Refinements of the Cauchy-Bunyakovsky-Schwarz Inequality for Functions of Selfadjoint Operators in Hilbert Spaces

S.S. Dragomir

Abstract

Some inequalities for continuous functions of selfadjoint operators in Hilbert spaces that improve the Cauchy-Bunyakovsky-Schwarz inequality, are given.

1. Introduction

In [1, Daykin, Elizer and Carlitz obtained the following refinement of the Cauchy-Bunyakovsky-Schwarz inequality, which, in the version from [5, p. 87], can be stated as:

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{n} \varphi\left(a_{i}, b_{i}\right) \sum_{i=1}^{n} \psi\left(a_{i}, b_{i}\right) \leq \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2} \tag{DEC}
\end{equation*}
$$

where and $a_{i}, b_{i} \in[0, \infty)$ for each $i \in\{1, \ldots, n\}$ and (φ, ψ) is a pair of functions defined on $[0, \infty) \times[0, \infty)$ and satisfying the conditions
(i) $\varphi(a, b) \psi(a, b)=a^{2} b^{2}$ for any $a, b \in[0, \infty)$;
(ii) $\varphi(k a, k b)=k^{2} \varphi(a, b)$ for any $a, b, k \in[0, \infty)$;
(iii) $\frac{b \varphi(a, 1)}{a \varphi(b, 1)}+\frac{a \varphi(b, 1)}{b \varphi(a, 1)} \leq \frac{a}{b}+\frac{b}{a}$ for any $a, b \in(0, \infty)$.

As examples of such pairs of functions, which will be called for simplicity (DEC)-pairs, we can indicate the following functions: $\varphi(a, b)=a^{2}+b^{2}, \psi(a, b)=$ $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$ and $\varphi(a, b)=a^{1+\alpha} b^{1-\alpha}, \psi(a, b)=a^{1-\alpha} b^{1+\alpha}$ with $\alpha \in[0,1]$. The first pair generates the famous Milne's inequality:

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(a_{i}^{2}+b_{i}^{2}\right) \sum_{i=1}^{n} \frac{a_{i}^{2} b_{i}^{2}}{a_{i}^{2}+b_{i}^{2}} \leq \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}, \tag{1.1}
\end{equation*}
$$

while the second generates the Callebaut's inequality:

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{n} a_{i}^{1+\alpha} b_{i}^{1-\alpha} \sum_{i=1}^{n} a_{i}^{1-\alpha} b_{i}^{1+\alpha} \leq \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2} . \tag{1.2}
\end{equation*}
$$

It is an open problem for the author to find other nice and simple examples of such pair of functions.

[^0]In order to state the operator version of this result we recall the Gelfand functional calculus.

Let A be a selfadjoint linear operator on a complex Hilbert space $(H ;\langle.,\rangle$.$) .$ The Gelfand map establishes a $*$-isometrically isomorphism Φ between the set $C(S p(A))$ of all continuous functions defined on the spectrum of A, denoted $S p(A)$, an the C^{*}-algebra $C^{*}(A)$ generated by A and the identity operator 1_{H} on H as follows (see for instance [4, p. 3]):

For any $f, g \in C(S p(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have
(i) $\quad \Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
(ii) $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi(\bar{f})=\Phi(f)^{*}$;
(iii) $\|\Phi(f)\|=\|f\|:=\sup _{t \in S p(A)}|f(t)|$;
(iv) $\Phi\left(f_{0}\right)=1_{H}$ and $\Phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in S p(A)$.

With this notation we define

$$
f(A):=\Phi(f) \text { for all } f \in C(S p(A))
$$

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on $S p(A)$, then $f(t) \geq 0$ for any $t \in S p(A)$ implies that $f(A) \geq 0$, i.e. $f(A)$ is a positive operator on H. Moreover, if both f and g are real valued functions on $S p(A)$ then the following important property holds:

$$
\begin{equation*}
f(t) \geq g(t) \text { for any } t \in S p(A) \text { implies that } f(A) \geq g(A) \tag{P}
\end{equation*}
$$

in the operator order of $B(H)$.
For a recent monograph devoted to various inequalities for functions of selfadjoint operators, see [4] and the references therein.

For other results conserning functions of selfadjoint operators, see [2], 3], [7], [6] and [8.

2. A Two Operators Version

The following result may be stated:
THEOREM 1. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A, B are selfadjoint operators on the Hilbert space $(H ;\langle.,\rangle$.$) with S p(A)$, $S p(B) \subseteq[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\left.\begin{array}{l}
2\langle f(A) g(A) x, x\rangle\langle f(B) g(B) y, y\rangle \tag{2.1}\\
\leq\langle\varphi(f(A), g(A)) x, x\rangle\langle\psi(f(B), g(B)) y, y\rangle \\
+
\end{array} \quad\langle\psi(f(A), g(A)) x, x\rangle\langle\varphi(f(B), g(B)) y, y\rangle\right)
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Proof. We observe that from the property (iii) we have the inequality

$$
2 \leq \frac{b \varphi(a, 1)}{a \varphi(b, 1)}+\frac{a \varphi(b, 1)}{b \varphi(a, 1)} \leq \frac{a}{b}+\frac{b}{a}
$$

for any $a, b>0$.

If in this inequality we choose $a=\frac{u}{v}$ and $b=\frac{z}{w}$, then we get

$$
\begin{equation*}
2 \leq \frac{z v \varphi\left(\frac{u}{v}, 1\right)}{u w \varphi\left(\frac{z}{w}, 1\right)}+\frac{u w \varphi\left(\frac{z}{w}, 1\right)}{z v \varphi\left(\frac{u}{v}, 1\right)} \leq \frac{u w}{v z}+\frac{v z}{u w} \tag{2.2}
\end{equation*}
$$

From the property (ii) we have

$$
z v \varphi\left(\frac{u}{v}, 1\right)=\frac{z}{v} \varphi(u, v) \text { and } u w \varphi\left(\frac{z}{w}, 1\right)=\frac{u}{w} \varphi(z, w)
$$

which give from 2.2 that

$$
\begin{equation*}
2 \leq \frac{z w \varphi(u, v)}{u v \varphi(z, w)}+\frac{u v \varphi(z, w)}{z w \varphi(u, v)} \leq \frac{u w}{v z}+\frac{v z}{u w} \tag{2.3}
\end{equation*}
$$

for any $u, v, z, w>0$.
Utilising the property (i) we have

$$
\varphi(z, w)=\frac{z^{2} w^{2}}{\psi(z, w)} \text { and } \varphi(u, v)=\frac{u^{2} v^{2}}{\psi(u, v)}
$$

which, from 2.3, produces the inequality

$$
2 \leq \frac{\varphi(u, v) \psi(z, w)}{z w u v}+\frac{\varphi(z, w) \psi(u, v)}{u v z w} \leq \frac{u w}{v z}+\frac{v z}{u w}
$$

i.e., the inequality

$$
\begin{equation*}
2 u v z w \leq \varphi(u, v) \psi(z, w)+\varphi(z, w) \psi(u, v) \leq u^{2} w^{2}+v^{2} z^{2} \tag{2.4}
\end{equation*}
$$

for any $u, v, z, w \geq 0$.
Now, if we choose $u=f(s), v=g(s), z=f(t)$ and $w=g(t)$ in 2.4 then we get

$$
\begin{align*}
& 2 f(s) g(s) f(t) g(t) \tag{2.5}\\
& \qquad \begin{aligned}
\leq \varphi(f(s), g(s)) \psi(f(t), g(t))+\varphi(f(t) & , g(t)) \psi(f(s), g(s)) \\
& \leq f^{2}(s) g^{2}(t)+g^{2}(s) f^{2}(t)
\end{aligned}
\end{align*}
$$

for any $s, t \in[m, M]$.
Further, if we fix $t \in[m, M]$ and apply the property $\sqrt{\mathrm{P}}$ for the operator A, then we get the inequality

$$
\begin{align*}
& \text { 6) } \quad 2 f(t) g(t)\langle f(A) g(A) x, x\rangle \tag{2.6}\\
& \leq \psi(f(t), g(t))\langle\varphi(f(A), g(A)) x, x\rangle+\varphi(f(t), g(t))\langle\psi(f(A), g(A)) x, x\rangle \\
& \leq
\end{aligned} \begin{aligned}
\leq g^{2}(t)\left\langle f^{2}(A) x, x\right\rangle+f^{2}(t)\left\langle g^{2}(A) x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Now, if we fix $x \in H$ with $\|x\|=1$ and apply the same property (P) for the inequality (2.6) and the operator B, then we get the desired inequality (2.1).

The following particular case is of interest:
Corollary 1. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A is a selfadjoint operator on the Hilbert space $(H ;\langle.,\rangle$.$) with S p(A) \subseteq$
$[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& \langle f(A) g(A) x, x\rangle^{2} \tag{2.7}\\
& \leq\langle\varphi(f(A), g(A)) x, x\rangle\langle\psi(f(A), g(A)) x, x\rangle \leq\left\langle f^{2}(A) x, x\right\rangle\left\langle g^{2}(A) x, x\right\rangle
\end{align*}
$$

for any $x \in H,\|x\|=1$.
Remark 1. a. If A is a selfadjoint operator on the Hilbert space ($H ;\langle.,\rangle$.$) with$ $S p(A) \subseteq[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& \langle f(A) g(A) x, x\rangle^{2} \tag{2.8}\\
& \leq\left\langle\left[f^{1+\alpha}(A) g^{1-\alpha}(A)\right] x, x\right\rangle\left\langle\left[f^{1-\alpha}(A) g^{1+\alpha}(A)\right] x, x\right\rangle \\
& \leq\left\langle f^{2}(A) x, x\right\rangle\left\langle g^{2}(A) x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$, where $\alpha \in[0,1]$.
b. If A is a selfadjoint operator with $S p(A) \subseteq[m, M]$ for some scalars $m<$ M and if f and g are continuous on $[m, M]$ with values in $[0, \infty)$ and such that $f^{2}(A)+g^{2}(A)$ is invertible, then we have the inequality

$$
\begin{align*}
& \langle f(A) g(A) x, x\rangle^{2} \tag{2.9}\\
& \leq\left\langle\left[f^{2}(A)+g^{2}(A)\right] x, x\right\rangle\left\langle\left[\left[f^{2}(A) g^{2}(A)\right]\left[f^{2}(A)+g^{2}(A)\right]^{-1}\right] x, x\right\rangle \\
& \leq\left\langle f^{2}(A) x, x\right\rangle\left\langle g^{2}(A) x, x\right\rangle
\end{align*}
$$

for any $x \in H,\|x\|=1$.
The above two inequalities provide various particular cases that are of interest. We give here some examples as follows:

Example 1. a. Assume that A is a positive operator on the Hilbert space H and $p, q>0$. Then for each $x \in H$ with $\|x\|=1$ we have the inequality

$$
\begin{align*}
\left\langle A^{p+q} x, x\right\rangle^{2} \leq\left\langle A^{p+q+\alpha(p-q)} x, x\right\rangle\left\langle A^{p+q-\alpha(p-q)} x\right. & , x\rangle \tag{2.10}\\
& \leq\left\langle A^{2 p} x, x\right\rangle\left\langle A^{2 q} x, x\right\rangle
\end{align*}
$$

where $\alpha \in[0,1]$.
If A is positive definite then the inequality (2.10) also holds for $p, q<0, p>$ $0, q<0$ or $p<0, q>0$.
b. Assume that A is a selfadjoint operator and $n, r \in \mathbb{R}$. Then for each $x \in H$ with $\|x\|=1$ we have the inequality

$$
\begin{align*}
& \langle\exp [(n+r) A] x, x\rangle^{2} \tag{2.11}\\
& \quad \begin{aligned}
& \leq\langle\exp [n+r+\alpha(n-r)] A x, x\rangle\langle\exp [n+r-\alpha(n-r)] A x, x\rangle \\
& \leq
\end{aligned} \quad\langle\exp (2 n A) x, x\rangle\langle\exp (2 r A) x, x\rangle
\end{align*}
$$

where $\alpha \in[0,1]$.
Another example conserning the thrigonometric operators $\sin (A)$ and $\cos (A)$ is as follows:

Example 2. Let A be a selfadjoint operator with $S p(A) \subseteq\left[0, \frac{\pi}{2}\right]$. Then we have the inequality

$$
\begin{align*}
\langle\sin (A) \cos (A) x, x\rangle^{2} \leq\left\langle\left[\sin ^{2}(A) \cos ^{2}(A)\right]\right. & x, x\rangle \tag{2.12}\\
& \leq
\end{align*}
$$

for any $x \in H,\|x\|=1$.

3. Some Versions for $2 n$ Operators

The following multiple operator version of Theorem 1 holds:
ThEOREM 2. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A_{j}, B_{j} are selfadjoint operators with $S p\left(A_{j}\right), S p\left(B_{j}\right) \subseteq[m, M]$ for $j \in$ $\{1, \ldots, n\}$ and for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& \text { (3.1) } 2 \sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f\left(B_{j}\right) g\left(B_{j}\right) y_{j}, y_{j}\right\rangle \tag{3.1}\\
& \quad \leq \sum_{j=1}^{n}\left\langle\varphi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle\psi\left(f\left(B_{j}\right), g\left(B_{j}\right)\right) y_{j}, y_{j}\right\rangle \\
& \quad+\sum_{j=1}^{n}\left\langle\psi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle\varphi\left(f\left(B_{j}\right), g\left(B_{j}\right)\right) y_{j}, y_{j}\right\rangle \\
& \leq \sum_{j=1}^{n}\left\langle f^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle g^{2}\left(B_{j}\right) y_{j}, y_{j}\right\rangle+\sum_{j=1}^{n}\left\langle g^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle f^{2}\left(B_{j}\right) y_{j}, y_{j}\right\rangle
\end{align*}
$$

for each $x_{j}, y_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|y_{j}\right\|^{2}=1$.
Proof. As in [4, p. 6], if we put

$$
\begin{aligned}
& \widetilde{A} \quad:=\left(\begin{array}{ccccc}
A_{1} & \cdot & \cdot & \cdot & 0 \\
& \cdot & & & \\
& & \cdot & & \\
0 & \cdot & \cdot & \cdot & A_{n}
\end{array}\right), \widetilde{B}:=\left(\begin{array}{ccccc}
B_{1} & \cdot & \cdot & \cdot & 0 \\
& \cdot & & & \\
& & \cdot & & \\
& & & \cdot & \\
0 & \cdot & \cdot & \cdot & B_{n}
\end{array}\right) \\
& \widetilde{x}=\left(\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right) \text { and } \widetilde{y}=\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right)
\end{aligned}
$$

then we have $\operatorname{Sp}(\widetilde{A}), S p(\widetilde{B}) \subseteq[m, M],\|\widetilde{x}\|=\|\widetilde{y}\|=1$,

$$
\begin{aligned}
\langle f(\widetilde{A}) g(\widetilde{A}) \widetilde{x}, \widetilde{x}\rangle & =\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \\
\langle f(\widetilde{A}) g(\widetilde{A}) \widetilde{y}, \widetilde{y}\rangle & =\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) y_{j}, y_{j}\right\rangle
\end{aligned}
$$

and so on.

Applying Theorem 1 for $\widetilde{A}, \widetilde{B}, \widetilde{x}$ and \widetilde{y} we deduce the desired result 3.1.

As a particular case of interest we can state the following corollary:

Corollary 2. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M]$ for $j \in\{1, \ldots, n\}$ and for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& \left(\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)^{2} \tag{3.2}\\
& \quad \leq \sum_{j=1}^{n}\left\langle\varphi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle\psi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x_{j}, x_{j}\right\rangle \\
& \\
& \leq \sum_{j=1}^{n}\left\langle f^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle g^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle
\end{align*}
$$

for each $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.

REMARK 2. a. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M]$ for $j \in\{1, \ldots, n\}$ and for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
&\left(\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)^{2} \tag{3.3}\\
& \leq \sum_{j=1}^{n}\left\langle\left[f^{1+\alpha}\left(A_{j}\right) g^{1-\alpha}\left(A_{j}\right)\right] x_{j},\right. \\
&\left.x_{j}\right\rangle \sum_{j=1}^{n}\left\langle\left[f^{1-\alpha}\left(A_{j}\right) g^{1+\alpha}\left(A_{j}\right)\right] x_{j}, x_{j}\right\rangle \\
& \leq \sum_{j=1}^{n}\left\langle f^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle g^{2}\left(A_{j}\right) x_{j}, x_{j}\right\rangle
\end{align*}
$$

for each $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, where $\alpha \in[0,1]$.
b. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M]$ for $j \in\{1, \ldots, n\}$ and for some scalars $m<M$ and if f and g are continuous on $[m, M]$ with values in $[0, \infty)$ and such that $f^{2}\left(A_{j}\right)+g^{2}\left(A_{j}\right)$ are invertible for each, $j \in\{1, \ldots, n\}$ then we
have the inequality

$$
\begin{align*}
& \left(\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)^{2} \tag{3.4}\\
& \leq \sum_{j=1}^{n}\left\langle\left[f^{2}\left(A_{j}\right)+g^{2}\left(A_{j}\right)\right] x_{j}, x_{j}\right\rangle \\
& \times \sum_{j=1}^{n}\left\langle\left[\left[f^{2}\left(A_{j}\right) g^{2}\left(A_{j}\right)\right]\left[f^{2}\left(A_{j}\right)+g^{2}\left(A_{j}\right)\right]^{-1}\right] x_{j}, x_{j}\right\rangle \\
& \leq \sum_{j=1}^{n}\left\langle f^{2}(A) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle g^{2}(A) x_{j}, x_{j}\right\rangle
\end{align*}
$$

for each $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
Some particular inequalitties similar to those from Example 1 and Example 2 may be stated, however we do not mention them in here.

Another version for n operators is the following one:
ThEOREM 3. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A_{j}, B_{j} are selfadjoint operators with $S p\left(A_{j}\right), S p\left(B_{j}\right) \subseteq[m, M]$ for $j \in$ $\{1, \ldots, n\}$ and for some scalars $m<M, p_{j} \geq 0, q_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=$ $\sum_{j=1}^{n} q_{j}=1$ and if f and g are continuous on $[m, M]$ with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& 2\left\langle\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} f\left(B_{j}\right) g\left(B_{j}\right) y, y\right\rangle \tag{3.5}\\
& \leq\left\langle\sum_{j=1}^{n} p_{j} \varphi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} \psi\left(f\left(B_{j}\right), g\left(B_{j}\right)\right) y, y\right\rangle \\
& +\left\langle\sum_{j=1}^{n} p_{j} \psi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} \varphi\left(f\left(B_{j}\right), g\left(B_{j}\right)\right) y, y\right\rangle \\
& \leq\left\langle\sum_{j=1}^{n} p_{j} f^{2}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} g^{2}\left(B_{j}\right) y, y\right\rangle \\
& +\left\langle\sum_{j=1}^{n} p_{j} g^{2}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} q_{j} f^{2}\left(B_{j}\right) y, y\right\rangle
\end{align*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$.
Proof. Follows from Theorem 2 on choosing $x_{j}=\sqrt{p_{j}} \cdot x, y_{j}=\sqrt{q_{j}} \cdot y, j \in$ $\{1, \ldots, n\}$, where $p_{j} \geq 0, q_{j} \geq 0, j \in\{1, \ldots, n\}, \sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n} q_{j}=1$ and $x, y \in H$ with $\|x\|=\|y\|=1$.

Corollary 3. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M]$ for $j \in\{1, \ldots, n\}$ and for some scalars $m<M, p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$ and if f and g are
continuous on $[m, M]$ with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& \left\langle\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right) x, x\right\rangle^{2} \tag{3.6}\\
& \leq\left\langle\sum_{j=1}^{n} p_{j} \varphi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} p_{j} \psi\left(f\left(A_{j}\right), g\left(A_{j}\right)\right) x, x\right\rangle \\
& \leq\left\langle\sum_{j=1}^{n} p_{j} f^{2}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} p_{j} g^{2}\left(A_{j}\right) x, x\right\rangle
\end{align*}
$$

for each $x \in H$, with $\|x\|=1$.
Finally for the section, we can state the following particular inequalities of interest:

REMARK 3. a. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M]$ for $j \in\{1, \ldots, n\}$ and for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
&\left\langle\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right) x, x\right\rangle^{2} \tag{3.7}\\
& \leq\left\langle\sum_{j=1}^{n} p_{j}\left[f^{1+\alpha}\left(A_{j}\right) g^{1-\alpha}\left(A_{j}\right)\right] x, x\right\rangle\left\langle\sum_{j=1}^{n} p_{j}\left[f^{1-\alpha}\left(A_{j}\right) g^{1+\alpha}\left(A_{j}\right)\right] x, x\right\rangle \\
& \leq\left\langle\sum_{j=1}^{n} p_{j} f^{2}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} p_{j} g^{2}\left(A_{j}\right) x, x\right\rangle
\end{align*}
$$

for each $p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$ and $x \in H$ with $\|x\|=1$ where $\alpha \in[0,1]$.
b. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M]$ for $j \in\{1, \ldots, n\}$ and for some scalars $m<M$ and if f and g are continuous on $[m, M]$ with values in $[0, \infty)$ and such that $f^{2}\left(A_{j}\right)+g^{2}\left(A_{j}\right)$ are invertible for each $j \in\{1, \ldots, n\}$ then we have the inequality

$$
\begin{align*}
& \left\langle\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right) x, x\right\rangle^{2} \tag{3.8}\\
& \leq\left\langle\sum_{j=1}^{n} p_{j}\left[f^{2}\left(A_{j}\right)+g^{2}\left(A_{j}\right)\right] x, x\right\rangle \\
& \times\left\langle\sum_{j=1}^{n} p_{j}\left[\left[f^{2}\left(A_{j}\right) g^{2}\left(A_{j}\right)\right]\left[f^{2}\left(A_{j}\right)+g^{2}\left(A_{j}\right)\right]^{-1}\right] x, x\right\rangle \\
& \leq\left\langle\sum_{j=1}^{n} p_{j} f^{2}\left(A_{j}\right) x, x\right\rangle\left\langle\sum_{j=1}^{n} p_{j} g^{2}\left(A_{j}\right) x, x\right\rangle
\end{align*}
$$

for each $p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$ and $x \in H$ with $\|x\|=1$.

4. Related Results for Two Operators

The following result that provides another refinement for the Cauchy-BunyakovskySchwarz inequality may be stated as well:

ThEOREM 4. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A, B are selfadjoint operators on the Hilbert space $(H ;\langle.,\rangle$.$) with \operatorname{Sp}(A)$, $S p(B) \subseteq[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& 2\langle f(A) g(A) x, x\rangle\langle f(B) g(B) y, y\rangle \tag{4.1}\\
& \leq\left\langle\Gamma_{1}(B)(A, x) y, y\right\rangle+\left\langle\Gamma_{2}(B)(A, x) y, y\right\rangle \\
& \leq
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ where

$$
\Gamma_{1}(t)(A, x):=\langle\varphi(f(A), g(t)) \psi(f(t), g(A)) x, x\rangle
$$

and

$$
\Gamma_{2}(t)(A, x):=\langle\varphi(f(t), g(A)) \psi(f(A), g(t)) x, x\rangle
$$

for $t \in[m, M]$.
Proof. We know that the following inequality holds

$$
\begin{equation*}
2 u v z w \leq \varphi(u, v) \psi(z, w)+\varphi(z, w) \psi(u, v) \leq u^{2} w^{2}+v^{2} z^{2} \tag{4.2}
\end{equation*}
$$

for any $u, v, z, w \geq 0$.
Now, if we choose $u=f(s), v=g(t), z=f(t)$ and $w=g(s)$ in 4.2 then we get

$$
\begin{align*}
& 2 f(s) g(s) f(t) g(t) \tag{4.3}\\
& \left.\qquad \begin{array}{l}
\leq \varphi(f(s), g(t)) \psi(f(t), g(s))+\varphi(f(t)
\end{array} \quad g(s)\right) \psi(f(s), g(t)) \\
& \\
& \leq f^{2}(s) g^{2}(s)+g^{2}(t) f^{2}(t)
\end{align*}
$$

for any $s, t \in[m, M]$.
Further, if we fix $t \in[m, M]$ and apply the property $(\mathrm{P}]$ for the operator A, then we get the inequality

$$
\begin{align*}
& \text { 4) } \quad \begin{aligned}
& 2 f(t) g(t)\langle f(A) g(A) x, x\rangle \\
& \leq\langle\varphi(f(A), g(t)) \psi(f(t), g(A)) x, x\rangle+\langle\varphi(f(t), g(A)) \psi(f(A), g(t)) x, x\rangle \\
& \leq\left\langle f^{2}(A) g^{2}(A) x, x\right\rangle+g^{2}(t) f^{2}(t)
\end{aligned} \tag{4.4}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$. This inequality can be written in terms of the functions $\Gamma_{1}().(A, x)$ and $\Gamma_{1}().(A, x)$ as

$$
\begin{align*}
& 2 f(t) g(t)\langle f(A) g(A) x, x\rangle \tag{4.5}\\
& \leq \Gamma_{1}(t)(A, x)+\Gamma_{2}(t)(A, x) \\
& \leq\left\langle f^{2}(A) g^{2}(A) x, x\right\rangle+g^{2}(t) f^{2}(t)
\end{align*}
$$

for any $t \in[m, M]$ and any $x \in H$ with $\|x\|=1$.
Now, if we fix $x \in H$ with $\|x\|=1$ and apply the same property (P) for the inequality (4.5) for the operator B then we get the desired inequality (4.1).

The following particular case is of interest

Corollary 4. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A is a selfadjoint operator on the Hilbert space $(H ;\langle.,\rangle$.$) with S p(A) \subseteq$ $[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{equation*}
\langle f(A) g(A) x, x\rangle^{2} \leq\langle\Gamma(B)(A, x) x, x\rangle \leq\left\langle f^{2}(A) g^{2}(A) x, x\right\rangle \tag{4.6}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$ where

$$
\Gamma(t)(A, x):=\langle\varphi(f(A), g(t)) \psi(f(t), g(A)) x, x\rangle
$$

for $t \in[m, M]$.
REmARK 4. If $\varphi(a, b)=a^{1+\alpha} b^{1-\alpha}, \psi(a, b)=a^{1-\alpha} b^{1+\alpha}$ with $\alpha \in[0,1]$ then

$$
\Gamma_{1}(t)(A, x)=f^{1-\alpha}(t) g^{1-\alpha}(t)\left\langle f^{1+\alpha}(A) g^{1+\alpha}(A) x, x\right\rangle
$$

and

$$
\Gamma_{2}(t)(A, x):=f^{1+\alpha}(t) g^{1+\alpha}(t)\left\langle f^{1-\alpha}(A) g^{1-\alpha}(A) x, x\right\rangle
$$

and from 4.1) we get the inequality

$$
\begin{align*}
& 2\langle f(A) g(A) x, x\rangle\langle f(B) g(B) y, y\rangle \tag{4.7}\\
& \leq\left\langle f^{1+\alpha}(A) g^{1+\alpha}(A) x, x\right\rangle\left\langle f^{1-\alpha}(B) g^{1-\alpha}(B) y, y\right\rangle \\
& +\left\langle f^{1-\alpha}(A) g^{1-\alpha}(A) x, x\right\rangle\left\langle f^{1+\alpha}(B) g^{1+\alpha}(B) y, y\right\rangle \\
& \leq
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ provided that A is a selfadjoint operator on the Hilbert space $(H ;\langle.,\rangle$.$) with S p(A) \subseteq[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$.

In particular we have the inequality

$$
\begin{align*}
\langle f(A) g(A) x, x\rangle^{2} \leq\left\langle f^{1+\alpha}(A) g^{1+\alpha}(A) x, x\right\rangle\left\langle f^{1-\alpha}\right. & \left.(A) g^{1-\alpha}(A) x, x\right\rangle \tag{4.8}\\
& \leq\left\langle f^{2}(A) g^{2}(A) x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
The above two inequalities provide various particular cases that are of interest. We give here some examples as follows:

Example 3. a. Assume that A is a positive operator on the Hilbert space H and $p>0$. Then for each $x \in H$ with $\|x\|=1$ we have the inequality

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle^{2} \leq\left\langle A^{(1+\alpha) p} x, x\right\rangle\left\langle A^{(1-\alpha) p} x, x\right\rangle \leq\left\langle A^{2 p} x, x\right\rangle \tag{4.9}
\end{equation*}
$$

where $\alpha \in[0,1]$.
If A is positive definite then the inequality (4.9) also holds for $p<0$.
b. Assume that A is a selfadjoint operator and $r \in \mathbb{R}$. Then for each $x \in H$ with $\|x\|=1$ we have the inequality

$$
\left.\left.\left.\begin{array}{rl}
\langle\exp (r A) x, x\rangle^{2} \leq\langle\exp [(1+\alpha) r A] x, x\rangle\langle\exp [(1-\alpha) r A] x, x\rangle \tag{4.10}\\
& \leq
\end{array}\right\} \exp (2 r A) x, x\right\rangle\right) ~ \$
$$

where $\alpha \in[0,1]$.
Similar results can be stated for $2 n$ operators, however the details are omitted.
The following different inequality may be stated as well:

THEOREM 5. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A, B are selfadjoint operators on the Hilbert space $(H ;\langle.,\rangle$.$) with S p(A)$, $S p(B) \subseteq[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
& (2\langle f(A) g(A) x, x\rangle\langle f(B) g(B) y, y\rangle \tag{4.11}\\
& \quad \leq)\langle\varphi(f(A), g(A)) x, x\rangle\langle\psi(f(B), g(B)) y, y\rangle \\
& +\langle\psi(f(A), g(A)) x, x\rangle\langle\varphi(f(B), g(B)) y, y\rangle \\
& \quad \leq\left\langle f^{2}(A) x, x\right\rangle\left\langle f^{2}(B) y, y\right\rangle+\left\langle g^{2}(A) x, x\right\rangle\left\langle g^{2}(B) y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Proof. We know that the following inequality holds

$$
\begin{equation*}
2 u v z w \leq \varphi(u, v) \psi(z, w)+\varphi(z, w) \psi(u, v) \leq u^{2} w^{2}+v^{2} z^{2} \tag{4.12}
\end{equation*}
$$

for any $u, v, z, w \geq 0$.
Further, if we choose $u=f(s), v=g(s), z=g(t)$ and $w=f(t)$ in 4.12 then we get

$$
\begin{align*}
& 2 f(s) g(s) f(t) g(t) \tag{4.13}\\
& \qquad \begin{aligned}
\leq \varphi(f(s), g(s)) \psi(f(t), g(t))+\varphi(f(t) & , g(t)) \psi(f(s), g(s)) \\
& \leq f^{2}(s) f^{2}(t)+g^{2}(s) g^{2}(t)
\end{aligned}
\end{align*}
$$

for any $s, t \in[m, M]$.
Now, if we fix $t \in[m, M]$ and apply the property (\mathbb{P}) for the operator A then we get the inequality

$$
\begin{align*}
& \text { 14) } \left.\begin{array}{rl}
2 f(t) g(t)\langle f(A) g(A) x, x\rangle \\
\leq \psi(f(t), g(t))\langle\varphi(f(A), g(A)) x & \\
\begin{array}{rl}
& x\rangle+\varphi(f(t), g(t))\langle\psi(f(A), g(A)) x, x\rangle \\
& \leq f^{2}(t)\left\langle f^{2}(A) x, x\right\rangle+g^{2}(t)\left\langle g^{2}(A) x, x\right\rangle
\end{array}
\end{array} \begin{array}{rl}
\leq \psi(f(A)
\end{array}\right) \tag{4.14}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Now, if we fix $x \in H$ with $\|x\|=1$ and apply the same property (P) for the inequality (4.14) for the operator B then we get the desired inequality 4.11.

In particular, we have
Corollary 5. Let (φ, ψ) be a (DEC)-pair of continuous functions on $[0, \infty) \times$ $[0, \infty)$. If A is a selfadjoint operators on the Hilbert space $(H ;\langle.,\rangle$.$) with S p(A) \subseteq$ $[m, M]$ for some scalars $m<M$ and if f and g are continuous on $[m, M]$ and with values in $[0, \infty)$, then we have the inequality

$$
\begin{align*}
&\left(2\langle f(A) g(A) x, x\rangle^{2} \leq\right) 2\langle\varphi(f(A), g(A)) x, x\rangle\langle\psi(f(A), g(A)) x, x\rangle \tag{4.15}\\
& \leq\left\langle f^{2}(A) x, x\right\rangle^{2}+\left\langle g^{2}(A) x, x\right\rangle^{2}
\end{align*}
$$

for any $x \in H,\|x\|=1$.
REmark 5. We observe that the inequality 4.15) is not as good as the second inequality in 2.7.

REmark 6. Consider now the following two bounds

$$
B_{2}:=\left\langle f^{2}(A) x, x\right\rangle\left\langle f^{2}(B) y, y\right\rangle+\left\langle g^{2}(A) x, x\right\rangle\left\langle g^{2}(B) y, y\right\rangle
$$

and

$$
B_{1}:=\left\langle f^{2}(A) x, x\right\rangle\left\langle g^{2}(B) y, y\right\rangle+\left\langle g^{2}(A) x, x\right\rangle\left\langle f^{2}(B) y, y\right\rangle
$$

for the quntity

$$
\begin{aligned}
\langle\varphi(f(A), g(A)) x, x\rangle\langle\psi(f(B) & , g(B)) y, y\rangle \\
& +\langle\psi(f(A), g(A)) x, x\rangle\langle\varphi(f(B), g(B)) y, y\rangle
\end{aligned}
$$

that have been obtained in Theorem 5 and Theorem 1, respectively. We observe that

$$
\begin{equation*}
B_{2}-B_{1}=\left\langle\left[f^{2}(A)-g^{2}(A)\right] x, x\right\rangle\left(\left\langle\left[f^{2}(B)-g^{2}(B)\right] y, y\right\rangle\right) \tag{4.16}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Utilising the equality (4.16) we can observe, for instance, that, if $f^{2}(A) \geq$ $g^{2}(A)$ and $f^{2}(B) \geq g^{2}(B)$ in the operator order of $B(H)$, then B_{1} is a better bound than B_{2}. The conclusion is the other way around if, for instance, $f^{2}(A) \geq g^{2}(A)$ and $g^{2}(B) \geq f^{2}(B)$ in the operator order of $B(H)$.

Similar results can be stated for $2 n$ operators, however the details are omitted.
REMARK 7. One can choose the variables $u, v, z, w \geq 0$ in other different ways in the inequality

$$
\begin{equation*}
2 u v z w \leq \varphi(u, v) \psi(z, w)+\varphi(z, w) \psi(u, v) \leq u^{2} w^{2}+v^{2} z^{2} \tag{4.17}
\end{equation*}
$$

to get similar results as those pointed out above. The details are left to the interested reader.

References

[1] D.E. Daykin, C.J. Eliezer and C. Carlitz, Problem 5563, Amer.Math. Monthly, 75(1968), p. 198 and 76(1969), 98-100.
[2] S.S. Dragomir, Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 11. [ONLINE: http://www.staff.vu. edu.au/RGMIA/v11(E).asp
[3] S.S. Dragomir, Cebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 9. [ONLINE: http://www.staff. vu.edu.au/RGMIA/v11(E).asp
[4] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[5] D.S. Mitrinović, J.Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
[6] B. Mond and J. Pečarić, On some operator inequalities, Indian J. Math., 35(1993), 221-232.
[7] B. Mond and J. Pečarić, Classical inequalities for matrix functions, Utilitas Math., 46(1994), 155-166.
[8] J. Pečarić, J. Mićić and Y. Seo, Inequalities between operator means based on the MondPečarić method. Houston J. Math. 30 (2004), no. 1, 191-207.

Research Group in Mathematical Inequalities \& Applications, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://www.staff.vu.edu.au/rgmia/dragomir/

[^0]: 1991 Mathematics Subject Classification. 47A63; 47A99.
 Key words and phrases. Selfadjoint operators, Cauchy-Bunyakovsky-Schwarz inequality, Milne's inequality, Callebaut's inequality, Functions of Selfadjoint operators.

