INEQUALITIES FOR THE NUMERICAL RADIUS IN UNITAL
NORMED ALGEBRAS

S.S. DRAGOMIR

ABSTRACT. In this paper, some inequalities between the numerical radius of
an element from a unital normed algebra and certain semi-inner products in-
volving that element and the unity are given.

1. INTRODUCTION

Let A be a unital normed algebra over the complex number field C and let a € A.
Recall that the numerical radius of a is given by (see [2, p. 15])

(1.1) v(a) =sup{|f(a)l, f€A, |fII<1 and f(1)=1},
where A’ denotes the dual space of A, i.e., the Banach space of all continuous linear
functionals on A.

It is known that v (-) is a norm on A that is equivalent to the given norm ||| .
More precisely, the following double inequality holds true:

(12) Lall < v (@) < Jal

for any a € A.

Following [2], we notice that this crucial result appears slightly hidden in Bohnen-
blust and Karlin [1, Theorem 1] together with the inequality ||z|| < e® (x), which
occurs on page 219. A simpler proof was given by Lumer [5], though with the
constant i in place of é For a simple proof of (1.2) that borrows ideas from Lumer
and from Glickfeld [6], see [2, p. 34].

A generalisation of (1.2) for powers has been obtained by M.J. Crabb [3] which
proved that

(1.3) la™] < n! (%)n[v @, n=12...

for any a € A.

In this paper, some inequalities between the numerical radius of an element and
the superior semi-inner product of that element and the unity in the normed algebra
A are given via the celebrated representation result of Lumer from [5].

2. SOME SUBSETS IN A

Let D(1):={f € A|||fI<1 and f(1)=1}.For A € C and r > 0, we define
the subset of A by

A\ r):={a€A| |f(a) =N <r foreach fe€ D(1)}.
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The following result holds.

Proposition 1. Let A € C and r > 0. Then A (\,7) is a closed conver subset of A
and

(2.1) B(Ar) S AT,
where B (\,r) :={a € A||la—A|| <r}.
Now, for v,T" € C, define the set
U(y,T) = {a € AlRe [(F — f(a)) (m—ﬁﬂ >0 foreach f¢€ D(l)} .
The following representation result may be stated.

Proposition 2. For any v, T € C, v # T", we have:

= v+ F 1
(2.2 N e ]
Proof. We observe that for any z € C we have the equivalence
y+T 1
T <2 r=—
’Z 5 ’ L el

if and only if
Re[(I'—2) (z—-7)] 2 0.
This follows by the equality

1 v+T 2 o
{0l = o - 535 =Refir =)z - 7]
that holds for any z € C.
The equality (2.2) is thus a simple conclusion of this fact. O

Making use of some obvious properties in C and for continuous linear functionals,
we can state the following corollary as well.

Corollary 1. For any v,I' € C, we have
(2.3) U(y,T)= {ae A| Re {f(F—a)f(a—’y) >0 for each f € D(l)}

={a€A| (ReI'=Ref (a)) (Re f(a) — Rew)
+(ImT —Im f (@) Im f (a) —Im~) > 0 for each f € D(1)}.

Now, if we assume that Re (I') > Re (y) and Im (I") > Im (7y) , then we can define
the following subset of A :

(24) S(v,I):={ac A| Re(T)>Ref(a) >Re(y) and
Im(T) >Im f (a) > Im(y) foreach fe D(1)}.

One can easily observe that S (v,I') is closed, convex and

(2.5) S(v.T)CU (D)
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3. SEMI-INNER PRODUCTS AND LUMER’S THEOREM

Let (X,]|-]|) be a normed linear space over the real of complex number field K.
The mapping f: X - R, f(z) = 3 |z||? is obviously convex and then there exists
the following limits:

ly + tz|* = [y

(x,y), = lim

)

t—0— 2t
Iy + tz|* — [ly?
— 1
(z,y)s Jim, o7

for every two elements z,y € X. The mapping (-,-), ({-,-);) will be called the
superior semi-inner product (the interior semi-inner product) associated to the
norm ||-|| .

We list some properties of these semi-inner products that can be easily derived
from the definition (see for instance [4]):

(i) (w,2), = |2*; (iz,), = (z,iz), = 0, z € X;
(i) (Az,y), = Az,y),; (x, Ay), = Mz, y), for A >0, z,y € X;
(iii) (Az, > 7)\<zy>;<z AY), = Az, y), for A <0, z,y € X;
(iv) (iz,y), = <$wﬁ;@$&0—wﬂ%wﬁa62Q%y€X;
(V) < > <$7_y> < > ,fE,yEX;

(vi) \<xy \<||xu||y||,xyex
(Vi) (@1 +22,9) 55y < (2) (@1, 9) ) + (@2, ¥) (i) for 21,22,y € X
<1X> <Oé.’1?—|—y, > - Ot”ZCH + <y,.’17>p, o€ Ra T,y € Xa
) [+ 22, — (z0),| < lylllell, 2,9, 2 € X;
(xi) The mapplng (-,z), is continuous on (X, ||-[|) for each z € X, where p,q €

{s,i} and p #q.

The following result essentially due to Lumer [5] (see [2, p. 17]) can be stated.
Theorem 1. Let A be a unital normed algebra over K (K = C,R). For each a € A,

e .1
(3.1) max{ReAA eV (a)|} = ér;fo o (14 aa|| — 1] = algng . 11+ aal — 1],

where V (a) is the numerical range of a (see for instance [2, p. 15]).
Remark 1. In terms of semi-inner products, the above identity can be stated as:
(3.2) max {Re f(a)|f € D (1)} = (a,1),.

The following result that provides more information may be stated.

Theorem 2. For any a € A, we have:

(33) <a’ 1>'u,s = <a’7 1>s ’
where
2 )
(a,b), , = lim v (b+ta) —v7 (b)
’ t—0t 2t

is the superior semi-inner product associated with the numerical radius.
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Proof. Since v (a) < ||la||, we have:

P+ ta) -2 (1) v (14ta) -1
@1y = tlir[r# 2t B tlir(% 2
1 !
= tli%1+ % = {a. 1), -
Now, let f € D (1). Then, for each o > 0,
fl@)= 2 1f (L4 ae) — f (U] = = [f (14 aa) - 1],
giving
Re f(a) = 2 [Re f (1+aa) — £ (1] € = [/ (1+aa) - 1

<é[v(1+aa)—1].

Taking the infimum over a > 0, we deduce

« a—0+ 20

B Ref()<inf |2+ a0 -1 = tm {(Ha)l}

1 -1
— lim v (14 aa)

a0+ Q = (@, 1>”’3 )

If we now take the supremum over f € D (1) in (3.4), we obtain:

sup{Re f(a)|f € D(1)} < (a,1),
which gives, by Lumer’s identity that (a,1), < (a,1), ;. O

Corollary 2. We have the inequality

(3-5) (e, )| <vla) (< Hlall).

Proof. Schwarz’s inequality for the norm v (.) gives that
(1),

and by (3.3), the inequality (3.5) is proved. O

<w(a)v(l) =v(a),

4. REVERSE INEQUALITIES FOR THE NUMERICAL RADIUS

Utilising the inequality (3.5) we observe that for any complex number (3 located
in the closed disc centered in 0 and with radius 1 we have [(8a, 1) | as a lower
bound for the numerical radius v (a) . Therefore, it is a natural question to ask how
far these quantities are from each other under various assumptions for the element
a in the unital normed algebra A and the scalar 8. A number of results answering
this question are incorporated in the following theorems.

Theorem 3. Let A € C\ {0} andr > 0. Ifa € A(\,r), then

(4.1) v(a) < <|:\\|a,1> + % : (7'
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Proof. Since a € A (X, 1), then |f (a) — A]> < 72, for each f € D (1), giving that
(4.2) If (@)]> +|A]* < 2Re [f (Aa)] + 72
for each f € D(1).

Taking the supremum of f € D (1) in (4.2) and utilising the representation (3.2),
we deduce
(4.3) v? (@) + [A\° < 2{Xa, 1) + 7
which is an inequality of interest in itself.

On the other hand, we have the elementary inequality

(4.4) 20 (a) [A| < 0% (a) + AP,
which, together with (4.3) implies the desired result (4.1). O

Remark 2. Notice that, by the inclusion (2.1) a sufficient condition for (4.1) to
holds is that a € B (A, r).

Corollary 3. Let y,I' € C with T # +~. Ifa € U (v,T), then

T+7 > 1 L=~
4.5 v (a §< a, 1) +-- .
45) (@) a4 T4l
Remark 3. If M >m >0 and a € U (m, M), then
1 (M —m)?
4. < — 1. <=
(1.6 0 <)) - (a1, < ;- 2

Observe that, due to the inclusion (2.5), a sufficient condition for (4.6) to holds is
that M > Re f (a) ,Im f (a) > m for any f € D(1).

The following result may be stated as well.

Theorem 4. Let A € C and r > 0 with |\| > r. Ifa € A(\,7), then

A
(4.7 v(a) £ { ——=a,1
A =
and, equivalently,
< 2
A r?
(4.8) v? (a) < <|)\|a,1>s+|>\|2 0% (a).

Proof. Since |A| > 7, hence by (4.3) we have, on dividing by /|| — r2 > 0, that

(4.9) \/%-i-\/u —r2<\/7

2 _
\2 < <)\a,1>s.
AP = r2
On the other hand, we also have
2
()< —— YD L P
VAP =72
1 _
Aa, 1 s

(4.10) v(a) < ———=( ).

VIAP =72

which, together with (4.9), gives
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Taking the square in (4.10), we have

v (@) (AP =) < (Ra,1)],
which is clearly equivalent to (4.7).

Corollary 4. Let ,I' € C with Re (I'y) > 0. Ifa € U (7,T), then,

T+7
(4.11) v(a) < <2Re(I"‘y)a71>s.

Remark 4. If M >m >0 and a € U (m, M), then
< M+m

(4.12) v(a) < Wy (a,1),,
or, equivalently,
(0 <) v (a) - {a,1) <(\/J\7\/ﬁ>2<a 1) <(\/M\/771)2”a|
= T ovmM T 2vmM

The following result may be stated as well.

Theorem 5. Let A € C\ {0} and r > 0 with |\| > r. Ifa € A(\,r), then

(4.13) v? (a) < <f\\|a1>2 +2 (l)\ — /AP —7"2) <|i\\|a7l> .

S

Proof. Since (by (4.2)) Re [f (Aa)] > 0, then dividing by it in (4.2) gives:

/@) N ”
Re[f ()] | Relf ()]~ Re[f ()]’

which is clearly equivalent to:

[/ (@”  Re[f (Aa)]

A e BT

< 72 B Re [f (5\@)] B |)\|2 -

R TOa] T Relf0a)] L
Since

Re[f (a)] (AP =72
e e A Re[f(Aa)]
e [ReliGal (e ]
: R Re [ (v

(@)
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hence by (4.14) and (4.15) we have

Re [f (S\a)]

2
(4.16) [f (@) < B

rof1- 1_(&')2 Re[f (Aa)] -

Taking the supremum in f € D (1) and utilising Lumer’s result, we deduce the
desired inequality (4.13). O

Corollary 5. Letv,T € C with Re(T'§) > 0. Ifa € U (7,T), then,

I 2 I
r'++ > (‘v—i—f‘ ><F+v >

2

v°(a) < a,l) +2|——|—+/Re(l'¥y a,1l) .

@ = (). 2 A

Remark 5. If M >m >0 and a € U (m, M), then

2 2
(0<)0* (@) = {0, 1) < (VM = vim) (a,1), (< (VA - vim) ||a||> :
Finally, the following result can be stated as well.

Theorem 6. Let A € C and r > 0 with |\ > r. Ifa € A(\,7), then

(4.17) v(a) < <|)\ 4 m) <:2a 1>S
A (lAl + /AP - 7‘2) (|)\| - QW)

* 2r2
Proof. From the proof of Theorem 3 above, we have
(4.18) f (@ + I\ < 2Re [f (Aa)] + 77

which is equivalent with

(4.19) @+ (14 VAP - )
<2Re[f (Aa)] +72 — [\* + (|)\| - 7«2)2

=2Re [f (Ma)] + |IA* = 2|\ \/ A — 72,

Taking the supremum in (4.19) over f € D (1) and utilising Lumer’s representation
theorem, we get:

2
(4.20)  v%(a)+ <A| — AP - 7"2> <2(Xa, 1)+l (|)\| — 2/ |A\? = 7«2) .
Since r # 0, then || — 1/|A]> — r2 > 0, giving

(4.21) 2 (|)\| —\/ AP = r2> v(a) <v?(a) + (|>\| /AP = 7’2>2.
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Now, utilising (4.20) and (4.21), we deduce

1 (10 = 2yl = )
v(a) € ————(Aa, 1), + ,
NN Y- 2 (- IaP = r2)
which is clearly equivalent with the desired result (4.17). g

Remark 6. If M >m >0 and a € U (m, M), then

v(a) < m [(a,1>5+; (m;M—zmﬂ .

In particular, if a € U (0,8) with & > 0, then we have the following reverse inequality
as well

(0<)v(a) — (a1), < 34.

>~ =
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