
SHARPENING OF KAI-LAI ZHONG’S INEQUALITY
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Abstract. By using means of the theory of majorization, Kai-lai Zhong’s

Inequality is sharpened. As an application, some triangular inequalities are

sharpened.

1. Introduction

Let a1 ≥ a2 ≥ . . . , an ≥ 0. If
∑k

j=1 aj ≤
∑k

j=1 bj , k = 1, . . . , n, then

n∑
j=1

a2
j ≤

n∑
j=1

b2
j

with the equality holding only if ak = bk, k = 1, . . . , n.
It is known as the Kai-lai Zhong’s inequality[1,p.57]. In 1989, Ji Chen[2] obtained

the following exponential generalization of this inequality:
Let a1 ≥ a2 ≥ . . . , an ≥ 0, b1 ≥ b2 ≥ . . . , bn ≥ 0. If

∑k
j=1 aj ≤

∑k
j=1 bj , k =

1, . . . , n, then
n∑

j=1

ap
j ≤

n∑
j=1

bp
j , ( for p > 1) (1)

with the equality holding only if ak = bk, k = 1, . . . , n.
In 1996, Ke Hu[3−4] given the following sharpening of the inequality in (1):

n∑
j=1

ap
j ≤

n∑
j=1

|bj |p ·

1−

(∑n
i=1 ap

1ei

∑n
j=1 |bj |p −

∑n
i=1 ap

i

∑n
j=1 |bj |p ej

)2

(∑n
i=1 ap

i

∑n
j=1 |bj |p

)2


θ(p)
2

(2)
where 1− ek − em ≥ 0, for k,m = 1, 2, . . . , n. θ(p) = p− 1 for p > 2 and θ(p) = 1
for p < 2.

In recent years, some further generalizations and applications about the Kai-
lai Zhong’s inequality have been obtained in[5-7] and the references therein. The
purpose of this note is to establish a sharped Kai-lai Zhong’s inequality which is
very simple and clear by means of the theory of majorization. As an application,
some triangular inequalities are sharpened.
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2. Definitions and Lemmas

The following definitions and lemmas on majorization will be used:
Definition.[8] Let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ <n. Then a is said to

be majorized by b (in symbols a ≺ b) if

(i)
k∑

i=1

a[i] 6
k∑

i=1

b[i] for k = 1, 2, ..., n− 1, (ii)
n∑

i=1

ai =
n∑

i=1

bi,

where a[1] > a[2] > · · · > a[n] and b[1] > b[2] > · · · > b[n] are components of a
and b rearranged in descending order, and a is said to strictly majors by b (written
a ≺≺ b) if a is not permutation of b. And a is said to be weakly submajorized by
b (written a ≺w b) if

k∑
i=1

a[i] 6
k∑

i=1

b[i] , k = 1, 2, ... , n.

Lemma 1.[8,p.7] Let a ∈ <n
+, b ∈ <n and δ =

∑n
i=1(bi − ai). If a ≺w b, thena,

δ

n
, . . . ,

δ

n︸ ︷︷ ︸
n

 ≺

b, 0, . . . , 0︸ ︷︷ ︸
n

 . (3)

Lemma 2.[8,p.48−49] Let I ⊂ < be an interval, a, b ∈ In ⊂ <n, and g : I → <.
Then

(i) a ≺ b if and only if
n∑

i=1

g(ai) ≤ (≥)
n∑

i=1

g(bi) (4)

holds for all convex(concave) functions g.
(ii) a ≺≺ b if and only if

n∑
i=1

g(ai) < (>)
n∑

i=1

g(bi) (5)

holds for all strictly convex(concave) functions g.
Lemma 3.[8,p.50] Let I ⊂ < be an interval, a, b ∈ In ⊂ <n, and g : I → <. If

a ≺w b, then

(g(a1), g(a2), . . . , g(an)) ≺w (g(b1), g(b2), . . . , g(bn)) (6)

holds for all increasing convex functions g.

3. Main results and Proofs

Theorem 1. Let a1 ≥ a2 ≥ . . . , an ≥ 0, b1 ≥ b2 ≥ . . . , bn ≥ 0,
∑k

j=1 aj ≤∑k
j=1 bj , k = 1, . . . , n, i.e. a ≺w b, and let δ =

∑n
j=1(bj − aj). If p > 1, then

n∑
j=1

ap
j ≤

n∑
j=1

bp
j −

δp

np−1
, (7)

if 0 < p ≤ 1, then (7) reverses, with the equality holding only if aj = bj , j = 1, . . . , n.
Proof. According to Lemma 1 and Lemma 2, it follows that Theorem 1 is holds.
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4. Geometrical Application

Let 4A1A2A3 be a triangle with vertices A1, A2, A3, sides a1, a2, a3 ( with aj

opposite Aj), altitudes h1, h2, h3 (with hj from Aj), medians m1,m2,m3 (with mj

from Aj), angle-bisectors w1, w2, w3 (with wj from Aj) exradii r1, r2, r3 (with rj

tangent to aj), radius of circumcircle R, radius of circle r and semi-perimeter s.
And let P be an interior point of 4A1A2A3 or point on sides of 4A1A2A3, Rj be
distance from P to the vertex Aj , j=1, 2, 3. The symbol

∑
denote the cyclic sum.

Lemma 4.

(lnh2h3, lnh3h1, lnh1h2) ≺w (lnh1r1, lnh2r2, lnh3r3) (8)

(lnw2w3, lnw3w1, lnw1w2) ≺w (lnw1r1, lnw2r2, lnw3r3). (9)
Proof. We prove only (9). (8) can is proved similarly. Without loss of generality,

we may assume a1 ≥ a2 ≥ a3. It is clear that w2w3 ≥ w3w1 ≥ w1w2. In order to
prove (9), we need to prove :

w1r1 ≥ w2r2 ≥ w3r3, (10)

w2w3 ≤ w1r1, (11)

(w2w3)(w1w2) ≤ (w1r1)(w2r2), (12)

(w2w3)(w1w2)(w1w2) ≤ (w1r1)(w2r2)(w3r3). (13)
From

w1 =
2
√

a2a3s(s− a1)
a2 + a3

, r1 =

√
s(s− a2)(s− a3)

s− a1
, (14)

it is easy to see that the first inequality in (10) equivalent to√
a2(s− a2

a1(s− a1
≥ a2 + a3

a1 + a3
. (15)

Since a2(s− a2) ≥ a1(s− a1), a2 + a3 ≥ a1 + a3, (15) holds, the first inequality in
(10) follows immediately. The second inequality in (10) is proved similarly. From
(14), it is easy to see that (11) equivalent to (a3 + a1)(a1 + a2) ≥ 2a1(a2 + a3), i.e.
(a1 − a3)(a1 + a2) ≥ 0, so (11) holds. And by m2

1 ≤ r1r2,m
2
2 ≤ r2r3,m

2
3 ≤ r3r1,

(12) and (13) can are deduced.
The proof of Lemma 4 is now completed. (This proof Due to Jian Liu)
Theorem 2. For 4A1A2A3, if p > 1, then∑

mp
j ≤

∑
ap

j −
(
∑

aj −
∑

mj)p

3p−1
, (16)

∑
Rp

j ≤
∑

ap
j −

(
∑

aj −
∑

Rj)p

3p−1
, (17)

∑
mp

j ≤
∑

rp
j −

(
∑

rj −
∑

mj)p

3p−1
, (18)(√

3
2

)p∑
ap

j ≤
∑

rp
j −

(
∑

rj −
√

3
2

∑
aj)p

3p−1
, (19)
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if 0 < p ≤ 1, then inequalities in (16)-(19) are all reverses.
Proof. Notice that

m1 <
1
2
(a1 + a2) ≤ a1,m2 <

1
2
(a2 + a3) ≤ a2,m3 <

1
2
(a3 + a1) ≤ a3,

it is easy to check that (m1,m2,m3) ≺w (a1, a2, a3), and then by Theorem 1, (16) is
proved. It is easy to check that (R1, R2, R3) ≺w (a1, a2, a3), and then by Theorem
1, (17) is proved. By the following majorization in [10, p.205], (18) and (19) can
are proved respectively:

(m1,m2,m3) ≺w (r1, r2, r3)

and (√
3

2
a1,

√
3

2
a2,

√
3

2
a3

)
≺w (r1, r2, r3).

Remark 1. (17) is sharpening of a result due to Zhen-ping An[9], (18) is sharp-
ening of a result due to Ji Chen[1,p.236], and (19) is too sharpening of a known result
(see [1, p.226]).

Theorem 3. For 4A1A2A3, if p > 1, then∑
hp

2h
p
3 ≤

∑
hp

1r
p
1 −

(
∑

h1r1 −
∑

h2h3)p

3p−1
, (20)

∑
wp

2wp
3 ≤

∑
wp

1rp
1 −

(
∑

w1r1 −
∑

w2w3)p

3p−1
, (21)

if < p ≤ 1, then inequalities in (20) and (21) are all reverses.
Proof. Notice that g(x) = ex be increasing convex function, by Lemma 3, from

(8) and (9) it follows

(h2h3, h3h1, h1h2) ≺w (h1r1, h2r2, h3r3)

and
(w2w3, w3w1, w1w2) ≺w (w1r1, w2r2, w3r3)

respectively, and then by Theorem 1, (20) and (21) are proved.
In order to prove the following conjecture proposed by Jian Liu in 2000:∑ 1

ak
1

≤ 1

3
k
2

(
1

Rk
+

1
2k−1rk

)
, ( for 0 < k ≤ 1), (22)

in [11], Lin-bo Situ proved that(√
3cos

A

2
,
√

3cosA,
√

3cosA
)
≺w

(
2sinAcos

A

2
, 1 + sin

A

2
, 1 + sin

A

2

)
, (23)

where A1 ≥ π
3 , so by (23), we can obtain the following result.

Theorem 4. For 4A1A2A3 with A1 ≥ π
3 , if p > 1, then

3
p
2

(√
3cosp A

2
+ sinpA

)
≤ 31− p

2

[
2
(

1 + sinAcos
A

2
+ 2sin

A

2

)
− cos

A

2
+ 2sinA

]p

, (24)

if 0 < p ≤ 1, then inequalities in (24) is reverses.
Remark 2. (24) is sharpening of a result in [11].
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