SOME INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

Abstract

Some inequalities for convex functions of selfadjoint operators in Hilbert spaces under suitable assumptions for the involved operators are given. Applications for particular cases of interest are also provided.

1. Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space ($H ;\langle.,$.$\rangle).$ The Gelfand map establishes a $*$-isometrically isomorphism Φ between the set $C(S p(A))$ of all continuous functions defined on the spectrum of A, denoted $S p(A)$, an the C^{*}-algebra $C^{*}(A)$ generated by A and the identity operator 1_{H} on H as follows (see for instance [6, p. 3]):

For any $f, g \in C(S p(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have
(i) $\Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
(ii) $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi(\bar{f})=\Phi(f)^{*}$;
(iii) $\|\Phi(f)\|=\|f\|:=\sup _{t \in S p(A)}|f(t)|$;
(iv) $\Phi\left(f_{0}\right)=1_{H}$ and $\Phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in S p(A)$.

With this notation we define

$$
f(A):=\Phi(f) \text { for all } f \in C(S p(A))
$$

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on $S p(A)$, then $f(t) \geq 0$ for any $t \in S p(A)$ implies that $f(A) \geq 0$, i.e. $f(A)$ is a positive operator on H. Moreover, if both f and g are real valued functions on $\operatorname{Sp}(A)$ then the following important property holds:

$$
\begin{equation*}
f(t) \geq g(t) \text { for any } t \in S p(A) \text { implies that } f(A) \geq g(A) \tag{P}
\end{equation*}
$$

in the operator order of $B(H)$.
For a recent monograph devoted to various inequalities for functions of selfadjoint operators, see [6] and the references therein. For other results, see [13], [7] and 9].

The following result that provides an operator version for the Jensen inequality is due to Mond \& Pečarić [11] (see also [6, p. 5]):
Theorem 1 (Mond-Pečarić, 1993, [11]). Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If f is a convex function on $[m, M]$, then
(MP)

$$
f(\langle A x, x\rangle) \leq\langle f(A) x, x\rangle
$$

[^0]for each $x \in H$ with $\|x\|=1$.
The following result that provides a reverse of the Mond \& Pečarić has been obtained in (3]:

Theorem 2 (Dragomir, 2008, [3]). Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a convex and differentiable function on \dot{I} (the interior of I) whose derivative f^{\prime} is continuous on $\stackrel{\circ}{I}$. If A is a selfadjoint operators on the Hilbert space H with $S p(A) \subseteq[m, M] \subset I$, then

$$
\begin{equation*}
(0 \leq)\langle f(A) x, x\rangle-f(\langle A x, x\rangle) \leq\left\langle f^{\prime}(A) A x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle f^{\prime}(A) x, x\right\rangle \tag{1.1}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Perhaps more convenient reverses of the Mond \& Pečarić result are the following inequalities that have been obtained in the same paper [3]:

Theorem 3 (Dragomir, 2008, [3]). Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a convex and differentiable function on I (the interior of I) whose derivative f^{\prime} is continuous on $\stackrel{\circ}{I}$. If A is a selfadjoint operators on the Hilbert space H with $S p(A) \subseteq[m, M] \subset I)$, then

$$
\begin{align*}
& (0 \leq)\langle f(A) x, x\rangle-f(\langle A x, x\rangle) \tag{1.2}\\
& \quad \leq\left\{\begin{array}{l}
\frac{1}{2} \cdot(M-m)\left[\left\|f^{\prime}(A) x\right\|^{2}-\left\langle f^{\prime}(A) x, x\right\rangle^{2}\right]^{1 / 2} \\
\frac{1}{2} \cdot\left(f^{\prime}(M)-f^{\prime}(m)\right)\left[\|A x\|^{2}-\langle A x, x\rangle^{2}\right]^{1 / 2} \\
\end{array} \quad \leq \frac{1}{4}(M-m)\left(f^{\prime}(M)-f^{\prime}(m)\right)\right.
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
We also have the inequality

$$
\begin{align*}
& (0 \leq)\langle f(A) x, x\rangle-f(\langle A x, x\rangle) \leq \frac{1}{4}(M-m)\left(f^{\prime}(M)-f^{\prime}(m)\right) \tag{1.3}\\
& -\left\{\begin{array}{l}
{\left[\langle M x-A x, A x-m x\rangle\left\langle f^{\prime}(M) x-f^{\prime}(A) x, f^{\prime}(A) x-f^{\prime}(m) x\right\rangle\right]^{\frac{1}{2}}} \\
\left|\langle A x, x\rangle-\frac{M+m}{2}\right|\left|\left\langle f^{\prime}(A) x, x\right\rangle-\frac{f^{\prime}(M)+f^{\prime}(m)}{2}\right| \\
\leq \frac{1}{4}(M-m)\left(f^{\prime}(M)-f^{\prime}(m)\right)
\end{array}\right.
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Moreover, if $m>0$ and $f^{\prime}(m)>0$, then we also have

$$
\begin{align*}
(0 \leq & \langle f(A) x, x\rangle-f(\langle A x, x\rangle) \tag{1.4}\\
& \leq\left\{\begin{array}{l}
\frac{1}{4} \cdot \frac{(M-m)\left(f^{\prime}(M)-f^{\prime}(m)\right)}{\sqrt{M m f^{\prime}(M) f^{\prime}(m)}}\langle A x, x\rangle\left\langle f^{\prime}(A) x, x\right\rangle, \\
(\sqrt{M}-\sqrt{m})\left(\sqrt{f^{\prime}(M)}-\sqrt{f^{\prime}(m)}\right)\left[\langle A x, x\rangle\left\langle f^{\prime}(A) x, x\right\rangle\right]^{\frac{1}{2}},
\end{array}\right.
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.

For generalisations to n-tuples of operators as well as for some particular cases of interest, see [3].

The main aim of the present paper is to provide more general vector inequalities for convex functions whose derivatives are continuous.

2. Some Inequalities for Two Operators

The following result holds:
Theorem 4. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a convex and differentiable function on $\stackrel{\circ}{I}$ (the interior of I) whose derivative f^{\prime} is continuous on $\stackrel{\circ}{I}$. If A and B are selfadjoint operators on the Hilbert space H with $S p(A), S p(B) \subseteq[m, M] \subset I)$, then

$$
\begin{align*}
& \left\langle f^{\prime}(A) x, x\right\rangle\langle B y, y\rangle-\left\langle f^{\prime}(A) A x, x\right\rangle \tag{2.1}\\
& \quad \leq\langle f(B) y, y\rangle-\langle f(A) x, x\rangle \leq\left\langle f^{\prime}(B) B y, y\right\rangle-\langle A x, x\rangle\left\langle f^{\prime}(B) y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have

$$
\begin{align*}
& \left\langle f^{\prime}(A) x, x\right\rangle\langle A y, y\rangle-\left\langle f^{\prime}(A) A x, x\right\rangle \tag{2.2}\\
& \quad \leq\langle f(A) y, y\rangle-\langle f(A) x, x\rangle \leq\left\langle f^{\prime}(A) A y, y\right\rangle-\langle A x, x\rangle\left\langle f^{\prime}(A) y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{align*}
& \left\langle f^{\prime}(A) x, x\right\rangle\langle B x, x\rangle-\left\langle f^{\prime}(A) A x, x\right\rangle \tag{2.3}\\
& \quad \leq\langle f(B) x, x\rangle-\langle f(A) x, x\rangle \leq\left\langle f^{\prime}(B) B x, x\right\rangle-\langle A x, x\rangle\left\langle f^{\prime}(B) x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Since f is convex and differentiable on $\stackrel{\circ}{\mathrm{I}}$, then we have that

$$
\begin{equation*}
f^{\prime}(s) \cdot(t-s) \leq f(t)-f(s) \leq f^{\prime}(t) \cdot(t-s) \tag{2.4}
\end{equation*}
$$

for any $t, s \in[m, M]$.
Now, if we fix $t \in[m, M]$ and apply the property (\sqrt{P}) for the operator A, then for any $x \in H$ with $\|x\|=1$ we have

$$
\begin{align*}
\left\langle f^{\prime}(A) \cdot\left(t \cdot 1_{H}-A\right)\right. & x, x\rangle \tag{2.5}\\
\leq & \left\langle\left[f(t) \cdot 1_{H}-f(A)\right] x, x\right\rangle \leq\left\langle f^{\prime}(t) \cdot\left(t \cdot 1_{H}-A\right) x, x\right\rangle
\end{align*}
$$

for any $t \in[m, M]$ and any $x \in H$ with $\|x\|=1$.
The inequality (2.5) is equivalent with

$$
\begin{equation*}
t\left\langle f^{\prime}(A) x, x\right\rangle-\left\langle f^{\prime}(A) A x, x\right\rangle \leq f(t)-\langle f(A) x, x\rangle \leq f^{\prime}(t) t-f^{\prime}(t)\langle A x, x\rangle \tag{2.6}
\end{equation*}
$$

for any $t \in[m, M]$ and any $x \in H$ with $\|x\|=1$.
If we fix $x \in H$ with $\|x\|=1$ in (2.6) and apply the property (P) for the operator B, then we get

$$
\begin{align*}
& \left\langle\left[\left\langle f^{\prime}(A) x, x\right\rangle B-\left\langle f^{\prime}(A) A x, x\right\rangle 1_{H}\right] y, y\right\rangle \tag{2.7}\\
& \quad \leq\left\langle\left[f(B)-\langle f(A) x, x\rangle 1_{H}\right] y, y\right\rangle \leq\left\langle\left[f^{\prime}(B) B-\langle A x, x\rangle f^{\prime}(B)\right] y, y\right\rangle
\end{align*}
$$

for each $y \in H$ with $\|y\|=1$, which is clearly equivalent to the desired inequality 2.1.

Remark 1. If we fix $x \in H$ with $\|x\|=1$ and choose $B=\langle A x, x\rangle \cdot 1_{H}$, then we obtain from the first inequality in (2.1) the reverse of the Mond-Pečarić inequality obtained by the author in [3. The second inequality will provide the inequality (MP) for convex functions whose derivatives are continuous.

The following corollary is of interest:
Corollary 1. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a convex and differentiable function on $\stackrel{\circ}{I}$ whose derivative f^{\prime} is continuous on $\stackrel{\circ}{I}$. Also, suppose that A is a selfadjoint operator on the Hilbert space H with $S p(A) \subseteq[m, M] \subset \stackrel{\circ}{I}$. If g is nonincreasing and continuous on $[m, M]$ and

$$
\begin{equation*}
f^{\prime}(A)[g(A)-A] \geq 0 \tag{2.8}
\end{equation*}
$$

in the operator order of $B(H)$, then

$$
\begin{equation*}
(f \circ g)(A) \geq f(A) \tag{2.9}
\end{equation*}
$$

in the operator order of $B(H)$.
Proof. If we apply the first inequality from (2.3) for $B=g(A)$ we have

$$
\begin{equation*}
\left\langle f^{\prime}(A) x, x\right\rangle\langle g(A) x, x\rangle-\left\langle f^{\prime}(A) A x, x\right\rangle \leq\langle f(g(A)) x, x\rangle-\langle f(A) x, x\rangle \tag{2.10}
\end{equation*}
$$

any $x \in H$ with $\|x\|=1$.
We use the following Čebyšev type inequality for functions of operators established by the author in (4):

Let A be a selfadjoint operator with $S p(A) \subseteq[m, M]$ for some real numbers $m<M$. If $h, g:[m, M] \longrightarrow \mathbb{R}$ are continuous and synchronous (asynchronous) on [m, M], then

$$
\begin{equation*}
\langle h(A) g(A) x, x\rangle \geq(\leq)\langle h(A) x, x\rangle \cdot\langle g(A) x, x\rangle \tag{2.11}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Now, since f^{\prime} and g are continuous and are asynchronous on $[m, M]$, then by 2.11 we have the inequality

$$
\begin{equation*}
\left\langle f^{\prime}(A) g(A) x, x\right\rangle \leq\left\langle f^{\prime}(A) x, x\right\rangle \cdot\langle g(A) x, x\rangle \tag{2.12}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Subtracting in both sides of 2.12 the quantity $\left\langle f^{\prime}(A) A x, x\right\rangle$ and taking into account, by 2.8), that $\left\langle f^{\prime}(A)[g(A)-A] x, x\right\rangle \geq 0$ for any $x \in H$ with $\|x\|=1$, we then have

$$
\begin{aligned}
0 & \leq\left\langle f^{\prime}(A)[g(A)-A] x, x\right\rangle=\left\langle f^{\prime}(A) g(A) x, x\right\rangle-\left\langle f^{\prime}(A) A x, x\right\rangle \\
& \leq\left\langle f^{\prime}(A) x, x\right\rangle \cdot\langle g(A) x, x\rangle-\left\langle f^{\prime}(A) A x, x\right\rangle
\end{aligned}
$$

which together with 2.10 will produce the desired result 2.9 .
We provide now some particular inequalities of interest that can be derived from Theorem 4:

Example 1. a. Let A, B two positive definite operators on H. Then we have the inequalities

$$
\begin{equation*}
1-\left\langle A^{-1} x, x\right\rangle\langle B y, y\rangle \leq\langle\ln A x, x\rangle-\langle\ln B y, y\rangle \leq\langle A x, x\rangle\left\langle B^{-1} y, y\right\rangle-1 \tag{2.13}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have

$$
\begin{equation*}
1-\left\langle A^{-1} x, x\right\rangle\langle A y, y\rangle \leq\langle\ln A x, x\rangle-\langle\ln A y, y\rangle \leq\langle A x, x\rangle\left\langle A^{-1} y, y\right\rangle-1 \tag{2.14}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{equation*}
1-\left\langle A^{-1} x, x\right\rangle\langle B x, x\rangle \leq\langle\ln A x, x\rangle-\langle\ln B x, x\rangle \leq\langle A x, x\rangle\left\langle B^{-1} x, x\right\rangle-1 \tag{2.15}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
b. With the same assumption for A and B we have the inequalities

$$
\begin{equation*}
\langle B y, y\rangle-\langle A x, x\rangle \leq\langle B \ln B y, y\rangle-\langle\ln A x, x\rangle\langle B y, y\rangle \tag{2.16}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have

$$
\begin{equation*}
\langle A y, y\rangle-\langle A x, x\rangle \leq\langle A \ln A y, y\rangle-\langle\ln A x, x\rangle\langle A y, y\rangle \tag{2.17}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{equation*}
\langle B x, x\rangle-\langle A x, x\rangle \leq\langle B \ln B x, x\rangle-\langle\ln A x, x\rangle\langle B x, x\rangle \tag{2.18}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
The proof of Example a follows from Theorem 4 for the convex function $f(x)=$ $-\ln x$ while the proof of the second example follows by the same theorem applied for the convex function $f(x)=x \ln x$ and performing the required calculations. The details are omitted.

The following result may be stated as well:
Theorem 5. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a convex and differentiable function on $\stackrel{\circ}{I}$ (the interior of I) whose derivative f^{\prime} is continuous on $\stackrel{\circ}{I}$. If A and B are selfadjoint operators on the Hilbert space H with $S p(A), S p(B) \subseteq[m, M] \subset I$, then

$$
\begin{align*}
& f^{\prime}(\langle A x, x\rangle)(\langle B y, y\rangle-\langle A x, x\rangle) \leq\langle f(B) y, y\rangle-f(\langle A x, x\rangle) \tag{2.19}\\
& \leq\left\langle f^{\prime}(B) B y, y\right\rangle-\langle A x, x\rangle\left\langle f^{\prime}(B) y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have

$$
\left.\left.\begin{array}{rl}
f^{\prime}(\langle A x, x\rangle)(\langle A y, y\rangle-\langle A x, x\rangle) \leq & \langle \tag{2.20}
\end{array}\right)(A) y, y\right\rangle-f(\langle A x, x\rangle), ~=\left\langle f^{\prime}(A) A y, y\right\rangle-\langle A x, x\rangle\left\langle f^{\prime}(A) y, y\right\rangle
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{align*}
f^{\prime}(\langle A x, x\rangle)(\langle B x, x\rangle-\langle A x, x\rangle) \leq & \langle f(B) x, x\rangle-f(\langle A x, x\rangle) \tag{2.21}\\
& \leq\left\langle f^{\prime}(B) B x, x\right\rangle-\langle A x, x\rangle\left\langle f^{\prime}(B) x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Since f is convex and differentiable on $\stackrel{\circ}{\mathrm{I}}$, then we have that

$$
\begin{equation*}
f^{\prime}(s) \cdot(t-s) \leq f(t)-f(s) \leq f^{\prime}(t) \cdot(t-s) \tag{2.22}
\end{equation*}
$$

for any $t, s \in[m, M]$.
If we choose $s=\langle A x, x\rangle \in[m, M]$, with a fix $x \in H$ with $\|x\|=1$, then we have

$$
\begin{equation*}
f^{\prime}(\langle A x, x\rangle) \cdot(t-\langle A x, x\rangle) \leq f(t)-f(\langle A x, x\rangle) \leq f^{\prime}(t) \cdot(t-\langle A x, x\rangle) \tag{2.23}
\end{equation*}
$$

for any $t \in[m, M]$.

Now, if we apply the property $(\mathbb{P}$ to the inequality 2.23 and the operator B, then we get

$$
\begin{aligned}
\left\langle f^{\prime}(\langle A x, x\rangle)\right. & \left.\cdot\left(B-\langle A x, x\rangle \cdot 1_{H}\right) y, y\right\rangle \\
\leq & \left\langle\left[f(B)-f(\langle A x, x\rangle) \cdot 1_{H}\right] y, y\right\rangle \leq\left\langle f^{\prime}(B) \cdot\left(B-\langle A x, x\rangle \cdot 1_{H}\right) y, y\right\rangle
\end{aligned}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$, which is equivalent with the desired result (2.19).

Remark 2. We observe that if we choose $B=A$ in 2.21) or $y=x$ in 2.20) then we recapture the Mond-Pečarić inequality and its reverse from (1.1).

The following particular case of interest follows from Theorem 5
Corollary 2. Assume that f, A and B are as in Theorem 5. If, either f is increasing on $[m, M]$ and $B \geq A$ in the operator order of $B(H)$ or f is decreasing and $B \leq A$, then we have the Jensen's type inequality

$$
\begin{equation*}
\langle f(B) x, x\rangle \geq f(\langle A x, x\rangle) \tag{2.24}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
The proof is obvious by the first inequality in (2.21) and the details are omitted.
We provide now some particular inequalities of interest that can be derived from Theorem 5:

Example 2. a. Let A, B be two positive definite operators on H. Then we have the inequalities

$$
\begin{equation*}
1-\langle A x, x\rangle^{-1}\langle B y, y\rangle \leq \ln (\langle A x, x\rangle)-\langle\ln B y, y\rangle \leq\langle A x, x\rangle\left\langle B^{-1} y, y\right\rangle-1 \tag{2.25}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have

$$
\begin{equation*}
1-\langle A x, x\rangle^{-1}\langle A y, y\rangle \leq \ln (\langle A x, x\rangle)-\langle\ln A y, y\rangle \leq\langle A x, x\rangle\left\langle A^{-1} y, y\right\rangle-1 \tag{2.26}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{equation*}
1-\langle A x, x\rangle^{-1}\langle B x, x\rangle \leq \ln (\langle A x, x\rangle)-\langle\ln B x, x\rangle \leq\langle A x, x\rangle\left\langle B^{-1} x, x\right\rangle-1 \tag{2.27}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
b. With the same assumption for A and B, we have the inequalities

$$
\begin{equation*}
\langle B y, y\rangle-\langle A x, x\rangle \leq\langle B \ln B y, y\rangle-\langle B y, y\rangle \ln (\langle A x, x\rangle) \tag{2.28}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have

$$
\begin{equation*}
\langle A y, y\rangle-\langle A x, x\rangle \leq\langle A \ln A y, y\rangle-\langle A y, y\rangle \ln (\langle A x, x\rangle) \tag{2.29}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{equation*}
\langle B x, x\rangle-\langle A x, x\rangle \leq\langle B \ln B x, x\rangle-\langle B x, x\rangle \ln (\langle A x, x\rangle) \tag{2.30}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.

3. Inequalities for Two Sequences of Operators

The following result may be stated:
Theorem 6. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a convex and differentiable function on $\stackrel{\circ}{I}$ (the interior of I) whose derivative f^{\prime} is continuous on $\stackrel{\circ}{I}$. If A_{j} and B_{j} are selfadjoint operators on the Hilbert space H with $S p\left(A_{j}\right), S p\left(B_{j}\right) \subseteq[m, M] \subset I$ for any $j \in\{1, \ldots, n\}$, then

$$
\begin{align*}
& \sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle B_{j} y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle \tag{3.1}\\
& \leq \sum_{j=1}^{n}\left\langle f\left(B_{j}\right) y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
& \leq \sum_{j=1}^{n}\left\langle f^{\prime}\left(B_{j}\right) B_{j} y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f^{\prime}\left(B_{j}\right) y_{j}, y_{j}\right\rangle
\end{align*}
$$

for any $x_{j}, y_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|y_{j}\right\|^{2}=1$.
In particular, we have

$$
\begin{align*}
& \sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle A_{j} y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle \tag{3.2}\\
& \leq \sum_{j=1}^{n}\left\langle f\left(A_{j}\right) y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
& \leq \sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) A_{j} y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) y_{j}, y_{j}\right\rangle
\end{align*}
$$

for any $x_{j}, y_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|y_{j}\right\|^{2}=1$ and

$$
\begin{align*}
\sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) x_{j},\right. & \left.x_{j}\right\rangle \sum_{j=1}^{n}\left\langle B_{j} x_{j}, x_{j}\right\rangle-\sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle \tag{3.3}\\
\leq & \sum_{j=1}^{n}\left\langle f\left(B_{j}\right) x_{j}, x_{j}\right\rangle-\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
& \leq \sum_{j=1}^{n}\left\langle f^{\prime}\left(B_{j}\right) B_{j} x_{j}, x_{j}\right\rangle-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f^{\prime}\left(B_{j}\right) x_{j}, x_{j}\right\rangle
\end{align*}
$$

for any $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
Proof. As in [6, p. 6], if we put

$$
\widetilde{A}:=\left(\begin{array}{ccccc}
A_{1} & \cdot & \cdot & . & 0 \\
& \cdot & . & \\
& & \cdot & \\
0 & \cdot & . & \\
& \cdot & A_{n}
\end{array}\right), \widetilde{B}:=\left(\begin{array}{ccccc}
B_{1} & \cdot & . & . & 0 \\
& \cdot & & & \\
& & \cdot & & \\
0 & \cdot & . & \cdot & B_{n}
\end{array}\right)
$$

and

$$
\widetilde{x}=\left(\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right), \widetilde{y}=\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right)
$$

then we have $S p(\widetilde{A}), S p(\widetilde{B}) \subseteq[m, M],\|\widetilde{x}\|=\|\widetilde{y}\|=1$,

$$
\left\langle f^{\prime}(\widetilde{A}) \widetilde{x}, \widetilde{x}\right\rangle=\sum_{j=1}^{n}\left\langle f^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle,\langle B \widetilde{y}, \widetilde{y}\rangle=\sum_{j=1}^{n}\left\langle B y_{j}, y_{j}\right\rangle
$$

and so on.
Applying Theorem 4 for $\widetilde{A}, \widetilde{B}, \widetilde{x}$ and \widetilde{y} we deduce the desired result 3.1.

The following particular case may be of interest:
Corollary 3. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a convex and differentiable function on $\stackrel{\circ}{I}$ (the interior of I) whose derivative f^{\prime} is continuous on $\stackrel{\circ}{I}$. If A_{j} and B_{j} are selfadjoint operators on the Hilbert space H with $S p\left(A_{j}\right), S p\left(B_{j}\right) \subseteq[m, M] \subset I$ for any $j \in\{1, \ldots, n\}$, then for any $p_{j}, q_{j} \geq 0$ with $\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n} q_{j}=1$, we have the inequalities

$$
\begin{align*}
\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} B_{j} y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle \tag{3.4}\\
\leq\left\langle\sum_{j=1}^{n} q_{j} f\left(B_{j}\right) y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) x, x\right\rangle \\
\leq\left\langle\sum_{j=1}^{n} q_{j} f^{\prime}\left(B_{j}\right) B_{j} y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} f^{\prime}\left(B_{j}\right) y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have

$$
\begin{align*}
\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} A_{j} y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle \tag{3.5}\\
\leq\left\langle\sum_{j=1}^{n} q_{j} f\left(A_{j}\right) y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) x, x\right\rangle \\
\leq\left\langle\sum_{j=1}^{n} q_{j} f^{\prime}\left(A_{j}\right) B_{j} y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} f^{\prime}\left(A_{j}\right) y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{align*}
\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} p_{j} B_{j} x, x\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle \tag{3.6}\\
\leq\left\langle\sum_{j=1}^{n} p_{j} f\left(B_{j}\right) x, x\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) x, x\right\rangle \\
\leq\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(B_{j}\right) B_{j} x, x\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\left\langle\sum_{j=1}^{n} p_{j} f^{\prime}\left(B_{j}\right) x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Follows from Theorem 6 on choosing $x_{j}=\sqrt{p_{j}} \cdot x, y_{j}=\sqrt{q_{j}} \cdot y, j \in\{1, \ldots, n\}$, where $p_{j}, q_{j} \geq 0, j \in\{1, \ldots, n\}, \sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n} q_{j}=1$ and $x, y \in H$, with $\|x\|=\|y\|=1$. The details are omitted.

Example 3. a. Let $A_{j}, B_{j}, j \in\{1, \ldots, n\}$, be two sequences of positive definite operators on H. Then we have the inequalities

$$
\begin{align*}
& 1-\sum_{j=1}^{n}\left\langle A_{j}^{-1} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle B_{j} y_{j}, y_{j}\right\rangle \tag{3.7}\\
& \leq \sum_{j=1}^{n}\left\langle\ln A_{j} x_{j}, x_{j}\right\rangle-\sum_{j=1}^{n}\left\langle\ln B_{j} y_{j}, y_{j}\right\rangle \leq \sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle B_{j}^{-1} y_{j}, y_{j}\right\rangle-1
\end{align*}
$$

for any $x_{j}, y_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|y_{j}\right\|^{2}=1$.
b. With the same assumption for A_{j} and B_{j} we have the inequalities

$$
\begin{align*}
\sum_{j=1}^{n}\left\langle B_{j} y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n} & \left\langle A_{j} x_{j}, x_{j}\right\rangle \tag{3.8}\\
& \leq \sum_{j=1}^{n}\left\langle B_{j} \ln B_{j} y_{j}, y_{j}\right\rangle-\sum_{j=1}^{n}\left\langle\ln A_{j} x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle B_{j} y_{j}, y_{j}\right\rangle
\end{align*}
$$

for any $x_{j}, y_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|y_{j}\right\|^{2}=1$.
Finally, we have
Example 4. a. Let $A_{j}, B_{j}, j \in\{1, \ldots, n\}$, be two sequences of positive definite operators on H. Then for any $p_{j}, q_{j} \geq 0$ with $\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n} q_{j}=1$, we have the inequalities

$$
\begin{align*}
& 1-\left\langle\sum_{j=1}^{n} p_{j} A_{j}^{-1} x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} B_{j} y, y\right\rangle \tag{3.9}\\
& \leq\left\langle\sum_{j=1}^{n} p_{j} \ln A_{j} x, x\right\rangle-\left\langle\sum_{j=1}^{n} q_{j} \ln B_{j} y, y\right\rangle \\
& \leq\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} B_{j}^{-1} y, y\right\rangle-1
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
b. With the same assumption for A_{j}, B_{j}, p_{j} and q_{j}, we have the inequalities

$$
\begin{align*}
\left\langle\sum_{j=1}^{n} q_{j} B_{j} y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle \tag{3.10}\\
\leq\left\langle\sum_{j=1}^{n} q_{j} B_{j} \ln B_{j} y, y\right\rangle-\left\langle\sum_{j=1}^{n} p_{j} \ln A_{j} x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} B_{j} y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Remark 3. We observe that all the other inequalities for two operators obtained in Section 2 can be extended for two sequences of operators in a similar way. However, the details are left to the interested reader.

References

[1] S.S. Dragomir, Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 11. [ONLINE: http://www.staff.vu. edu.au/RGMIA/v11(E).asp
[2] S.S. Dragomir, Some new Grüss' type Inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 12. [ONLINE: http: //www.staff.vu.edu.au/RGMIA/v11(E).asp
[3] S.S. Dragomir, Some Reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 15. [ONLINE: http: //www.staff.vu.edu.au/RGMIA/v11(E).asp
[4] S.S. Dragomir, Cebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 9. [ONLINE: http://www.staff. vu.edu.au/RGMIA/v11(E).asp
[5] S.S. Dragomir and N.M. Ionescu, Some converse of Jensen's inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, 71-78. MR1325895 (96c:26012).
[6] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[7] A. Matković, J. Pečarić and I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications. Linear Algebra Appl. 418 (2006), no. 2-3, 551-564.
[8] C.A. McCarthy, c_{p}, Israel J. Math., 5(1967), 249-271.
[9] J. Mićić, Y.Seo, S.-E. Takahasi and M. Tominaga, Inequalities of Furuta and Mond-Pečarić, Math. Ineq. Appl., 2(1999), 83-111.
[10] D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[11] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19(1993), 405-420.
[12] B. Mond and J. Pečarić, On some operator inequalities, Indian J. Math., 35(1993), 221-232.
[13] B. Mond and J. Pečarić, Classical inequalities for matrix functions, Utilitas Math., 46(1994), 155-166.

Research Group in Mathematical Inequalities \& Applications, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://www.staff.vu.edu.au/rgmia/dragomir/

[^0]: Date: September 20, 2008.
 1991 Mathematics Subject Classification. 47A63; 47A99.
 Key words and phrases. Selfadjoint operators, Positive operators, Jensen's inequality, Convex functions, Functions of selfadjoint operators.

