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Abstract. The Schur-concavity and the Schur-geometrically convexity of dual
form for the elementary symmetric function are discussed and some relevant

inequalities are established, moreover inequalities for the simplex are also es-

tablished by above inequalities.

1. Definitions and Lemmas

Throughout the paper we assume that the set of n-dimensional row vector on
real number field by Rn.

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n},

Rn
++ = {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

Let x = (x1, . . . , an) ∈ Rn. Its elementary symmetric functions are

Ek(x) = Ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

∏k

j=1
xij , k = 1, . . . , n.

The dual form of the elementary symmetric functions are

E∗
k(x) = E∗

k(x1, . . . , xn) =
∏

1≤i1<...<ik≤n

∑k

j=1
xij

, k = 1, . . . , n,

and defined E∗
0 (x) = 1, and E∗

k(x) = 0 for k < 0 or k > n.
We known that the elementary symmetric function Ek(x) is an increasing and

Schur-concave function on Rn[1]. The aim of this paper is to discuss the Schur-
concave and the Schur-geometrically convex properties of E∗

k(x) and to establish
some relevant inequalities. We need the following definitions and lemmas.

Definition 1. [1, 2] Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(1) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i]

for k = 1, 2, . . . , n− 1 and
∑n

i=1 xi =
∑n

i=1 yi, where x[1] ≥ · · · ≥ x[n] and
y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order, and
x is said to strictly majors by y (written x ≺≺ y) if x is not permutation
of y.
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(2) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n. let Ω ⊂ Rn, ϕ: Ω → R is said
to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said to be decreasing if
and only if −ϕ is increasing.

(3) let Ω ⊂ Rn, ϕ: Ω → R is said to be a Schur-convex function on Ω if x ≺ y
on Ω implies ϕ (x) ≤ ϕ (y) . ϕ is said to be a Schur-concave function on
Ω if and only if −ϕ is Schur-convex function on Ω. ϕ is said to be a strictly
Schur-convex function on Ω if x ≺≺ y on Ω implies ϕ (x) < ϕ (y) . ϕ is
said to be a strictly Schur-concave function on Ω if and only if −ϕ is strictly
Schur-convex function on Ω.

Definition 2. [3] let Ω ⊂ Rn
++, ϕ: Ω → R+ is said to be a Schur-geometrically

convex function on Ω if (lnx1, . . . , lnxn) ≺ (ln y1, . . . , ln yn) on Ω implies ϕ (x) ≤
ϕ (y) . ϕ is said to be a Schur-geometrically concave function on Ω if and only −ϕ
is Schur-geometrically convex function.

Definition 3. [3] Let set Ω ⊆ Rn.

(1) Ω is said to be a convex set if x,y ∈ Ω, 0 ≤ α ≤ 1 implies αx+(1−α)y ∈ Ω.
(2) Ω is said to be a geometrically convex set if x,y ∈ Ω, 0 ≤ α ≤ 1 implies

xαy1−α ∈ Ω.

Lemma 1 ([1, p. 7]). A function ϕ(x) is increasing if and only if ∇ϕ(x) ≥ 0 for
x ∈ Ω, where Ω ⊂ Rn is an open set, ϕ : Ω → R is differentiable, and

∇ϕ(x) =
(

∂ϕ(x)
∂x1

, . . . ,
∂ϕ(x)
∂xn

)
∈ Rn.

Lemma 2 ([1, p. 5]). Let Ω ⊂ Rn is symmetric and has a nonempty interior convex
set. Ω0 is the interior of Ω. ϕ : Ω → R is continuous on Ω and differentiable in
Ω0. Then ϕ is the Schur − convex(Schur − concave)function, if and only if ϕ is
symmetric on Ω and

(x1 − x2)
(

∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(≤ 0) (1)

holds for any x ∈ Ω0.

Lemma 3 ([3, p. 108]). Let Ω ⊂ Rn
+ is a symmetric and has a nonempty interior

geometrically convex set. Ω0 is the interior of Ω. ϕ : Ω → R+ is continuous on Ω
and differentiable in Ω0. If ϕ is symmetric on Ω and

(lnx1 − lnx2)
(

x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0(≤ 0) (2)

holds for any x = (x1, x2, · · · , xn) ∈ Ω0, then ϕ is the Schur-geometrically convex
( Schur-geometrically concave) function.

2. Main results and their proofs

In the following, we are in a position to state our main results and give proofs
of them.

Theorem 1. For k = 1, . . . , n, n ≥ 2, E∗
k(x) is an increasing and Schur-concave

function on Rn
+; E∗

k(x) is a strictly increasing and Schur-concave function and
Schur-geometrically convex function on Rn

++.
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Proof. It is easy to see that

E∗
k(x) = E∗

k(x1, . . . , xn) = E∗
k(x2, . . . , xn) ·

∏
2≤i1<...<ik≤n

(
x1 +

∑k−1

j=1
xij

)
,

lnE∗
k(x) = lnE∗

k(x2, . . . , xn) +
∑

2≤i1<...<ik≤n

ln
(

x1 +
∑k−1

j=1
xij

)
,

and then

∂E∗
k(x)

∂x1
= E∗

k(x)
∑

2≤i1<...<ik−1≤n

(
x1 +

∑k−1

j=1
xij

)−1

= E∗
k(x)

 ∑
3≤i1<...<ik−1≤n

(
x1 +

∑k−1

j=1
xij

)−1

+
∑

3≤i1<...<ik−2≤n

(
x1 + x2 +

∑k−2

j=1
xij

)−1
 ≥ 0,

∂E∗
k(x)

∂x2
= E∗

k(x)
∑

2≤i1<...<ik−1≤n

(
x2 +

∑k−1

j=1
xij

)−1

= E∗
k(x)

 ∑
3≤i1<...<ik−1≤n

(
x2 +

∑k−1

j=1
xij

)−1

+
∑

3≤i1<...<ik−2≤n

(
x1 + x2 +

∑k−2

j=1
xij

)−1
 ≥ 0.

From the Lemmas 1, E∗
k(x) is an increasing function on Rn

+.
For any x ∈ (Rn

+)0, we have

(x1 − x2)
(

∂E∗
k(x)

∂x1
− ∂E∗

k(x)
∂x2

)
= (x1 − x2) E∗

k(x)
∑

3≤i1<...<ik−1≤n

[(
x1 +

∑k−1

j=1
xij

)−1

−
(

x2 +
∑k−1

j=1
xij

)−1
]

= − (x1 − x2)
2
E∗

k(x)
∑

3≤i1<...<ik−1≤n

(
x1 +

∑k−1

j=1
xij

)−1

·
(

x2 +
∑k−1

j=1
xij

)−1

< 0.

So from the Lemmas 2, E∗
k(x) is a strictly Schur-concave function on Rn

++.

x1
∂E∗

k(x)
∂x1

= x1E
∗
k(x)

∑
2≤i1<...<ik−1≤n

(
x1 +

∑k−1

j=1
xij

)−1

= E∗
k(x)

 ∑
3≤i1<...<ik−1≤n

x1

(
x1 +

∑k−1

j=1
xij

)−1

+
∑

3≤i1<...<ik−2≤n

x1

(
x1 + x2 +

∑k−2

j=1
xij

)−1
 ,

x2
∂E∗

k(x)
∂x1

= x2E
∗
k(x)

∑
2≤i1<...<ik−1≤n

(
x1 +

∑k−1

j=1
xij

)−1

= E∗
k(x)

 ∑
3≤i1<...<ik−1≤n

x2

(
x1 +

∑k−1

j=1
xij

)−1

+
∑

3≤i1<...<ik−2≤n

x2

(
x1 + x2 +

∑k−2

j=1
xij

)−1
 ,
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For any x ∈ (Rn
++)0, we have

(lnx1 − lnx2)
(

x1
∂E∗

k(x)
∂x1

− x2
∂E∗

k(x)
∂x2

)
= (lnx1 − lnx2)E∗

k(x)

{ ∑
3≤i1<...<ik−1≤n

[
x1

(
x1 +

∑k−1

j=1
xij

)−1

− x2

(
x2 +

∑k−1

j=1
xij

)−1
]

+
∑

3≤i1<...<ik−2≤n

[
x1

(
x1 + x2 +

∑k−2

j=1
xij

)−1

− x2

(
x1 + x2 +

∑k−2

j=1
xij

)−1
] }

= (lnx1 − lnx2) (x1 − x2) E∗
k(x)

[ ∑
3≤i1<...<ik−1≤n

(
x1 +

∑k−1

j=1
xij

)−1

·
(

x2 +
∑k−1

j=1
xij

)−1

·
(∑k−1

j=1
xij

)
+

∑
3≤i1<...<ik−2≤n

(
x1 + x2 +

∑k−2

j=1
xij

)−1
]

> 0.

(Notice that(lnx1 − lnx2) (x1 − x2) > 0)

So from the Lemmas 2, E∗
k(x) is a Schur-geometrically concave function on Rn

++.
The proof of Theorem 1 is completed. �

Corollary 1. Let x ∈ Rn
+, n ≥ 2 with

∑n
i=1 xi = s > 0, and let f(x) is a nonneg-

ative concave function on R1
+ Then for k = 1, . . . , n, we have

E∗
k (f (x1) , . . . , f (xn)) =

∏
1≤i1<...<ik≤n

∑k

j=1
f

(
xij

)
≤ [kf(s/n)]C

k
n . (3)

In particular,

E∗
k(x1, . . . , xn) =

∏
1≤i1<...<ik≤n

∑k

j=1
xij ≤ [k(s/n)]C

k
n , (4)

with equality holding if and only if x1 = · · · = xn, for x ∈ Rn
++.

Proof. Since E∗
k(x) is increasing and Schur-concave on Rn

+, and f(x) is a nonnega-
tive concave function, from proposition 6.16 (b) in [1], it follows that E∗

k(f(x1), . . . , f(xn))
is also Schur-concave on Rn

+. And then from

(s/n, . . . , s/n) ≺ (x1, . . . , xn) ,

we have
E∗

k (f (x1) , . . . , f (xn)) ≤ E∗
k (f(s/n), . . . , f(s/n)) ,

i.e. inequality(3) is hold. Since E∗
k(x1, . . . , xn) is strictly increasing and Schur-

concave on Rn
++, it follows inequality(4) is hold, and equality holding if and only if

x1 = · · · = xn, for x ∈ Rn
++. �

Corollary 2. Let x ∈ Rn
++, n ≥ 2, and let

∏n
i=1 xi = p > 0. Then for k =

1, . . . , n, α ≥ 1, we have

E∗
k(xα

1 , . . . , xα
n) =

∏
1≤i1<...<ik≤n

∑k

j=1
xα

ij
≤

(
pα/n

)Ck
n

, (5)

with equality holding if and only if x1 = · · · = xn, for α = 1 and x ∈ Rn
++.
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Proof. Since E∗
k(x) is increasing and Schur-geometrically concave on Rn

++, and xα

is convex on Rn
++, for α ≥ 1, from proposition 6.16 (a) on [1], it follows that

E∗
k(xα

1 , . . . , xα
n) is also Schur-geometrically convex on Rn

++. And then from

(ln n
√

p, . . . , ln n
√

p) ≺ (lnx1, . . . , lnxn) ,

we have
E∗

k (xα
1 , . . . , xα

n) ≤ E∗
k (( n

√
p)α, . . . , ( n

√
p)α) ,

i.e. inequality (5) is hold. When α = 1, since E∗
k(xα

1 , . . . , xα
n) is strictly increasing

and Schur-concave on Rn
++, it follows equality holding if and only if x1 = · · · = xn,

for x ∈ Rn
++. �

Corollary 3. Let x ∈ Rn
+, n ≥ 2, and let

∑n
i=1 xi = s > 0, c ≥ s. Then for

k = 1, . . . , n, 0 ≤ α ≤ 1, we have

E∗
k((c− x1)α, . . . , (c− xn)α)

E∗
k(xα

1 , . . . , xα
n)

≥
(nc

s
− 1

)αCk
n

, (6)

with equality holding if and only if x1 = · · · = xn, for α = 1.

Proof. In [4], it is proved that(
(c− x1)s
nc− s

,
(c− x2)s
nc− s

, . . . ,
(c− xn)s
nc− s

)
≺(x1, x2, . . . , xn).

Combining the Schur-concavity of E∗
k(xα

1 , . . . , xα
n) on Rn

++, it follows that inequality
(6) is hold. �

Corollary 4. Let x ∈ Rn
+, n ≥ 2, and let

∑n
i=1 xi = s > 0, c ≥ 0. Then for

k = 1, . . . , n, 0 ≤ α ≤ 1, we have

E∗
k((c + x1)α, . . . , (c + xn)α)

E∗
k(xα

1 , . . . , xα
n)

≥
(nc

s
+ 1

)αCk
n

, (7)

with equality holding if and only if x1 = · · · = xn, for α = 1.

Proof. In [4], it is proved that(
(c + x1)s
nc + s

,
(c + x2)s
nc + s

, . . . ,
(c− xn)s
nc− s

)
≺(x1, x2, . . . , xn).

Combining the Schur-concavity of E∗
k(xα

1 , . . . , xα
n) on Rn

++, it follows that inequality
(7) is hold. �

Corollary 5. Let x ∈ Rn
+, n ≥ 2 and 0 < r ≤ s. Then

E∗
k(xr

1, . . . , x
r
n)

E∗
k(xs

1, . . . , x
s
n)
≥

(∑n
i=1 xr

i∑n
i=1 xs

i

)Ck
n

. (8)

Proof. In [2, p.130], it is proved that(
x1∑n
i=1 xr

i

, . . . ,
x2∑n
i=1 xr

i

)
≺

(
x1∑n
i=1 xs

i

, . . . ,
x2∑n
i=1 xs

i

)
.

Combining the Schur-concavity of E∗
k(xα

1 , . . . , xα
n) on Rn

++, it follows that inequality
(8) is hold. �
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3. Applications

Theorem 2. Let A be an n-dimensional simplex in n-dimensional Euclidean space
En(n ≥ 3 ) and {A1, A2, ..., An+1}is the set of vertices. Let P be an arbitrary point
in the interior of A. If Bi is the intersection point of the extension line of AiP and
the (n− 1)-dimensional hyperplane opposite to the point Ai. Then we have

E∗
k

((
PB1

A1B1

)α

, . . . ,

(
PBn+1

An+1Bn+1

)α)
≤

[
k

(
1

n + 1

)α]Ck
n+1

, (9)

E∗
k

((
A1P

A1B1

)α

, . . . ,

(
An+1P

An+1Bn+1

)α)
≤

[
k

(
n

n + 1

)α]Ck
n+1

(10)

and

E∗
k

((
A1P

A1B1

)α

, . . . ,

(
An+1P

An+1Bn+1

)α)
≥ nCk

n+1E∗
k

((
PB1

A1B1

)α

, . . . ,

(
PBn+1

An+1Bn+1

)α)
(11)

Proof. It is easy to known that
n+1∑
i=1

PBi

AiBi
= 1,

AiP

AiBi
= 1− PBi

AiBi
, k = 1, 2, . . . , n + 1,

n+1∑
i=1

AiP

AiBi
= n.

Taking s = 1 and s = n in (3), it follows that (9) and (10) holds respectively, and
taking s = c = 1 in (4), it follows that (11) holds. The proof of Theorem 2 is be
completed. �
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