A note on certain Euler–Mascheroni type sequences
József Sándor
Babeș–Bolyai University of Cluj, Romania
jsandor@math.ubbcluj.ro; jsandor@member.ams.org

Abstract. Expressions of type $x_n = \sum_{k=1}^{n} \frac{1}{a_k} - \log a_n$ ($a_n > 0$) will be called of Euler–Mascheroni type, as for $a_k \equiv k$ we obtain a sequence of approximations of the Euler–Mascheroni constant γ. The aim of this note is to solve two open problems posed by K. Kashihara [1] related to the convergence or divergence of (x_n) when $a_n = p_n$ (nth prime), and $a_n = S(n)$ (Smarandache function). An analogous result on the Smarandache ceil function is pointed out, too.

Keywords and phrases. prime numbers, estimates on primes, Smarandache function, Smarandache ceil function

AMS Subject Classification. 11A25, 11N37, 40A05

1 Introduction

Let (a_n) be a sequence of strictly positive real numbers, and construct the new sequence (x_n) defined by

$$x_n = \sum_{k=1}^{n} \frac{1}{a_k} - \log a_n \quad (n = 1, 2, \ldots)$$

(1)

For $a_k = k$ ($k = 1, 2, \ldots$) one obtains $x_n = \sum_{k=1}^{n} \frac{1}{k} - \log n$, which gives the well-known Euler sequence (or Euler–Mascheroni sequence), having as limit the Euler–Mascheroni constant γ (see [3]).

In his book K. Kashihara [1] (see p. 42) posed the problems of convergence or divergence of sequence (x_n) given by (1) for the particular cases $a_k = p_k$, the kth prime; as well as $a_k = S(k)$, the Smarandache function value. We will prove the following:

Theorem 1. The sequence (x_n^1) given by

$$(x_n^1) = \sum_{k=1}^{n} \frac{1}{p_k} - \log p_n$$

(2)

is divergent, being unbounded from below. The sequence (x_n^2) given by

$$(x_n^2) = \sum_{k=1}^{n} \frac{1}{S(k)} - \log S(n)$$

(3)
is divergent, being unbounded from above.

2 Proof of the Theorem

An old result of P. Chebyshev (see e.g. [2]) states that

\[
\sum_{p \leq x} \frac{1}{p} = \log \log x + B + O(1),
\]

where \(p \) denote primes. This means that \(\left(\sum_{p \leq p_n} \frac{1}{p} - \log \log p_n \right) \) is a convergent sequence. Remarking that

\[
x_n^1 = \left(\sum_{p \leq p_n} \frac{1}{p} - \log \log p_n \right) + \log \log p_n - \log p_n,
\]

and by \(\log \log p_n - \log p_n = \log \left(\log p_n \right) \), since \(\log p_n \to 0 \) as \(n \to \infty \) we get that \(x_n^1 \to -\infty \) as \(n \to \infty \).

This proves the first part of the theorem.

For the second part, put \(n = m! \). Then, since \(S(n) = \min\{k \geq 1 : n|k!\} \), we have \(S(n) = m \), and

\[
x_n^2 = \left(1 + \frac{1}{2} + \cdots + \frac{1}{m} - \log m \right) + \sum_{k < n, k \neq \ell, \ell < n} \frac{1}{S(k)},
\]

because for \(k = l! \), \(l < m \) one has \(S(k) = \ell \). Now, the last sum is greater than \(\sum_{p < n} \frac{1}{p} \), as for primes \(k = p < n \) one has \(S(k) = S(p) = p \), and \(p \neq \ell! \). It is well known that \(\sum_{p=1}^{\infty} \frac{1}{p} = +\infty \), so as \(m \to \infty \), clearly \((x_n^2) \) becomes unbounded from above, since the term \(1 + \frac{1}{2} + \cdots + \frac{1}{m} - \log m \) is bounded.

Remarks

1) For many improvements of (4) see our monograph [2].

2) For generalized Euler-Mascheroni constants, see our paper [3].

3) The above proof shows that \(S(n) \) may be replaced by any function having the properties \(S(k!) = k \) and \(S(p) = p \) (\(p \) prime).

4) Let \(S_2(n) = \min\{m \geq 1 : n|m^2\} \) be the "Smarandache ceil function" of order 2. By defining

\[
x_n^3 = \sum_{k=1}^{n} \frac{1}{S_2(k)} - \log S_2(n)
\]

we can prove similarly that \((x_n^3) \) is an unbounded (from above) sequence. Even, a more precise
result holds true. Indeed, recently Wang Xiaoying [4] proved that

$$\sum_{n \leq x} \frac{1}{S_2(n)} = \frac{3}{2\pi^2} \log^2 x + A_1 \log x + A_2 + \mathcal{O}(x^{-\frac{1}{4} + \varepsilon}). \quad (6)$$

Since \(\sqrt{n} \leq S_2(n) \leq n \), we have \(\log S_2(n) = \mathcal{O}(\log n) = \mathcal{O}(\log^2 n) \), so by (6) it follows that

$$\frac{x^3}{\log^2 n} \sim \frac{3}{2\pi^2} \text{ as } n \to \infty. \quad (7)$$

References

