE)) are eigenvalues
for f(AE). Consequently, there exists a subspace F ⊂ E , codimE F = k − 1, such
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that

λ−k(f(AE)) = min
{h∈F : ‖h‖=1}

〈h, f(AE)h〉

= min
{h∈F : ‖h‖=1}

f(〈h,AEh〉)

≤ inf
{h∈F : ‖h‖=1}

〈h, f(A)h〉 ≤ λ−k(f(A)E)

where at the second and third lines we have used the nondecreasingness of f and
its convexity, respectively.
2. λ−k(AE) is not an eigenvalue of AE (so, λ−k(AE) is the lower bound of the
essential spectrum of AE). Fix ε > 0 and choose δ > 0 such that |f(x)− f(y)| ≤ ε
for all x, y are in the convex hull of the spectrum of A with |x − y| ≤ δ. There
exists a subspace F ⊂ E , codimE F = k − 1, such that

λ−k(AE) ≤ inf
{h∈F : ‖h‖=1}

〈h,AEh〉+ δ.

Since f is continuous nondecreasing we have f(λ−k(AE)) = λ−k(f(AE)) so that,
as f is nondecreasing,

λ−k(f(AE)) ≤ f

(
inf

{h∈F : ‖h‖=1}
〈h,AEh〉+ δ

)
.

Consequently,
λ−k(f(AE)) ≤ inf

{h∈F : ‖h‖=1}
f(〈h,AEh〉) + ε,

so, using the convexity of f and the definition of λ−k(·), we get

λ−k(f(AE)) ≤ λ−k(f(A)E) + ε.

By letting ε −→ 0, the proof is complete. 2

Later, we will see that Theorem 1.1 can not be extended to all convex functions
f (Example 2.4).

Of course Theorem 1.1 holds with a reverse inequality for monotone concave
functions f (or f = φ ◦ g, g operator convex and φ decreasing concave).

Given a compact positive operator A and a subspace E , it is natural to study
the behaviour of the map

p −→ {(Ap)E}1/p

on (0,∞).

Theorem 1.2. Let A =
∑

k λk(A) fk ⊗ fk be a positive, compact operator and let
E be a subspace, dim E = d < ∞. Assume E ∩ span{fj : j > d} = 0. Then, for
every integer k ≤ d, the map p −→ λk({(Ap)E}1/p) increases on (0,∞) and

lim
p→∞

λk({(Ap)E}1/p) = λk(A).
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Moreover the family {(Ap)E}1/p converges in norm when p → ∞ and the map
p −→ {(Ap)E}1/p is increasing for the Loewner order on [1,∞).

Proof. Let p > 0 and r > 1. By Theorem 1.1, there exists a unitary U : E −→ E
such that

{(Ap)E}r ≤ U(Apr)EU∗,
hence, for all k,

λr
k((A

p)E) ≤ λk((Apr)E),
so,

λk({(Ap)E}1/p) ≤ λk({(Apr)E}1/pr),
that is, the map p −→ λk({(Ap)E}1/p) increases on (0,∞). In order to study its
convergence when p→∞, we first show that

lim
p→∞

λ1((EApE)1/p) = λ1(A) (2)

where E denotes the projection onto E . We note that

lim
p→∞

λ1((EApE)1/p) ≤ λ1(A). (3)

Recall that A =
∑

k λk(A) fk ⊗ fk. Since by assumption f1 6∈ E⊥, there exists a
normalized vector g in E such that 〈g, f1〉 6= 0. Setting G = g ⊗ g, we have

λ1((GApG)1/p) = 〈g,Apg〉1/p =
( ∑

k

λp
k(A)|〈g, fk〉|2

)1/p
.

The above expression is a weighted lp-norm of the sequence {λk(A)}. When p→
∞, this tends towards the l∞-norm which is λ1(A). Since

λ1((GApG)1/p) ≤ λ1((EApE)1/p)

we then deduce with (3) that (2) holds.
In order to prove the general limit assertion, we consider antisymmetric tensor

products. Let F be the projection onto F = span{fj : j ≤ dim E}. By assumption
F maps E onto F . Therefore ∧k(F ) maps ∧k(E) onto ∧k(F) and we may find a
norm one tensor γ ∈ ∧k(E) such that 〈γ, f1 ∧ · · · ∧ fk〉 6= 0. Hence, with ∧kE and
∧kA in place of E and A, 1 ≤ k ≤ dim E , we may apply (2) to obtain

lim
p→∞

λ1(∧k(EApE)1/p) = λ1(∧kA)

meaning that

lim
p→∞

∏
1≤j≤k

λj((EApE)1/p) =
∏

1≤j≤k

λj(A).

From these relations we infer that, for every k ≤ dim E , we have

lim
p→∞

λk((EApE)1/p) = λk(A)

proving the main assertion of the theorem.
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For p, r ≥ 1 we have

(EAprE)1/r ≥ EApE.

by Hansen’s inequality [6]. Since t −→ t1/p is operator monotone by the Loewner
theorem [9, p. 2], we have

(EAprE)1/pr ≥ (EApE)1/p.

Thus p −→ (EApE)1/p increases on [1,∞). Since this map is bounded, it converges
in norm. 2

Question 1.4. Can we drop the rI term in Theorem 1.1 ?

2. Contractions and convex functions

In [7] and [8], the authors show that inequality (1) is equivalent to the following
statement.

Theorem 2.1. (Hansen-Pedersen) Let A and {Ai}m
i=1 be Hermitian operators

and let f be an operator convex function defined on an interval [a, b] containing
the spectra of A and Ai, i = 1, . . .m.

(1) If Z is a contraction, 0 ∈ [a, b] and f(0) ≤ 0,

f(Z∗AZ) ≤ Z∗f(A)Z.

(2) If {Zi}m
i=1 is an isometric column,

f(
∑

i

Z∗i AiZi) ≤
∑

i

Z∗i f(Ai)Zi.

Here, an isometric column {Zi}m
i=1 means that

∑m
i=1 Z

∗
i Zi = I.

In a similar way, Theorem 1.1 is equivalent to the next one. We state it in the fi-
nite dimensional setting, but an analogous version exists in the infinite dimensional
setting by adding a rI term in the right hand side of the inequalities.

Theorem 2.2. Let A and {Ai}m
i=1 be Hermitian operators on a finite dimensional

space and let f be a monotone, or more generally unitary, convex function defined
on an interval [a, b] containing the spectra of A and Ai, i = 1, . . .m.

(1) If Z is a contraction, 0 ∈ [a, b] and f(0) ≤ 0, then there exists a unitary
operator U such that

f(Z∗AZ) ≤ UZ∗f(A)ZU∗.



16

(2) If {Zi}m
i=1 is an isometric column, then there exists a unitary operator U

such that

f(
∑

i

Z∗i AiZi) ≤ U{
∑

i

Z∗i f(Ai)Zi}U∗.

Here, we give a first proof based on Theorem 1.1. A more direct proof is given
at the end of the section.

Proof. Theorem 2.2 and Theorem 1.1 are equivalent. Indeed, to prove Theorem
1.1, it suffices to consider the case of monotone convex functions f . Then, by a
limit argument, we may assume that f is defined on the whole real line. Since we
may also assume that f(0) = 0, Theorem 1.1 follows from Theorem 2.2 by taking
Z as the projection onto E .

Theorem 1.1 entails Theorem 2.2(1): to see that, we introduce the partial isom-
etry V and the operator Ã on H⊕H defined by

V =
(

Z 0
(I − |Z|2)1/2 0

)
, Ã =

(
A 0
0 0

)
.

Denoting by H the first summand of the direct sum H⊕H, we observe that

f(Z∗AZ) = f(V ∗ÃV ) :H = V ∗f(ÃV (H))V :H.
Applying Theorem 1.1 with E = V (H), we get a unitary operator W on V (H)
such that

f(Z∗AZ) ≤ V ∗Wf(Ã)V (H)W
∗V :H.

Equivalently, there exists a unitary operator U on H such that

f(Z∗AZ) ≤UV ∗f(Ã)V (H)(V :H)U∗

=UV ∗
(
f(A) 0

0 f(0)

)
(V :H)U∗

=U{Z∗f(A)Z + (I − |Z|2)1/2f(0)(I − |Z|2)1/2}U∗.
Using f(0) ≤ 0 we obtain the first claim of Theorem 2.2.

Similarly, Theorem 1.1 implies Theorem 2.2(2) (we may assume f(0) = 0) by
considering the partial isometry and the operator on ⊕mH,Z1 0 · · · 0

...
...

...
Zm 0 · · · 0

 ,

A1

. . .
Am

 .

2

We note that Theorem 2.2 strengthens some well-known trace inequalities:
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Corollary 2.3. Let A and {Ai}m
i=1 be Hermitian operators on a finite dimensional

space and let f be a convex function defined on an interval [a, b] containing the
spectra of A and Ai, i = 1, . . .m.

(1) (Brown-Kosaki [2]) If Z is a contraction, 0 ∈ [a, b] and f(0) ≤ 0, then

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z.

(2) (Hansen-Pedersen [8]) If {Zi}m
i=1 is an isometric column, then

Tr f(
∑

i

Z∗i AiZi) ≤ Tr {
∑

i

Z∗i f(Ai)Zi}.

Proof. By a limit argument, we may assume that f is defined on the whole real
line and can be written as f(x) = g(x)− λx for some convex monotone function g
and some scalar λ. We then apply Theorem 2.2 to g. 2

A very special case of Theorem 2.2(2) is: Given two Hermitian operators A, B
and a monotone convex or unitary convex function f on a suitable interval, there
exists a unitary operator U such that

f(
A+B

2
) ≤ U

f(A) + f(B)
2

U∗.

This shows that Theorem 2.2, and consequently Theorem 1.1, can not be valid
for all convex functions:

Example 2.4. Theorems 1.1 and 2.2 are not valid for a simple convex function
such as t −→ |t|. Indeed, it is well-known that the inequality

|A+B| ≤ U(|A|+ |B|)U∗ (5)

is not always true, even for Hermitians A, B. We reproduce the counterexample
[8, p. 1]: Take

A =
(

1 1
1 1

)
, B =

(
0 0
0 −2

)
.

Then, as the two eigenvalues of |A+B| equal to
√

2 while |A|+|B| has an eigenvalue
equal to 2−

√
2, inequality (5) can not hold.

In connection with Example 2.4, a famous result (e.g., [1, p. 74]) states the
existence, for any operators A, B on a finite dimensional space, of unitary operators
U , V such that

|A+B| ≤ U |A|U∗ + V |B|V ∗. (6)

In the case of Hermitians A, B, the above inequality has the following general-
ization:
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Proposition 2.5. Let A, B be hermitian operators on a finite dimensional space
and let f be an even convex function on the real line. Then, there exist unitary
operators U , V such that

f

(
A+B

2

)
≤ Uf(A)U∗ + V f(B)V ∗

2
.

Proof. Since f(X) = f(|X|), inequality (6) and the fact that f is increasing on
[0,∞) give unitary operators U0, V0 such that

f

(
A+B

2

)
≤ f

(
U0|A|U∗0 + V0|B|V ∗0

2

)
.

Since f is monotone convex on [0,∞), Theorem 2.2 completes the proof. 2

Question 2.6. Does Proposition 2.5 hold for all convex functions defined on the
whole real line ?

We close this section by giving a direct and proof of Theorem 2.2, which is a
simple adaptation of the proof of Theorem 1.1.

Proof. We restrict ourselves to the case when f is monotone. We will use the
following observation which follows from the standard Jensen’s inequality: for any
vector u of norm less than or equal to one, since f is convex and f(0) ≤ 0,

f(〈u,Au〉) ≤ 〈u, f(A)u〉.

We begin by proving assertion (1). We have, for each integer k less than or equal
to the dimension of the space, a subspace F of dimension k such that

λk[f(Z∗AZ)] = min
h∈F ; ‖h‖=1

〈h, f(Z∗AZ)h〉

= min
h∈F ; ‖h‖=1

f(〈h, Z∗AZh〉)

= min
h∈F ; ‖h‖=1

f(〈Zh,AZh〉).

where we have used the monotony of f . Then, using the above observation and
the minmax principle,

λk[f(Z∗AZ)] ≤ min
h∈F ; ‖h‖=1

〈Zh, f(A)Zh〉

≤ λk[Z∗f(A)Z].
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We turn to assertion (2). For any integer k less than or equal to the dimension
of the space, we have a subspace F of dimension k such that

λk[f(
∑

Z∗i AiZi)] = min
h∈F ; ‖h‖=1

〈h, f(
∑

Z∗i AiZi)h〉

= min
h∈F ; ‖h‖=1

f(〈h,
∑

Z∗i AiZih〉)

= min
h∈F ; ‖h‖=1

f(
∑

‖Zih‖2(〈Zih,AiZih〉/‖Zih‖2))

≤ min
h∈F ; ‖h‖=1

∑
‖Zih‖2f(〈Zih,AiZih〉/‖Zih‖2) (7)

≤ min
h∈F ; ‖h‖=1

∑
〈Zih, f(Ai)Zih〉) (8)

≤ min
h∈F ; ‖h‖=1

〈h,
∑

Z∗i f(Ai)Zih〉)

≤ λk[
∑

Z∗i f(Ai)Zi]

where we have used in (7) and (8) the convexity of f . 2

3. Inequalities involving expansive operators

In this section we are in the finite dimensional setting.

For two reals a, z, with z > 1, we have f(za) ≥ zf(a) for every convex function
f with f(0) ≤ 0. In view of Theorem 2.2, one might expect the following result:
If Z is an expansive operator (i.e. Z∗Z ≥ I), A is a Hermitian operator and f is
a convex function with f(0) ≤ 0, then there exists a unitary operator U such that

f(Z∗AZ) ≥ UZ∗f(A)ZU∗. (*)

But, as we shall see, this is not always true, even for A ≥ 0 and f nonnegative
with f(0) = 0. Let us first note the following remark:

Remark 3.1. Let f : [0,∞) −→ [0,∞) be a continuous function with f(0) = 0.
If

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z
for every positive operator A and every contraction Z, then f is convex.

To check this, it suffices to consider:

A =
(
x 0
0 y

)
and Z =

(
1/
√

2 0
1/
√

2 0

)
where x, y are arbitrary nonnegative scalars. Indeed, Tr f(Z∗AZ) = f((x+ y)/2)
and TrZ∗f(A)Z = (f(x) + f(y))/2.

We may now state
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Proposition 3.2. Let f : [0,∞) −→ [0,∞) be a continuous one to one function
with f(0) = 0 and f(∞) = ∞. Then, the following conditions are equivalent:

(1) The function g(t) = 1/f(1/t) is convex on [0,∞).

(2) For every positive operator A and every expansive operator Z, there exists
a unitary operator U such that

Z∗f(A)Z ≤ Uf(Z∗AZ)U∗.

Proof. We may assume that A is invertible. If g is convex, (note that g is also
nondecreasing) then Theorem 2.2 entails that

g(Z−1A−1Z−1∗) ≤ U∗Z−1g(A−1)Z−1∗U

for some unitary operator U . Taking the inverses, since t −→ t−1 is operator
decreasing on (0,∞), this is the same as saying

Z∗f(A)Z ≤ Uf(Z∗AZ)U∗.

The converse direction follows, again by taking the inverses, from the above re-
mark. 2

It is not difficult to find convex functions f : [0,∞) −→ [0,∞), with f(0) = 0
which do not satisfy the conditions of Proposition 3.2. So, in general, (*) can not
hold. Let us give an explicit simple example.

Example 3.3. Let f(t) = t+ (t− 1)+ and

A =
(

3/2 0
0 1/2

)
, Z =

(
2 1
1 2

)
.

Then λ2(f(ZAZ)) = 0.728.. < 0.767.. = λ2(Zf(A)Z). So, (*) does not hold.

In spite of the previous example, we have the following positive result:

Lemma 3.4. Let A be a positive operator, let Z be an expansive operator and β
be a nonnegative scalar. Then, there exists a unitary operator U such that

Z∗(A− βI)+Z ≤ U(Z∗AZ − βI)+U∗.

Proof. We will use the following simple fact: If B is a positive operator with
SpB ⊂ {0} ∪ (x,∞), then we also have SpZ∗BZ ⊂ {0} ∪ (x,∞). Indeed Z∗BZ

and B1/2ZZ∗B1/2 (which is greater than B) have the same spectrum.
Let P be the spectral projection of A corresponding to the eigenvalues strictly

greater than β and let Aβ = AP . Since t −→ t+ is nondecreasing, there exists a
unitary operator V such that

(Z∗AZ − βI)+ ≥ V (Z∗AβZ − βI)+V ∗
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Since Z∗(A− βI)+Z = Z∗(Aβ − βI)+Z we may then assume that A = Aβ . Now,
the above simple fact implies

(Z∗AβZ − βI)+ = Z∗AβZ − βQ

where Q = suppZ∗AβZ is the support projection of Z∗AβZ. Hence, it suffices to
show the existence of a unitary operator W such that

Z∗AβZ − βQ ≥WZ∗(Aβ − βP )ZW ∗ = WZ∗AβZW
∗ − βWZ∗PZW ∗.

But, here we can take W = I. Indeed, we have

suppZ∗PZ = Q (∗) and SpZ∗PZ ⊂ {0} ∪ [1,∞) (∗∗)

where (∗∗) follows from the above simple fact and the identity (∗) from the obser-
vation below with X = P and Y = Aβ.

Observation. If X, Y are two positive operators with suppX = suppY , then for
every operator Z we also have suppZ∗XZ = suppZ∗Y Z.

To check this, we establish the corresponding equality for the kernels,

kerZ∗XZ = {h : Zh ∈ kerX1/2} = {h : Zh ∈ kerY 1/2} = kerZ∗Y Z.

2

Theorem 3.5. Let A be a positive operator and Z be an expansive operator.
Assume that f is a continuous function defined on [0, b], b ≥ ‖Z∗AZ‖∞. Then,

(1) If f is concave and f(0) ≥ 0,

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z.

(2) If f is convex and f(0) ≤ 0,

Tr f(Z∗AZ) ≥ TrZ∗f(A)Z.

Example 3.6. Here, contrary to the Brown-Kosaki trace inequalities (Corollary
2.3(1)), the assumption A ≥ 0 is essential. For instance, in the convex case,
consider f(t) = t+,

A =
(

1 0
0 −1

)
, and Z =

(
2 1
1 2

)
.

Then, we have Tr f(Z∗AZ) = 3 < 5 = TrZ∗f(A)Z. Of course, the assumption
A ≥ 0 is also essential in Lemma 3.4.

We turn to the proof of Theorem 3.5.

Proof. Of course, assertions (1) and (2) are equivalent. Let us prove (2). Since
Z is expansive we may assume that f(0) = 0. By a limit argument we may then
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assume that

f(t) = λt+
m∑

i=1

αi(t− βi)+

for a real λ and some nonnegative reals {αi}m
i=1 and {βi}m

i=1. The result then
follows from the linearity of the trace and Lemma 3.4. 2

In order to extend Theorem 3.5(2) to all unitarily invariant norms, i.e. those
norms ‖ · ‖ such that ‖UXV ‖ = ‖X‖ for all operators X and all unitaries U and
V , we need a simple lemma. A family of positive operators {Ai}m

i=1 is said to
be monotone if there exists a positive operator Z and a family of nondecreasing
nonnegative functions {fi}m

i=1 such that fi(Z) = Ai, i = 1, . . .m.

Lemma 3.7. Let {Ai}m
i=1 be a monotone family of positive operators and let

{Ui}m
i=1 be a family of unitary operators. Then, for every unitarily invariant norm

‖ · ‖, we have

‖
∑

i

UiAiU
∗
i ‖ ≤ ‖

∑
i

Ai‖.

Proof. By the Ky Fan dominance principle, it suffices to consider the Ky Fan
k-norms ‖ · ‖(k) [1, pp. 92-3]. There exists a rank k projection E such that

‖
∑

i

UiAiU
∗
i ‖(k) =

∑
i

TrUiAiU
∗
i E ≤

∑
i

‖Ai‖(k) = ‖
∑

i

Ai‖(k)

where the inequality comes from the maximal characterization of the Ky Fan norms
and the last equality from the monotony of the family {Ai}. 2

Proposition 3.8. Let A be a positive operator and Z be an expansive operator.
Assume that f is a nonnegative convex function defined on [0, b], b ≥ ‖Z∗AZ‖∞.
Assume also that f(0) = 0. Then, for every unitarily invariant norm ‖ · ‖,

‖f(Z∗AZ)‖ ≥ ‖Z∗f(A)Z‖.

Proof. It suffices to consider the case when

f(t) = λt+
m∑

i=1

αi(t− βi)+

for some nonnegative reals λ, {αi}m
i=1 and {βi}m

i=1. By Lemma 3.4, we have

Z∗f(A)Z = λZ∗AZ +
∑

i

Z∗αi(A− βiI)+Z

≤ λZ∗AZ +
∑

i

Uiαi(Z∗AZ − βiI)+U∗i
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for some unitary operators {Ui}m
i=1. Since λZ∗AZ and {αi(Z∗AZ−βiI)+}m

i=1 form
a monotone family, Lemma 3.7 completes the proof. 2

Theorem 3.9. Let A be a positive operator, let Z be an expansive operator and
let f : [0,∞) −→ [0,∞) be a nondecreasing concave function. Then,

‖f(Z∗AZ)‖∞ ≤ ‖Z∗f(A)Z‖∞.

Proof. Since Z is expansive we may assume f(0) = 0. By a continuity argument
we may assume that f is onto. Let g be the reciprocal function. Note that g is
convex and g(0) = 0. By Proposition 3.8,

‖g(Z∗AZ)‖∞ ≥ ‖Z∗g(A)Z‖∞.
Hence

f(‖g(Z∗AZ)‖∞) ≥ f(‖Z∗g(A)Z‖∞).
Equivalently,

‖Z∗AZ‖∞ ≥ ‖f(Z∗g(A)Z)‖∞,
so, letting B = g(A),

‖Z∗f(B)Z‖∞ ≥ ‖f(Z∗BZ)‖∞,
proving the result because A −→ g(A) is onto. 2

Our next result is a straightforward application of Theorem 2.2.

Corollary 3.10. Let A be a positive operator and Z be an expansive operator.
Assume that f is a nonnegative function defined on [0, b], b ≥ ‖Z∗AZ‖∞. Then:

(1) If f is concave nondecreasing,

det f(Z∗AZ) ≤ detZ∗f(A)Z.

(2) If f is convex increasing and f(0) = 0,

det f(Z∗AZ) ≥ detZ∗f(A)Z.

Proof. For instance, consider the concave case. By Theorem 2.2, there exists
a unitary operator U such that Z∗−1f(Z∗AZ)Z−1 ≤ Uf(A)U∗; hence the result
follows. 2

We note the following fact about operator convex functions:

Proposition 3.11. Let f : [0,∞) −→ [0,∞) be a one to one continuous function
with f(0) = 0 and f(∞) = ∞. The following statements are equivalent:

(i) f(t) is operator convex.

(ii) 1/f(1/t) is operator convex.
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Proof. Since the map f(t) −→ Ψ(f)(t) = 1/f(1/t) is an involution on the set of
all one to one continuous functions f on [0,∞) with f(0) = 0 and f(∞) = ∞, it
suffices to check that (i) ⇒ (ii). But, by the Hansen-Pedersen inequality [7], (i) is
equivalent to

f(Z∗AZ) ≤ Z∗f(A)Z (9)

for all A ≥ 0 and all contractions Z. By a limit argument, it suffices to require (9)
when both A and Z are invertible. Then, as t −→ t−1 is operator decreasing, (9)
can be written

f−1(Z∗AZ) ≥ Z−1f−1(A)Z∗−1,

or

f−1(A) ≤ Zf−1(Z∗AZ)Z∗,

but this is the same as saying that (9) holds for Ψ(f), therefore Ψ(f) is operator
convex. 2

We wish to sketch another proof of Proposition 3.11. By a result of Hansen and
Pedersen [6], for a continuous function f on [0,∞), the following conditions are
equivalent:

(i) f(0) ≤ 0 and f is operator convex.

(ii) t −→ f(t)/t is operator monotone on (0,∞).

Using the operator monotony of t −→ 1/t on (0,∞), we note that if f(t) satisfies
to (ii), then so does 1/f(1/t). This proves Proposition 3.11.

Remark 3.12. Theorem 3.9 remains true for infinte dimensional spaces. Indeed,
Lemma 3.7 and Proposition 3.8 with the operator norm are valid in the infinite di-
mensional setting. Does Theorem 3.5 extend to all nonneggative concave functions
on [0, b] and/or all unitarily invariant norms ?

4. Unitarily invariant norms and orthogonal decompositions

This section deals with unitarily invariant norms on the space of operators on a
finite dimensional space, or on operator ideals on an infinite dimensional, separable
space (see Simon’s book [10] for this notion − Simon uses the terminology of
symmetric norms).

Let p ≥ 1 and let ‖ · ‖∧ be a unitarily invariant norm affiliated to another one
‖ · ‖ via

‖X‖∧ = ‖|X|p‖1/p

for all operators X. We then say that ‖ · ‖∧ is a p-induced norm and that its dual
norm ‖ · ‖∨ is a dual p-induced norm. We note that for p = 2, p-induced norms
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are the quadratic norms or Q-norms ‖ · ‖Q [1, p. 95]:

‖X‖∧ = ‖X∗X‖1/2.

for all operators X. Clearly, if ‖ · ‖∧ is p-induced, it is also r-induced, 1 < r < p.
The Schatten p-norms are p-induced norms affiliated to the trace norm. For p ≥ 2,
the Schatten p-norms are special cases of quadratic norms.

Let {Ei}k
i=1 be a total sequence of mutually orthogonal projections on a space

H, that is

H =
k⊕

i=1

Ei(H).

Given an operator X on H we wish to compare X with the XEi’s and with the
EiXEi’s. In other words, we wish to compare X with its restrictions and with its
compressions on the subspaces Ei(H), 1 ≤ i ≤ k. We have the following result:

Proposition 4.1. Let ‖ · ‖∧ be a p-induced norm, 1 ≤ p ≤ 2, and let ‖ · ‖∨ be
its dual norm. Then, for every operator X and every total sequence of projections
{Ei}k

i=1, we have

‖X‖∧ ≤
(∑

i

‖XEi‖p
∧
)1/p

and

‖X‖∨ ≥
(∑

i

‖XEi‖q
∨
)1/q

with 1/q = 1− 1/p.

Proof. If ‖ · ‖∧ is affiliated to ‖ · ‖, we have

‖X‖p
∧ = ‖|X|p‖ = ‖|X|p/2(

∑
i

Ei)|X|p/2‖ ≤
∑

i

‖|X|p/2Ei|X|p/2‖ =
∑

i

‖Ei|X|pEi‖.

We then note, by Theorem 1.1 (or by [6]) and the concavity of t −→ tp/2, that

‖Ei|X|pEi‖ ≤ ‖(Ei|X|2Ei)p/2‖ = ‖XEi‖p
∧.

To prove the case ‖ · ‖∨ we proceed by duality. For i = 1, . . . , k we consider the
spaces of operators

Ci = {X : X = XEi }.
Then, endowed with the norm ‖ · ‖∧, Ci becomes a normed space whose dual is

Ri = {Y : Y = EiY },

the duality being implemented by the trace:

〈X,Y 〉i = TrXY = TrXEiY.
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Now, observe that the lp-sum C =
⊕

iCi is canonically isomorphic to the space of
all operators X on H equipped with the norm

‖X‖[∧] =
(∑

i

‖XEi‖p
∧
)1/p

.

The dual of C is then the lq-sum R =
⊕

iRi which is canonically isomorphic to
the space of all operators Y on H equipped with the norm

‖Y ‖[∨] =
(∑

i

‖EiY ‖q
∨
)1/q

,

and the duality 〈·, ·〉 between C and R is implemented by the trace since

〈X,Y 〉 =
∑

i

〈XEi, EiY 〉i =
∑

i

TrXEiY = TrXY.

Consequently, we have for each operator Y on H an operator X on H such that

‖X‖[∧] = 1 and TrXY = ‖Y ‖[∨] .

Hence,

TrXY = ‖X‖[∧]‖Y ‖[∨]

= (
∑

i

‖XEi‖p
∧
)1/p(

∑
i

‖EiY ‖q
∨
)1/q

≥ ‖X‖∧(
∑

i

‖EiY ‖q
∨
)1/q

. (*)

Besides,

TrXY ≤ ‖X‖∧‖Y ‖∨ . (**)

Combining (*) with (**),

‖Y ‖∨ ≥ (
∑

i

‖EiY ‖q
∨
)1/q

for every operator Y , which is equivalent to the second assertion of the Proposition.
2

Let us consider some special cases and consequences of the previous result. We
have

‖X‖Q ≤
( ∑

i

‖XEi‖2
Q

)1/2 (10)

for every operator X and all quadratic norms ‖ · ‖Q. We also have

‖X‖P ≥
( ∑

i

‖XEi‖2
P

)1/2 (11)

for every operator X and all dual quadratic norms ‖ · ‖P , a class of unitarily
invariant norms containing the Schatten p-norms ‖ · ‖p, 1 ≤ p ≤ 2.



27

Applying (10) to Schatten q-norms, 2 ≤ q ≤ ∞, and using Holder inequality we
obtain

‖X‖q ≤ k1/2−1/q
( ∑

i

‖XEi‖q
q

)1/q

Similarly, (11) implies

‖X‖p ≥ k1/p−1/2
( ∑

i

‖XEi‖p
p

)1/p

for Schatten p-norms, 1 ≤ p ≤ 2. Proposition 4.1 also entails the following results
essentially due to Gohberg and Markus [4]:( ∑

i

‖XEi‖q
q

)1/q ≤ ‖X‖q , 2 ≤ q ≤ ∞,

and, ( ∑
i

‖XEi‖p
p

)1/p ≥ ‖X‖p , 1 ≤ p ≤ 2.

Assuming thatX acts on an n-dimensional space and given a matrix representation
(xi,j) of X we then derive the following wellknown inequalities [5] (see also [11, p.
50]):

‖X‖p ≤
( ∑

i,j

|xi,j |p
)1/p

, 1 ≤ p ≤ 2

and
‖X‖q ≥

( ∑
i,j

|xi,j |q
)1/q

, 2 ≤ q ≤ ∞.

Given a total sequence of projections {Ei}k
i=1 we say that the associated pinching

A −→ P(A) =
∑

i

EiAEi.

is a k-pinching.The pinching inequality states that pinchings are reducing for in-
variant norms. In the converse direction we note the following simple fact:

Proposition 4.2. Let A be a positive operator and let P be a k-pinching. Then,

A ≤ kP(A)

Proof. We must show that, for all h ∈ H,

〈h,Ah〉 ≤ k
∑

i

〈h,EiAih〉

or, equivalently, that
‖A1/2h‖2 ≤ k

∑
i

‖A1/2Eih‖2. (12)
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But, we have
‖A1/2h‖ ≤

∑
i

‖A1/2Eih‖,

and, by convexity of t −→ t2,(∑
i

‖A1/2Eih‖
k

)2

≤
∑

i ‖A1/2Eih‖2

k

so that
1
k2
‖A1/2h‖2 ≤ 1

k

∑
i

‖A1/2Eih‖2

hence (12) holds. 2

5. Addenda

5.1 Comparison of f(A+B) and f(A) + f(B)

There exist several inequalities involving f(A+B) and f(A)+f(B) where A, B
are Hermitians and f is a function with special properties. We wish to state and
prove one of the most basic results in this direction which can be derived from a
more general result due to Rotfel’d (see [1, p. 97]). The simple proof given here is
inspired by that of Theorem 3.5.

Proposition 5.1. (Rotfel’d) Let A, B be positive operators.

(1) If f is a convex nonnegative function on [0,∞) with f(0) ≤ 0, then

Tr f(A+B) ≥ Tr f(A) + Tr f(B).

(2) If f is a concave nonnegative function on [0,∞), then

Tr g(A+B) ≤ Tr g(A) + Tr g(B).

Proof. By limit arguments, we may assume that we are in the finite dimensional
setting. Since, on any compact interval [a, b], a > 0, we may write g(x) = λx −
f(x) + µ for some scalar λ, µ ≥ 0 and some convex function f with f(0) = 0, it
suffices to consider the convex case. Clearly we may assume f(0) = 0. Then, f can
be uniformly approximated, on any compact interval, by a positive combination
of functions fα(x) = max{0, x− α} = (x− α)+, α > 0.

Therefore, still using the notation S+ for the positive part of the Hermitian
operator S, we need only to show that

Tr (A+B − α)+ ≥ Tr (A− α)+ + Tr (B − α)+.

To this end, consider an orthonormal basis {ei}n
i=1 of eigenvectors for A+B. We

note that:
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(a) If 〈ei, (A + B − α)+ei〉 = 0, then 〈ei, (A + B − α)+ei〉 ≤ α so that we also
have 〈ei, (A− α)+ei〉 = 〈ei, (B − α)+ei〉 = 0.

(b) If 〈ei, (A+B − α)+ei〉 > 0, then we may write

〈ei, (A+B − α)+ei〉 = 〈ei, Aei〉 − θα+ 〈ei, Bei〉 − (1− θ)α

for some 0 ≤ θ ≤ 1 chosen in such a way that 〈ei, Aei〉 − θα ≥ 0 and 〈ei, Bei〉 −
(1− θ)α ≥ 0. Hence, we have

〈ei, Aei〉 − θα = 〈ei, (A− θα)+ei〉 ≥ 〈ei, (A− α)+ei〉

and

〈ei, Bei〉 − (1− θ)α = 〈ei, (B − (1− θ)α)+ei〉 ≥ 〈ei, (B − α)+ei〉

by using the simple fact that for two commuting Hermitian operators S, T , S ≤
T ⇒ S+ ≤ T+.

From (a) and (b) we derive the desired trace inequality by summing over i =
1, . . . n. 2

5.2 Extension to the von Neumann and C∗-algebras setting

We do not wish to discuss the possible extensions of our results to the setting of
operator algebras. Nevertheless we mention that in [8], versions of trace inequali-
ties of Brown-Kosaki and Hansen-Pedersen are established in the framework of a
C∗-algebra endowed with a densely defined, lower semicontinuous trace. We also
note that the paper by Nelson [9] and that one by Fack and Kosaki [4] form a
good presentation of the theory of noncommutative integration in semifinite von
Neumann algebras. In [4], Lemma 4.5 and Proposition 4.6, in the von Neumann
algebra setting, state results which are very special cases of Theorem 2.1.

5.3 Proof of fact (b) occuring in the proof of Theorem 1.1.

Recall that we still have to check the following

Lemma 5.2. Fix a real r > 0 and let X and Y be two Hermitian operators such
that λk(X) ≤ λk(Y ) and λ−k(X) ≤ λ−k(Y ) for all k = 1, . . . . Then there exists a
unitary operator U such that

X ≤ UY U∗ + rI.

Proof. Let E(λ) be the strongly right continuous spectral measure of X. Let
F (λ) be the strongly left continuous spectral measure of X. Let a be the lower
bound of the essential spectrum of X and b be its upper bound. Set

X− = XE(a) et X+ = X(I−F (b))
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where the projections are identified to the corresponding subspaces. Thus, there
is a direct sum

H = H−
⊕

H0

⊕
H+

such that
X = X− ⊕X0 ⊕X+.

Similarly, there is another direct sum

H = G−
⊕

G0

⊕
G+

for which
Y = Y− ⊕ Y0 ⊕ Y+.

Let us consider the case when

dimH− = dimH0 = dimH+ = dimG− = dimG0 = dimG+,= ∞,

the other cases being similar. By assumptions on the λ+’s and λ−’s of X and Y ,
there exist onto isometries

V : H0

⊕
H+ −→ G+

and
W : H− −→ G−

⊕
G0

such that
V (X0 ⊕X+)V −1 ≤ Y+ + r

and
W (X−)W−1 ≤ (Y ⊕ Y0) + r;

Hence, we can take U = W ⊕ V . Let us, for instance, check the existence of V .
We may write

Y+ = diag(λk(Y ))

= diag1≤k≤p(λk(Y ))⊕ diagk∈J(λk(Y ))⊕ diagk∈L(λk(Y ))

wherein J ∪L = {p+ 1, . . . } and |J | = |L| = ∞. Choose p large enough to ensure
that λp(Y ) ≤ limk→∞ λk(Y ) + r. We then have one to one isometric operators V1,
V2 such that(

diag1≤k≤p(λk(Y ))⊕ diagk∈J(λk(Y ))
)

+ rI ≥ V1X+V
−1
1

and
diagk∈L(λk(Y )) ≥ V2X0V

−1
2 .

Hence, V = V1 ⊕ V2 does the job. 2
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Chapter 2

Symmetric norms and reverse inequalities to

Davis and Hansen-Pedersen characterizations

of operator convexity

Introduction

Capital letters A, B . . . Z mean n-by-n complex matrices, or operators on a
finite dimensional Hilbert space H; I stands for the identity. When A is positive
semidefinite, resp. positive definite, we write A ≥ 0, resp. A > 0. Let ‖ · ‖ be a
general symmetric (or unitarily invariant) norm, i.e. ‖UAV ‖ = ‖A‖ for all A and
all unitaries U , V . If A and B are such that the product AB is normal, then a
classical inequality claims [1, p. 253]

‖AB‖ ≤ ‖BA‖ (1)

Section 1 presents a generalization of (1) when AB ≥ 0. Then, for Z > 0,

‖ZAB‖ ≤ a+ b

2
√
ab
‖BZA‖ (2)

where a, b are the extremal eigenvalues of Z. Several sharp inequalities are derived.
For instance, if 0 ≤ X ≤ I, then

XZX ≤ (a+ b)2

4ab
Z.

Another example concerns compressions ZE of Z onto subspaces E ⊂ H,

(ZE)−1 ≥ 4ab
(a+ b)2

(Z−1)E . (3)

This Kantorovich type inequality is due to Mond-Pecaric. In Section 2 we ex-
tend (3) to all operator convex functions f : [0,∞) −→ [0,∞). Such inequalities
are reverse inequalities to Davis’ characterization of operator convexity via com-
pressions. Equivalently, we show that, given any isometric column of operators
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{Ai}m
i=1, i.e.

∑
A∗iAi = I, we have

f(
∑

A∗iZiAi) ≥
4ab

(a+ b)2
∑

A∗i f(Zi)Ai.

This is a reverse inequality to the Hansen-Pedersen inequality.

1. Norms inequalities

Lemma 1.1. Let Z > 0 with extremal eigenvalues a and b. Then, for every norm
one vector h,

‖Zh‖ ≤ a+ b

2
√
ab
〈h, Zh〉.

Proof. Let E be any subspace of H and let a′ and b′ be the extremal eigenvalues of
ZE . Then a ≥ a′ ≥ b′ ≥ b and, setting t =

√
a/b, t′ =

√
a′/b′, we have t ≥ t′ ≥ 1.

Since t −→ t+ 1/t increases on [1,∞) and

a+ b

2
√
ab

=
1
2

(
t+

1
t

)
,

a′ + b′

2
√
a′b′

=
1
2

(
t′ +

1
t′

)
,

we infer
a+ b

2
√
ab

≥ a′ + b′

2
√
a′b′

.

Therefore, it suffices to prove the lemmma for ZE with E = span{h, Zh}. Hence,
we may assume dimH = 2, Z = ae1 ⊗ e1 + be2 ⊗ e2 and h = xe1 + (

√
1− x2)e2.

Setting x2 = y we have

||Zh||
〈h, Zh〉

=

√
a2y + b2(1− y)
ay + b(1− y)

.

The righ hand side attains its maximum on [0, 1] at y = b/(a+ b), and then

||Zh||
〈h, Zh〉

=
a+ b

2
√
ab

proving the lemma. 2

Theorem 1.2. Let A, B such that AB ≥ 0. Let Z > 0 with extremal eigenvalues
a and b. Then, for every symmetric norm, the following sharp inequality holds

‖ZAB‖ ≤ a+ b

2
√
ab
‖BZA‖.

Proof. For the sharpness see Remark 1.9 below.
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It suffices to consider the Fan k-norms ‖ · ‖(k) [1, p. 93]. Fix k and let ‖ · ‖1

denote the trace-norm. There exist two rank k projections E and F such that

‖ZAB‖(k) = ‖ZABE‖1

= ‖Z(AB)1/2F (AB)1/2E‖1

≤ ‖Z(AB)1/2F (AB)1/2‖1.

Consider the canonical decomposition

(AB)1/2F (AB)1/2 =
k∑

j=1

cj hj ⊗ hj

in which {hj}k
j=1 is an orthonormal system and {hj ⊗ hj}k

j=1 are the associated
rank one projections. We have, using the trianle inequality and then the above
lemma,

‖Z(AB)1/2F (AB)1/2‖1 ≤
k∑

j=1

cj‖Zhj ⊗ hj‖1

=
k∑

j=1

cj‖Zhj‖

≤ a+ b

2
√
ab

k∑
j=1

cj〈hj , Zhj〉

=
a+ b

2
√
ab

Tr (AB)1/2F (AB)1/2Z.

Next, there exists a rank k projection G such that

a+ b

2
√
ab

Tr (AB)1/2F (AB)1/2Z =
a+ b

2
√
ab

Tr (AB)1/2F (AB)1/2ZG

≤ a+ b

2
√
ab

TrGZ1/2ABZ1/2G

≤ a+ b

2
√
ab
‖Z1/2ABZ1/2‖(k)

≤ a+ b

2
√
ab
‖BZA‖(k)

where at the last step we used the basic inequality (1). 2

One may ask wether our theorem can be improved to singular values inequalities.
This is not possible as it is shown by the next example:
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Take

A =
(

1 0
0 4

)
, B =

(
4 0
0 1

)
, Z =

(
5 3
3 5

)
.

Then the largest and smallest eigenvalues of Z are a = 8 and b = 2, so

a+ b

2
√
ab

= 1.25.

Besides, µ2(ZAB) = 8 and µ2(AZB) = 4.604, and since 4.604× 1.25 = 5.755 < 8,
Theorem 1.1 can not be extended to singular values inequalities.

We denote by Sing(X) the sequence of the singular values of X, arranged in
decreasing order and counted with their multiplicities. Similarily, when X has
only real eigenvalues, Eig(X) stands for the sequence ofX’s eigenvalues. Given two
sequences of real numbers {aj}n

j=1 and {bj}n
j=1, we use the notation {aj}n

j=1 ≺w

{bj}n
j=1 for weak-majorisation, that is

∑k
j=1 aj ≤

∑k
j=1 bj , k = 1, . . . .

A straightforward application of Theorem 1.2 is:

Corollary 1.3. Let A ≥ 0 and let Z > 0 with extremal eigenvalues a and b. Then,

Sing(AZ) ≺w
a+ b

2
√
ab

Eig(AZ).

Proof. For each Fan norms, replace A and B by A1/2 in Theorem 1.2. 2

Special cases of the above corollary are:

Corollary 1.4. Let A ≥ 0 and let Z > 0 with extremal eigenvalues a and b. Then,

‖AZ‖∞ ≤ a+ b

2
√
ab
ρ(AZ)

and

‖AZ‖1 ≤
a+ b

2
√
ab

TrAZ.

Here, ‖·‖∞ stands for the standard operator norm and ρ(·) for the spectral radius.

From the preceding result, one may derive an interesting operator inequality:

Corollary 1.5. Let 0 ≤ A ≤ I and let Z > 0 with extremal eigenvalues a and b.
Then,

AZA ≤ (a+ b)2

4ab
Z.
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Proof. The claim is equivalent to the operator nom inequalities

‖Z−1/2AZAZ−1/2‖∞ ≤ (a+ b)2

4ab
or

‖Z−1/2AZ1/2‖∞ ≤ a+ b

2
√
ab
.

But the previous corollary entails

‖Z−1/2AZ1/2‖∞ = ‖Z−1/2AZ−1/2Z‖∞

≤ a+ b

2
√
ab
ρ(Z−1/2AZ−1/2Z)

=
a+ b

2
√
ab
‖A‖∞

≤ a+ b

2
√
ab
,

hence, the result holds. 2

A special case of Corollary 1.5 gives a comparison bewtween Z and the com-
pression EZE, for an arbitrary projection E.

Corollary 1.6. Let Z > 0 with extremal eigenvalues a and b and let E be any
projection. Then,

EZE ≤ (a+ b)2

4ab
Z.

We may then derive a classical inequality:

Corollary 1.7. (Kantorovich) Let Z > 0 with extremal eigenvalues a and b and
let h be any norm one vector. Then,

〈h, Zh〉〈h, Z−1h〉 ≤ (a+ b)2

4ab
.

Proof. Rephrase Corollary 1.6 as

‖Z−1/2EZEZ−1/2‖∞ ≤ (a+ b)2

4ab
and take E = h⊗ h. 2

A classical inequality in Matrix theory, for positive definite matrices, claims that
”The inverse of a principal submatrix is less than or equal to the corresponding
submatrix of the inverse” [6, p. 474]. In terms of compressions, this means

(ZE)−1 ≤ (Z−1)E (4)
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for every subspace E and every Z > 0. Corollary 1.6 entails a reverse inequality,
first proved by B. Mond and J.E. Pecaric [7]:

Corollary 1.8. (Mond-Pecaric) Let Z > 0 with extremal eigenvalues a and b.
Then, for every subspace E,

(ZE)−1 ≥ 4ab
(a+ b)2

(Z−1)E .

Note that Corollary 1.8 implies Corollary 1.7.

Proof. Let E be the projection onto E . By Corollary 1.6, for every r > 0, there
exists x > 0 such that

EZE + xE⊥ ≤ (a+ b)2

4ab
(Z + rI).

Since t −→ −1/t is operator monotone we deduce

(EZE + xE⊥)−1 ≥ 4ab
(a+ b)2

(Z + rI)−1

so that

(ZE)−1 ≥ 4ab
(a+ b)2

{(Z + rI)−1}E

and the result follows by letting r −→ 0. 2

Remark 1.9. All the previous inequalities are sharp. Indeed, let h be a norm one
vector for which equality occurs in Lemma 1.1. Then, replacing A, B, E by h⊗ h
and E by span{h} in the above statements, yields equality cases.

Remark 1.10. As for a standard proof of (1) [1, p. 253], it is tempting to first
prove Theorem 1.2 for the operator norm and then to use an antisymmetric tensor
product argument to derive the general case. Such an approach seems impossible.
Indeed if ak and bk are the extremal eigenvalues of ∧k(Z), then the relation

(ak + bk)2

4akbk
≤

(
(a+ b)2

4ab

)k

is not true in general.

The next result states a companion inequality to Corollary 1.8.

Proposition 1.11. Let Z > 0 with extremal eigenvalues a and b and let 1 ≤ p ≤ 2.
Then, for every subspace E,

(ZE)p ≥ 4ab
(a+ b)2

(Zp)E .
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Proof. Let E be the projection onto E . For any norm one vector h ∈ E , Lemma
1.1 implies

〈h, (Zp)Eh〉 = 〈h,EZpEh〉

= ‖Zp/2h‖2

≤ (a+ b)2

4ab
〈h, Zp/2h〉2.

Then, using the concavity of t −→ tp/2 and next the convexity of t −→ tp, we
deduce

〈h, (Zp)Eh〉 ≤
(a+ b)2

4ab
〈h, Zh〉p

=
(a+ b)2

4ab
〈h,EZEh〉p

≤ (a+ b)2

4ab
〈h, (ZE)ph〉.

and the proof is complete. 2

2. Operator convexity

Davis’ characterization of operator convexity [2] claims: f is operator convex
on [a, b] if and only if for every subspace E and every Hermitian Z with spectrum
in [a, b],

f(ZE) ≤ (f(Z))E (D)

Since t −→ tp, 1 ≤ p ≤ 2 and t −→ 1/t are operator convex on (0,∞), both Propo-
sition 1.11 and Corollary 1.8 are reverse inequalities to Davis’ characterization of
operator convexity.

Proposition 1.11 is a special case of the next theorem.

Theorem 2.1. Let f : [0,∞) −→ [0,∞) be operator convex and let Z > 0 with
extremal eigenvalues a and b. Then, for every subspace E,

f(ZE) ≥
4ab

(a+ b)2
(f(Z))E .

Proof. We have the integral representation [xx]

f(t) = α+ βt+ γt2 +
∫ ∞

0

λt2

λ+ t
dµ(λ),
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where α, β, γ are nonnegative scalars and µ is a positive finite measure. Therefore,
it suffices to prove the result for

α+ βt+ γt2

and

fλ(t) =
λt2

λ+ t
.

The quadratic case is a staightforward application of Proposition 1.11. To prove
the fλ case, note that fλ is convex meanwhile f1/2

λ is convave and then proceed as
in the proof of Proposition 1.11. 2

Davis’ characterization (D) of operator convexity is equivalent to the following
result of Hansen-Pedersen [5].

Recall that a family {Ai}m
i=1 form an isometric column when

∑
A∗iAi = I.

Theorem 2.2. (Hansen-Pedersen) Let {Zi}m
i=1 be Hermitians with spectrum

lying in [a, b] and let f be operator convex [a, b]. Then, for every isometric column
{Ai}m

i=1,

f(
∑

A∗iZiAi) ≤
∑

A∗i f(Zi)Ai. (J)

(J) is the operator version of Jensen’s inequality: operator convex combinations
and operator convex functions replace the ordinary ones. As a sthraightforward
consequence, we have the following contractive version of (J):

Corollary 2.3. (Hansen-Pedersen) Let {Zi}m
i=1 be Hermitians with spectrum

lying in [a, b] and let f be operator convex [a, b] with 0 ∈ [a, b] and f(0) ≤ 0. Then,
for every contraction A,

f(A∗ZA) ≤ A∗f(Z)A. (C)

Exactly as Theorem 2.1 is a reverse inequality to (D), the following results is a
reverse inequality to (J).

Theorem 2.4. Let f : [0,∞) −→ [0,∞) be operator convex and let {Zi}m
i=1 be

positive with spectrum lying in [a, b], a > 0. Then, for every isometric column
{Ai}m

i=1,

f(
∑

A∗iZiAi) ≥
4ab

(a+ b)2
∑

A∗i f(Zi)Ai.
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Let us consider a very special case: For every A,B > 0 with spectrum lying on
[r, 2r], r > 0, and for every operator convex f : [0,∞) −→ [0,∞), we have

8
9
· f(A) + f(B)

2
≤ f

(
A+B

2

)
≤ f(A) + f(B)

2
.

The left inequality gives a negative answer to an approximation problem: Let f
be an operator convex function on [a, b], 0¡a¡b, and let ε > 0. Then, in general,
there is no operator convex function g on [0,∞) such that

max
x∈[a,b]

|f(x)− g(x)| < ε.

From Theorem 2.4 we obtain a reverse inequality to (C):

Corollary 2.5. Let f : [0,∞) −→ [0,∞) be operator convex and let Z > 0 with
extremal eigenvalues a and b. Then, for every contraction A,

f(A∗ZA) ≥ 4ab
(a+ b)2

A∗f(Z)A.

We turn to the proof of Theorem 2.4 and Corollary 2.5.

Proof. Consider the following operators acting on ⊕mH,

V =

A1 0 · · · 0
...

...
...

Am 0 · · · 0

 , Z̃ =

Z1

. . .
Zm


and note that V is a partial isometry. Denoting by H the first summand of the
direct sum ⊕mH and by X :H the restriction of X to H, we observe that

f(
∑

A∗iZiAi) = f(V ∗Z̃V ) :H = V ∗f(Z̃V (H))V :H.

Applying Theorem 2.1 with E = V (H), we get

f(
∑

A∗iZiAi) ≥
4ab

(a+ b)2
V ∗f(Z̃)V (H)V :H

=
4ab

(a+ b)2
∑

A∗i f(Zi)Ai.

and the proof of Theorem 2.4 is complete. To obtain its corollary, take an operator
B such that A∗A+B∗B = I. Then, note that, using f(0) ≥ 0,

f(A∗ZA) = f(A∗ZA+B∗0B) ≥ 4ab
(a+ b)2

{A∗f(Z)A+B∗f(0)B}

≥ 4ab
(a+ b)2

A∗f(Z)A

by application of Theorem 2.4. 2
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Remark 2.6. Corollary 1.8 and Proposition 1.11 for p = 2 have been obtained
by Mond-Pecaric in the more general form of Theorem 2.4. Note that Proposition
1.11 with p = 2 immediately implies Lemma 1.1; hence, we have no pretention of
originality in establishing this basic lemma.

Remark 2.7. Hansen-Pedersen first prove the contractive version (C) in [4] and
then, some twenty years later [5], prove the more general form (Jo). When proving
(C) they noted a technical difficulty to derive (Jo) when 0 /∈ [a, b]]. In fact, this
difficulty can be easily overcomed: Note that if (Jo) is valid for every operator
convex functions on an interval [a, b], then (Jo) is also valid on every interval of
the type [a+ r, b+ r].

Remark 2.8. (D), (Jo), (C) are equivalent statements. Similarly, Theorems 2.1,
2.4 and Corollary 2.5 are equivalent.

Clearly, the previous results can be suitably restated for operators acting on
infinite dimensional spaces.

Inspired by the seminal paper [3], we note that Corollary 2.5 can be stated in a
still more general framework. Let B(H) denote the algebra of all (bounded) linear
operators on a separable Hilbert space H.

Corollary 2.9. Let Φ : Z −→ B(H) be a positive, linear contraction on a C∗-
algebra Z. Let Z ∈ Z, Z > 0 with Sp(Z) ⊂ [a, b], a > 0. Then, for every operator
convex function f : [0,∞) −→ [0,∞),

f ◦ Φ(Z) ≥ 4ab
(a+ b)2

Φ ◦ f(Z).

Proof. Restricting Φ to the commutative C∗-subalgebra generated by Z, one
may suppose Φ completely positive. By Stinepring’s dilation Theorem [8], there
exist a larger Hilbert space F ⊃ H, a linear contraction A : H −→ F and a
∗-homomorphism π : Z −→ B(F) such that Φ(·) = A∗(π(·))FA. Therefore

f ◦ Φ(Z) = f(A∗π(Z)A)

≥ 4ab
(a+ b)2

A∗f(π(Z))A

=
4ab

(a+ b)2
A∗π(f(Z))A

=
4ab

(a+ b)2
Φ ◦ f(Z)

where at the second step we apply Corollary 2.5 which can be extended to this
situation by inspection of the proof of Theorem 2.4 and Corollary 2.5. 2
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Chapter 3

Commuting dilations and

Total dilations

Introduction

The letter H denotes a separable Hilbert space. H can be real or complex, finite
or infinite dimensional. An operator is a bounded linear operator. An operator Z
on H⊕H or ⊕kH is a dilation of the operator A on H if

Z =
(
A ?
? ?

)
, or Z =


A ? . . .

? ?
. . .

...
. . . . . .

 .

How to dilate an operator or a family of operators into operators with special
properties is the purpose of Dilation theory. In the above dilations there is a lack
of symmetry between the summands in H ⊕ H or ⊕kH. We then introduce the
following natural notion: An operator Z on ⊕kH is said to be a total dilation of
the operator A on H if the operator diagonal of Z consists of a repetition of A,

Z =


A ? . . .

? A
. . .

...
. . . . . .

 .

We express this fact by writing

diag(Z) = ⊕kA.

Let {Aj}n
j=0 be a family of operators on H and let {Zj}n

j=0 be a family of operators
on ⊕kH. We say that {Zj}n

j=0 totally dilates {Aj}n
j=0 if we can write

Z0 =


A0 ? . . .

? A0
. . .

...
. . . . . .

 , . . . Zn =


An ? . . .

? An
. . .

...
. . . . . .

 .
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In the first Section we give several simple examples of total dilation and we show
that any operator A on a space of even finite dimension can be written as

A =
(
B ?
? B

)
.

for some suitable decomposition of the space.
Section 2 is concerned with the relationship between operator inequalities and

(total) dilations. In particular we show that, for positive invertible operators A
and B, the condition A ≤ B−1 is equivalent to the existence of a positive invertible
operator Z such that

Z =
(
A ?
? A

)
and Z−1 =

(
B ?
? B

)
.

The third section is devoted to other commuting dilations and to open problems.

1. Total dilations: some examples

We give some examples of total dilations:

Example 1.1. A 2n × 2n antisymmetric real matrix A totally dilates the n-
dimensional zero operator: with respect to a suitable decomposition

A =
(

0 −BT

B 0

)
for some symmetric real n-by-n matrix B.

Example 1.2. Any operator A on H can be totally dilated into a normal operator
N on H⊕H by setting

N =
(
A A∗

A∗ A

)
.

Example 1.3. Denote by τ(A) the normalized trace (1/n)TrA of an operator A
on an n-dimensional space. Then the scalar τ(A) can be totally dilated into A.
For an operator acting on a real space and for a hermitian operator the proof is
easy. When A is a general operator on a complex space, this result, called Parker’s
theorem, follows from the Hausdorff-Toeplitz Theorem (see [4, p. 20]).

Example 1.4. Any contraction A on a finite dimensional space H can be totally
dilated into a unitary operator U on ⊕kH for any integer k. Indeed by considering
the polar decomposition A = V |A|, it suffices to construct a total unitary dilation
W of |A| and then to take U = (⊕kV ) ·W . The construction of a total unitary
dilation on ⊕kH for a positive contraction X on H is easy: Let {xj}n

j=1 be the
eigenvalues of X repeated according to their multiplicities and let {Uj}n

j=1 be
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k × k unitary matrices such that τ(Uj) = xj . Example 1.3 and an obvious matrix
manipulation show that ⊕n

j=1Uj totally dilates X.

Example 1.5. Let (A,B) be a pair of (positive) operators on H. Then the
dilations (

A A
A A

)
and

(
B −B
−B B

)
(are positive and) commute (with a zero product).

Example 1.6. Let (A,B) be a pair of hermitian operators on H and suppose that
A is a strict contraction. For any ε > 0 the Hermitian operators

X =
(
A εB
εB A

)
and Y =

(
B A/ε
A/ε B

)
commute and, when ε is small enough, X is a strict contraction.

In contrast to the previous example, it is not possible in general to dilate a pair of
Hermitian strict contractions into a commuting pair of Hermitian strict contrac-
tions. I thank Chi-Kwong Li for showing me the following simple example:

Example 1.7. (1) Consider the Hermitian contractions:

A =
(

1 0
0 −1

)
and B =

(
0 1
1 0

)
.

Then any normal dilation N of A+iB must satisfy ||N ||∞ ≥ ||A+iB||∞ = 2 >
√

2.
Consequently A and B can not be dilated into commuting Hermitians with norms
arbitrarily close to 1.

(2) Now, let P , Q be positive, strict contractions. Then, P = (A + I)/2 and
Q = (B + I)/2 for some Hermitian, strict contractions A, B. Therefore, dilating
P , Q into a commuting pair of positive, strict contractions is a problem equivalent
to that of dilating A, B into a commuting pair of Hermitian, strict contractions.
By the preceding example, it may be impossible.

For an operator A, its numerical range and its numerical angular range are
W (A) = {〈h,Ah〉 | ‖h‖ = 1} and W ′(A) = {〈h,Ah〉 | h ∈ H}. If Z dilates A
then W (Z) ⊃ W (A) and W ′(Z) ⊃ W ′(A). From Examples 1.5 and 1.6 we derive
two normal dilation results:

Proposition 1.8. Let A be an operator on H. Then A can be totally dilated into
a normal operator Z on H⊕H such that W ′(Z) = W ′(A).

Proof. By the rotation property of the numerical range, we may assume that

W ′(A) = {z = x+ iy | 0 ≤ x, −x ≤ ay ≤ x}
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for some a > 0. Therefore, the Cartesian decomposition A = X + iY satisfies to
X ≥ 0 and −X ≤ aY ≤ 2X. Since X+aY and X−aY are both positive, we may
totally dilate them into a commuting pair of positive operators, as in Example 1.4.
Let S and T denote these dilations, respectively. We observe that P = (S + T )/2
and Q = (S − T )/2a are a commuting pair of Hermitian operators, with P ≥ 0,
such that

−P ≤ aQ ≤ P (1)

Furthermore, by construction Z = P+iQ totally dilates A = X+iY . Hence Z is a
normal operator which totally dilates A and (1) then ensures thatW ′(Z) = W ′(A).
2

Proposition 1.9. Let A be an operator on H and let S be an open strip with
S ⊃W (A). Then A can be totally dilated into a normal operator Z on H⊕H with
S ⊃W (Z).

Proof. By rotation and translation, we may assume that

S = {z = x+ iy | − 1 < x < 1}.

Considering the Cartesian decomposition A = X + iY and applying Example 1.5
to X and Y in place of A and B, respectively, we obtain the proposition. 2

Example 1.10. Let {Ak}n
k=1 be a family of operators on H and let {Bk}n

k=1 be
the family of operators acting on ⊕nH defined by

Bk =

 Ak Ak−1 . . .
Ak+1 Ak . . .

...
...

. . .

 .

Then {Bk}n
k=1 is a commuting family which totally dilates {Ak}n

k=1. (we set
A0 = An, A−1 = An−1, . . . .)

In the previous example, the dilations do not preserve properties such as posi-
tivity, self-adjointness or normality. Using larger dilations we may preserve these
properties:

Proposition 1.11. Let {Aj}n
j=0 be operators on a space H. Then there exist

operators {Bj}n
j=0 on ⊕kH, where k = 2n, such that

(1) For i 6= j, BiBj = 0.

(2) {Bj}n
j=0 totally dilates {Aj}n

j=0.

(3) If the Aj’s are positive (resp. Hermitian, normal) then the Bj’s are of the
same type.
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Proof. Given a pair A0, A1 of operators, construct

S =
(
A0 A0

A0 A0

)
and T =

(
A1 −A1

−A1 A1

)
.

Then ST = TS = 0. We then proceed by induction. We have just proved the
case of n = 1. Assume that the result holds for n − 1. Thus we have a family
C = {Cj}n−1

j=0 which totally dilates {Aj}n−1
j=0 . Moreover C acts on a space G, dimG =

2n−1 dimH. We dilate An to an operator Cn on G by setting Cn = An ⊕ · · · ⊕An,
2n−1 terms . We then consider the operators on F = G ⊕ G defined by

Bj =
(
Cj Cj

Cj Cj

)
for 0 ≤ j < n and Bn =

(
Cn −Cn

−Cn Cn

)
.

The family {Bj}n
j=0 has the required properties. 2

We turn to the main result of this section. If H is a space with an even finite
dimension, we then say that the orthonormal decomposition H = F ⊕ F⊥ is a
halving decomposition whenever dimF = (1/2) dimH.

Theorem 1.12. Let A be an operator on a space H with an even finite dimension.
Then there exists a halving decomposition H = F ⊕ F⊥ for which we have a total
dilation

A =
(
B ?
? B

)
.

Proof. Choose a halving decomposition of H for which we have a matrix repre-
sentation of ReA of the following form

ReA =
(
S 0
0 T

)
.

Consequently in respect to this decomposition we must have

A =
(

Y X
−X∗ Z

)
.

Let X = U |X| and Y0 = U∗Y U . We have(
U∗ 0
0 I

)
A

(
U 0
0 I

)
=

(
U∗ 0
0 I

) (
Y U |X|

−|X|U∗ Z

) (
U 0
0 I

)
=

(
Y0 |X|
−|X| Z

)
.

Now observe that
1√
2

(
I −I
I I

) (
Y0 |X|
−|X| Z

)
1√
2

(
I I
−I I

)
=

(
(Y0 + Z)/2 ?

? (Y0 + Z)/2

)
.

Thus, using two unitary congruences we have exhibited an operator totally dilated
into A. 2

We note that, in the very special case of dimH = 2, theorem 1.12 gives the key
step of a classical proof of the Hausdorff-Toeplitz Theorem [6, p. 18].
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Remark 1.13. The proof of Theorem 1.12 is easy for a normal operator: consider

a representation A =
(
S 0
0 T

)
and use the unitary conjugation by 1√

2

(
I I
−I I

)
.

Applying this to X∗X, for an operator X on an even dimensional space, we note
that there exists a halving projection E such that XE and XE⊥ have the same
singular values (indeed EX∗XE and E⊥X∗XE⊥ are unitarily equivalent).

Problem 1.14. Does the theorem hold for infinite dimensional spaces ? Let
Tot(A) be the set of operators B which can be totally dilated into A. This set
is invariant under unitary congruences. Is it a closed set ? a connected set ? a
Riemann measurable set ? Can we extend the theorem to spaces of dimensions kn
instead of 2n ?

2. Total Dilations: commuting dilations

The symbol XH means the compression onto the first summand of an operator
X acting on a space of the form ⊕kH and an expression such as f(X)H must be
understood as (f(X))H.

Theorem 2.1. Let A, B be strictly positive operators on H. Then, the condition
A ≥ B−1 is equivalent to the existence of a strictly positive operator Z on H⊕H
such that

Z =
(
A ?
? A

)
and Z−1 =

(
B ?
? B

)
.

(The stars hold for unspecified entries.)

Proof. Clearly the existence of Z implies A ≥ B−1 by operator convexity of
t −→ t−1. To prove the converse implication we set C = [I − A−1/2B−1A−1/2]1/2

and

Z =
(

A A1/2CA1/2

A1/2CA1/2 A

)
.

From A ≥ B−1 we deduce that I ≥ A−1/2B−1A−1/2; hence C is a contraction.
Since A−1/2B−1A−1/2 is strictly positive, C is even a strict contraction, i.e. ‖C‖ <
1. Therefore A > A1/2CA1/2 so that Z is a strictly positive operator and we may
apply the inversion formula for a partitioned matrix (see [5, p. 18]) to obtain Z−1

as (
[A−A1/2C2A1/2]−1 A−1/2CA1/2[A1/2C2A1/2 −A]−1

[A1/2C2A1/2 −A]−1A1/2CA−1/2 [A−A1/2C2A1/2]−1

)
that is

Z−1 =
(

B −A−1/2CA1/2B

−BA1/2CA−1/2 B

)
and the proof is complete. 2
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Concerning dilations of the form (Z,Z−p) we have the following, not very sur-
prising fact:

Proposition 2.2. Let A, B be positive operators on H. The statement A ≥ I and
B ≥ I is equivalent to each of the following:

(1) For each p > 0, there exists a strictly positive operator Z on F ⊃ H such
that

A = ZH and B = (Z−p)H.

(2) For each p > 0, there exists a strictly positive operator Z on ⊕4H such that

diag(Z) = ⊕4A and diag(Z−p) = ⊕4B.

Proof. The proof requires some familiarity with basic properties of the numerical
range (or field of values) of a normal operator and its connection with elementary
dilation and compression results (see [6, chapter 1] for this background).

The implication (b)⇒(a) is obvious. Let us show that (a) implies A ≥ I and
B ≥ I. Fix p > 0. By assumption there exists a strictly positive operator Z on a
larger space F ⊃ H such that

A = ZH and B = (Z−p)H.

Therefore A+ iB = NH where N is the normal operator Z + iZ−p. Consequently
we must have

W (A+ iB) ⊂W (N)

where W (·) denotes the numerical range. For a normal operator M its numerical
range equals to the convex hull of its spectrum: W (M) = co Sp(M) (well, in case
of dimH = ∞, this equality holds for the closure of the numerical range); hence,
we must have

W (A+ iB) ⊂ co Sp(N).

Now, we note that

Sp(N) = Sp(Z + iZ−p) ⊂ {z ∈ C : z = t+ it−p, t > 0}

so that we necessarily have

W (A+ iB) ⊂
⋂
p>0

co {z ∈ C : z = t+ it−p, t > 0}

={z ∈ C : z = x+ iy, x ≥ 1, y ≥ 1}

and this ensures that A ≥ I and B ≥ I.
Now, let us prove that A ≥ I and B ≥ I imply (b). Fix p > 0. Both

S =
(

A A− I
A− I A

)
and T =

(
B −B + I

−B + I B

)
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are strictly positive operators on⊕2H; moreover S ≥ I and T ≥ I. Since ST = TS,
S + iT is a normal operator. From S ≥ I and T ≥ I we infer that

W (S + iT ) ⊂ {z ∈ C : z = x+ iy, x ≥ 1, y ≥ 1} = Γ.

Some elementary geometric considerations then show that any point in Γ is the
middle of two points lying in the curve

Γp = {z ∈ C : z = t+ it−p, t > 0}.

In particular, any point z of the spectrum of S + iT is the middle of two points
α and β lying in Γp. Since the one-dimensional operator z can be dilated into the

normal operator G =
(

z (α− β)/2
(α− β)/2 z

)
with Sp(G) = {α, β}, a standard

argument shows that S + iT can be dilated into a normal operator, say N , acting
on (⊕2H)⊕ (⊕2H) = ⊕4H with Sp(N) ⊂ Γp. This means that N = Z + iZ−p for
some strictly positive operator Z on ⊕4H and we deduce that

NH = ZH + i(Z−p)H = A+ iB

so that A = ZH and B = (Z−p)H as wanted. 2

Proposition 2.3. Let A, B be strictly positive operators on H. Then, the con-
dition A2 ≤ B is equivalent to the existence of a strictly positive operator Z on
⊕kH, where k is any integer for which B ≤ kA2, such that

diag(Z) = ⊕kA and diag(Z2) = ⊕kB.

Proof. Obviously the existence of Z implies A2 ≤ B by the simple fact that
(ETE)2 ≤ ET 2E for any positive operator T and projection E acting on the same
space. Conversely, we have

0 ≤ B −A2 ≤ (k − 1)A2

and since t −→ t1/2 is operator monotone [1, p. 115],

0 ≤ (B −A2)1/2

√
k − 1

≤ A.

From this we derive that the operator Z on ⊕kH defined by

Z =


A (B−A2)1/2

√
k−1

. . .

(B−A2)1/2
√

k−1
A

. . .
...

. . . . . .


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is a positive operator. We then observe that

Z2 =


B ? . . .

? B
. . .

...
. . . . . .


and this completes the proof. 2

Proposition 2.4. Let A and B be two positive operators on a space H and suppose
that I ≥ B ≥ (1/k)I for some integer k. Then there exist two positive operators
S and T on ⊕kH such that:

(1) S and T form a monotone pair of positive operators.

(2) diag(S) = ⊕kA and diag(T ) = ⊕kB.

(3) I ≥ T .

Proof. To simplify the notation we assume that H has a finite dimension. We
dilate A into S with block-matrix representation

S =

A A . . .
A A . . .
...

...
. . .


and we dilate B into

T =


B I−B

k−1 . . .

I−B
k−1 B

. . .
...

. . . . . .


We observe that ST = T hence S commutes with T . Let {aj}n

j=1 be an orthonor-
mal basis of H such that

A =
∑

1≤j≤n

µj(A)aj⊗aj .

Notice that {sj = (1/
√
k)(aj ⊕ · · · ⊕ aj)}n

j=1 is a family of normalised eigenvectors
of S whose corresponding eigenvalues are the numbers {kµj(A)}n

j=1. Moreover,
setting E = span{sj , 1 ≤ j ≤ n} and Ej = span{(x1aj⊕· · ·⊕xkaj) | x1+. . . xk = 0}
we note that ⊕

1≤j≤n

Ej = E⊥ ⊂ kerS.

Consequently,

S = k
∑

1≤j≤n

µj(A)sj⊗sj .
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Now we observe that E reduces T and that TE is the identity operator on E . To
prove the theorem it therefore remains to check that 0 ≤ T ≤ I. For this purpose
let {bj}n

j=1 be an orthonormal basis of H such that

B =
∑

1≤j≤n

µj(B)bj⊗bj

and consider the orthogonal decomposition F = G1
⊕
· · ·

⊕
Gn in which

Gj = span{(bj , 0, . . . , 0); (0, bj , . . . , 0); . . . ; (0, . . . , 0, bj)}.
Relatively to this decomposition T = T1

⊕
· · ·

⊕
Tn with

Tj =


µj(B) 1−µj(B)

k−1 . . .

1−µj(B)
k−1 µj(B)

. . .
...

. . . . . .


Let I(k) be the k-by-k identity matrix and let P(k) be the k-by-k matrix whose
entries all equal 1. We have

Tj =
1− µj(B)
k − 1

P(k) +
kµj(B)− 1
k − 1

I(k).

Since 1/k ≤ µj(B) ≤ 1 we infer that Tj ≥ 0. Since ‖P(k)‖ = k we have ‖Tj‖ = 1.
Thus 0 ≤ Tj ≤ I and consequently 0 ≤ T ≤ I. 2

3. Other commuting dilations

Besides the total dilations obtained in the preceding section, it is natural to
search commuting dilations on ⊕kH, and if possible, on H ⊕H. Our next result
presents a particularly simple monotone dilation for Hermitian operators.

Proposition 3.1. Let A, B be two Hermitian operators acting on H. Then, there
exists a Hermitian operator Z acting on H⊕H such that A = ZH and B = (Z3)H.

Proof. Assume first that A is invertible and set

Z =
(
A A
A A−1BA−1 − 3A

)
.

Then (Z,Z3) is a monotone pair of Hermitian operators dilating (A,B). If A is
no longer invertible we take

Z =
(
A A
A A−1

0 BA−1
0 − 3A

)
in which A0 = A+ P , P being the projection onto kerA. 2

Remark 3.2 The above proof is not valid when dimH = ∞ since A−1
0 may be

unbounded. However the curve Γ3 = {z ∈ C : z = t + it3, t ∈ (−∞,∞)}
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satisfies the following property: any bounded region of C is contained in a triangle
whose vertices belong to Γ3. From Mirman’s theorem we deduce that A+ iB can
be dilated into a normal operator N acting on ⊕3H with Sp(N) ⊂ Γ3. Conse-
quently (ReN, ImN) = (ReN, (ReN)3) dilates (A,B). Since ⊕3H and ⊕2H are
basically the same when dimH = ∞, Proposition 2.1 remains valid in the infinite
dimensional case. For convenience to the reader we recall Mirman’s theorem [7,
8]: Let A be an operator on H and suppose that W (A) is contained in a triangle
with vertices (α, β, γ). Then A can be dilated into a normal operator N on ⊕3H
with Sp(N) = {α, β, γ}. We also refer the reader to [4] for a transparent proof of
Mirman’s theorem.

For finite families of Hermitians, we have:

Proposition 3.3. Let {Aj}n
j=0 be Hermitian operators on a space H. Then we

can dilate them into a monotone family of Hermitian operators on a larger space
F with dimF = 2(n+ 1) dimH− 1.

Of course, if dimH = ∞ then we may take F = H
⊕
H. For sake of simplicity

we suppose that H has a finite dimension and, in this setting, we first state an
elementary lemma. Let us say that an operator B essentially acts on a subspace E
if both the range and the corange of B are contained in E (equivalently, ranB ⊂ E
and (kerB)⊥ ⊂ E).

Lemma 3.4. Fix an integer n and a space H. Then there exist a larger space F ,
dimF = (n + 1) dimH, and an orthogonal decomposition F = E0 ⊕ · · · ⊕ En, in
which dim Ej = dimH for each j, such that: for every family of operators {Aj}n

j=0

on H there is a family {Bj}n
j=0 of operators on F with Bj essentially acting on Ej

and Aj = (Bj)H, 0 ≤ j ≤ n. Moreover when the Aj’s are Hermitian or positive,
the Bj’s can be taken of the same type.

Let us sketch the elementary proof of this lemma. First, choose subspaces {Ej}n
j=0

of F = ⊕n+1H in such a way that for each j (a) dim Ej = dimH, (b) The projection
Ej from F onto Ej verifies: (Ej)H is a strictly positive operator on H. Now, fix
an integer j and observe that any vector h ∈ H can be lifted to a unique vector
hj ∈ Ej such that Hhj = h, where H is the projection onto H. Consequently any
rank one operator of the form R = h⊗h, h ∈ H, can be lifted into a positive rank
one operator T essentially acting on Ej such that TH = R. This ensures that given
a general (resp. hermitian, positive) operator A on H there exists a general (resp.
Hermitian, positive) operator B essentially acting on Ej such that BH = A.

We turn to the proof of proposition 3.3.

Proof. By Lemma 3.4 we may dilate {Aj}n
j=0 into a commuting family of Hermi-

tians {Sj}n
j=0 on a larger space G with dimG = (n+ 1) dimH = d. Thus, there is
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a basis {gk}d
k=0 in G and real numbers {sj,k} such that

Sj =
d∑

k=0

sj,kgk⊗gk (0 ≤ j ≤ n).

We take for F a space of the form

F = E0 ⊕ E1 ⊕ · · · ⊕ Ed

in which dim E0 = 1 and g0 ∈ E0; and for k > 0, dim Ek = 2 and gk ∈ Ek. Hence,
we have dimF = 2(n+ 1) dimH− 1.

For k > 0, let {e1,k; e2,k} be a basis of Ek and suppose that gk = (e1,k +e2,k)/
√

2
(*). We set, for 0 ≤ j ≤ n,

Bj = sj,0g0⊗g0 +
d∑

k=1

(rj,ke1,k⊗e1,k + tj,ke2,k⊗e2,k)

where the reals rj,k and tj,k are chosen in such a way that:

(1) sj,k = (rj,k + tj,k)/2, j = 0, . . . n.

(2) rj,d < · · · < rj,1 < sj,0 < tj,1 < · · · < tj,d, j = 0, . . . n.

From (1) and (*) we deduce that Sj = (Bj)G so that Aj = (Bj)H. From (2) we
infer that {Bj}n

j=0 is a monotone family. 2

Now, we focus on dilations of the type (Z,Zp), Z ≥ 0, p > 0. In connection
with Proposition 3.1, we have:

Proposition 3.5. Let A, B be strictly positive operators on a finite dimensional
space H and let p = 2, 3. The condition Ap < B ensures the existence of a strictly
positive operator Z on H⊕H such that A = ZH and B = Zp

H.

Proof. We already know that the existence of Z entails A2 ≤ B. In the converse
direction it suffices to take

Z =
(

A (B −A2)1/2

(B −A2)1/2 λI

)
in which λ > 0 is chosen large enough to ensure Z > 0 (this is possible since A is
invertible).

Now, suppose that A3 < B and choose 1 > ε > 0 small enough to ensure that
B ≥ (1 + 3ε2)A3. We then take

Z =
(
A εA
εA ε−2[A−1BA−1 − (1 + 2ε2)A]

)
.

We observe that, with our choice for ε, Z > 0. A direct computation then shows
B = (Z3)H. 2



55

For sake of completeness we state the next proposition which is an easy appli-
cation of Mirman’s Theorem.

Proposition 3.6. Let A, B be strictly positive operators on H and assume that
A ≤ I ≤ B. Then, for each p > 1, there exists a strictly positive operator Z on
⊕3H such that A = ZH and B = Zp

H.

Proof. A+ iB is an operator whose numerical range lies in the region

Γ = {z ∈ C : z = x+ iy, ε ≤ x ≤ 1, 1 ≤ y}

in which ε = ||A−1||−1. Now, fix p > 1 and let

Γp = {z ∈ C : z = t+ itp, t > 0}.

We observe that W (A + iB) is contained in a triangle whose vertices are three
points in Γp. Mirman’s theorem entails that A+ iB can be dilated into a normal
operator N acting on ⊕3H with Sp(N) ⊂ Γp. We then deduce that N = Z + iZp

for some strictly positive operator on ⊕3H. Therefore A = ZH and B = (Zp)H.
2

From Theorem 2.1 and Proposition 3.5 we derive

Corollary 3.7. Let A, B be strictly positive operators on H. The following
statements are equivalent:

(1) A ≤ B.

(2) There exists a strictly positive operator Z on H⊕H such that

A = (ZH)−1 and B = (Z−1)H.

(3) There exists a strictly positive operator Z on H⊕H such that

A = (ZH)2 and B = (Z2)H.

Proof. Implications (2)⇒(1) and (3)⇒(1) are known.
Let us check the implication (1)⇒(2). Let X = A−1 and Y = B. Since t −→

−t−1 is operator monotone, X ≥ Y −1. Hence, Theorem 2.1 entails the existence
of a strictly positive operator Z on F ⊃ H such that X = ZH and Y = Z−1

H , that
is A = (ZH)−1 and B = (Z−1)H.

To check the implication (1)⇒(3) we set X = A1/2 and Y = B. Consequently
X2 ≤ Y and Proposition 3.5 ensures the existence of a strictly positive operator
Z on F ⊃ H such that X = ZH and Y = (Z2)H. Thus, we have A = (ZH)2 and
B = (Z2)H. 2

In view of the above corollary it seems natural to pose:
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Conjecture 3.8. Let A, B be strictly positive operators on H and let f : (0,∞) −→
(0,∞) be onto, nonlinear and operator convex. Then, the following statements are
equivalent:

(1) A ≤ B.

(2) There exists a strictly positive operator Z on H⊕H such that

A = f(ZH) and B = f(Z)H.

A convex function f : (0,∞) → (−∞,∞) is said to be strongly convex if its
epigraph is the convex hull of its graph.

Proposition 3.9. Let A, B be two commuting strictly positive operators on H
and let f : (0,∞) → (−∞,∞) be strongly convex. Then, the condition f(A) ≤ B
ensures the existence of a strictly positive operator Z on H⊕H such that A = ZH
and B = f(Z)H.

Proof. Let T = A + iB and let z ∈ W (T ). So, there exists a norm one vector h
such that

z = x+ iy = 〈h,Ah〉+ i〈h,Bh〉.
By convexity of f , we have

f(x) = f(〈h,Ah〉) ≤ 〈h, f(A)h〉 ≤ 〈h,Bh〉 = y.

But the relation f(x) ≤ y entails that W (T ) lies in the region

R = {(x+ iy) : x > 0, y ≥ f(x)}.

By assumptions on f , any point of R is then the convex combination of two points
of the curve

Γ = {x+ if(x), x > 0}.
In particular, any point of the spectrum of T is a convex combination of two points
in Γ. Since T is normal, a standard dilation argument (the same as that one of the
proof of Proposition 2.2) shows that T can be dilated into a normal operator N
on H⊕H with spectrum in Γ. Therefore N = Z+ if(Z) for some strictly positive
operator Z and A = ZH, B = f(Z)H as desired. 2

Conjecture 3.10. Let A, B be strictly positive operators on a finite dimensional
space H and let f : (0,∞) → (−∞,∞) be strongly convex. Then, the condition
f(A) < B ensures the existence of a strictly positive operator Z on H ⊕ H such
that A = ZH and B = f(Z)H.

4. Addenda

In [2], we established the following extension of Proposition 2.4
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Proposition 4.1. Let {Aj}n
j=0 be positive operators on H. Assume that for j > 0

we have integers kj > 0 such that I ≥ Aj ≥ (1/kj)I. Then there exist positive
operators {Bj}n

j=0 on ⊕kH, where k =
∏n

j=1 kj, such that:

(1) {Bj}n
j=0 is a monotone family of positive operators.

(2) diag(Bj) = ⊕kAj, 0 ≤ j ≤ n.

Furthermore, we may require that ‖B1‖∞ ≤ 1.

Corollary 4.2. Let {Aj}n
j=0 be hermitian operators on H with ‖A0‖∞ ≤ 1. Then

we can totally dilate them into a monotone family of hermitian operators {Bj}n
j=0

on ⊕kH, k = 2n, in such a way that ‖B0‖∞ ≤ 1.
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Chapter 4

Inequalities for some commuting pairs

of positive operators

Introduction

For all positive operator A and normal operator Z on a separable Hilbert space,
the interpolation inequality

‖AsZAt‖∞ ≤ ‖ZAs+t‖∞, s, t > 0

holds (we denote by ‖ · ‖∞ the usual operator norm). Such a result belongs to the
folklore in Matrix/operator theory (there might be a precise reference). The aim
of this first chapter is to establish several inequalities for pairs (A,B) generalizing
(As, At).

Let A, B be two commuting Hermitian operators (on a separable Hilbert space).
If there exist a positive operator C and two nondecreasing functions f , g such that

A = f(C) and B = g(C),

we then say that A and B form a monotone pair of positive operators. If instead
f is still nondecreasing but g is now nonincreasing, we then say that (A,B) is
an antimonotone pair of positive operators. Some classical inequalities can be
rephrased in terms of monotone pairs: For instance, in the finite dimensional
setting, von Neumann’s trace inequality claims that

|TrUAV B| ≤ TrAB

for all monotone pairs (A,B) of positive operators and all unitary operators U , V
(see [1, p. 94-95] for stronger results)

Section 1 is devoted to a basic lemma about some pairs of integrable functions
on a probability space and some applications to operators. This lemma is also
the key to the results of Section 2 in which we show several inequalities involving
compressions of monotone pairs. Recall that, given an operator X and a projection
E onto a subspace E , the compression of X onto E , denoted by XE , is defined as
the restriction of EXE to E . An example of the obtained results is

detAE · detBE ≤ det(AB)E
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for every monotone pairs (A,B) of positive operators and every finite dimensional
subspace E .

In section 3 we prove the following inequalities for the Hilbert-Schmidt norm
‖ ·‖2: for every normal (or even hyponormal) operator Z and every monotone pair
(A,B) of positive operators, we have

‖AZB‖2 ≤ ‖ZAB‖2,

meanwhile if (A,B) is antimonotone and Z is normal, Hilbert-Schmidt, then the
reverse inequality holds.

1. A basic lemma

Let γ be a real valued function on a set Ω and let φ, ψ be two real valued
functions on the real line. Set

f = φ ◦ γ and g = ψ ◦ γ.

If φ and ψ are both nondecreasing, we then say that f and g form a monotone
pair. If φ is nondecreasing and ψ is nonincreasing, we then say that f and g form
an antimonotone pair. Monotone (resp. antimonotone) pairs of functions (f, g) on
Ω satisfies the property: For all x and y in Ω,

[f(x)− f(y)] · [g(x)− g(y)] ≥ 0 (resp. ≤) 0.

We have the following basic fact:

Lemma 1.1. Let f and g be two positive measurable functions on a probability
space. Then:

(1) If (f, g) is monotone,∫
Ω
f dP ·

∫
Ω
g dP ≤

∫
Ω
fg dP

(2) If (f, g) is antimonotone,∫
Ω
f dP ·

∫
Ω
g dP ≥

∫
Ω
fg dP

Proof. We prove the monotone case. For any x and y in the probability space Ω,
we have

[f(x)− f(y)] · [g(x)− g(y)] ≥ 0,

consequently

f(x)g(y) + f(y)g(x) ≤ f(x)g(x) + f(y)g(y). (1)



60

Now, we compute

2
∫

Ω
f dP ·

∫
Ω
g dP =

∫
Ω×Ω

[f(x)g(y) + f(y)g(x)] dP(x)dP(y)

≤
∫

Ω×Ω
[f(x)g(x) + f(y)g(y)] dP(x)dP(y)

= 2
∫

Ω
fg dP.

When (f, g) is antimonotone, inequality (1) is reversed and the proof is similar.
2

Let A be a Hermitian operator with spectrum Ω and spectral decomposition

A =
∫

Ω
λ dE(λ).

For every bounded Borel function f on Ω and every norm one vector h, we have

〈h, f(A)h〉 =
∫

Ω
f(λ) dP (λ)

where P is a probability measure on Ω, dP (λ) = d〈h,E(λ)h〉. Consequently,
Lemma 1.1 admits the following operator formulation:

Lemma 1.2. Let A, B be a pair of positive operators and let h be a norm one
vector.

(1) If (A,B) forms a monotone pair,

〈h,Ah〉〈h,Bh〉 ≤ 〈h,ABh〉 and ‖Ah‖ · ‖Bh‖ ≤ ‖ABh‖.

(2) If (A,B) forms an antimonotone pair,

〈h,Ah〉〈h,Bh〉 ≥ 〈h,ABh〉 and ‖Ah‖ · ‖Bh‖ ≥ ‖ABh‖.

The scalar product inequalities imply the norm inequalities by replacing A and B
by A2 and B2.

As an application of the above lemma, we have

Proposition 1.3. Let X,Y be two positive operators with Y invertible and X ≤ Y .
If M is a positive trace class operator which commutes with X and α, β are two
reals such that α ≥ 0, β ≥ −1 and α+ β ≥ 0, then we have

TrMXαY β ≤ TrMY α+β.

Proof. By repeating the process, we may assume that α ≤ 1. By a limit argument,
we may assume that X is invertible. There exists an orthonormal system {en}
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and two sequences of reals {xn} and {mn} such that M =
∑

nmnen ⊗ en and
X(en) = xnen. Thus

TrMY α+β =
∑

n

mnx
α
n〈en, X−αen〉〈en, Y α+βen〉.

By Loewner’s theorem, t −→ tα, 0 < α ≤ 1 is operator monotone [1, p. 115]. Since
t→ t−1 is operator decreasing [1, p. 114 ], then so is t→ t−α. Consequently,

TrMY α+β ≥
∑

n

mnx
α
n〈en, Y −αen〉〈en, Y α+βen〉.

Since t→ t−α decreases and t→ tα+β increases, Lemma 1.2 implies

TrMY α+β ≥
∑

n

mnx
α
n〈en, Y βen〉.

= TrMXαY β

and we get the result. 2

Remark 1.4. A special case of Proposition 1.3 is when β ≥ 0. Then, in order to
prove the proposition, it suffices to use the most basic case of Loewner’s Theorem,
namely that t −→ t1/2 is operator monotone (and so are t −→ t1/2n

, n = 1, 2, . . . ).
We also note that the proposition with β ≥ 0 still holds for a not necessarily
invertible Y . Proposition 1.3 gives an immediate proof of the McCarthy inequality
(cf [5] p.20, theorem 1.22):

Tr (X + Y )p ≥ TrXp + TrY p (0 ≤ X, Y ; p ≥ 1)

Indeed,

Tr (X + Y )p = TrX(X + Y )p−1 + TrY (X + Y )p−1 ≥ TrXp + TrY p.

Similarly we also get:

Tr (X + Y )p ≥ TrXp + TrY p + Tr (XY p−1 + Y Xp−1) (0 ≤ X, Y ; p ≥ 2).

Example 1.5. Proposition 1.3 is not valid for all reals β and all nonnegative reals
α: For instance taking α = 3, β = −7 and

M = X =
(

5 2
2 1

)
; Y =

(
9 0
0 2

)
one has TrX4Y −7 > TrXY −4.

Our purpose is now to apply Lemma 1.2 to a problem about compressions. If
X is a Hermitian operator acting on an n-dimensional space, we denote by Eig(X)
the sequence {λk(X)}n

k=1 of the eigenvalues of X arranged in decreasing order
and counted with their multiplicities. Let H be a finite dimensional space. Fix
a subspace E of H and a Hermitian operator A on H. We look for the collection
of subspaces F with the same dimension as E for which Eig(AE) ≤ Eig(AF ). We
may answer a closely related problem.
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Proposition 1.6. Let A, X be operators on a finite dimensional space. Suppose
that A is Hermitian and X is invertible. The following conditions are equivalent.

(1) AX = XA and (A, |X|) is a monotone pair.

(2) For every subspace E,

Eig(AX(E)) ≥ Eig(AE).

We will give a statement equivalent to Proposition 1.6. Given a subspace E
and an operator A, denote by A : E the restriction of A to E and by Sing(A : E)
the sequence of the singular values {µk(A : E)} arranged in decreasing order and
counted with their multiplicities.

Proposition 1.7. Let A, X be operators on a finite dimensional space. Suppose
that X is invertible. The following conditions are equivalent.

(1) |A|X = X|A| and (|A|, |X|) is a monotone pair.

(2) For every subspace E,

Sing(A :X(E)) ≥ Sing(A :E).

Proof. We may assume that A is positive, A = |A|.
Suppose that X satisfies condition (1). Then, if h is a norm one vector,

Lemma 1.2 implies ‖AXh‖ ≥ ‖Ah‖.‖Xh‖. Equivalently, ‖Au‖ ≥ ‖Ah‖ where
u = Xh/‖Xh‖. Denoting by L the line spanned by h, this can be read as

‖A :X(L)‖ ≥ ‖A :L‖. (∗)

Fix a subspace E . We recall the version of the minimax principle for singular
values: for j ≤ dim E ,

µj(A :E) = min ‖A :F‖
where the minimum runs over all the subspaces F ⊂ E with codimEF = j − 1.
Using this basic principle and the invertibility of X we then deduce that there
exists F ⊂ E , codimEF = j − 1, such that

µj(A :X(E)) = ‖A :X(F)‖
≥ ‖A :X(L)‖ for all lines L ⊂ F
≥ ‖A :L‖ for all lines L ⊂ F by (∗).

Therefore
µj(A :X(E)) ≥ ‖A :F‖ ≥ µj(A :E).

Conversely, suppose that Sing(A :X(E)) ≥ Sing(A : E) for each E . Denote by
s1(A) > · · · > sl(A) the singular values of A arranged in decreasing order but
not counted with their multiplicities. Let S1, . . . ,Sl be the corresponding spectral
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subspaces of A. We note the following fact, easily proved by arguing by the
contrary:

If dimF = dim(S1 ⊕ · · · ⊕ Sk) and F 6= S1 ⊕ · · · ⊕ Sk then, for at least one integer
j ≤ dimF , we have µj(A :F) < µj(A :S1 ⊕ · · · ⊕ Sk).

It follows that our operator X must satisfy

X(S1 ⊕ · · · ⊕ Sk) = S1 ⊕ · · · ⊕ Sk

for each integer k, k ≤ l. Let L be a line in Sk. The preceding identity shows that
there is a line T in S1⊕ · · · ⊕ Sk such that X(T ) = L. Since ‖A :X(T )‖ ≥ ‖A :T ‖
we must have T ⊂ Sk. Thus X(Sk) = Sk. This is exactly the same as saying
that X commutes with A. Then |X| also commutes with A. We claim that
(A, |X|) is a monotone pair. By the contrary there would exist an integer k and
two norm one eigenvectors for |X|, u and v, such that : u ∈ Sk, v ∈ Sk+1 and
a = ‖Xu‖ < ‖Xv‖ = b. Denoting by L the line spanned by u+ v we compute

‖A :L‖2 =
s2k(A) + s2k+1(A)

2
and ‖A :X(L)‖2 =

a2s2k(A) + b2s2k+1(A)
a2 + b2

.

Since a < b and sk(A) > sk+1(A) we conclude that ‖A :X(L)‖ < ‖A :L‖ and we
reach a contradiction. Hence X must verify condition (1). 2

Proof of Proposition 1.6. Replacing A by A + rI with r large enough we
may assume A ≥ 0. Now, note that conditions (1) and (2) of the proposition are
equivalent to

(i) AX = XA and (A, |X|) is a monotone pair

and

(ii) For every subspace E ,

Sing2(A1/2 :X(E)) ≥ Sing2(A1/2 :E)

respectively. Since (i) is also equivalent to ”A1/2X = XA1/2 and (A1/2, |X|) is a
monotone pair”, Proposition 1.7 completes the proof. 2

2. Compressions of monotone pairs

Recall the following fact (Chapter 2, Corollary 1.4):

Lemma 2.1. Let Z be a positive operator on a finite dimensional space. Let a and
b be the extremal nonzero eigenvalues of Z. Then, for every projection E whose
range is contained in the range of Z,

EZE ≤ (a+ b)2

4ab
Z
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Proposition 2.2. Let A, B, Z be positive operators on a finite dimensional space.
Let a and b be the extremal nonzero eigenvalues of Z. If (A,B) is monotone, then,

‖AZB‖∞ ≤ a+ b

2
√
ab
‖ZAB‖∞,

in particular, for every projection E,

‖AEB‖∞ ≤ ‖EAB‖∞. (3)

Proof. We first establish (3). To this end, let f be a norm one vector such that
‖AEBf‖ = ‖AEB‖∞ and let h = EBf/‖EBf‖. We then have, using Lemma 1.2,

‖AEB‖∞ ≤ ‖Ah⊗ hB‖∞
= ‖Ah‖‖Bh‖
≤ ‖ABh‖ ≤ ‖EAB‖∞.

Now, we consider the case of a general positive operator Z. Let E be the projection
onto the support E of Z. There exists a norm one vector h in E such that

‖AZB‖∞ ≤ ‖AZ1/2 h⊗ hZ1/2B‖∞
= ‖A(Z1/2h⊗ Z1/2h)B‖∞.

Therefore, using (3),

‖AZB‖∞ ≤ ‖(Z1/2h⊗ Z1/2h)AB‖∞. (4)

Now, observe that

(Z1/2h⊗ Z1/2h)2 ≤ (a+ b)2

4ab
Z2, (5)

indeed, this is equivalent to

Z−1/2(Z1/2h⊗ Z1/2h)2Z−1/2 ≤ (a+ b)2

4ab
Z

which can also be written as

h⊗ h · Z · h⊗ h ≤ (a+ b)2

4ab
Z

and which holds by Lemma 2.1. The obvious identity ‖X‖2
∞ = ‖X∗X‖∞ for all

operators X combined with (4) and (5) then yield the proposition. 2

Theorem 2.3. Assume that A and B form a monotone pair of positive operators
and let E be the projection onto a finite dimensional subspace E. Then, we have

Sing(AEB) ≤ Sing(EAB).

Consequently,
Eig(AEBE) ≤ Eig((AB)E)

and
Eig(AEBEAE) ≤ Eig((ABA)E).



65

If we take A = B in the third inequality we obtain

Eig((AE)3) ≤ Eig((A3)E),

a special case of results of Chapter 1.

Proof. Let E be the range of E. By a continuity argument we may assume that
B is invertible. If k > rankE then, obviously, µk(AEB) = µk(ABE) = 0.

Let 1 ≤ k ≤ rankE. By the minimax principle for singular values we have

µk(AEB) = min
F

‖AEBF‖∞,

where the minimum runs over all the projections F with corankF = k− 1. There-
fore,

µk(AEB) ≤ ‖AEBG‖∞ (6)
where G is the projection onto the subspace G of codimension k − 1 defined by

G = span{B−1(E⊥), B−1(E0)},

E0 being a subspace of E such that codim (E⊥
⊕
E0) = k − 1 and

µk(ABE) = ‖ABE(E⊥ + E0)‖∞ = ‖ABE0‖∞. (7)

By definition of G we have ‖AEBG‖∞ = ‖AE0BG‖∞ so that

‖AEBG‖∞ ≤‖AE0B‖∞
≤‖ABE0‖∞ (by (3)).

From (6) and (7) we then obtain the first assertion of the theorem.
For each integer k, 1 ≤ k ≤ dim E , we have

λk(AEBE) = λk(EAEBE) =λk(A1/2EBEA1/2)

=µ2
k(A

1/2EB1/2)

≤µ2
k(EA

1/2B1/2) = λk((AB)E),

thus the second assertion of the theorem holds. The proof of the third one is
similar:

λk(AEBEAE) = µ2
k(B

1/2EAE)

≤ µ2
k(B

1/2EA)

≤ µ2
k(B

1/2AE) = λk((ABA)E)

2

As for an invertible positive operator A and s, t > 0 we have ‖AsZA−t‖∞ ≥
‖ZAs−t‖∞ for every normal operator Z, one may ask whether the previous in-
equalties are reversed for antimonotone pairs of positive operators. This is not
true, as shown by the next examples.
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Example 2.4. (1) Consider the following antimonotone pair (A,B) and projection
E.

A =

1 + ε 0 0
0 1 0
0 0 0

 B =

0 0 0
0 1 0
0 0 1

 E =
1
3

 2 1 −1
1 2 1
−1 1 2

 ,

then, ‖AEB‖∞ < ‖EAB‖∞ if ε is small enough(for ε = 0, it is 0.772 < 0.816).
(2) If (A,B) is an antimonotone pair the reverse inequality of the third claim

of Theorem 2.4 is not valid. Take

A =

9 9 8
9 10 9
8 9 9

 , E =

1 0 0
0 1 0
0 0 0

 ,

then, setting E = ranE, µ2((A−1)E(A2)E(A−1)E) = 0.667.. < 1 = µ2(IE).

Proposition 2.5. Let A, B, Z be positive operators on a finite dimensional space.
Let a and b be the largest and the smallest nonzero eigenvalues of Z. If (A,B) is
monotone, then,

Sing(AZB) ≤
√
a/bSing(ZAB).

In view of Proposition 2.2, may one replace
√
a/b by (a+ b)/(2

√
ab) ? We can

not prove nor disprove it.

Proof. Suppose that the operators act on H, dimH = n.
By homogenity, it suffices to consider the case ‖Z‖∞ = 1 and we must then

show that
Sing(AZB) ≤ ‖Z−1‖1/2

∞ Sing(ZAB) (8)

(Z−1 still stands for the inverse or the generalized inverse). Define the operators
on H

⊕
H,

Ã =
(
A 0
0 0

)
, B̃ =

(
B 0
0 0

)
, Z̃ =

(
Z Z1/2(I − Z)1/2

Z1/2(I − Z)1/2 I − Z

)
.

Then, (Ã, B̃) is a monotone pair and Z̃ is a projection. Theorem 2.3 entails that,
for 1 ≤ k ≤ n,

µ2
k(AZB) = µ2

k(ÃZ̃B̃)

≤ µ2
k(Z̃ÃB̃)

= µk(ÃB̃Z̃ÃB̃) = µk(ABZAB).

But, Z ≤ ‖Z−1‖∞Z2 (recall that ‖Z‖∞ = 1), consequently,

µ2
k(AZB) ≤ ‖Z−1‖∞µk(ABZ2AB)

meaning that (8) holds. 2
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Proposition 2.6. Let A, B be two commuting positive operators on a finite
dimensional space and let E be a subspace.

(1) If (A,B) is monotone,

detAE · detBE ≤ det(AB)E .

(2) If (A,B) is antimonotone and E is a hyperplane,

detAE · detBE ≥ det(AB)E .

Proof. (1) immediatly follows from Theorem 2.3. To prove (2) we first observe
that for an operator X acting on H and a k-dimensional subspace F ,

|detXF | = ‖ ∧k (XF )‖ = ‖(∧kX)∧kF‖

where ∧k stands for the kth antisymmetric tensor power. Consequently, letting H
be the space on which A and B act and setting dimH = n, we have

detAE · detBE = ‖(∧n−1A)∧n−1E‖ · ‖(∧n−1B)∧n−1E‖. (9)

Since (A,B) is an antimonotone pair, there exist a family {Ej}n
j=1 of mutually

orthogonal rank one projections, a decreasing sequence {aj}n
j=1 and an increasing

sequence {bj}n
j=1 such that

A =
n∑

j=1

ajEj and B =
n∑

j=1

bjEj .

We infer that

∧n−1A =
n∑

j=1

(Πk 6=jak)(∧k 6=jEk) and ∧n−1 B =
n∑

j=1

(Πk 6=jbk)(∧k 6=jEk)

form an antimonotone pair of positive operators acting on ∧n−1H. We note that
∧n−1E is a line in ∧n−1H. Let h be a normalised vector spanning ∧n−1E . We
deduce from Lemma 1.2 that

‖(∧n−1A)∧n−1E‖ · ‖(∧n−1B)∧n−1E‖ = 〈h, (∧n−1A)h〉〈h, (∧n−1B)h〉
≥ 〈h, (∧n−1A ∧n−1 B)h〉
= det(AB)E .

Comparing with (9) we obtain the result. 2

Does Proposition 2.6(2) hold for every subspace ? Proposition 2.6(1) does not
extend to other functionals such as the norm ‖ · ‖∞ (except if E is 1-dimensional),
as shown by the next example.



68

Example 2.7. Consider the monotone pair (A,B) and the range E of the projec-
tion E,

A =

1 0 0
0 1 0
0 0 2

 , B =

0 0 0
0 4 0
0 0 4

 , E =
1
3

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Then, one has ‖AE‖∞.‖BE‖∞ = 6.668.. > 6.309.. = ‖(AB)E‖∞. The same in-
equality holds for the Schatten p-norms ‖ · ‖p when p runs over an interval (a,∞)
where a is a real lying into (1, 2).

Theorem 2.3 suggests to compare Sing((AB)E) and Sing(AEBE) when A and
B form a monotone pair of positive operators. We do not know whether the
inequality Sing((AB)E) ≥ Sing(AEBE) is valid, but our next proposition goes in
this direction.

We denote by Γ the class of positive functions f defined on [0,∞) with f(0) = 0
and such that f is convex or concave. In particular the power functions x −→ xt,
t > 0, lie in Γ.

Proposition 2.8. Let A, B be two commuting positive operators on a finite
dimensional space and let E be a subspace. Assume that B = f(A) for some
f ∈ Γ. Then, there exist two unitary operators U and V on E such that

|AEBE | ≤
1
2

(U(AB)EU∗ + V (AB)EV ∗) .

We shall use a remarkable result of R. Bhatia and F. Kittaneh (see [1 p. 262]). This
basic theorem, called the arithmetic-geometric mean operator inequality, states
that for any operators A and B we have

Sing(AB) ≤ 1
2
Sing(A∗A+BB∗).

Proof. By a limit argument we may assume that A is invertible and f : [0,∞) −→
[0,∞) is bijective. By replacing if necessary B by A and A by f−1(B) we may
then assume that f is convex. Therefore x −→ f(x)/x is increasing on [0,∞). We
write

EAEBE = EAE(f(A)A−1)1/2 · (Af(A))1/2E

and we apply the Bhatia-Kittaneh theorem to get a unitary W such that

|EAEBE| ≤ 1
2
W{(f(A)A−1)1/2EAEAE(f(A)A−1)1/2

+(Af(A))1/2E(Af(A))1/2}W ∗.
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Since ZEZ∗ and EZ∗ZE are unitarily congruent for any operator Z, there are
unitaries U0 and V0 such that

|EAEBE| ≤ 1
2
U0(EAEf(A)A−1EAE)U∗0 +

1
2
V0(EAf(A)E)V ∗0 .

Since (A, f(A)A−1) is a monotone pair, Theorem 2.4 implies that, for a unitary
U1,

|EAEBE| ≤ 1
2
U1(EAf(A)E)U∗1 +

1
2
V0(EAf(A)E)V ∗0 .

We note that EU1E and EV0E can be viewed as contractions acting on E ; hence,
we have

|AEBE | ≤
1
2

(U(AB)EU∗ + V (AB)EV ∗)

for some unitaries U and V acting on E . 2

It is not surprising that specific inequalities hold for monotone or antimonotone
pairs of the type (Ax, Ay).

Proposition 2.9. Let A be a positive, invertible operator on a finite dimensional
space and let E be a subspace. Then, we have
k∏

j=1

µj((As)E(At)E) ≤
k∏

j=1

µj((As+t)E) and
k∏

j=1

µj((As)E(A−t)E) ≥
k∏

j=1

µj((As−t)E)

for every 1 ≤ k ≤ dim E and all s, t > 0. Therefore, for all unitarily invariant
norms ‖ · ‖,

‖(As)E(At)E‖ ≤ ‖(As+t)E‖ and ‖(As)E(A−t)E‖ ≥ ‖(As−t)E‖.

Proof. The norm inequalities follow from the singular values inequalities and
by standard antisymetric tensor arguments [5, Chapter 1] it suffices to prove the
operator norm inequalities:

‖(As)E(At)E‖∞ ≤ ‖(As+t)E‖∞ (10)

and
‖(As)E(A−t)E‖∞ ≥ ‖(As−t)E‖∞. (11)

(10) is a consequence of Proposition 2.10. We prove (11): Let E denote the
projection onto E . We have

‖EAs−tE‖ = ‖EA(s−t)/2‖2 ≤ ‖As/2EA−t/2‖2

= ‖As/2EA−tEAs/2‖ ≤ ‖EA−tEAsE‖

where in the first inequality we use Proposition 3.5 below and in the second one
the simple fact that ‖XY ‖ ≤ ‖Y X‖ for operators X, Y whose product XY is
normal. 2
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3. An inequality for the Hilbert-Schmidt norm

We first introduce the hyponormality index of an operator. It measures the lack
of normality of an operator on a finite dimensional space H. If H has an infinite
dimension, then this number measures the lack of hyponormality. We recall that
an operator X is hyponormal when XX∗ ≤ X∗X.

The hyponormality index ν(X) of an operator X is defined by

ν2(X) = min{a ∈ R+ | XX∗ ≤ aX∗X}

Equivalently,

ν(X) = sup
‖X∗h‖
‖Xh‖

(and ν(0) = 1)

where the supremum runs over all the vectors h such that ‖Xh‖ 6= 0.
Thus, for an invertible operator X,

ν(X) = ‖X∗X−1‖∞.

If X is no longer invertible,

ν(X) = lim
ε→0

‖X∗(|X|+ ε)−1‖∞.

If ν(X) is finite, we have XX∗ ≤ ν2(X)X∗X, so ‖X∗‖∞ ≤ ν(X)‖X‖∞. This
shows that ν(X) ∈ [1,∞]. Moreover ν(X) = 1 if and only if X is hyponormal. In
particular, if X is compact, then ν(X) = 1 implies the normality of X. Indeed,
it is easy to check that a compact hyponormal operator is normal; more generally
Putnam inequality [4] ensures that a hyponormal operator whose spectrum has
zero area is normal.

We now state the main result of this section.

Theorem 3.1. Let Z be an operator whose hyponormality index ν(Z) is finite
and let A and B be two commuting positive operators. Then:

(1) If A and B form a monotone pair,

‖AZB‖2 ≤ ν(Z)‖ZAB‖2

where the constant ν(Z) is optimal. In particular, if Z is normal, or hyponormal,
the inequality holds with ν(Z) = 1.

(2) If A and B form an antimonotone pair, if Z is normal and if either Z is in
the Hilbert-Schmidt class or Z is self-adjoint or A or B is compact,

‖AZB‖2 ≥ ‖ZAB‖2.
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Example 3.2. The theorem is no longer true for the Schatten p-norms, 2 < p ≤
∞. Consider

A =

2 0 0
0 1 0
0 0 1

 , B =

1 0 0
0 1 0
0 0 0

 , Z =

0 1 0
1 1 1
0 1 0

 ,

then, for any p > 2, ‖AZB‖p > ‖ZAB‖p. It would be desirable either to find
counterexamples for 1 ≤ p < 2 or to extend the theorem to the Schatten p-norms
with p < 2.

Proof. 1. Proof of the monotone case.
There exist C ≥ 0 and two nondecreasing functions f, g : R+ → R+ such that

A = f(C) and B = g(C). One of the following inclusion relations must hold

{t : f(t) = 0} ⊂ {t : g(t) = 0}, {t : f(t) = 0} ⊃ {t : g(t) = 0}
Suppose that the left inclusion holds (the other case leads to a similar proof). Then,
for every ε > 0, we may find a positive Ã and a nondecreasing Ψ : R+ → R+ such
that

(1− ε)Ã ≤ A ≤ (1 + ε)Ã and (1− ε)Ψ(Ã) ≤ B ≤ (1 + ε)Ψ(Ã)

Moreover, we may require that A commutes with Ã and B with Ψ(Ã). Therefore,
it suffices to prove the theorem for monotone pairs of the type (A,Ψ(A)). We then
proceed as follows.

1.1. First, we suppose that A has a finite rank, and we follow two steps.
• If r is a fixed positive real, the function f defined on (−r, r) by

f(s) = ‖Ar+sZAr−s‖2
2

is convex. This can be seen by computing the second derivative of

s→ TrAr−sZ∗A2(r+s)ZAr−s,

or, more quickly by remarking that if (e1, . . . , en) is an orthonormal system asso-
ciated to A’s non-zero eingenvalues and if zi j = 〈ei, Zej〉, then

f(s) =
∑
i,j

a
2(r+s)
i |zi j |2a2(r−s)

j

which is obviously convex.
Besides, f can be extended by continuity to r and −r. If we call E the projection

onto the range of A, we have

f(−r) = ‖EZA2r‖2
2 ≤ ‖ZA2r‖2

2

and
f(r) = ‖A2rZE‖2

2 ≤ ‖A2rZ‖2
2 ≤ ν2(Z)‖ZA2r‖2

2.

The convexity of f entails f(s) ≤ sup{f(−r) ; f(r)}, hence:

f(s) ≤ ν2(Z)‖ZA2r‖2
2
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which can also be written as:

‖AsZAt‖2 ≤ ν(Z)‖ZAs+t‖2 (0 ≤ s, t).

• We turn to the main step of the proof. Let us show that for any nondecreasing
functionΨ : R+ → R+, we have

‖AZΨ(A)‖2 ≤ ν(Z)‖ZAΨ(A)‖2,

or
TrZ∗A2ZΨ2(A) ≤ ν2(Z)Tr |Z|2A2Ψ2(A) .

Setting C = A2 and ϕ = Ψ2 ◦ √ , we have to prove that for any positive operator
of finite rank C and any positive nondecreasing ϕ : R+ → R+ ,

TrZ∗CZϕ(C) ≤ ν2(Z)Tr |Z|2Cϕ(C) . (∗)

Let Φ be the set of all positive, nondecreasing functions ϕ which verify (∗) and

TrZ∗ϕ(C)ZC ≤ ν2(Z)Tr |Z|2Cϕ(C) . (∗∗)

Let us show that Φ coincides with the set of all positive, nondecreasing functions
on R+. Φ is stable under:

(a) a linear combination with positive coefficients
(b) ”dilation”: ϕ ∈ Φ ⇒ ϕλ(x) = ϕ(λx) ∈ Φ
(c) a pointwise limit
(d) if ϕ ∈ Φ is continuous and strictly increasing, with ϕ(0) = 0 and ϕ(∞) = ∞;
then the reciprocal function ϕ−1 is also an element of Φ.

By (a) (b) (c) we just have to prove that χ[1,∞) ∈ Φ. By the first step, the functions
x→ xs, (s ≥ 0), belong to Φ. So,

ϕn(x) =
1
n
xn + x1/n

is an element of Φ. Since limn→∞ ϕn(0) = 0, limn→∞ ϕn(x) = 1 for x ∈ [0, 1)
and limn→∞ ϕn(x) = ∞ for x ∈ (1,∞), the reciprocal functions ϕ−1

n pointwise
converge to χ[1,∞) and the theorem is proved with (c) and (d).

1.2. Now, A no longer has a finite rank. If A can be diagonalized, there exists
an increasing sequence {An} of finite rank operators which pairwise commute and
strongly converge to A. We have:

‖AnZΨ(An)‖2 ↑ ‖ZAΨ(A)‖2 and ‖ZAnΨ(An)‖2 ↑ ‖ZAΨ(A)‖2

which proves the theorem when A can be diagonalized. The general case can be
deduced from it, because for any ε > 0 there exists Aε which can be diagonalized
and which commutes with A, such that

(1− ε)A ≤ Aε ≤ (1 + ε)A and (1− ε)Ψ(A) ≤ Ψ(Aε) ≤ (1 + ε)Ψ(A).
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We still have to check that ν(Z) is the best constant. Let ε > 0 and let h be a
norm-one vector for which

‖Z∗h‖
‖Zh‖

≥ ν(Z)− ε.

We take A = h⊗h and Ψ(A) = I, where I is the identity. Letting ε tend to 0
proves the claim.

2. Proof of the antimonotone case.
Let us observe that if A is a positive operator, Θ is a positive nondecreasing

function defined on the spectrum of A and Z is a normal operator, the Hilbert-
Schmidt norm inequality that we have proved in the monotone case implies the
following trace norm inequality:

‖AZΘ(A)Z∗A‖1 ≤ ‖ZA2Θ(A)Z∗‖1. (12)

2.1. Suppose first that Z is a normal Hilbert-Schmidt operator. For an arbi-
trarily small ε > 0, we may find a positive Ã and a nonincreasing Ψ : R+ → R+

such that
‖Ã−A‖∞ ≤ ε and ‖Ψ(Ã)−B‖∞ ≤ ε.

Hence, it suffices to prove the theorem for antimonotone pairs of the type (A,Ψ(A)).
Ψ is bounded and we can write Ψ2 as the difference between a constant k = Ψ2(0)
and an increasing function Θ: Ψ2 = k −Θ. So,

‖AZΨ(A)‖2
2 =‖AZΨ2(A)Z∗A‖1

=‖AZ(k −Θ)Z∗A‖1 = k‖AZZ∗A‖1 − ‖AZΘ(A)Z∗A‖1,

where the assumption that Z is Hilbert-Schmidt is essential for the last expression
to be meaningful. Using the normality of Z and (12), we can conclude:

‖AZΨ(A)‖2
2 ≥ k‖AZ∗ZA‖1 − ‖ZA2Θ(A)Z∗‖1 = ‖ZAΨ(A)‖2

2.

2.2. We now assume that Z is self-adjoint. We may suppose that both A and
B can be diagonalized, so that there exits an increasing sequence {En} of finite
rank projections, commuting with A and B, such that

‖AZB‖2 = lim ‖AEnZEnB‖2

By step 2.1 ‖AEnZEnB‖2 ≥ ‖EnZEnAB‖2 and we deduce the result by letting n
tend to the infinite.

2.3. Finally we assume that A is compact. There exists a sequence {An} of posi-
tive Hilbert-Schmidt operators increasing to A such that (An, B) are antimonotone
pairs. Therefore, ‖AnZB‖2 ↑ ‖AZB‖2 and ZAnB → ZAB in Strong Operator
Topology. Thanks to the SOT lower semi-continuity of the Hilbert-Schmidt norm,

‖ZAB‖2 ≤ lim inf ‖ZAnB‖2.

So, it suffices to show the inequality when A is Hilbert-Schmidt. We may reproduce
the argument of step 2.1, now using as an essential assumption the fact that A is
Hilbert-Schmidt. 2
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We say that a normal operator S is semi-unitary if its restriction to ran(S) is a
unitary operator.

Corollary 3.2. Let (A,B) be a monotone pair of positive operators and let S be
a semi-unitary operator. Then,

‖ASB‖∞ ≤
√

2‖SAB‖∞,
moreover,

√
2 is the best constant possible.

Proof. By a limit argument, we may assume that there is a norm one vector h
such that

‖ASB‖∞ = ‖ASBh‖
Let E be the projection onto the range of S and set f = Bh. Since ‖Ef‖ =
‖Sf‖ we obtain a semi-unitary operator R of rank 2 (or 1) such that ran(R) =
Span{Ef, SEf} and REf = Sf . Since R∗R ≤ E we have Sf = Rf and

‖ASB‖∞ = ‖AEf‖ = ‖ARf‖
≤ ‖ARB‖∞
≤ ‖ARB‖2

≤ ‖RAB‖2 (by Theorem 3.1)

≤
√

2‖RAB‖∞ (rank(R) ≤ 2)

≤
√

2‖EAB‖∞ (R∗R ≤ E∗E).

To see that the constant
√

2 can not be improved, we consider

An =

1 0 0
0 1 0
0 0 n

 Bn =

0 0 0
0 1 0
0 0 1

 Sn =
1√

n2 + 1

0 n 0
n 0 1
0 1 0


Then,

lim
n→∞

‖AnSnBn‖∞
‖SnAnBn‖∞

=
√

2,

thus the constant
√

2 can not be improved. 2

It would be interesting to find substitutes for Corollary 3.2 when S is a general
normal (or hermitian, or positive) operator. In this direction we note the follow-
ing straightforward consequence of Theorem 3.1: If (A,B) is a monotone pair of
positive operators and Z is a normal operator on an n-dimensional space,

‖AZB‖∞ ≤
√
n‖ZAB‖∞.

If A and B form an antimonotone pair, then the reverse inequality holds.

For monotone or antimonotone pairs of the type (Ax, Ay), there are specific
results. Although these results are not very original, we include them for the sake
of completeness.
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We denote by I an ideal of compact operators endowed with a unitarily invariant
norm ‖·‖making it a Banach space (one also says that I is a symmetrically normed
ideal).

Lemma 3.4. For an operator Z ∈ I and two invertible operators A and B, the
map t→ ‖|A|tZ|B|t‖ is log-convex, equivalently:

‖Z‖ ≤ ‖A∗ZB∗‖1/2‖A−1ZB−1‖1/2

Proof. By unitary invariance of the norm, the analytic map f(z) = |A|zZ|B|z
satisfies ‖f(x+ iy)‖ = ‖f(x)‖ for all reals x and y. Hence the lemma is a straight-
forward application of the Banach space valued version of the Three lines theorem.
2

Proposition 3.5. Let Z be an operator in I and let A be a positive operator.
Then, for all s, t ≥ 0, we have

‖AsZAt‖ ≤ ν(Z)s/(s+t)‖ZAs+t‖.
Moreover, if A is invertible and 0 ≤ s < t,

‖AsZA−t‖ ≥ ν(Z)s/(s−t)‖ZAs−t‖.
Equivalently, if A is invertible and 0 ≤ t < s,

‖AsZA−t‖ ≥ ν(Z∗)s/(t−s)‖ZAs−t‖.

In the first inequality of the proposition, ‖ZAs+t‖ = 0 ⇒ ZAs+t = 0 ⇒ AsZAt = 0
⇒ ‖AsZAt‖ = 0. Hence we may adopt the convention that ν(Z) · 0 = 0 when
ν(Z) = ∞.

Proof. By lemma 3.4, f(r) = ‖As−rZAt+r‖ is log-convex on ] − t, s[. From the
lower semi-continuity of ‖ · ‖ in WOT we easily deduce that f can be extended
by continuity to −t and s with f(−t) = ‖As+tZE‖ and f(s) = ‖EZAs+t‖ where
E = A0 is the support projection of A. Hence,

f(0) ≤ f(−t)
s

s+t f(s)
t

s+t

where

f(0) = ‖AsZAt‖, f(−t) ≤ ‖As+tZ‖, f(s) ≤ ‖ZAs+t‖
As ‖As+tZ‖ ≤ ν(Z)‖ZAs+t‖ , we get the first inequality.

To prove the second inequality, we consider the function f(r) = ‖As−rZAr−t‖.
Since g(r) = log f(r) is convex, the graphic representation of g shows us that the
point (0, g(0)) is above the line passing by (s, g(s)) and (t, g(t)). Hence,

g(0) ≥ g(s) +
g(t)− g(s)
t− s

· (0− s),
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thus

log f(0) ≥ log f(s) +
−s
t− s

log
f(t)
f(s)

,

or

log f(0) ≥ log
(
f(s)

t
t−s f(t)

−s
t−s

)
,

so

f(0) ≥ f(s)
t

t−s f(t)
−s
t−s .

Then, using f(0) = ‖AsZA−t‖ and f(t) = ‖As−tZ‖ ≤ ν(Z)‖ZAs−t‖ = ν(Z)f(s),
we deduce the result. The proof of the third inequality is similar. Actually it is
not difficult to see that the second and third inequalities are equivalent. 2

Lemma 3.4 has been derived from a general principle of complex Analysis. It
is also possible (and preferable) to deduce it from matrix theoretical technics. We
then obtain a more precise result involving weak log-majorisation. Our next lemma
follows such an approach and extends Lemma 3.4.

Lemma 3.6. Let A, B, Z be operators on a finite dimensional space with A and
B invertibles. Let p, q, r be positive reals with 1/p + 1/q = 1. Then, for every
unitarily invariant norm ‖ · ‖,

‖ |Z|r‖ ≤ ‖ |A∗ZB∗|
rp
2 ‖1/p · ‖ |A−1ZB−1|

rq
2 ‖1/q,

in particular

‖ |Z|r‖ ≤ ‖ |A∗ZB∗|r‖1/2 · ‖ |A−1ZB−1|r‖1/2.

Proof . Note that, ρ(·) denoting the spectral radius,

‖Z‖2
∞ = ρ(Z∗Z) = ρ(BZ∗ZB−1) ≤ ‖BZ∗ZB−1‖∞

= ‖BZ∗AA−1ZB−1‖∞
≤ ‖A∗ZB∗‖∞‖A−1ZB−1‖∞

Thus the inequality is proved in case of the operator norm. An antisymetric tensor
product argument then shows that, if {zn}, {bn}, {cn} denote the sequences of the
respective singular values of Z, A∗ZB∗, A−1ZB−1 arranged in decreasing order
and repeated according to their multiplicity, we have

N∏
n=1

zn ≤
N∏

n=1

b1/2
n c1/2

n for each integer N.
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This implies that {zr
n} is weakly majorized by {br/2

n c
r/2
n }, so we have

‖ |Z|r‖ = Φ(zr
1, z

r
2, . . . )

≤ Φ(br/2
1 c

r/2
1 , b

r/2
2 c

r/2
2 , . . . )

≤ Φ1/p(b
rp
2

1 , b
rp
2

2 , . . . )Φ1/q(c
rq
2

1 , c
rq
2

2 , . . . )

≤ ‖ |A∗ZB∗|
rp
2 ‖1/p · ‖ |B−1AC−1|

rq
2 ‖1/q

by the Holder inequality for the symmetric gauge function Φ corresponding to the
norm ‖ · ‖ (cf [1], p 87). 2

Proposition 3.7. Let A, B, Z be operators on a finite dimensional space and let
p, q, r be positive reals with 1/p + 1/q = 1. Then, for every unitarily invariant
norm ‖ · ‖,

‖ |AZB|r‖ ≤ ‖ |A∗AZ|
rp
2 ‖1/p · ‖ |ZBB∗|

rq
2 ‖1/q

in particular (Bhatia-Davis [2]),

‖ |AZB|r‖ ≤ ‖ |A∗AZ|r‖1/2 · ‖ |ZBB∗|r‖1/2.

Proof. We may assume that both A and B are invertibles. Then we apply Lemma
3.6 with AZB, A and B∗−1 in place of Z, A and B respectively. 2

4. Addenda

4.1. If (A,B) is a monotone pair of positive operators, then we can find a positive
operator C and two nondecreasing continuous functions f , g such that A = f(C),
B = g(C). A similar statement holds for antimonotone pairs.

4.2. Several well known facts can be derived from Theorem 3.1 when Z is a unitary:

(1) The von Neumann trace inequality mentionned in the introduction: For two
operators X, Y on an n-dimensional space,

|TrXY | ≤
∑

k

µk(X)µk(Y )

Recall that rearrangement inequalites of Hardy-Littlewood-Polya type can be de-
rived from von Neumann’s trace inequality.

(2) Given two Hermitian operators A, B on an n-dimensional space,∑
k

|λk(A)− λk(B)|2 ≤ ‖A−B‖2
2 ≤

∑
k

|λn+1−k(A)− λk(B)|2.

Actually, these inequalities remain valid for all unitarily invariant norms [1, p. 71].
(3) Given an arbitrary basis {xi}n

i=1 of an n-dimensional space, the problem
of how to find an orthonormal basis {ui}n

i=1 minimizing
∑

i ‖xi − ui‖2 was first
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considered by the chemist Lowdin [1, p. 87]. This problem is equivalent to that of
finding the best unitary approximant of an invertible operator X, in the Hilbert-
Schmidt norm. If X = U |X|, one has

min
V ∗V =I

‖X − V ‖2 = ‖X − U‖2.

This result remains true for all unitarily invariant norm [1, p. 276].

4.3. Theorem 3.1 entails the following inequalities for real and imaginary parts:

Corollary 4.1. Let A, B be commuting, positive operators and let Z be a normal
Hilbert-Schmidt operator.

(a) If (A,B) is monotone,

‖Re(AZB)‖2 ≤ ‖Re(ZAB)‖2.

(b) If (A,B) is antimonotone,

‖Re(AZB)‖2 ≥ ‖Re(ZAB)‖2.

The same results hold for the imaginary parts.

Proof. As Im(AZB) = −Re(A(iZ)B) and Im(ZAB) = −Re((iZ)AB), it suffices
to prove the corollary for the real parts. We do case (a), case (b) being similar.
We have

4‖Re(AZB)‖2
2 = 2TrAZB2Z∗A+ Tr (AZB)2 + Tr (BZ∗A)2

= 2‖AZB‖2
2 + Tr (AZB)2 + Tr (BZ∗A)2

≤ 2‖ZAB‖2
2 + Tr (AZB)2 + Tr (BZ∗A)2

= 4‖Re(ZAB)‖2
2

where the last equality follows from commutatibility of A and B. 2
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Chapter 5

Dilations for strict contractions

Introduction

By an operator, we mean an element of the algebra L(H) of all bounded linear
operators acting on the usual (i.e. complex, separable, infinite dimensional) Hilbert
space H. We will denote by the same letter a projection and the corresponding
subspace. Thus, if F is a projection and A is an operator, we denote by AF the
compression of A by F , that is the restriction of FAF to the subspace F . Given a
total sequence of nonzero mutually orthogonal projections {En}, we consider the
pinching

P(A) =
∞∑

n=1

EnAEn =
∞⊕

n=1

AEn .

If {An} is a sequence of operators acting on separable Hilbert spaces with An

unitarily equivalent to AEn for all n, we also naturally write P(A) =
⊕∞

n=1An.
The main result of this chapter can then be stated as:

Let {An}∞n=1 be a sequence of operators acting on separable Hilbert spaces.
Assume that supn ‖An‖∞ < 1. Then, we have a pinching

P(A) =
∞⊕

n=1

An

for any operator A whose essential numerical range contains the unit disc.

This result is proved in the second section of the chapter. We have included a first
section concerning some well-known properties of the essential numerical range.
The third section is concerned with some related results.

1. Properties of the essential numerical range

We denote by 〈·, ·〉 the inner product (linear in the second variable), by coS
the convex hull of a subset S of the complex plane C. The numerical range of an
operator A is

W (A) = {〈h,Ah〉 | ‖h‖ = 1}.
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We denote by W (A) the closure of W (A). The celebrated Hausdorff-Toeplitz
theorem (cf [6] chapter 1) states that W (A) is convex. A corollary is Parker’s
theorem ([6], p.20): Given an n by n matrix A, there is a matrix B unitarily
equivalent to A and with all its diagonal elements equal to TrA/n.

Let us give three equivalent definitions of the essential numerical range of A,
denoted by We(A).

(1) We(A) = ∩W (A+K), the intersection running over the compact operators K

(2) Let {En} be any sequence of finite rank projections converging strongly to
the identity and denote by Bn the compression of A to the subspace E⊥n . Then
We(A) = ∩n≥1W (Bn)

(3)We(A) = {λ | there is an orthonormal system {en}∞n=1 with lim〈en,Aen〉 = λ}.

It follows that We(A) is a compact convex set containing the essential spectrum
of A, Spe(A). The equivalence between these definitions has been known since
the early seventies if not sooner (see for instance [1]). The very first definition of
We(A) = is (1); however (3) is also a natural notion and easily entails convexity
and compactness of the essential numerical range. We mention the following result
of Chui-Smith-Smith-Ward [4] :

Proposition 1.1. Every operator A admits some compact perturbation A+K for
which We(A) = W (A+K).

Another characterization of the essential numerical range of A is

We(A) = {λ | there is a basis {en}∞n=1 with lim〈en,Aen〉 = λ}.
Let us check the equivalence between our definition (3) with orthonormal system
and the above identity which seems to be due to Q. F. Stout [11]. Let {xn}∞n=1 be
an orthonormal system such that limn→∞〈xn, Axn〉 = λ. If span{xn}∞n=1 is of finite
codimension p we immediately get a basis e1, . . . , ep; ep+1 = x1, . . . , ep+n = xn, . . .
such that limn→∞〈en, Aen〉 = λ. If span{xn}∞n=1 is of infinite codimension, we
may complete this system with {yn}∞n=1 in order to obtain a basis. Let Pj be the
subspace spanned by yj and {xn|2j−1 ≤ n < 2j}. By Parker’s theorem, there is a
basis of Pj , say {ejl }l∈Λj

, with

〈ejl , Ae
j
l 〉 =

1
dimPj

TrAPj .

Since
1

dimPj
TrAPj → λ as j →∞,

we may index {ejl }j∈N;l∈Λj
in order to obtain a basis {fn}∞n=1 such that

lim
n→∞

〈fn, Afn〉 = λ.
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The essential numerical range appears closely related to the diagonal set of A
which we define by

∆(A) = {λ | there is a basis {en}∞n=1 with 〈en,Aen〉 = λ}.
The next result is a straightforward consequence of a lemma of Peng Fan [5]. A
real operator means an operator acting on a real Hilbert space and intX denotes
the interior of X ⊂ C.

Proposition 1.2 Let A be an operator. Then intWe(A) ⊂ ∆(A) ⊂ We(A).
Consequently, an open set U is contained in ∆(A) if and only if there is a basis
{en}∞n=1 such that U ⊂ co{〈ek, Aek〉|k ≥ n} for all n. Finally, the diagonal set of
a real operator is symetric about the real axis. (For A self-adjoint, the result holds
with int denoting the interior of subsets of R.)

Curiously enough, it seems difficult to answer the following questions: Is the diag-
onal set always a (possibly vacuous) convex set ? Is there an operator of the form
self-adjoint + compact with a disconnected diagonal set ?

An elementary but very important property of W (·) is the so named projection
property: ReW (A) = W (ReA) (see [6] p. 9), where Re stands for real part. We(·)
also has this property. This result and the Hausdorff-Toeplitz Theorem are the
keys to prove the following fact:

Proposition 1.3. Let A be an operator.

(1) If We(A) ⊂W (A) then W (A) is closed.

(2) There exist normal, finite rank operators R of arbitrarily small norm such
that W (A+R) is closed.

Proof. Assertion (1) is due to J. S. Lancaster [8]. We prove the second assertion
and implicitly prove Lancaster’s result. We may find an orthonormal system {fn}
such that the closure of the sequence {〈fn, Afn〉} contains the boundary ∂We(A).
Fix ε > 0. It is possible to find an integer p and scalars zj , 1 < j < p, with
|zj | < ε, such that :

co{〈fj , Afj〉+ zj |1 < j < p} ⊃ ∂We(A).

Thus, the finite rank operator R =
∑

1<j<p zjfj ⊗fj has the property that W(A+
R) contains We(A).

We need this operator R. Indeed, setting X = A + R, we also have W(X) ⊃
We(X). We then claim that W(X) is closed (this claim implies assertion (1)). By
the contrary, there would exist z ∈ ∂W (X) \We(X). Furthermore, since W (X) is
the convex hull of its extreme points, we could assume that such a z is an extreme
of W (X). By suitable rotation and translation, we could assume that z = 0 and
that the imaginary axis is a line of support of W (X). The projection property for
W (·) would imply that W (ReX) = (x, 0) for a certain negative number x, so that
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0 ∈We(ReX). Thus we would deduce from the projection property for We(·) that
0 ∈We(X) : a contradiction. 2

The perturbation R in Proposition 1.3 can be taken real if A is real. We mention
that the set of operators with nonclosed numerical ranges is not dense in L(H).
Proposition 3 improves the following result of I.D. Berg and B. Sims [3]: operators
which attain their numerical radius are norm dense in L(H). A motivation for
Berg and Sims was the following fact: Given an arbitrary operator A, a small rank
one perturbation of A yields an operator which attains its norm. Indeed, the polar
decomposition allows us to assume that A is positive, an easy case when reasoning
as in the proof of Proposition 1.3.

Let us say that a convex set in C is relatively open if either it is a single point,
an open segment or an usual open set. Using similar methods as in the previous
proof, or applying Propositions 1.2 and 1.3, we obtain

Proposition 1.4. For an operator A the following assertions are equivalent

(1) W (A) is relatively open.

(2) ∆(A) = W (A).

From the previous results we may derive some information about W (·), We(·)
and ∆(·) for various classes of operators:

(a) Let S be either the unilateral or bilateral Shift, then ∆(S) = W (S) is the
open unit disc. More generally Stout showed [10] that weighted periodic shifts S
have open numerical ranges; therefore ∆(S) = W (S).

(b) There exist a number of Toeplitz operators with open numerical range. See
the papers by E. M. Klein [7] and by J. K. Thukral [11].

(c) Let X be an operator lying in a C∗-subalgebra of L(H) with no finite di-
mensional projections. Then for any real θ, W (ReeiθX) = We(ReeiθX). From the
projection property for W (·) and We(·) we infer that We(X) = W (X).

(d) Let X be an essentially normal operator : X∗X − XX∗ is compact. It is
known that We(X) = coSpe(X). Indeed, for such an operator the essential norm
equals the essential spectral radius : ‖X‖e = ρe(X). Denoting by we(X) the
essential numerical radius of X we deduce that ‖X‖e = we(X) = ρe(X). Note
that eiθX + µI = Y is also an essentially normal operator for any θ ∈ R and
µ ∈ C. Let z be an extremal point of We(X). With suitable θ and µ we have
eiθz + µ = we(Y ) = max{|y|, y ∈ We(Y )}, the maximum being attained at the
single point eiθz + µ. Since coSpe(Y ) ⊂ We(Y ) and ρe(Y ) = we(Y ), this implies
that eiθz + µ ∈ Spe(Y ). Hence z ∈ Spe(Y ), so that We(X) = coSpe(X).



83

2. The pinching theorem

Recall that one way to define the essential numerical range of an operator A is:

We(A) = {λ | there is an orthonormal system {en}∞n=1 with lim〈en,Aen〉 = λ}.
It is then very easy to check that We(A) is a compact convex set. Moreover We(A)
contains the open unit disc D if and only if there is a basis {en}∞n=1 such that

co{〈ek, Aek〉 | k > n} ⊃ D
for all n.

We state:

Theorem 2.1. Let A be an operator with We(A) ⊃ D and let {An}∞n=1 be a
sequence of operators such that supn ‖An‖∞ < 1. Then, we have a pinching

P(A) =
∞⊕

n=1

An.

(If A and {An}∞n=1 are real, then we may take a real pinching).

We need two lemmas. The first one is Theorem 2.1 for a single strict contraction:

Lemma 2.2. Let A be an operator with We(A) ⊃ D and let X be a strict contrac-
tion. Then there exists a projection E such that AE = X.

The second Lemma is a refined version of the first one:

Lemma 2.3. Let a ≥ 1 and 1 > ρ > 0 be two constants. Let h be a norm one
vector, let X be a strict contraction with ‖X‖∞ < ρ and let B be an operator with
‖B‖∞ ≤ a and We(B) ⊃ D. Then, there exist a number ε > 0, only depending on
ρ and a, and a projection E such that:

(i) dimE = ∞ and BE = X,

(ii) dimE⊥ = ∞, We(BE⊥) ⊃ D and ‖Eh‖ ≥ ε.

Proof of Theorem 2.1. The proof is organized in five steps:
Step 1. Some preliminaries are given.
Step 2. Proof of Lemma 2.2 in the special case when X is normal, diagonalizable.
Step 3. Proof of Lemma 2.2 in the general case.
Step 4. Proof of Lemma 2.3.
Step 5. Conclusion.
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1. Preliminaries

We shall use a sequence {Vk}k≥1 of orthogonal matrices acting on spaces of di-
mensions 2k. This sequence is built up by induction:

V1 =
1√
2

(
1 1
−1 1

)
then Vk =

1√
2

(
Vk−1 Vk−1

−Vk−1 Vk−1

)
for k ≥ 2.

Given a Hilbert space G and a decomposition

G =
2k⊕

j=1

Hj with H1 = · · · = H2k = H,

we may consider the unitary (orthogonal) operator on G : Wk = Vk
⊗
I, where I

denotes the identity on H,
Now, let B : G → G be an operator which, with respect to the above decompo-

sition of G, has a block diagonal matrix

B =

B1

. . .
B2k

 .

We observe that the block matrix representation ofWkBW
∗
k has its diagonal entries

all equal to
1
2k

(B1 + . . . B2k) .

So, the orthogonal operators Wk allow us to pass from a block diagonal matrix
representation to a block matrix representation in which the diagonal entries are
all equal.

2. Proof of Lemma 2.2 when X is normal, diagonalizable.

Let {λn(X)}n≥1 be the eigenvalues of X repeated according to their multiplicities.
Since |λn(X)| < 1 for all n and We(A) ⊃ D, we may find a norm one vector e1
such that 〈e1, Ae1〉 = λ1(T ). Let F1 = [span{e1, Ae1, A∗e1}]⊥. As F1 is of finite
codimension, We(AF1) ⊃ D. So, there exists a norm one vector e2 ∈ F1 such that
〈e2, Ae2〉 = λ2(T ). Next, we set F2 = [span{e1, Ae1, A∗e1, e2, Ae2, A∗e2}]⊥, . . . . If
we go on like this, we exhibit an orthonormal system {en}n≥1 such that, setting
E = span{en}n≥1, we have AE = X.

3. Proof of Lemma 2.2 in the general case.

The contraction Y = (1/‖X‖∞)X can be dilated in a unitary

U =
(

Y −(I − Y Y ∗)1/2

(I − Y ∗Y )1/2 Y ∗

)
thus X can be dilated in a normal operator N = ‖X‖∞U with ‖N‖∞ < ρ. This
permits to restrict to the case when X is a normal strict contraction. So, let X
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be a normal operator with ‖X‖∞ < ρ < 1. We remark with the Berg-Weyl-von
Neumann theorem [2], that X can be written as

X = D +K (1)

where D is normal diagonalizable, ‖D‖∞ = ‖X‖∞ < ρ, and K is compact with
an arbitrarily small norm. Let K = ReK + iImK be the Cartesian decomposition
of K. We can find an integer l, a real α and a real β such that decomposition (1)
satisfies:
a) the operators αD, βReK, βImK are dominated in norm by ρ,
b) there are positive integers m, n with 2l = m+ 2n and

X =
1
2l

(mαD + nβReK + nβiImK). (2)

More precisely we can take any l such that [2l/(2l−2)].‖X‖∞ < ρ. Next, assuming
‖K‖∞ < ρ/2l, we can take m = 2l − 2, n = 1, α = 2l/(2l − 2) and β = 2l.

Let then T be the diagonal normal operator acting on the space

G =
2l⊕

j=1

Hj with H1 = · · · = H2l = H,

and defined by

T =

 m⊕
j=1

Dj

 ⊕  m+n⊕
j=m+1

Rj

 ⊕  2l⊕
j=m+n+1

Sj


where Dj = αD, Sj = βReK and Sj = βiImK.

We note that ‖T‖∞ < ρ < 1 and that the operator WlTW
∗
l , represented in the

preceding decomposition of G, has its diagonal entries all equal to X by (2). Hence,
applying the preceding step to T yields Lemma 2.2.

4. Proof of Lemma 2.3.

Let a ≥ 1 and let 1 > ρ > 0 be two constants. We take an arbitrary norm one
vector h and any operator B satisfying to the assumptions of Lemma 2.3. We can
show, using the same reasoning as that applied in the above Step 2, that we have
an orthonormal system {fn}n≥0, with f0 = h, such that:

a) 〈f2j , Bf2j〉 = 0 for all j ≥ 1.
b) {〈f2j+1, Bf2j+1〉}j≥0 is a dense sequence in D.
c) If F = span{fj}j≥0, then BF is the normal operator∑

j≥0

〈fj , Bfj〉fj ⊗ fj .

Setting F0 = span{f2j}j≥0 and F ′0 = span{f2j+1}j≥0, we then have:
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a) With respect to the decomposition F = F0
⊕
F ′0, BF can be written

BF =
(
BF0 0
0 BF ′

0

)
.

b) We(BF ′
0
) ⊃ D and h ∈ F0.

We can then write a decomposition of F ′0, F
′
0 =

⊕∞
j=1 Fj where for each index j,

Fj commutes with BF and We(BFj ) ⊃ D; so that the decomposition F =
⊕∞

j=0 Fj

yields a representation of BF as a block diagonal matrix,

BF =
∞⊕

j=0

BFj .

SinceWe(BFj ) ⊃ D when j ≥ 1, the same reasoning as in Step 3 entails that for any
sequence {Xj}j≥0 of strict contractions we have decompositions (†) Fj = Gj

⊕
G′j

allowing us to write, for j ≥ 1,

BFj =
(
Xj ∗
∗ ∗

)
.

Since ‖X‖∞ < ρ < 1 and ‖B‖∞ ≤ a, we can find an integer l only depending on
ρ and a, as well as strict contractions X1, . . . , X2l , such that

X =
1
2l

BF0 +
2l−1∑
j=1

Xj

 . (3)

Considering decompositions (†) adapted to these Xj , we set

G = F0

⊕ 2l−1⊕
j=1

Gj

 .

With respect to this decomposition,

BG =


BF0

X1

. . .
X2l−1

 .

Then we deduce from (3) that the block matrix WlBGW
∗
l has its diagonal entries

all equal to X.

Summary: h ∈ G and there exists a decomposition G =
⊕2l

j=1Ej , in which l
depends only on ρ and a, such that BEj = X for each j. Thus we have an integer
j0 such that, setting Ej0 = E, we have

BE = X and ‖Eh‖ ≥ 1√
2l
.

Taking ε = 1/
√

2l ends the proof of Lemma 2.3.
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4. Conclusion.

Fix a dense sequence {hn} in the unit sphere of H and set a = ‖A‖∞. We claim
that the statement (i) and (ii) of Lemma 2.3 ensure that there exists a sequence of
mutually orthogonal projections {Ej} such that, setting Fn =

∑
j≤nEj , we have

for all integers n:

(∗) An = AEn and We(AF⊥
n

) ⊃ D (so dimF⊥n = ∞),

(∗∗) ‖Fnhn‖ ≥ ε.

In Lemma 2.3, set a = ‖A‖∞. Replacing B by A, Lemma 2.3 proves (∗) and (∗∗)
for n = 1. Suppose this holds for an N ≥ 1. Let ν(N) ≥ N + 1 be the first
integer for which FNhν(N) 6= 0. Note that ‖AF⊥

N
‖∞ ≤ ‖A‖∞. We apply Lemma

2.3 to B = AF⊥
N

, X = AN+1 and h = FNhν(N)/‖FNhν(N)‖. We then deduce
that (∗) and (∗∗) are still valid for N + 1. Therefore (∗) and (∗∗) hold for all n.
Denseness of {hn} and (∗∗) show that Fn strongly increases to the identity I so
that

∑∞
j=1Ej = I as required. 2

Corollary 2.2. Let A be an operator with We(A) ⊃ D. For any strict contraction
X, there is an isometry V such that X = V ∗AV .

We use the strict inclusion notation X ⊂⊂ Y for subsets X, Y of C to mean
that there is an ε > 0 such that {x+ z | x ∈ X, |z| < ε} ⊂ Y .

Theorem 2.3. Let A be an operator and let {An}∞n=1 be a sequence of normal
operators. If ∪∞n=1W (An) ⊂⊂We(A) then we have a pinching

P(A) =
∞⊕

n=1

An.

(For self-adjoint operators, this result holds with the strict inclusion of R.)

Sketch of proof. Let N be a normal operator with W (N) ⊂⊂ We(A). If N is
diagonalizable, reasonning as in the proof of Theorem 1, we deduce that N can
be realized as a compression of A. If N is not diagonalizable we may assume that
0 ∈We(A). Thanks to the Berg-Weyl-von Neumann Theorem and still reasonning
as in the proof of Theorem 1 we again deduce that N is a compression of A.
Finally, the strict containment assumption allows us to get the wanted pinching.

To finish this section, we mention that we can not drop the assumption that
the strict contractions An of Theorem 1 are uniformly bounded in norm by a real
< 1. This observation is equivalent to the fact that we can not delete the strict
containment assumption in Theorem 2:

Let P be a halving projection (dimP = dimP⊥ = ∞), so We(P ) = [0, 1]. Then
the sequence {1−1/n2}n≥1 can not be realized as the entries of the main diagonal
of a matrix representation of P . To check that, we note that the positive operator



88

I−P would be in the trace-class: a contradiction. (Recall that a positive operator
with a summable diagonal is trace class.)

3. Related results

3.1. Open numerical ranges. Diagonal sets

Remark 3.1. Let A be an operator whose numerical range is open. There exists
an infinite projection E such that W(A) = W(AE) = W(AE⊥).

Question 3.2. Given a compact convex subset Γ of C, does there exist a normal
diagonalizable operator N such that Γ = ∆(N) ?

Question 3.3. Is there, for an arbitrary operator A, a compact operator L such
that ∆(A+ L) = int∆(A) ?

We have very poor information concerning the topologigal properties of the
boundary of a diagonal set. We may note that:

Proposition 3.4. The set of hilbertian bases has a natural Polish space structure.
The diagonal set of an operator is an analytical set.

Proof. The *-strong topology confers the structure of a Polish space (compatible
with the group structure) to the unitary group U of L(H). Fix a basis E and
consider the map U −→ U(E) between U and the set of bases. This correspondance
confers the structure of a Polish space to the set of bases.

Let A be a contraction on H. Let D denote the closed unit disc of C. The
subset C ⊂ DN consisting of constant sequences is obviously a closed subset of DN

endowed with the pointwise topology. The map

φ: {en}∞n=1 −→ {〈en, Aen〉}∞n=1

from the set of hilbertian bases into DN is continuous. So, φ−1C is closed. Let ν(s)
be the value of the constant sequence s. Then ∆(A) = ν ◦φ[φ−1C] is an analytical
set. ♦

D.A. Herrero [?] proved the following sufficient condition for an operator A to
ensure that W(A) is open :

If h, Ah, A∗h are linearly independant for all h, ‖h‖ = 1, then W(A) is open .
(Hc)

Proof of Herrero’s criteria. We first note that A satisfies (Hc) if and only
if Aθ satisfies (Hc) for any θ ∈ R, and also, if and only if λI + A satisfies (Hc)
for any λ ∈ C. We have to show that an operator A with a non open numerical
range can not satisfy (Hc). With a suitable choice of θ and λ, we may assume that
B = λI +Aθ has the following property : W(B) lies in the left halfplane and has
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0 as an extreme point. Thus, there exists a norm one vector h such that ReBh =
max{〈f,Bf〉 | ‖f‖ = 1} = 0. This entails that ReBh = 0. Consequentely nor B
neither A satisfy (Hc).

3.2. Appendix on trace-class operators

For a trace class operator A with a nonzero trace, the diagonal set is empty.
However we have the following result:

Proposition 3.5 Let A be a trace class operator. There is a hilbertian basis
{en}∞n=1 and a sequence {an}∞n=1 in R∗+ such that 〈en, Aen〉 = anTrA for all n.
Equivalently,

|TrA| =
∞∑

n=1

|〈en, Aen〉|.

Before giving the proof we make two remarks. 1) For any operator A the set of
normalized vectors h such that 〈en, Aen〉 = 0 is a closed subset of the unit sphere
of H. 2) Given a complete, separable metric space P and a dense sequence X in P,
one may explicitely construct, for any closed subspace P ′ in P, a dense sequence
X ′ in P ′.

Proof. First assume that TrA = 0. We make the following observation :
(O) B being a trace class operator with TrB = 0, there is a normalized f ∈ H
such that 〈f,Bf〉 = 0. Therefore TrBE = 0, where E is the subspace orthogonal
to f .

Indeed, let {gn}∞n=1 be a hilbertian basis. Suppose that for any integer k, 0 is not in
the convex hull of {〈gn, Bgn〉}k

n=1. This implies that the sequence {〈gn, Agn〉}∞n=1

lies in an open half-plane not containing 0. We deduce that TrB 6= 0, a contradic-
tion. So, there is an integer k such that 0 lies in the convex hull of {〈gn, Bgn〉}k

n=1.
By the Hausdorff-Toeplitz theorem we have a normalized f ∈ span{gn|1 ≤ n ≤ k}
satisfying 〈f,Bf〉 = 0 and (O) is proved.

To avoid transfinite induction and to get an explicit basis, we go on in the
following way. Let X = {xn}∞n=1 be a dense sequence in the unit sphere of H. For
any projection F , we set

δ(F ) =
∞∑

n=1

2−n‖xn − Fxn‖.

The map δ satisfies the three following properties.

(i) δ(I) = 0, where I is the identity operator
(ii) If Fn −→ F in the weak operator topology, then δ(Fn) −→ δ(F )

(iii) F ≤ G implies δ(F ) ≥ δ(G). Moreover F ≤ G and δ(F ) = δ(G) imply
F = G.
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We construct by induction an orthonormal sequence E = {en}∞n=1 in H. Let
Ek = span{e1, . . . ek}. We take ek+1 ∈ E⊥k such that

(Ck) δ(Ek+1) < 2−(k+1) + inf{δ(F ) | F ∈ Pk},

where Pk is the set of projections F which can be written F = Ek + f ⊗ f with f
such that 〈f,Af〉 = 0. Note that by observation (O) applied to B = AE⊥

k
, Pk is

not empty. Note also that by the remarks preceding the proof, the choice of ek+1

can be explicitely made.
We claim that E is a basis. Assume it is not; so the projection E = limEk

is not the full space. Since TrAE = lim TrAEk we deduce that there exists a
normalized f in E⊥ with 〈f,Af〉 = 0 and a xp in X such that ‖f − xp‖ < 1/2.
Thus ‖xp − Exp‖ > ‖f − xp‖. Therefore we have an η > 0 such that

2−p‖xp − Exp‖ = 2−p‖f − xp‖+ η. (4)

We then take q large enough to have

(5) 2−q < η and (6) δ(Er)− δ(E) < η/2 for all r ≥ q.

From (4) we get
2−p‖xp − f‖+ η ≤ 2−p‖xp − Eqap‖,

hence
2−p‖xp − (Eq + f ⊗ f)f‖+ η ≤ 2−p‖xp − Eqxp‖,

therefore,
δ(Eq + f ⊗ f) ≤ δ(Eq)− η,

so, using (6)
δ(Eq + f ⊗ f) ≤ δ(Eq+1)− η/2,

thus, by (5),
δ(Eq+1)− δ(Eq + f ⊗ f) > η/2 > 2−(q+1);

But this contradicts (Ck). So E is necessarily a basis. Proposition 3.5 is proved
in case of TrA = 0. The general case can be easily deduced. Without loss
of generality, we may assume that TrA = 1. Fix a hilbertian basis {hn}∞n=1

and consider the positive, trace class operator P =
∑

n 2−nhn ⊗ hn. Then A =
(A−P )+P with Tr (A−P ) = 0. So, we have a hilbertian basis {en}∞n=1 such that
〈en, (A − P )en〉 = 0 for all n. Since kerP is reduced to 0, we have 〈en, Aen〉 > 0
for all n. 2

Corollary 3.6. Let H and K be two self-adjoint trace class operators. There is
a hilbertian basis {en}∞n=1 and a sequence {an}∞n=1 in R∗+ such that 〈en, Aen〉 =
anTrK and 〈en,Hen〉 = anTrH for all n.

4. Addendum

We give a proof of the result of Chui-Smith-Smith-Ward.
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Proof. We first note that if the essential numerical range of A is contained in
a line then Proposition 1.1 is a rather elementary fact. Indeed, we then know
that A = λI + µS + L for some scalars λ, µ, some self-adjoint operator S and
some compact operator L (I stands for the identity). An obvious property of the
numerical range,

W (λI + µX) = λ+ µW (X)

for all scalars λ, µ and all operators X, reduces the proof to the case of a self-
adjoint operator A. Elementary spectral theory then shows that there is a compact
self-adjoint operator K commuting with A such that W (A+K) is either an open
segment or a single point.

Now, we consider the more general and interesting case when the essential nu-
merical range of A has a nonempty interior. We may assume, and we do, that 0
is in the interior of We(A). We have the following property :

(?) If {Fj} is a decreasing sequence of projections of finite codimension, then
W (FjAFj) converge to We(A) in the Hausdorff metric.

Recall that the Hausdorff distance between compact subsets X,Y ⊂ C is

dist(X,Y ) = max
x∈X

min
y∈Y

|x− y|+ max
y∈Y

min
x∈X

|x− y|.

For any ε > 0, we know that we may find a compact operator L such that the
Hausdorff distance of W (A+ L) from We(A) is smaller than ε [1, Proposition 2].
This allows us to assume that

1
2
W (A) ⊂⊂We(A), (7)

where we use the notation X ⊂⊂ Y , for subsets X, Y in C, to mean that there is a
small ball centered at the origine, say B, such that X +B ⊂ Y . The construction
of K will then result of the following claim:

(C) There is a decreasing sequence {En} of projections of finite rank such that the
operators

An =
n∑

k=1

1
2k
EkAEk

satisfy W (An) ⊂⊂We(A) for all n.

Indeed, assuming (C) proved, we notice that the operator

A∞ =
∞∑

k=1

1
2k
EkAEk
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satisfies W (A∞) ⊂We(A). Furthermore, A∞ = A+K where K =

−
∞∑

k=1

1
2k

{
EkA(Ek − Ek+1) + (Ek − Ek+1)AEk − (Ek − Ek+1)A(Ek − Ek+1)

}
which is compact as a norm limit of finite rank operators. Consequently W (A +
K) = We(A) as we wished.

We prove (C) by induction. Fix N ≥ 1 and suppose that we have found projec-
tions E1 = I ≥ · · · ≥ EN as in (C) and such that

W (AN ) ⊂⊂ (1− 1
2N+1

)We(A). (8)

By (7), this is true for N = 1. We observe that

We(AN ) = (1− 1
2N

)We(A). (9)

Let {ej} be an orthonormal basis of EN and consider

Ej
N = span{ek, k ≥ j}.

We claim that there exists an integer p such that setting EN+1 = Ep
N we have

W (AN+1) = W (AN +
1

2N+1
EN+1AEN+1) ⊂⊂ (1− 1

2N+2
)We(A).

Let us denote by z _ Z the distance of z ∈ C from Z ⊂ C. If the previous claim
was not true, there would exist a sequence {xj} of unit vectors such that

(10) 〈xj , (AN +
1

2N+1
Ej

NAE
j
N )xj〉_We \ (1− 1

2N+2
)We(A) −→ 0

as j → ∞. By (6) and strong-limj→∞Ej
N = 0, we should have xj → 0 weakly.

This zero weak-limit and (∗) would then imply that, using (7),

〈xj , (AN +
1

2N+1
Ej

NAE
j
N )xj〉_ (1− 1

2N
+

1
2N+1

)We(A) −→ 0 (11)

as j → ∞. Note that 1 − 2−N + 2−N−1 = 1 − 2−N−1 < 1 − 2−N−2 so that (11)
contradicts (10). Therefore (C) holds and the proof is complete. 2
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