
ON SOME INEQUALITIES FOR MEANS AND THE SECOND
GAUTSCHI-KERSHAW’S INEQUALITY

CHAO-PING CHEN

Abstract. We establish some inequalities for means, and we present new

bounds for the second Gautschi-Kershaw’s inequality.

1. Introduction

Let r, s ∈ R and let a, b > 0. The Stolarsky mean Er,s(a, b) of order (r, s) of a
and b with a 6= b are defined as

Er,s(a, b) =





(
r

s
· bs − as

br − ar

)1/(s−r)

, rs(r − s) 6= 0,

exp
(
−1

r
+

ar ln a− br ln b

ar − br

)
, r = s 6= 0,

(
1
r
· br − ar

ln b− ln a

)1/r

, r 6= 0, s = 0,

√
ab, r = s = 0,

(1)

with Er,s(a, a) = a (see [51, 52]), while the Gini mean Gr,s(a, b) of order (r, s) of a
and b are defined in [18] as

Gr,s(a, b) =





(
as + bs

ar + br

)1/(s−r)

, r 6= s,

exp
(

ar ln a + br ln b

ar + br

)
, r = s 6= 0,

√
ab, r = s = 0.

(2)

K. B. Stolarsky [51], Leach and Sholander [27] showed that Er,s(a, b) are for
a 6= b strictly increasing with both r and s. For a 6= b, Gr,s(a, b) are also strictly
increasing with both r and s, see [36, 42]. Leach and Sholander [29] and Páles [38]
solved the problem of comparison of Stolarsky mean. The problem of comparison
of Gini mean was completely solved by Páles [39] (see also the paper by P. Czinder
and Zs. Ples [12]). A problem of comparability of Gini and Stolarsky means was
addressed by Neuman and Páles [35]. Minkowski-type inequality for Stolarsky and
Gini means can be found in [11, 31, 32].
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Since Er,s(a, b) are for a 6= b strictly increasing with both r and s, for the
particular choices of the parameters r and s, we obtain the following chain of
inequalities:

E−2,−1(a, b) < E0,0(a, b) < E1,0(a, b) < E1,1(a, b) < E2,1(a, b) for a 6= b,

that is,
H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b) for a 6= b,

where H, G, L, I and A are the harmonic, geometric, logarithmic, identric and
arithmetic means, respectively.

It is worth mentioning that

G0,r(a, b) = Er,2r(a, b) = Mr(a, b) =





(
ar + br

2

)1/r

, r 6= 0,

√
ab, r = 0.

Thus the classes of Gini and Stolarsky means contain both the power means. Alzer
and Ruscheweyh [2] have proven that the joint elements in the classes of Gini and
Stolarsky means are exactly the power means.

Let r, s ∈ R and a, b > 0, the generalized Muirhead mean
∑

r,s(a, b) of a and b

is defined by (see, for instance, [5, p. 333] or [4])

∑
r,s

(a, b) =
(

arbs + asbr

2

)1/(r+s)

, r + s 6= 0.

T. Trif [53] investigated the monotonicity of
∑

r,s(a, b) with respect to r or s.
Likewise, a comparison theorem and a Minkowski-type inequality involving the
generalized Muirhead mean

∑
r,s(a, b) are established.

In the special case when r + s = 1, i.e., r = α, s = 1 − α, the Muirhead (or
symmetric) mean is obtained:

∑
α,1−α

(a, b) =
aαb1−α + a1−αbα

2
.

Following A. O. Pittenger [41], we write symmetric mean into the from

Sδ(a, b) =
a

1+
√

δ
2 b

1−√δ
2 + a

1−√δ
2 b

1+
√

δ
2

2
.

It is shown in [22] that Sδ is increasing in δ and that for a 6= b

M0(a, b) < Sδ(a, b) < M1(a, b)

provided 0 < δ < 1.
The following result is known

S1/3(a, b) < L(a, b) < M1/3(a, b). (3)

The first inequality in (3) has been established by A. O. Pittenger [41], while the
second one was proven in [30, 41]. The first inequality in (3) improves a result of
B. C. Carlson [9], who proved S1/4(a, b) < L(a, b).

E. Neuman [34] established the integral representation

L(a, b) =
∫ 1

0

atb1−tdt. (4)
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By applying the Gausss quadrature formula with two knots (see [13, pp. 343-344],
[14, p. 36])

∫ 1

0

f(t)dt =
1
2
f

(
1
2

+
1

2
√

3

)
+

1
2
f

(
1
2
− 1

2
√

3

)
+

1
4320

f (4)(ξ), 0 < ξ < 1 (5)

to the function f(t) = atb1−t, T. Trif [53] presented a very short proof of the first
inequality in (3).

Motivated by the technique of T. Trif, we here present a very short proof of the
second inequality in (3). To this aim, by applying Simpson’s 3

8 rule (see [6, 26])

∫ b

a

f(t)dt =
b− a

8

[
f(a) + 3f

(
2a + b

3

)
+ 3f

(
a + 2b

3

)
+ f(b)

]

− (b− a)5

6480
f (4)(ξ) for some ξ between a and b,

(6)

with a = 0, b = 1 and f(t) = atb1−t(0 ≤ t ≤ 1), we get

L(a, b) = M1/3(a, b)− 1
6480

aξb1−ξ(ln a− ln b)4.

This yields the second inequality in (3).
We remark that F. Burk [7] obtained the second inequality in (3) by applying

(6) to the function f(t) = et, replacing a and b with ln a and ln b, respectively.
This paper is organized as follows. In Section 2 we establish some inequalities

for means. In Section 3 we presents new bounds, and the series representation for
the ratio ln Γ(y)−ln Γ(x)

y−x , where Γ denotes the gamma function.

2. Inequalities for means

Theorem 1. Let a, b > 0 with a 6= b, then

L <
1
3
H +

2
3
A, (7)

1
L

<
1
3

1
H

+
2
3

1
A

, (8)

I2 <
1
3
G2 +

2
3
A2. (9)

Proof. B. C. Carlson [9] has established the integral representation

L(a, b) =
[∫ 1

0

1
ta + (1− t)b

dt

]−1

. (10)

Use the change of variable u = ta + (1− t)b, (10) can be written as

L(a, b) =

[
1

b− a

∫ b

a

1
u

du

]−1

. (11)
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By applying (5) to the function f(t) = 1
ta+(1−t)b , we obtain

1
L(a, b)

=
1
2

[
1

( 1
2 + 1

2
√

3
)a + ( 1

2 − 1
2
√

3
)b

+
1

( 1
2 − 1

2
√

3
)a + ( 1

2 + 1
2
√

3
)b

]

+
(b− a)4

180[ξa + (1− ξ)b]5

=
1

1
3H + 2

3A
+

(b− a)4

180[ξa + (1− ξ)b]5
(0 < ξ < 1)

>
1

1
3H + 2

3A
.

This proves (7).
By applying the composite Simpson rule (see [21])
∫ b

a

f(t)dt =
b− a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]

− (b− a)5

2880
f (4)(ξ) for some ξ between a and b,

(12)

to the function f(t) = 1
t , we obtain

1
L(a, b)

=
1
6

[
1
b

+
4

(a + b)/2
+

1
a

]
− (b− a)4

120ξ5
<

1
3H

+
2

3A
.

This proves (8).
It is easy to see that

ln I(a, b) =
1

b− a

∫ b

a

ln tdt =
∫ 1

0

ln[ta + (1− t)b]dt. (13)

By applying (5) to the function f(t) = ln[ta + (1− t)b], we obtain

ln I(a, b) =
1
2

ln
[(

1
2

+
1

2
√

3

)
a +

(
1
2
− 1

2
√

3

)
b

]

+
1
2

ln
[(

1
2
− 1

2
√

3

)
a +

(
1
2

+
1

2
√

3

)
b

]
− (b− a)4

720[ξa + (1− ξ)b]4

=
1
2

ln
(

1
6
a2 +

2
3
ab +

1
6
b2

)
− (b− a)4

720[ξa + (1− ξ)b]4

=
1
2

ln
(

1
3
G2 +

2
3
A2

)
− (b− a)4

720[ξa + (1− ξ)b]4
(0 < ξ < 1)

<
1
2

ln
(

1
3
G2 +

2
3
A2

)
,

thus, (9) holds. The proof of Theorem 1 is complete. ¤

Remark 1. The following result is known
3
√

AG2 < L <
1
3
A +

2
3
G. (14)

The first inequality in (14) was established by E. B. leach and M. C. Sholander
[28], while the second one was proven by B. C. Carlson [9]. The second inequality
in (14) can be obtained by applying (12) with a = 0, b = 1 and f(t) = xty1−t.
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The inequality
I >

3
√

GA2 (15)
can be concluded by applying (12) to the function f(t) = ln t, see [49, 50]. A
stronger inequality than (15) is (cf.[49])

I >
1
3
G +

2
3
A. (16)

3. The second Gautschi-Kershaw’s inequality

In 1959 W. Gautschi [17] presented the remarkable inequality:

n1−s <
Γ(n + 1)
Γ(n + s)

< exp[(1− s)ψ(n + 1)], 0 < s < 1, n = 1, 2, . . . , (17)

where ψ = Γ′/Γ denotes the logarithmic derivative of the gamma function. In 1983
D. Kershaw [24] gave the following closer bounds:

(
x +

s

2

)1−s

<
Γ(x + 1)
Γ(x + s)

<

(
x− 1

2
+

√
x +

1
4

)1−s

, (18)

exp[(1− s)ψ(x +
√

s)] <
Γ(x + 1)
Γ(x + s)

< exp
[
(1− s)ψ

(
x +

s + 1
2

)]
(19)

for real x > 0 and 0 < s < 1. Inequalities (18) and (19) are respectively called the
first and the second Gautschi-Kershaw’s inequality in the literature.

C. Giordano et al. [19] and B. Palumbo [40] gave a unified treatment and some
extensions of Gautschi-Kershaw type inequalities. For each s > 0, x > 0, the
inequality (18) is valid for 0 < s < 1 or s > 2, while the reverse inequality is valid
for 1 < s < 2; and the inequality (19) is valid for 0 < s < 1, while the reverse
inequality is valid for s > 1.

The inequality (19) can be written as

ψ(x +
√

s) <
ln Γ(x + 1)− ln Γ(x + s)

1− s
< ψ

(
x +

s + 1
2

)
. (20)

In 2005, D. Kershaw [25] proved that for s, t > 0,

ψ(x +
√

st) <
ln Γ(x + t)− ln Γ(x + s)

t− s
< ψ

(
x +

s + t

2

)
. (21)

N. Elezović and J. Pec̆arić [16, Lemma 1] proved that for s, t > 0,

ψ(L(s, t)) ≤ ln Γ(t)− ln Γ(s)
t− s

. (22)

N. Batir [3, Theorem 2.7] established an extended form of (22): Let x and y be
positive real numbers and n be a positive integer. Then

(−1)nψ(n+1)

(
x + y

2

)
<

(−1)n[ψ(n)(x)− ψ(n)(y)]
x− y

< (−1)nψ(n+1)
(
S−(n+1)(x, y)

)
.

(23)

Recently, F. Qi et al. [44] presented closer lower bound:

(−1)nψ(n+1) (I(x, y)) <
(−1)n[ψ(n)(x)− ψ(n)(y)]

x− y
. (24)
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There have been a lot of literature about the second Gautschi-Kershaw’s inequal-
ity, please refer to [1, 8, 10, 15, 20, 23, 33], [43]-[48].

Our Theorem 2 establishes new bounds, and the series representation for the
ratio ln Γ(y)−ln Γ(x)

y−x .

Theorem 2. Let x, y > 0 with x 6= y, then

1
3
A (ψ(x), ψ(y)) +

2
3
ψ (A(x, y))− (y − x)4

2880
ψ(4)(max(x, y)) <

ln Γ(y)− ln Γ(x)
y − x

<
1
3
A (ψ(x), ψ(y)) +

2
3
ψ (A(x, y))− (y − x)4

2880
ψ(4)(min(x, y)),

(25)

ln Γ(y)− ln Γ(x)
y − x

=
∞∑

k=0

1
(2k + 1)!

(
y − x

2

)2k

ψ(2k)

(
x + y

2

)
. (26)

Proof. It is known that

ψ(n)(x) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−xt dt, n = 1, 2, . . . . (27)

By (12) and (27), we get

ln Γ(y)− ln Γ(x)
y − x

=
1

y − x

∫ y

x

ψ(t)dt

=
1
6

[
ψ(x) + 4ψ

(
x + y

2

)
+ ψ(y)

]
− (y − x)4

2880
ψ(4)(ξ)

=
1
3
A (ψ(x), ψ(y)) +

2
3
ψ (A(x, y))− (y − x)4

2880
ψ(4)(ξ)

for some ξ between x and y. This yields (25).
By applying the following result (see [37]):

1
y − x

∫ y

x

f(t)dt =
∞∑

k=0

1
(2k + 1)!

(
y − x

2

)2k

f (2k)

(
x + y

2

)
, (28)

we obtain

ln Γ(y)− ln Γ(x)
y − x

=
1

y − x

∫ y

x

ψ(t)dt

=
∞∑

k=0

1
(2k + 1)!

(
y − x

2

)2k

ψ(2k)

(
x + y

2

)
.

The proof of Theorem 2 is complete. ¤

Remark 2. Since ψ(2k)(x) < 0, k = 1, 2, . . ., by (26) we can obtain the second
inequality in (21), replacing y and x with x + t and x + s, respectively .

The following Theorem 3 presents an extended form of (25).
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Theorem 3. Let x, y > 0 with x 6= y, then for all integers n ≥ 0,

(−1)n

[
1
3
A

(
ψ(n+1)(x), ψ(n+1)(y)

)
+

2
3
ψ(n+1) (A(x, y))− (y − x)4

2880
ψ(n+5)(min(x, y))

]

<
(−1)n[ψ(n)(y)− ψ(n)(x)]

y − x

< (−1)n

[
1
3
A

(
ψ(n+1)(x), ψ(n+1)(y)

)
+

2
3
ψ(n+1) (A(x, y))− (y − x)4

2880
ψ(n+5)(max(x, y))

]
,

(29)

ψ(n)(y)− ψ(n)(x)
y − x

=
∞∑

k=0

1
(2k + 1)!

(
y − x

2

)2k

ψ(2k+n+1)

(
x + y

2

)
. (30)

Proof. By (12) and (27), we get

ψ(n)(y)− ψ(n)(x)
y − x

=
1

y − x

∫ y

x

ψ(n+1)(t)dt

=
1
6

[
ψ(n+1)(x) + 4ψ(n+1)

(
x + y

2

)
+ ψ(n+1)(y)

]
− (y − x)4

2880
ψ(n+5)(ξ)

=
1
3
A

(
ψ(n+1)(x), ψ(n+1)(y)

)
+

2
3
ψ(n+1) (A(x, y))− (y − x)4

2880
ψ(n+5)(ξ)

for some ξ between x and y.
It is easy to see that if n is an even number, then

1
3
A

(
ψ(n+1)(x), ψ(n+1)(y)

)
+

2
3
ψ(n+1) (A(x, y))− (y − x)4

2880
ψ(n+5)(min(x, y))

<
ψ(n)(y)− ψ(n)(x)

y − x

<
1
3
A

(
ψ(n+1)(x), ψ(n+1)(y)

)
+

2
3
ψ(n+1) (A(x, y))− (y − x)4

2880
ψ(n+5)(max(x, y)),

(31)

while the reverse inequality holds if n is an odd number. Hence, (29) is valid for
all integers n ≥ 0.

By applying (28), we obtain

ψ(n)(y)− ψ(n)(x)
y − x

=
1

y − x

∫ y

x

ψ(n+1)(t)dt

=
∞∑

k=0

1
(2k + 1)!

(
y − x

2

)2k

ψ(2k+n+1)

(
x + y

2

)
.

The proof of Theorem 3 is complete. ¤

Remark 3. Since ψ(2k−1)(x) > 0 and ψ(2k)(x) < 0, k = 1, 2, . . ., by (30) we can
obtain the first inequality in (23).
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