SOME SLATER’S TYPE INEQUALITIES FOR CONVEX
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT
SPACES

S.S. DRAGOMIR

ABSTRACT. Some inequalities of the Slater type for convex functions of selfad-
joint operators in Hilbert spaces under suitable assumptions for the involved
operators are given. Applications for particular cases of interest are also pro-
vided.

1. INTRODUCTION

Suppose that I is an interval of real numbers with interior [ and f:I—-R
is a convex function on I. Then f is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if z,y €l and = < y, then f’. (x) < fL(x) <
I (y) < f% (y) which shows that both f’ and f/ are nondecreasing function on L
It is also known that a convex function must be differentiable except for at most
countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Jf is the

set of all functions ¢ : I — [—00, 00| such that ¢ (I) C R and

f(x)> f(a)+ (x—a)p(a) for any z,a € I.

It is also well known that if f is convex on I, then Jf is nonempty, f’, fi € 0f
and if ¢ € 0f, then

fL(z) <p(x) < fL(x) for any z € L

In particular, ¢ is a nondecreasing function.
If f is differentiable and convex on I, then 0f = {f'}.
The following result is well known in the literature as the Slater inequality:

Theorem 1 (Slater, 1981, [I5]). If f : I — R is a nonincreasing (nondecreasing)
convez function, x; € I,p; > 0 with P, := Y1 p; > 0 and >\, pip (x;) # 0,
where ¢ € Of, then

(1.1) Pi Zpif(xi) <f (W) .
=1 i=1Pi i
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As pointed out in [I p. 208], the monotonicity assumption for the derivative ¢
can be replaced with the condition

Z?:l piitp (T4) I
(1.2) ~r . €,
> i1 Pip (24)
which is more general and can hold for suitable points in I and for not necessarily
monotonic functions.

2. SOME OPERATOR INEQUALITIES FOR CONVEX FUNCTIONS

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)).
The Gelfand map establishes a x-isometrically isomorphism & between the set
C (Sp (A)) of all continuous functions defined on the spectrum of A, denoted Sp (A4),
an the C*-algebra C* (A) generated by A and the identity operator 1z on H as
follows (see for instance [7, p. 3]):

For any f,g € C (Sp(A)) and any «, 8 € C we have

(i) ®(af +Bg) = a®(f) + 62 (g);

(i) @(fg)=2(f)®(g) and ®(f) =P (f)";

(i) (@ (NI = IF1l := supsespay If ()]

(iv) ®(fo) =1g and ® (f1) = A, where fo (t) = 1and f; (t) = ¢, fort € Sp(A).

With this notation we define

f(A) = (f) forall f e C(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on Sp (A4),
then f(t) > 0 for any ¢ € Sp(A) implies that f(A) > 0, i.e. f(A) is a positive
operator on H. Moreover, if both f and ¢ are real valued functions on Sp (A) then
the following important property holds:

(P) f(t) > g(t) for any t € Sp(A) implies that f (4) > g (A4)

in the operator order of B (H).
For a recent monograph devoted to various inequalities for functions of selfadjoint
operators, see [7] and the references therein. For other results, see [14], [8] and [10].
The following result that provides an operator version for the Jensen inequality
is due to Mond & Pecarié [12] (see also [7} p. 5]):

Theorem 2 (Mond-Pecarié, 1993, [12]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp(A) C [m, M| for some scalars m, M with
m < M. If f is a convex function on [m, M], then

(MP) f({Az, z)) < (f (A) z,x),
for each x € H with ||z| = 1.

As a special case of Theorem [2| we have the following Holder-McCarthy inequal-
ity:
Theorem 3 (Holder-McCarthy, 1967, [9]). Let A be a selfadjoint positive operator
on a Hilbert space H. Then

(i) (A"z,z) > (Az,z)" for allT > 1 and x € H with ||z|| = 1;

(ii) (ATz,z) < (Az,x)" for all0 <r <1 and x € H with ||z| = 1;

(iii) If A is invertible, then (A"z,x) > (Ax,z)" for all v < 0 and x € H with
]| = 1.
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The following result that provides a reverse of the Mond & Pecari¢ has been
obtained in [4]:
Theorem 4 (Dragomir, 2008, [4]). Let I be an interval and f : I — R be a convex

and differentiable function on I (the interior of I) whose derivative [ is continuous

onI.If A is a selfadjoint operators on the Hilbert space H with Sp (A) C [m, M] cl,
then

21) 0 {f(A)z,2) — [ (Av,2)) < (f'(A) Az, 2) — (Aw,z) - (f' (A) 2, 2) ,
for any x € H with ||z| = 1.

Perhaps more convenient reverses of the Mond & Pecari¢ result are the following
inequalities that have been obtained in the same paper [4]:

Theorem 5 (Dragomir, 2008, [4]). Let I be an interval and f : I — R be a convex
and differentiable function on I (the interior of I) whose deriative [ is continuous

onI.If A is a selfadjoint operators on the Hilbert space H with Sp (A) C [m, M] cl,
then

(2.2) (0 <)(f(A)z,z) — | ((Az,2))

= m) I @) 2l = ()]

IN
N[ =

N[

()~ () [||Ax|\2 ~ (ar 2]
(M —m) (' (M) ~ f (m)),

.4>\»—*

for any x € H with ||z|| = 1.
We also have the inequality

(23) (0<)(f (A)az) — f ((Az,2)) < = (M —m) (f (M) — ' (m))

(M — Az, Az —maz) (f' (M) — ' (A)z, f' (A)z — f (m) 2)]?

W~

(A, @) = M| (17 (4) 2, ) — L0 )

< 3 (M —m) (f (M) ~ f' (m)

for any x € H with ||z| = 1.
Moreover, if m > 0 and f’ (m) > 0, then we also have

(2.4) (0=)(f(A)z,z) — f ((Az,x))
1 Qom0 f ) |

4 N/ Mmf (M) f' (m)

(VM = yin) (VI (M) = /T (m)) [(Aw @) (' (A) . 2)] %

for any x € H with ||z| = 1.

Az, z) (f' (A)w,x),

IN

N

For generalisations to n-tuples of operators as well as for some particular cases
of interest, see [4].
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The main aim of the present paper is to provide some Slater’s type vector in-
equalities for convex functions whose derivatives are continuous.

3. SOME SLATER’S TYPE INEQUALITIES

The following result holds:

Theorem 6. Let I be an interval and f : I — R be a convexr and differentiable
function on I (the interior of I) whose derivative f’ is continuous on LIfAisa
selfadjoint operator on the Hilbert space H with Sp (A) C [m, M| cl and f'(A) is
a positive definite operator on H then

(AF (A)z,2)
(3.1) 0<f () (f (A) )
G (A a.a)
_ <<Af’ (4) m>> {<Af’ (A)z,2) — (Az,2) (' (A) z,2)
S\ Ftaen ) z.2) ’

for any x € H with ||z|| = 1.

Proof. Since f is convex and differentiable on I, then we have that

(3-2) fils) t=s)<f)=f(s) < f (1) (t—s)

for any t,s € [m, M].
Now, if we fix t € [m, M| and apply the property (]E) for the operator A, then
for any « € H with ||z|| = 1 we have

(3:3) (f'(A)-(t-1g = A)a,x) < ([f () - 1u = f(A)] z,x)
<)t 1p— Az, x)
for any t € [m, M| and any « € H with ||z| = 1.
The inequality is equivalent with
(3-4) t(f (A)x,z) = (f'(A) Az, ) < f () = (f (A) z, ) < f' ()t = f' (t) (Az, )

for any t € [m, M| any x € H with |jz| = 1.

Now, since A is selfadjoint with mI < A < MI and f’'(A) is positive defi-
nite, then mf' (A) < Af' (A) < Mf' (A), ie, m{f' (A)xz,x) < (Af' (A)z,z) <
M (f' (A) z,z) for any x € H with ||z|| = 1, which shows that
A (A)zx)

(f" (A)z,x)

Finally, if we put ¢ = t¢ in the equation (3.4), then we get the desired result (3.1). I

fo = € m, M] for any = € H with o] = 1.

Remark 1. [t is important to observe that, the condition that f' (A) is a positive
definite operator on H can be replaced with the more general assumption that

(Af'(A) z, z)
(f" (A, z)

which may be easily verified for particular convex functions f.

(3.5) € I for any x € H with ||z| =1,



SOME SLATER’S TYPE INEQUALITIES 5

Remark 2. Now, if the functions is concave on I and the condition holds,
then we have the inequality

(3.6) 0< (f(A)x,@-f(WA)x’x))

(A1)
/ <Af/ (A)'T7x> (Ax,x> <f/ (A)$7.’L‘>— <Afl (A> l‘,$>
=/ ( A7) ) { (A7) ] ’

for any x € H with ||z| = 1.

The following examples are of interest:
Example 1. If A is a positive definite operator on H, then
(3.7) (0<)(InAz,z) — In <<A_1:E,x>_1> < (Az,x) - <A_1ac7x> -1,
for any x € H with ||z| = 1.

Indeed, we observe that if we consider the concave function f : (0,00) — R,
f () =1nt, then

<ff{/(f41§);:£> = <A*11x,x) € (0,00), for any z € H with ||z|| =1

and by the inequality (3.6) we deduce the desired result (3.7).
The following example concerning powers of operators is of interest as well:

Example 2. If A is a positive definite operator on H, then for any x € H with
lz]| =1 we have

(3.8) 0< (APz,z)P~" — (AP~ 'z, 2)P

< p(APz,z)P? [(APz,z) — (Az,z) (AP~ 'z, 2)]
forp =1,
(3.9) 0< (AP 7'z, 2)’ — (AP, z)P~!

< p APz, z)P7? [(Az,z) (AP~ '2, z) — (APz, )]
for0<p<1, and
(3.10) 0 < (APz,z)P~" — (AP a,2)P

< (—p) (APz,2)P 7 [(Az, z) (AP~ e, x) — (APz, z)]

forp <O0.

The proof follows from the inequalities (3.1]) and (3.6]) for the convex (concave)
function f(t) = t?,p € (—00,0) U [1,00) (p € (0,1)) by performing the required
calculation. The details are omitted.

4. FURTHER REVERSES

The following results that provide perhaps more useful upper bounds for the
nonnegative quantity

M - z,x) for x wi z|| =
PSR ) — () ma) for € H with o] = 1.

can be stated:
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Theorem 7. Let I be an interval and f : I — R be a convexr and dzﬁerentzable
function on I (the interior of I) whose derivative f’ is continuous on I Assume
that A is a selfadjoint operator on the Hilbert space H with Sp(A) C [m, M] ci
and f' (A) is a positive definite operator on H. If we define

B(f, Asa) = —— >_f/<<Af'(A)x,;§>)

(f(A)z,z (f Az,
then

(41) (0<)f (WA)MC

> — T, T
<f,(A)x’x>) (f (4)z,2)

2 2 1/2
Lo —m) [ (A)al = (' (4) 2, 2)?]
B(f', i) %

Lo (7 (M) = 7 (m) [l Ax — (Aw,2)?]
(M —m) (' (M) — ' (m)) B(f'. Asz)

»Jk\'—‘

and

(42) (0<)f <<Af/(‘4)$vx>

A7)
< B( Ai) x |3 OF =) (£ () - ' om)

{ [(Ma — Az, Az — ma) (f' (M) x — ' (A)z, f (A)z — ' (m)z)]* |

) - ¢ W)

(A, ) = Mg |(g (A) ) — A0 )

1
< 7 M =m) (f' (M) = f"(m)) B(f', 4;2),
for any x € H with ||z|| = 1, respectively.
Moreover, if A is a positive definite operator, then

(13) (0<)f (W} (f (A) )

L. (M—m)(f"(M)~f"(m)) (Az,z) (f' (A) z, x)

/Mmf (M) f'(m)

B (f', A;z)x

[N

(VAT = vim) (VP OI) = VI (m) [{A, 2) (f' (A) )]
for any x € H with ||z| = 1.

Proof. We use the following Griiss’ type result we obtained in [2]:

Let A be a selfadjoint operator on the Hilbert space (H;(.,.)) and assume that
Sp(A) C [m, M] for some scalars m < M. If h and g are continuous on [m, M] and
v = mingepm,ar b (t) and T := maxyep, a7 b (1) , then

(4.4)  [(h (A)g (A)z,x) = (h(A)z, ) - (g (A) 2, 2)]

<5 = [laal® - @ a?] (< Jr - @),
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for each x € H with [[z[| = 1, where ¢ := minyc[,, a7 g (t) and A := maxyepm 1) 9 (1) -
Therefore, we can state that

(4‘5) <Af/ (A) z,T > - <A$7:L‘> : <f/ (A) xv$>
(M —m) |If (A)z]|* = (f (A) z, )

< 3 (M —m) (' (M)~ ' (m))

911/2

l\')\»—l

and
(4.6) (Af' (A)z,z) — (Az,2) - (f' (A) 2, )
/ 4 2 2 1/2
(S (M) = 1 (m) [ Az]* - (Az, 2]
< 5 (M —m) (f' (M) = f" (m)),
for each € H with ||z|| = 1, which together with provide the desired result

@),

On making use of the inequality obtained in [3]

4.7) [(h(A)g(A)z,z) = (h(A)z,2) (g (A) z,2)| < 7 - (T =7) (A —-0)

[Tz — h(A), f (A) & —va) (Az — g (A) 2,9 (A) x — 62)]7

A~ =

(h(A)z,2) - 55 (g (A)w,2) = 29,
for each x € H with ||z|| = 1, we can state that
<Af'(A)$,x>—<A$,$>'<f/(f4)x,$>SE(M—m)(f'(M)—f'(m))
(M — Az, Ax — ma) (f' (M) @ — f' (A) 2, ' (A) z — [ (m) 2)]* ,

|(Az,z) — M| ‘<f' (A)z,x) — 7f/(M);rf/(m) ’ ,

for each € H with ||z|| = 1, which together with provide the desired result
2.

Further, in order to proof the third inequality, we make use of the following
result of Griiss’ type we obtained in [3]:

If v and 0 are positive, then
(4.8)  [(h(A) g (A)z,z) — (h(A)z,2) (g (A) z, )|

3 R0 (0 (A) ) (g (A) w,)

(VE =) (VA= V6) [(h(A)2.2) (g (A) w,2)]

for each z € H with ||z| = 1.
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Now, on making use of (4.8) we can state that

(Al (A)z,2) — (Az, ) - (f' (A) 2, 2)

1 (M=m)(f (M)~ (m)) ,

(VM = yim) (VIO = /T (m)) [(Az, ) (' (A) 2] %

for each € H with ||z|| = 1, which together with (3.1)) provide the desired result

4.3)- n
Remark 3. We observe, from the first inequality in , that

(Af' (A)z, ) 1 (M —m)(f (M) - f(m))
(Az,z) (f (A)z,z) ~ 4 VMmf (M) f(m)

which implies that

f,<<Af'<A>x,x>> _p ([1 (M —m) (f' M) — f (m) |
7)<

IN

(1<) +1

<Aac7x>> ,

(f(A)z,x 4 VMmf (M) f (m)
for each x € H with ||z|| = 1, since f’ is monotonic nondecreasing and A is positive
definite.
Now, the first inequality in implies the following result

(19) (0<)f (<<f(f4))>) () aa)

i%

for each x € H with ||z| = 1.
From the second inequality in we also have

(4.10) (0<)f(%))>>> (f(A)z, )

< (VM = vm) (VD) = /F ()
Xf/(ll AT ! <A$’””>> T

4 VMmf (M) f' (m
Remark 4. If the condition that ' (A) is a positive definite operator on H from the
Theorem@ is replaced by the condition , then the inequalities and
will still hold. Similar inequalities for concave functions can be stated. Howewver,
the details are not provided here.

~

for each x € H with ||z|| = 1.
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5. MULTIVARIATE VERSIONS

The following result for sequences of operators can be stated.

Theorem 8. Let I be an interval and f : I — R be a convexr and differentiable
function on I (the interior of I) whose deriwative f’ is continuous on I If A;,j €

o

{1,...,n} are selfadjoint operators on the Hilbert space H with Sp (A;) C [m,M] CI
and
S (A (Ag) g, ;)
i1 (1 (4)) zj, )
for each x; € H,j € {1,...,n} with Z?Zl ||:z:J||2 =1, then
i (A (Ay) 2y, ;) =
- _ ANz, x;
S (A ) ) 2 {F ()22
</ Do (A f (Ag) g, 25)
- doio (1 (Ag) g, 5)
y i (A (Ag) g wg) — D05 (Ayg, ) 3050 (f (Ay) 2, 25)
doio (1 (Ag) mj, ;) ’

for each x; € H,j € {1,...,;n} with 337, lla;|)* = 1.

(5.1)

(5.2) 0< f<

Proof. As in [1, p. 6], if we put
A1 . . . 0 X1

A= ) and T = . )
o . . . A, T,
then we have Sp (A) C[m,M], ||Z|]| =1

(1(3)35) =

J

(A gz (F (A) 8,3) = 32 (A)) a,05),

n n
=1 j=1

(A (D) 2.7) = 30 (Asf (4 25,

Jj=1
and so on.

Applying Theorem@under the condition 1) for A and ¥ we deduce the desired
result. The details are omitted. |

The following particular case is of interest

Corollary 1. Let I be an interval and f : I — R be a convex and differentiable
function on I (the interior of I) whose derivative f’ is continuous on I. If A;,j €

o

{1,...,n} are selfadjoint operators on the Hilbert space H with Sp (A;) C [m,M] CI
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and for p; > 0 with Z?Zl p; =1 if we also assume that

(1 i (A )
<Zj:1pjf/(f4j)$7$>

for each x € H with ||x|| = 1, then

<Z 1A' (A )$$> _<" _ . >
o4 0=t <Z?=1ij’(f4j)xafﬂ> ;pgf(Ag)x,x

(= lp]Af< >m>
(Zianf (A)e.x)
(ShapiAsf (Ag) e, o) = (X jlp]Am>< TV NERS:
(Ziapf () a.z)

el

(5.3)

<f

X

)

for each x € H with ||z|| = 1.

Proof. Follows from Theorem (8| on choosing x; = \/p; -z, j € {1,...,n}, where
pj > 0,5 € {l,..,n}, X7 p; = 1 and z € H, with [|z|| = 1. The details are
omitted. 1

The following examples are interesting in themselves:
Example 3. If A;, j € {1,...,n} are positive definite operators on H, then

—1
n

Z (InAjz;,z;) —In Z<Aj_1xj,:cj>

j=1 j=1
<> Ay Y (A w1
j=1 j=1

for each wj € H,j € {1,...,n} with 37, a;|* = 1.
Ifp; > 0,5 €{1,...,n} with Z _,pj =1, then we also have the inequality

-1

(5.6) (0<) <ij lnij,J;> —1In <ijAj_lx,x>
Jj=1 j=1

< <ijAjm,x> . <ijAj_1x,x> —
j=1 j=1

The following inequalities for powers also hold:

for each x € H with ||z| = 1.
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Example 4. If A;, j € {1,...,n} are positive definite operators on H, then for
each xj € H,j € {1,....n} with 377, lz;]|* = 1 we have

n p_l n p
0< (Z Al x; ) - ( <A§»’_1a:j,a:j>)
j=1 j=1

p—2
<p (Z (AT ST, Tj )
j=1

forO<p<1, and

0< (Z A L5 Tj ) - ( <A§1xj,$j>)
j=1 j=1

< (-p) (Z (Afz;, xj>)

j=1
j=1

X [Zj: (Ajzj, ;) z: <A§_’—1xj, xj> - zn: <A§xj,xj>]

forp <.
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Now, for any p; > 0 with Z;"zl pj =1 and for any x € H with ||z|| = 1 we also
have the inequalities

p—1 p

(5.10) 0< ijAgx,x
j=1

n
p—1
— Eijj T,T
Jj=1

n p—2
<p(>_ piAlz,x

j=1

n n n
P p—1
X E pjAjr, T ) — E pjAjT, T E piA; mw
=1 i=1 =1

forp=>1,

p—1

n p n
(5.11) 0< ijA;)_lx,x - ijAfm,a:
Jj=1 j=1

p—2

n
<p( Y pjAlz,x

j=1

n n n
p—1 P
X E pjAjT, T g ijj T, T ) — E ijjx,x
j=1 j=1 j=1

forO<p<1, and

p—1 p

(5.12) 0< ijAﬁ-’x,x - ijA§_1$,:c
j=1 j=1

p—2

<(-p)(D_pjAlz,x
j=1

n n n
-1
X ijij,x ijAf T, ) — ijAg-’x,x
=1 i=1 =1
forp <.
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