Reversing the Arithmetic mean - Geometric mean inequality

Tien Lam Nguyen

Abstract

In this paper, we discuss some inequalities which are obtained by adding a non-negative expression to one of the sides of the AM-GM inequality. In this way, we can reverse the AM-GM inequality.

1. Introduction

The AM-GM inequality is one of the best inequalities and it is very useful for proving inequalities. We will recall the AM-GM inequality as follows

Theorem 1. For all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$, we have

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}} \quad \text {, (1) where } n \text { is a natural number greater than } 1 .
$$

Equality holds if and only if $a_{1}=a_{2}=\ldots=a_{n}$.
Now, we will observe a question: " How can we reverse AM-GM inequality ?". The first thing that springs to mind is adding a non-negative expression to the right-hand-side of the AM-GM inequality. It is natural that the obtained inequality becomes equality if and only if AM-GM inequality becomes equality, that is, if we add an expression $M:=f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (M is a function of n variables $a_{1}, a_{2}, \ldots, a_{n}$) to the right-hand-side of AM-GM inequality, then M must satisfy the two following conditions simultaneously
i) $M:=f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \geq 0 \quad$ for non-negative numbers $a_{1}, a_{2}, \ldots, a_{n}$.
ii) $M:=f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0 \quad$ if and only if $a_{1}=a_{2}=\ldots=a_{n}$.

So, we can choose many expressions such as:
$M_{1}=k_{1} \cdot \sum_{1 \leq i<j \leq n}\left|a_{i}-a_{j}\right| \quad ; \quad M_{2}=k_{2} \cdot \sum_{i=1}^{n}\left|a_{i}-a_{i+1}\right| \quad ; \quad M_{3}=k_{3} \cdot \max _{1 \leq i<j \leq n}\left\{\left|a_{i}-a_{j}\right|\right\} \quad$ or $M_{4}=k_{4} \cdot\left(\sum_{1 \leq i<j \leq n}\left(a_{i}-a_{j}\right)^{2}\right)^{1 / 2}$, etc...
(with the condition $a_{n+1} \equiv a_{1}$).

The author thanks Thanh Ha Le for her help in the preparation of this paper.

2. Two inequalities

Proposition 2. Given a natural number $n \geq 1$. Then, the smallest real number k such that for all non-negative numbers $a_{1}, a_{2}, \ldots, a_{n}$ we have the following inequality

$$
\begin{equation*}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+k \cdot \sum_{1 \leq i<j \leq n}\left|a_{i}-a_{j}\right| \tag{2}
\end{equation*}
$$

is $\frac{1}{n}$.
Proof. Suppose that (2) is satisfied for all $a_{1}, a_{2}, \ldots, a_{n} \geq 0$. Try $a_{1}=a_{2}=\ldots=a_{n-1}>0$ and $a_{n}=0$, from (2) we deduce $k \geq \frac{1}{n}$. Now, we will prove that (2) is correct when $k=\frac{1}{n}$, i.e., $\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\frac{1}{n} . \sum_{1 \leq i<j \leq n}\left|a_{i}-a_{j}\right| \quad$ for \quad all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$.

Without losing generality, we assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$. Thus, the inequality we need to prove is equivalent to

$$
\begin{aligned}
& \begin{array}{l}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\frac{1}{n} \cdot\left((n-1) a_{1}+(n-3) a_{2}+(n-5) a_{3}+\cdots+\right. \\
\left.\quad+\left(n-2 \cdot\left[\frac{n}{2}\right]+1\right) a_{\left[\frac{n}{2}\right]}-\left(n-2 \cdot\left[\frac{n}{2}\right]-1\right) a_{\left[\frac{n}{2}\right]+1}-\ldots-(n-1) a_{n}\right) \\
\text { or }\left(n-2 \cdot\left[\frac{n}{2}\right]\right) a_{\left[\frac{n}{2}\right]+1}+\left(n-2 \cdot\left[\frac{n}{2}\right]-2\right) a_{\left[\frac{n}{2}\right]+2}+\cdots+n a_{n} \leq \\
\\
\leq\left(n-2 \cdot\left[\frac{n}{2}\right]\right) a_{\left[\frac{n}{2}\right]}+\cdots+(n-2) a_{1}+n \cdot \sqrt[n]{a_{1} a_{2} \cdots a_{n}}
\end{array}
\end{aligned}
$$

where $[x]$ is the largest integer which is smaller than x. It is easy to see that the last inequality is correct since $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$. The proof is completed.

Corollary 3. For all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$, we always have

$$
\begin{equation*}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\frac{\binom{n}{2}}{n} \cdot \max _{1 \leq i<j \leq n}\left\{\left|a_{i}-a_{j}\right|\right\}, \tag{3}
\end{equation*}
$$

where $\binom{n}{2}=\frac{n!}{2!(n-2)!}$.

Proof. For $1 \leq i, j \leq n$, we have $\binom{n}{2}$ terms $\left|a_{i}-a_{j}\right|$ and note that $\left|a_{i}-a_{j}\right|$ is not greater than $\max _{1 \leq i<j \leq n}\left\{\left|a_{i}-a_{j}\right|\right\}, \quad$ (3) follows immediately from (2).

Corollary 4. $\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{n}\right) \cdot \sum_{i=1}^{n-1}\left|a_{i}-a_{i+1}\right|$,
for all real numbers $a_{1}, a_{2}, \ldots, a_{n} \geq 0$.
Proof. Using the inequalities $\left|a_{i}-a_{j}\right| \leq\left|a_{i}-a_{i+1}\right|+\left|a_{i+1}-a_{i+2}\right|+\cdots+\left|a_{j-1}-a_{j}\right|$
for all pairs (i, j) satisfying $1 \leq i, j \leq n$, we can easily deduce that $\sum_{1 \leq i<j \leq n}\left|a_{i}-a_{j}\right| \leq(n-1) \cdot \sum_{i=1}^{n-1}\left|a_{i}-a_{i+1}\right|$. Thus, from (2) we deduce (4).

Proposition 5. Given a natural number n greater than 1 , the smallest real number k such that for all non-negative numbers $a_{1}, a_{2}, \ldots, a_{n}$ we have the inequality

$$
\begin{equation*}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+k \cdot \max _{1 \leq i<j \leq n}\left\{\left|a_{i}-a_{j}\right|\right\} \tag{5}
\end{equation*}
$$

is $\frac{n-1}{n}$.
Proof. Since (5) is satisfied for all real numbers $a_{1}, a_{2}, \ldots, a_{n} \geq 0$ trying $a_{1}=a_{2}=\ldots=a_{n-1}>0$ and $a_{n}=0$, from (5) we deduce $k \geq \frac{n-1}{n}$.
We will prove that (5) is correct when $k=\frac{n-1}{n}$, that is,
$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{n}\right) \cdot \max _{1 \leq i<j \leq n}\left\{\left|a_{i}-a_{j}\right|\right\}$ for all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$.
Without losing generality, we assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$. Then, $\max _{1 \leq i<j \leq n}\left\{\left|a_{i}-a_{j}\right|\right\}=a_{1}-a_{n}$. Hence, the inequality which needs be proved is equivalent to
$a_{1}+a_{2}+\cdots+a_{n} \leq n \cdot \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+(n-1)\left(a_{1}-a_{n}\right)$
or $\quad a_{2}+a_{3}+\cdots+a_{n-1}+n a_{n} \leq(n-2) a_{1}+n \cdot \sqrt[n]{a_{1} a_{2} \cdots a_{n}}$ since $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$,
We have $a_{1}+a_{2}+\cdots+a_{n-1} \leq(n-2) a_{1}$ and $a_{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}$.
Therefore, $a_{2}+a_{3}+\cdots+a_{n-1}+n a_{n} \leq n \cdot \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+(n-2) a_{1}$. This completes the proof.

Corollary 6. For all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$ we have

$$
\begin{equation*}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{n}\right) \cdot \sum_{i=1}^{n}\left|a_{i}-a_{i+1}\right| \tag{6}
\end{equation*}
$$

with the condition $a_{n+1} \equiv a_{1}$.
Proof. Suppose that $\max _{1 \leq i, j \leq n}\left\{\left|a_{i}-a_{j}\right|\right\}=a_{1}-a_{n}$.
Using the inequality $\left|a_{1}-a_{n}\right| \leq\left|a_{1}-a_{2}\right|+\left|a_{2}-a_{3}\right|+\cdots+\left|a_{n-1}-a_{n}\right|$, from (5), we get

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{n}\right) \cdot \sum_{i=1}^{n-1}\left|a_{i}-a_{i+1}\right| .
$$

On the other hand, we have $\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{n}\right) \cdot\left|a_{1}-a_{n}\right|$.

Adding two above inequalities side by side, we get

$$
\begin{aligned}
& 2 \cdot\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right) \leq 2 \cdot \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{n}\right) \cdot \sum_{i=1}^{n}\left|a_{i}-a_{i+1}\right| \\
\text { or } \quad & \frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{2 n}\right) \cdot \sum_{i=1}^{n}\left|a_{i}-a_{i+1}\right| .
\end{aligned}
$$

Corollary 7. For all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$ we have

$$
\begin{equation*}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\left(\frac{n-1}{2 \sqrt{n}}\right) \cdot\left(\sum_{i=1}^{n}\left(a_{i}-a_{i+1}\right)^{2}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

with the condition $a_{n+1} \equiv a_{1}$.
Proof. By using the Cauchy-Schwarz inequality $\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{n} a_{i}^{2} \cdot \sum_{i=1}^{n} b_{i}^{2}$, we have $\sum_{i=1}^{n}\left|a_{i}-a_{i+1}\right| \leq \sqrt{n} \cdot\left(\sum_{i=1}^{n}\left(a_{i}-a_{i+1}\right)^{2}\right)^{1 / 2}$. So, from this and (6) we immediately have (7).

3. Another proof of (2) in the case $n=3$

In this section, we will show a new proof of (2) for the case $n=3$.
Lemma 8. For all non-negative real numbers a, b, we have

$$
\begin{equation*}
\left(\frac{a+b}{2}\right)^{3}+\frac{3}{8} \cdot\left|a^{3}-b^{3}\right| \geq \frac{a^{3}+b^{3}}{2} . \tag{8}
\end{equation*}
$$

Proof. Without losing generality, we assume that $a \geq b \geq 0$. Then, (8) is equivalent to the following inequality $\left(\frac{a+b}{2}\right)^{3}+\frac{3}{8} \cdot\left(a^{3}-b^{3}\right) \geq \frac{a^{3}+b^{3}}{2}$ or $3 a b(a+b) \geq 6 b^{3}$. This is correct because $a \geq b \geq 0$. The lemma is proved.

Problem 9. For all non-negative real numbers a_{1}, a_{2}, a_{3} we have

$$
\begin{equation*}
\frac{a_{1}+a_{2}+a_{3}}{3} \leq \sqrt[3]{a_{1} a_{2} a_{3}}+\frac{1}{3} \cdot\left(\left|a_{1}-a_{2}\right|+\left|a_{2}-a_{3}\right|+\left|a_{3}-a_{1}\right|\right) . \tag{9}
\end{equation*}
$$

Proof. We introduce the following notations: $b_{1}^{3}=a_{1}, b_{2}^{3}=a_{2}, b_{3}^{3}=a_{3}$, then $b_{1}, b_{2}, b_{3} \geq 0$ and (9) becomes $\frac{b_{1}^{3}+b_{2}^{3}+b_{3}^{3}}{3} \leq b_{1} b_{2} b_{3}+\frac{1}{3} \cdot\left(\left|b_{1}^{3}-b_{2}^{3}\right|+\left|b_{2}^{3}-b_{3}^{3}\right|+\left|b_{3}^{3}-b_{1}^{3}\right|\right)$.
Using the lemma for three pairs of numbers $\left(b_{1}, b_{2}\right),\left(b_{2}, b_{3}\right)$ and $\left(b_{3}, b_{1}\right)$, we have

$$
\begin{aligned}
& \left(\frac{b_{1}+b_{2}}{2}\right)^{3}+\frac{3}{8} \cdot\left|b_{1}^{3}-b_{2}^{3}\right| \geq \frac{b_{1}^{3}+b_{2}^{3}}{2} \\
& \left(\frac{b_{2}+b_{3}}{2}\right)^{3}+\frac{3}{8} \cdot\left|b_{2}^{3}-b_{3}^{3}\right| \geq \frac{b_{2}^{3}+b_{3}^{3}}{2},
\end{aligned}
$$

$$
\left(\frac{b_{3}+b_{1}}{2}\right)^{3}+\frac{3}{8} \cdot\left|b_{3}^{3}-b_{1}^{3}\right| \geq \frac{b_{3}^{3}+b_{1}^{3}}{2}
$$

Adding above inequalities side by side, we get
$b_{1}^{3}+b_{2}^{3}+b_{3}^{3} \leq\left(\frac{b_{1}+b_{2}}{2}\right)^{3}+\left(\frac{b_{2}+b_{3}}{2}\right)^{3}+\left(\frac{b_{3}+b_{1}}{2}\right)^{3}+\frac{3}{8} \cdot\left(\left|b_{1}^{3}-b_{2}^{3}\right|+\left|b_{2}^{3}-b_{3}^{3}\right|+\left|b_{3}^{3}-b_{1}^{3}\right|\right)$
or $2 \cdot \sum_{i=1}^{3} b_{i}^{3} \leq \sum_{i=1}^{3} b_{i} b_{i+1} \cdot\left(b_{i}+b_{i+1}\right)+\sum_{i=1}^{3}\left|b_{i}-b_{i+1}\right| \quad$ (with the condition $b_{n+1} \equiv b_{1} \quad$ when $n=3$)
Thus, $\sum_{i=1}^{3} b_{i}^{3}+\sum_{i=1}^{3} b_{i}^{3}+3 b_{1} b_{2} b_{3} \leq 3 b_{1} b_{2} b_{3}+\sum_{i=1}^{3}\left|b_{i}-b_{i+1}\right|+\sum_{i=1}^{3} b_{i} b_{i+1}\left(b_{i}+b_{i+1}\right)$
According to Schur's inequality, we have $\sum_{i=1}^{3} b_{i}^{3}+3 b_{1} b_{2} b_{3} \geq \sum_{i=1}^{3} b_{i} b_{i+1}\left(b_{i}+b_{i+1}\right)$
Hence, from (*) we deduce $\sum_{i=1}^{3} b_{i}^{3} \leq 3 b_{1} b_{2} b_{3}+\sum_{i=1}^{3}\left|b_{i}^{3}-b_{i+1}^{3}\right|$

$$
\text { or } \frac{1}{3} \cdot \sum_{i=1}^{3} b_{i}^{3} \leq b_{1} b_{2} b_{3}+\frac{1}{3} \cdot \sum_{i=1}^{3}\left|b_{i}^{3}-b_{i+1}^{3}\right|
$$

4. An open problem.

The following inequality is a problem of USA-TST (2000)
Problem 10. Prove that $\frac{a+b+c}{3}-\sqrt[3]{a b c} \leq \max \left\{(\sqrt{a}-\sqrt{b})^{2},(\sqrt{b}-\sqrt{c})^{2},(\sqrt{c}-\sqrt{a})^{2}\right\}$
where a, b, c are non-negative real numbers.
The inequality (10) is a beautiful inequality and there are some ways to prove it (eg: see[2]). A natural question arises, can the power 2 of (10) be replaced by another power? Now, we will observe the following problem.

Lemma 11. Let $f(x)=x-n p \sqrt[n]{x}+q$, where $p>0, x \in[a, b], n \in N, n \geq 2$ then

$$
f(x) \leq \max \{f(a), f(b)\} .
$$

Proof. The lemma is proved easily by using the property of convex function. It is left as an exercise for the reader.

Problem 12. Prove that for all $a_{1}, a_{2}, \ldots, a_{n} \geq 0$ we have the following inequality
$\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}+\left(\frac{n-1}{n}\right) \max _{1 \leq i<j \leq n}\left\{\left(\sqrt{a_{i}}-\sqrt{a_{j}}\right)^{2}\right\}$
where $n \geq 2, n \in N$.
Proof. Without losing generality, we assume that $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$. So

$$
\max _{1 \leq i<j \leq n}\left\{\left(\sqrt{a_{i}}-\sqrt{a_{j}}\right)^{2}\right\}=\left(\sqrt{a_{1}}-\sqrt{a_{n}}\right)^{2}=a_{1}-2 \sqrt{a_{1} a_{n}}+a_{n} .
$$

Thus (11) is equivalent to the following inequality
$a_{1}+a_{2}+\ldots+a_{n} \leq n \cdot \sqrt[n]{a_{1} a_{2} \ldots a_{n}}+(n-1)\left(a_{1}-2 \sqrt{a_{1} a_{n}}+a_{n}\right)$
or $a_{2}+a_{3}+\ldots+a_{n-1}-n \cdot \sqrt[n]{a_{1} a_{2} \ldots a_{n-1} a_{n}}-(n-2) a_{1}-(n-2) a_{n}+2(n-1) \sqrt{a_{1} a_{n}} \leq 0$. Put
$F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
$:=a_{2}+a_{3}+\ldots+a_{n-1}-n \cdot \sqrt[n]{a_{1} a_{2} \ldots a_{n-1} a_{n}}-(n-2) a_{1}-(n-2) a_{n}+2(n-1) \sqrt{a_{1} a_{n}}$.

It is easy to see that the form of $F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the same as the form of $f(x)$ of lemma 11. Note that $a_{i} \in\left[a_{n}, a_{1}\right], \forall i=\overline{2, n-1}$, so using the lemma 11 for $a_{i}, i \in\{2,3, \ldots, n-1\}$ we have $F\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq \max \left\{F\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{1}, a_{i+1}, \ldots, a_{n}\right), F\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{n}, a_{i+1}, \ldots, a_{n}\right)\right\}$. Using the above property for $i=2,3, \ldots, n-1$, we get
$F\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq \max _{t_{i} \in\left\{a_{1}, a_{n}\right\}} F\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where $t_{i} \in\left\{a_{1}, a_{n}\right\}, \forall i=1,2 \ldots, n$.
Suppose that there exist m numbers t_{i} that equal $a_{1},(0 \leq m \leq n)$ so
$F\left(t_{1}, t_{2}, \ldots, t_{n}\right)=(m-n+2) a_{1}-m a_{n}-n \cdot \sqrt[n]{a_{1}^{m+1} a_{n}^{n-m-1}}+2(n-1) \sqrt{a_{1} a_{n}}$.
We will prove that $F\left(t_{1}, t_{2}, \ldots, t_{n}\right) \leq 0$. Indeed, if $\frac{n-m-1}{n}>\frac{n}{2}$, we put
$G\left(a_{1}\right)=F\left(t_{1}, t_{2}, \ldots, t_{n}\right)=(m-n+2) a_{1}-m a_{n}-n \cdot \sqrt[n]{a_{1}^{m+1} a_{n}^{n-m-1}}+2(n-1) \sqrt{a_{1} a_{n}}$,
$G^{\prime}\left(a_{1}\right)=m-n+2-(m+1) \cdot \sqrt[n]{\frac{a_{n}^{n-m-1}}{a_{1}^{n-m-1}}}+(n-1) \sqrt{\frac{a_{n}}{a_{1}}}$
$=(m+1)\left(\sqrt{\frac{a_{n}}{a_{1}}}-\sqrt[n]{\frac{a_{n}^{n-m-1}}{a_{1}^{n-m-1}}}\right)+(n-m-2)\left(\sqrt{\frac{a_{n}}{a_{1}}}-1\right)$
Since $\frac{a_{n}}{a_{1}} \leq 1, \sqrt{\frac{a_{n}}{a_{1}}} \leq \sqrt[n]{\frac{a_{n}^{n-m-1}}{a_{1}^{n-m-1}}}$ and $\sqrt{\frac{a_{n}}{a_{1}}} \leq 1$. Hence $G^{\prime}\left(a_{1}\right) \leq 0$. From this, we deduce that $G\left(a_{1}\right) \leq G\left(a_{n}\right)=0$. If $\frac{n-m-1}{n} \leq \frac{1}{2}$, we put
$H\left(a_{n}\right)=F\left(t_{1}, t_{2}, \ldots, t_{n}\right)=(m-n+2) a_{1}-m a_{n}-n \cdot \sqrt[n]{a_{1}^{m+1} a_{n}^{n-m-1}}+2(n-1) \sqrt{a_{1} a_{n}}$

Similarly, we also deduce that $H\left(a_{n}\right) \leq 0$.
The proof is completed.
Problem 13. Find all real numbers k such that we have the inequality

$$
\begin{equation*}
\frac{a+b+c}{3}-\sqrt[3]{a b c} \leq \max \left\{|\sqrt{a}-\sqrt{b}|^{k},|\sqrt{b}-\sqrt{c}|^{k},|\sqrt{c}-\sqrt{a}|^{k}\right\} \tag{12}
\end{equation*}
$$

for all non-negative real numbers a, b, c.

Solution. The answer for this is $k=2$. Indeed, try $b=c=0$ and $a>1$, from (11) we deduce that $\frac{a}{3} \leq a^{k / 2}$. Hence, $1-\frac{k}{2} \leq \frac{\ln 3}{\ln a}$ for every number $a>1$. Let $a \rightarrow \infty$, we get $k \geq 2$.
When $k=2,(10)$ is correct (problem 10). We will prove that (11) is incorrect with $k>2$.
When $k>2$, try $a=\frac{4}{n^{2}}, \quad b=c=\frac{1}{n^{2}} \quad$ (where n is positive real number), we get $\frac{2-\sqrt[3]{4}}{n^{2}} \leq \max \left\{\frac{1}{n^{k}}, 0, \frac{1}{n^{k}}\right\}=\frac{1}{n^{k}}$. Hence, $n^{k-2} \leq \frac{1}{2-\sqrt[3]{4}}$. This is not true as n tends to infinity. Therefore, there is only real number $k(k=2)$ satisfying (11).

It is clear that when $k=2$, the degree of left-hand-side of (11). Almost classical inequalities are homogeneous inequalities of the first degree.

We conclude this paper with an open problem: for all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$ (where n is a natural greater than 1), suppose that there exists a function $f:=f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satisfying the following three conditions simultaneously
i) $f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \geq 0$ for all non-negative real numbers $a_{1}, a_{2}, \ldots, a_{n}$.
ii) $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ if and only if $a_{1}=a_{2}=\ldots=a_{n}$.
iii) $\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}+f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for all real numbers $a_{1}, a_{2}, \ldots, a_{n} \geq 0$.

Prove or disprove that $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a homogeneous function of the first degree.

References

[1] Kin Y Li, Schur's Inequality, Mathematical Excalibur Vol.10, No. 5 p2-4(2006), Hong Kong.
[2] N.V.Mau, Các bài toán nội suy và áp dụng, (in Vietnamese) Education Publishing House,Vietnam, 2007.
[3] P.V.Thuan, L.Vi, Bất đảng thức: Suy luận và khám phá, (in Vietnamese) Vietnam national university Publishing House, Hanoi, 2007.

Nguyễn Tiến Lâm, student of K50A1S
Department of Mathematices - Mechanics - Informatics College of science, Vietnam national university, Hanoi
Email address: ngtienlam@gmail.com

