SHARPENING OF KAI-LAI ZHONG'S INEQUALITY

HUAN-NAN SHI

Abstract

By using means of the theory of majorization, Kai-lai Zhong's Inequality is sharpened. As an application, some triangular inequalities are sharpened.

1. Introduction

Let $a_{1} \geq a_{2} \geq \ldots, a_{n} \geq 0$. If $\sum_{j=1}^{k} a_{j} \leq \sum_{j=1}^{k} b_{j}, k=1, \ldots, n$, then

$$
\sum_{j=1}^{n} a_{j}^{2} \leq \sum_{j=1}^{n} b_{j}^{2}
$$

with the equality holding only if $a_{k}=b_{k}, k=1, \ldots, n$.
It is known as the Kai-lai Zhong's inequality ${ }^{[1, p .57]}$. In 1989, Ji Chen ${ }^{[2]}$ obtained the following exponential generalization of this inequality:

Let $a_{1} \geq a_{2} \geq \ldots, a_{n} \geq 0, b_{1} \geq b_{2} \geq \ldots, b_{n} \geq 0$. If $\sum_{j=1}^{k} a_{j} \leq \sum_{j=1}^{k} b_{j}, k=$ $1, \ldots, n$, then

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}^{p} \leq \sum_{j=1}^{n} b_{j}^{p}, \quad(\text { for } p>1) \tag{1}
\end{equation*}
$$

with the equality holding only if $a_{k}=b_{k}, k=1, \ldots, n$.
In 1996, $\mathrm{Ke} \mathrm{Hu}^{[3-4]}$ given the following sharpening of the inequality in (1):

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}^{p} \leq \sum_{j=1}^{n}\left|b_{j}\right|^{p} \cdot\left[1-\frac{\left(\sum_{i=1}^{n} a_{1}^{p} e_{i} \sum_{j=1}^{n}\left|b_{j}\right|^{p}-\sum_{i=1}^{n} a_{i}^{p} \sum_{j=1}^{n}\left|b_{j}\right|^{p} e_{j}\right)^{2}}{\left(\sum_{i=1}^{n} a_{i}^{p} \sum_{j=1}^{n}\left|b_{j}\right|^{p}\right)^{2}}\right]^{\frac{\theta(p)}{2}} \tag{2}
\end{equation*}
$$

where $1-e_{k}-e_{m} \geq 0$, for $k, m=1,2, \ldots, n . \theta(p)=p-1$ for $p>2$ and $\theta(p)=1$ for $p<2$.

In recent years, some further generalizations and applications about the Kailai Zhong's inequality have been obtained in[5-7] and the references therein. The purpose of this note is to establish a sharped Kai-lai Zhong's inequality which is very simple and clear by means of the theory of majorization. As an application, some triangular inequalities are sharpened.

[^0]
2. Definitions and Lemmas

The following definitions and lemmas on majorization will be used:
Definition. ${ }^{[8]}$ Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right) \in \Re^{n}$. Then a is said to be majorized by b (in symbols $a \prec b$) if

$$
(i) \sum_{i=1}^{k} a_{[i]} \leqslant \sum_{i=1}^{k} b_{[i]} \quad \text { for } k=1,2, \ldots, n-1,(i i) \sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}
$$

where $a_{[1]} \geqslant a_{[2]} \geqslant \cdots \geqslant a_{[n]}$ and $b_{[1]} \geqslant b_{[2]} \geqslant \cdots \geqslant b_{[n]}$ are components of a and b rearranged in descending order, and a is said to strictly majors by b (written $a \prec \prec b)$ if a is not permutation of b. And a is said to be weakly submajorized by b (written $a \prec_{w} b$) if

$$
\sum_{i=1}^{k} a_{[i]} \leqslant \sum_{i=1}^{k} b_{[i]}, k=1,2, \ldots, n .
$$

Lemma 1. ${ }^{[8, p .7]}$ Let $a \in \Re_{+}^{n}, b \in \Re^{n}$ and $\delta=\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)$. If $a \prec_{w} b$, then

$$
\begin{equation*}
(a, \underbrace{\frac{\delta}{n}, \ldots, \frac{\delta}{n}}_{n}) \prec(b, \underbrace{0, \ldots, 0}_{n}) . \tag{3}
\end{equation*}
$$

Lemma 2. ${ }^{[8, p .48-49]}$ Let $I \subset \Re$ be an interval, $a, b \in I^{n} \subset \Re^{n}$, and $g: I \rightarrow \Re$. Then
(i) $a \prec b$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(a_{i}\right) \leq(\geq) \sum_{i=1}^{n} g\left(b_{i}\right) \tag{4}
\end{equation*}
$$

holds for all convex(concave) functions g.
(ii) $a \prec \prec b$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(a_{i}\right)<(>) \sum_{i=1}^{n} g\left(b_{i}\right) \tag{5}
\end{equation*}
$$

holds for all strictly convex(concave) functions g.
Lemma 3. ${ }^{[8, p .50]}$ Let $I \subset \Re$ be an interval, $a, b \in I^{n} \subset \Re^{n}$, and $g: I \rightarrow \Re$. If $a \prec_{w} b$, then

$$
\begin{equation*}
\left(g\left(a_{1}\right), g\left(a_{2}\right), \ldots, g\left(a_{n}\right)\right) \prec_{w}\left(g\left(b_{1}\right), g\left(b_{2}\right), \ldots, g\left(b_{n}\right)\right) \tag{6}
\end{equation*}
$$

holds for all increasing convex functions g.

3. Main results and Proofs

Theorem 1. Let $a_{1} \geq a_{2} \geq \ldots, a_{n} \geq 0, b_{1} \geq b_{2} \geq \ldots, b_{n} \geq 0, \sum_{j=1}^{k} a_{j} \leq$ $\sum_{j=1}^{k} b_{j}, k=1, \ldots, n$, i.e. $a \prec_{w} b$, and let $\delta=\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)$. If $p>1$, then

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}^{p} \leq \sum_{j=1}^{n} b_{j}^{p}-\frac{\delta^{p}}{n^{p-1}} \tag{7}
\end{equation*}
$$

if $0<p \leq 1$, then (7) reverses, with the equality holding only if $a_{j}=b_{j}, j=1, \ldots, n$.
Proof. According to Lemma 1 and Lemma 2, it follows that Theorem 1 is holds.

4. Geometrical Application

Let $\triangle A_{1} A_{2} A_{3}$ be a triangle with vertices A_{1}, A_{2}, A_{3}, sides a_{1}, a_{2}, a_{3} (with a_{j} opposite A_{j}), altitudes h_{1}, h_{2}, h_{3} (with h_{j} from A_{j}), medians m_{1}, m_{2}, m_{3} (with m_{j} from A_{j}), angle-bisectors w_{1}, w_{2}, w_{3} (with w_{j} from A_{j}) exradii r_{1}, r_{2}, r_{3} (with r_{j} tangent to a_{j}), radius of circumcircle R, radius of circle r and semi-perimeter s. And let P be an interior point of $\triangle A_{1} A_{2} A_{3}$ or point on sides of $\triangle A_{1} A_{2} A_{3}, R_{j}$ be distance from P to the vertex $A_{j}, j=1,2,3$. The symbol \sum denote the cyclic sum.

Lemma 4.

$$
\begin{gather*}
\left(\ln h_{2} h_{3}, \ln h_{3} h_{1}, \ln h_{1} h_{2}\right) \prec_{w}\left(\ln h_{1} r_{1}, \ln h_{2} r_{2}, \ln h_{3} r_{3}\right) \tag{8}\\
\left(\ln w_{2} w_{3}, \ln w_{3} w_{1}, \ln w_{1} w_{2}\right) \prec_{w}\left(\ln w_{1} r_{1}, \ln w_{2} r_{2}, \ln w_{3} r_{3}\right) . \tag{9}
\end{gather*}
$$

Proof. We prove only (9). (8) can is proved similarly. Without loss of generality, we may assume $a_{1} \geq a_{2} \geq a_{3}$. It is clear that $w_{2} w_{3} \geq w_{3} w_{1} \geq w_{1} w_{2}$. In order to prove (9), we need to prove :

$$
\begin{gather*}
w_{1} r_{1} \geq w_{2} r_{2} \geq w_{3} r_{3} \tag{10}\\
w_{2} w_{3} \leq w_{1} r_{1} \tag{11}\\
\left(w_{2} w_{3}\right)\left(w_{1} w_{2}\right) \leq\left(w_{1} r_{1}\right)\left(w_{2} r_{2}\right) \tag{12}\\
\left(w_{2} w_{3}\right)\left(w_{1} w_{2}\right)\left(w_{1} w_{2}\right) \leq\left(w_{1} r_{1}\right)\left(w_{2} r_{2}\right)\left(w_{3} r_{3}\right) \tag{13}
\end{gather*}
$$

From

$$
\begin{equation*}
w_{1}=\frac{2 \sqrt{a_{2} a_{3} s\left(s-a_{1}\right)}}{a_{2}+a_{3}}, r_{1}=\sqrt{\frac{s\left(s-a_{2}\right)\left(s-a_{3}\right)}{s-a_{1}}} \tag{14}
\end{equation*}
$$

it is easy to see that the first inequality in (10) equivalent to

$$
\begin{equation*}
\sqrt{\frac{a_{2}\left(s-a_{2}\right.}{a_{1}\left(s-a_{1}\right.}} \geq \frac{a_{2}+a_{3}}{a_{1}+a_{3}} \tag{15}
\end{equation*}
$$

Since $a_{2}\left(s-a_{2}\right) \geq a_{1}\left(s-a_{1}\right), a_{2}+a_{3} \geq a_{1}+a_{3}$, (15) holds, the first inequality in (10) follows immediately. The second inequality in (10) is proved similarly. From (14), it is easy to see that (11) equivalent to $\left(a_{3}+a_{1}\right)\left(a_{1}+a_{2}\right) \geq 2 a_{1}\left(a_{2}+a_{3}\right)$, i.e. $\left(a_{1}-a_{3}\right)\left(a_{1}+a_{2}\right) \geq 0$, so (11) holds. And by $m_{1}^{2} \leq r_{1} r_{2}, m_{2}^{2} \leq r_{2} r_{3}, m_{3}^{2} \leq r_{3} r_{1}$, (12) and (13) can are deduced.

The proof of Lemma 4 is now completed. (This proof Due to Jian Liu)
Theorem 2. For $\triangle A_{1} A_{2} A_{3}$, if $p>1$, then

$$
\begin{gather*}
\sum m_{j}^{p} \leq \sum a_{j}^{p}-\frac{\left(\sum a_{j}-\sum m_{j}\right)^{p}}{3^{p-1}} \tag{16}\\
\sum R_{j}^{p} \leq \sum a_{j}^{p}-\frac{\left(\sum a_{j}-\sum R_{j}\right)^{p}}{3^{p-1}} \tag{17}\\
\sum m_{j}^{p} \leq \sum r_{j}^{p}-\frac{\left(\sum r_{j}-\sum m_{j}\right)^{p}}{3^{p-1}} \tag{18}\\
\left(\frac{\sqrt{3}}{2}\right)^{p} \sum a_{j}^{p} \leq \sum r_{j}^{p}-\frac{\left(\sum r_{j}-\frac{\sqrt{3}}{2} \sum a_{j}\right)^{p}}{3^{p-1}} \tag{19}
\end{gather*}
$$

if $0<p \leq 1$, then inequalities in (16)-(19) are all reverses.
Proof. Notice that

$$
m_{1}<\frac{1}{2}\left(a_{1}+a_{2}\right) \leq a_{1}, m_{2}<\frac{1}{2}\left(a_{2}+a_{3}\right) \leq a_{2}, m_{3}<\frac{1}{2}\left(a_{3}+a_{1}\right) \leq a_{3}
$$

it is easy to check that $\left(m_{1}, m_{2}, m_{3}\right) \prec_{w}\left(a_{1}, a_{2}, a_{3}\right)$, and then by Theorem $1,(16)$ is proved. It is easy to check that $\left(R_{1}, R_{2}, R_{3}\right) \prec_{w}\left(a_{1}, a_{2}, a_{3}\right)$, and then by Theorem $1,(17)$ is proved. By the following majorization in [10, p.205], (18) and (19) can are proved respectively:

$$
\left(m_{1}, m_{2}, m_{3}\right) \prec_{w}\left(r_{1}, r_{2}, r_{3}\right)
$$

and

$$
\left(\frac{\sqrt{3}}{2} a_{1}, \frac{\sqrt{3}}{2} a_{2}, \frac{\sqrt{3}}{2} a_{3}\right) \prec_{w}\left(r_{1}, r_{2}, r_{3}\right)
$$

Remark 1. (17) is sharpening of a result due to Zhen-ping $\operatorname{An}^{[9]}$, (18) is sharpening of a result due to Ji Chen ${ }^{[1, p .236]}$, and (19) is too sharpening of a known result (see [1, p.226]).

Theorem 3. For $\triangle A_{1} A_{2} A_{3}$, if $p>1$, then

$$
\begin{gather*}
\sum h_{2}^{p} h_{3}^{p} \leq \sum h_{1}^{p} r_{1}^{p}-\frac{\left(\sum h_{1} r_{1}-\sum h_{2} h_{3}\right)^{p}}{3^{p-1}} \tag{20}\\
\sum w_{2}^{p} w_{3}^{p} \leq \sum w_{1}^{p} r_{1}^{p}-\frac{\left(\sum w_{1} r_{1}-\sum w_{2} w_{3}\right)^{p}}{3^{p-1}} \tag{21}
\end{gather*}
$$

if $<p \leq 1$, then inequalities in (20) and (21) are all reverses.
Proof. Notice that $g(x)=e^{x}$ be increasing convex function, by Lemma 3, from (8) and (9) it follows

$$
\left(h_{2} h_{3}, h_{3} h_{1}, h_{1} h_{2}\right) \prec_{w}\left(h_{1} r_{1}, h_{2} r_{2}, h_{3} r_{3}\right)
$$

and

$$
\left(w_{2} w_{3}, w_{3} w_{1}, w_{1} w_{2}\right) \prec_{w}\left(w_{1} r_{1}, w_{2} r_{2}, w_{3} r_{3}\right)
$$

respectively, and then by Theorem $1,(20)$ and (21) are proved.
In order to prove the following conjecture proposed by Jian Liu in 2000:

$$
\begin{equation*}
\sum \frac{1}{a_{1}^{k}} \leq \frac{1}{3^{\frac{k}{2}}}\left(\frac{1}{R^{k}}+\frac{1}{2^{k-1} r^{k}}\right), \quad(\text { for } 0<k \leq 1) \tag{22}
\end{equation*}
$$

in [11], Lin-bo Situ proved that

$$
\begin{equation*}
\left(\sqrt{3} \cos \frac{A}{2}, \sqrt{3} \cos A, \sqrt{3} \cos A\right) \prec_{w}\left(2 \sin A \cos \frac{A}{2}, 1+\sin \frac{A}{2}, 1+\sin \frac{A}{2}\right), \tag{23}
\end{equation*}
$$

where $A_{1} \geq \frac{\pi}{3}$, so by (23), we can obtain the following result.
Theorem 4. For $\triangle A_{1} A_{2} A_{3}$ with $A_{1} \geq \frac{\pi}{3}$, if $p>1$, then

$$
\begin{align*}
& 3^{\frac{p}{2}}\left(\sqrt{3} \cos ^{p} \frac{A}{2}+\sin ^{p} A\right) \\
& \leq 3^{1-\frac{p}{2}}\left[2\left(1+\sin A \cos \frac{A}{2}+2 \sin \frac{A}{2}\right)-\cos \frac{A}{2}+2 \sin A\right]^{p} \tag{24}
\end{align*}
$$

if $0<p \leq 1$, then inequalities in (24) is reverses.
Remark 2. (24) is sharpening of a result in [11].

Acknowledgements. The author is indebted to Dr. Jian Liu for his valuable comments and suggestions.

References

[1] J.-CH Kuang, Cháng yòng bù děng shì (Applied Inequalities) 3nd ed. [M], Shandong Press of science and technology, Jinan, China, 2004. (Chinese).
[2] J. Chen, Solution collecting, shùxúetongxùn (Mathematics of Communications), 1989, (12) : 3 (Chinese)
[3] K. Hu, On pseudo-wean value inequalities, J. Fuzhou Tcachers College, 1996, 48(1):1-3 (Chinese)
[4] K. Hu, Several problems in analysis inequalities, Wuhan University Press, Wuhan, China, 2003 (Chinese).
[5] W.-R. Li, descvery of a new inequality, J. Bingzhou Tcachers College, 1996, 12 (2) : 31-34 (Chinese)
[6] T.-H. Li, Some generalizations of an algebraic inequality, J. Sichuan Three-gorges University,2000, 16 (3) : 80-84 (Chinese)
[7] Q.-SH. Yang and X.-M Yin, On an Extension Zhong Kai-lai's Inequality, J. Huan City University (Natural Science), 2004, 13 (3) : 48-50 (Chinese)
[8] B.-Y.Wang, Kòngzhì Bùděngshì Jíchŭ, (Foundations of Majorization Inequalities) Beijing Normal University Press, Beijing, China, 1990. (Chinese)
[9] Zh.-P. An, Extensions of several triangular inequalities, In Researches on China elementary mathematics, edited by SH.-G. Yang, Henan Education Press, Xinziang, China1992:241 (Chinese)
[10] A. W. Marshall and I. Olkin Inequalities: Theory of majorization and its application, New York: Academies Press, 1979.
[11] L.-B. Situ, Proof of $C W X-335$, Research Communication on Inequalities, 2004, 11(3) : 396399(Chinese)
(H.-N. Shi) Department of Electronic information, Teacher's College of Beijing Union University, Beijing 100011, People's Republic of China

E-mail address: shihuannan@yahoo.com.cn, sfthuannan@buu.com.cn

[^0]: 2000 Mathematics Subject Classification. Primary 26D15, 51M16.
 Key words and phrases. Kai-lai Zhong's inequality, majorization, triangular inequalities.
 The research was supported by the Scientific Research Common Program of Beijing Municipal Commission of Education of China under grant No. Km200611417009 .

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-IATEX.

