SCHUR-CONCAVITY AND SCHUR-GEOMETRICALLY
CONVEXITY OF DUAL FORM FOR ELEMENTARY
SYMMETRIC FUNCTION WITH APPLICATIONS

HUAN-NAN SHI

ABSTRACT. The Schur-concavity and the Schur-geometrically convexity of dual
form for the elementary symmetric function are discussed and some relevant
inequalities are established, moreover inequalities for the simplex are also es-
tablished by above inequalities.

1. DEFINITIONS AND LEMMAS

Throughout the paper we assume that the set of n-dimensional row vector on
real number field by R™.

R} ={x = (z1,...,2,) €R" :2; > 0,i=1,...,n},
RY, ={z=(r1,...,2,) ER" :2; >0,i=1,...,n}.

Let € = (21,...,a,) € R™. Its elementary symmetric functions are

k
Ey(x) = Ex(z1,...,2,) = Z szlxij, k=1,...,n.

1<iy <...<ip<n

The dual form of the elementary symmetric functions are

k
Ej(x) = E;(x1,...,2,) = H ijlxij, k=1,...,n,
1<i1<...<ip<n
and defined Ef(x) =1, and E}(x) =0 for k <0 or k > n.

We known that the elementary symmetric function Ex(x) is an increasing and
Schur-concave function on R™[1]. The aim of this paper is to discuss the Schur-
concave and the Schur-geometrically convex properties of E}(x) and to establish
some relevant inequalities. We need the following definitions and lemmas.

Definition 1. [IL 2] Let © = (x1,...,2,) and y = (y1,...,yn) € R™

(1) « is said to be majorized by y (in symbols x < y) if Zle zp) < Zle Yli)
fork=1,2,...,n—1and Y|, z; = > ., yi, where x> 2 Ty and
Y] =+ 2 Y[n) are rearrangements of x and y in a descending order, and
@ is said to strictly majors by y (written & << y) if @ is not permutation
of y.
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(2) @ > y means x; > y; for all i = 1,2,...,n. let Q C R", v: @ — R is said
to be increasing if & > y implies p(x) > p(y). ¢ is said to be decreasing if
and only if —¢ is increasing.

(3) let Q C R™, ¢: 2 — R is said to be a Schur-convex function on Q if x < y
on ) implies ¢ (x) < ¢ (y). @ is said to be a Schur-concave function on
Q if and only if —¢ is Schur-convex function on Q. ¢ is said to be a strictly
Schur-convex function on Q if * << y on Q implies ¢ () < ¢ (y). ¢ is
said to be a strictly Schur-concave function on 2 if and only if —¢ is strictly
Schur-convex function on €.

Definition 2. [3] let @ C R%} , ¢: @ — R, is said to be a Schur-geometrically
convex function on Q if (Inzq,...,Inz,) < (Inyy,...,Iny,) on Q implies p () <
@ (y) . p is said to be a Schur-geometrically concave function on  if and only —¢
is Schur-geometrically convex function.

Definition 3. [3] Let set  C R™.

(1) Qissaid to be a convex set if &,y € 2,0 < o <1 implies ax+(1—a)y € Q.
(2) Q is said to be a geometrically convex set if z,y € 2,0 < a <1 implies
oyl e Q.

Lemma 1 ([I p. 7]). A function p(x) is increasing if and only if Vi(x) > 0 for
x € Q, where Q CR"™ is an open set, ¢ : ) — R is differentiable, and

V@@)Z(aggﬂwn,%§?>ezRW

Lemma 2 ([Il p. 5]). Let Q C R™ is symmetric and has a nonempty interior convex
set. Q0 is the interior of Q. ¢ :  — R is continuous on Q and differentiable in
Q0. Then ¢ is the Schur — convex(Schur — concave) function, if and only if  is
symmetric on €} and

ulam(gigz)zM§m W

holds for any x € Q°.

Lemma 3 (3, p. 108]). Let Q C R is a symmetric and has a nonempty interior
geometrically convex set. QU is the interior of Q. ¢ :  — R, is continuous on €
and differentiable in Q°. If  is symmetric on Q and

0 0
(Inz; — Inxs) (mai - xgaé) > 0(< 0) (2)
holds for any x = (z1,22, - ,x,) € Q°, then ¢ is the Schur-geometrically convex

( Schur-geometrically concave) function.

2. MAIN RESULTS AND THEIR PROOFS

In the following, we are in a position to state our main results and give proofs
of them.

Theorem 1. For k= 1,...,n,n > 2, Ef(x) is an increasing and Schur-concave
function on R ; Ef(x) is a strictly increasing and Schur-concave function and
Schur-geometrically convex function on RY .
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Proof. 1t is easy to see that

,Tp,) - H (:cl + Zj;ll miJ) )

E;(x) = E;(z1,...,2n) = Ef(2o,. ..
2<iy <...<ip<n

k—1
InEp(x) =lnE}(z2,...,2,) + Z In <m1—|—zj_1 xij> ,

2<i1<...<ix<n

and then
OB(z) _ .. e\
8]; = Ej(x) Z <x1 + Z . :cl-j>
1 2<i1 < .. <ip_1<n J

—1 —1
= Ej(x) Z <x1 + Zj;l ﬁfij) + Z <x1 + 22 + Z;:f :cij> >0,

k
3<i1<...<ip_1<n 3<iy<...<ig_2<n

OE} () ( et T
= E*(;[;) Z To + Z Ti;
Oy 2<i1<...<ig_1<n 7=t

k—1 -1 k-2 -1
Z <x2 + ijl nj) =+ Z <x1 + xo + ijl a:ij> > 0.

3<ii<...<ig—1<n 3<in<...<ig—2<n

From the Lemmas 1, £} (x) is an increasing function on R} .
For any « € (R7)°, we have

o (252 25

1 1
k—1 k-1
= (1 — x2) E}(x) E (xl + E i x”> — (a:g + E i xij> ‘|
3<i1<...<ig—1<n

k-1 -1 k-1 -1
=—(x1 — 332)2 Ej(x) Z (acl + ijl mij) . (.132 + ijl x¢j> < 0.

3<i1<...<ig—1<n

So from the Lemmas 2, E} (x) is a strictly Schur-concave function on R | .

i) _ g Y (””Zk—lx)

Ty
81'1 . i
2<i1<...<ig—1<n

-1
3<ii<...<ig—2<n

k
3<iy<...<ip_1<n

k—2 -1
1|21 +x2+ E L Ty )
J=1

8E*(Q}) * k-1 !

—1 —1
k—1 k—2
= Ej(x) E T2 <$1 + E . %) + E Z2 (171 +x2+ E - QTij) )
7= 3<i1<...<ig_2<n 7=

3<i1<...<ig—1<n
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For any @ € (R% )", we have

OEy()  OF;(a)
81‘1 2 8332

(Inzy —Inzs) <x1
= (Inz; — Inxs) E;(a:){ > [wl <x1 + Zl;l x) o (952 ’ Z: x) 11

3<i1<...<ig—1<n
Y

k—2 -1 k—2 -1
1 $1+$2+Zj:1 T — T2 | 71 +$2+2j:1 T
3<i1<...<tp—2<n
k—1 -1 k—1 -1
Z T+ Zj:l o7y | 2o + Zj:l Z4;

3<ir<...<ip_1<n

k-1 k-2 -1
. (Zj:l xiJ.) + Z <$1 + 22 + Zj:l .’1%J> ] > 0.

3<iy<...<ig_a<n

= (lnx; —Inxy) (x1 — 22) Ej(x)

(Notice that(Inzy — Inxg) (21 — x2) > 0)

So from the Lemmas 2, E}(x) is a Schur-geometrically concave function on R | .
The proof of Theorem 1 is completed. O

Corollary 1. Let x € R ,n > 2 with ). x; = s > 0, and let f(x) is a nonneg-
ative concave function on R}F Then for k=1,...,n, we have

Ei(f(x),. o f@a))= ]I Zj:lf(xi,.)g[kf(s/n)]cﬁ. (3)

1<ir<...<ip<n
In particular,
* _ k C'f;’
Ei(xy,. .. xn) = 11 ijl i, < [k(s/n)]“" (4)
1<ip<...<ip<n
with equality holding if and only if x1 = --- = x,, for x € RY .
Proof. Since Ej(x) is increasing and Schur-concave on R, and f(x) is a nonnega-
tive concave function, from proposition 6.16 (b) in [1], it follows that E(f(x1),. .., f(zn))
is also Schur-concave on R’. And then from
(s/n,...,s/n) < (21,...,25),
we have
Ep (f(@1) - f (@n)) < B (f(s/n),..., f(s/n)),
i.e. inequality(3) is hold. Since E}(x1,...,2,) is strictly increasing and Schur-

concave on R’ , it follows inequality(4) is hold, and equality holding if and only if
Ty = =Ty, forx e RY,. O

Corollary 2. Let x € R}, ,n > 2, and let H?zl x; = p > 0. Then for k =
1,...,n,a > 1, we have

k

Cn
Ei@s, 2 = I ijlxgg(pa/n), 5)

1<i1<...<ig<n

with equality holding if and only if 1 = -+ = xy,, fora=1 and x € RY, .
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Proof. Since Ej(x) is increasing and Schur-geometrically concave on R |, and 2
is convex on R, for a > 1, from proposition 6.16 (a) on [1], it follows that
Ep(x¢, ..., zy) is also Schur-geometrically convex on R’ . And then from

(In ¢p,...,In ¥p) < (lnzy,...,Inxz,),
we have

B (2f,.oay) < EL (/D)% (/D)%)

i.e. inequality (5) is hold. When o = 1, since Ej(z¥,...,z%) is strictly increasing
and Schur-concave on R’} , it follows equality holding if and only if 21 = - - - = z,,

forz € RY . O

Corollary 3. Let © € RY,n > 2, and let >\ jx; = s > 0,¢ > s. Then for
k=1,...,n,0 < a <1, we have

* _ «@ _ a ck
Ei((c—z1)% ..., (c—xn) )Z(E—l)a " (©)
Ei(zg,...,x%) s
with equality holding if and only if x1 = -+ = x,, fora=1.

Proof. In [4], it is proved that

((c—m)sy (C_$2)$,...7 (c—xn)s> <o zm. . 2).

nc—s nc—=Ss nc—sSs

Combining the Schur-concavity of Ej(z¢,...,z5) on R |, it follows that inequality
(6) is hold. O

Corollary 4. Let © € RY,n > 2, and let Y. x; = s > 0,¢ > 0. Then for
k=1,...,n,0 < a <1, we have

Bi(c o) ooleban)') , (ne et 0
Ei(zy,...,x%) 5
with equality holding if and only if x1 = -+ =z, for a = 1.

Proof. In [4], it is proved that

((c-i-xl)s’ (c—|—x2)$,”.7 (C—xn)$> <(z1,22,...,Tp).
nc+ s

nc+ s nc—s

Combining the Schur-concavity of £ (¢, ..., z5) on R |, it follows that inequality
(7) is hold. O

Corollary 5. Letx € R}, n>2 and 0 <r <s. Then

* (T r s CZ
Ei(z7, ..., z]) S Z?:l xl ()
Ep(@g,..wp) —\ X2y

Proof. In [2, p.130], it is proved that

( > > > B < » > >
n T PR n r n s AR n S M
D el T Dim1 T Die1 T Doie1 T

Combining the Schur-concavity of Ej(z¢,...,z5) on R" , it follows that inequality

(8) is hold. O
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3. APPLICATIONS

Theorem 2. Let A be an n-dimensional simplex in n-dimensional Euclidean space
E"(n >3 ) and {A1, Ag, ..., Apy1}is the set of vertices. Let P be an arbitrary point
in the interior of A. If B; is the intersection point of the extension line of A; P and
the (n — 1)-dimensional hyperplane opposite to the point A;. Then we have

a e} aqCy
PB1 PBn+1 1 n+1
Er (=) ... (— < |k , 9
k (<A1B1) (An+1Bn+1> ) { <”+1> ] ©)
a « a0y
AP Ap1 P ) ) { ( n > } e
E: RN (i S < |k 10
k(<A131> (An+1Bn+1 B n+l 1
E* A PN\" AP\
k AlBl B An+1Bn+1

, PB; \* PB,i1 \“
>nc7’i+1E*<( > ("* > > 11
- \41B Api1Bnp (11)

Proof. 1t is easy to known that

n+1 n+1
PB; AP PB; AP
-1 —1- k=1,2,... n+1 —n.
24 AB; O AB; A.B; N ; A.B, "

Taking s = 1 and s = n in (3), it follows that (9) and (10) holds respectively, and
taking s = ¢ = 1 in (4), it follows that (11) holds. The proof of Theorem 2 is be
completed. O
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