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   Refinements and sharpness of some inequalities for Mathieu type series 
 
                                              Živorad Tomovski, Delco Leškovski 
 
Abstract. In this paper the classical Qi's type inequalities [14] for Mathieu type series as well as for its alternating 
version [12] are studied. Some new refinements and sharpness of the inequalities given in [12,14,18,19] will be 
presented. 
 
 

1. Introduction and preliminaries 
 
The following familiar infinite series 
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is named after Emile Leonard Mathieu (1835-1890), who investigated it in his 1890 work [9] on 
elasticity of solid bodies. Bounds for this series are needed for the solution of boundary value 
problems for the biharmonic equations in a two-dimensional rectangular domain (see [15], p.258, 
eq. (54)). Inequality 
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was conjectured in 1890 by Mathieu [9] and proved only in 1952 by L. Berg [2]. A very elegant 
and at the same time elementary proof of the inequalities 
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is given by E. Makai [10]. These inequalities are called Mathieu’s. 
H.W. Gould and T. A. Chapman [6] have proved in 1962 the inequalities 
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from which we can derive weaker inequalities than (1.3). 
A remarkably useful integral representation for ( )rS  in the elegant form  
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was given by Emersleben [5]. 
Alternative version of (1.1) 
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was recently introduced by Pogany et.al in [12].  
Let F  be a Laplace transform of ,f i.e. 
                                                             ( ) ( )( )tfLpF = .                                                                  (1.7) 
 
Using the relations (see [13], pp.651) 
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we gave [12] an integral representation for ( )rS~ : 
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Several interesting problems and solutions dealing with integral representations and bounds for 
the following slight generalization of the Mathieu series with a fractional power 
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can be found in the  works by Diananda [4], Tomovski and Trencevski [17] and Cerone and 
Lenard [3]. Feng Qi introduced [14] the series of following type: 
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It is obvious that ( ) ( ).2, rSrS μμ =  Motivated essentially by the works of Cerone and Lenard [3] (and 
Qi [14]) we defined in [16] a family of generalized Mathieu series 
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where it is tacitly assumed that the positive sequence  
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is chosen such that the infinite series in definition (1.13) converges, that is, that the following 
auxiliary series 

                                                                   ∑
∞

=
−

1

1

n na βμα
 

is convergent. 
Comparing the definitions (1.1), (1.11) and (1.13), we see that ( ) ( )rSrS =2  and ( ) ( ) { }( )krSrS ,1,2

μμ = . 
Furthermore, the special cases ( ) { }( ),;1,2
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were investigated by Qi [14]; Diananda [3]; Tomovski [18] and Cerone-Lenard [3].  
Let 
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be an alternating variant of (1.13), where the positive sequence{ }∞=1nna  satisfied the same 
conditions of the definition (1.13). In [12] we obtained several integral representations for (1.13) 
and its alternating variant in terms of the generalized hypergeometric functions and the Bessel 
function of first kind.  Using these integral representations it is shown [19] that the series 
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                                      2. Refinements of the Qi type inequalities         
 
In this part firstly we shall refine some inequalities of Qi type, given in [14] and [12]. We need 
the following proposition.      
Proposition 2.1 For 0>x , 
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The following Theorem appears erroneously (without the term ( )re 2/3 π−−  on the right hand sided 
inequality) in the works by Feng Qi [14] and we will present here the correct formulation.  
Theorem 2.1 For any positive number 0>r , 
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Remark 2.1 This theorem was published six years after appearance of the very important paper 
by Alzer et al. [1]. Namely they proved the following theorem. 
Theorem 2.2.  For any positive number 0>r , 
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where ( )32
1

1 ζ
=k  and 

6
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2 =k are the best possible constants. Here ζ  denotes Riemann-Zeta 

function and ( ) 20205.13 ≈ζ  is the Apéry’s constant. 
. 
Remark 2.2  When ...72149,00 << r , the upper bound in (2.2) is better than that in (2.3)           
(see figure 1). 
Qi in [14] remarked that when ...9002,20 << r , the lower bound in (2.2) is positive, and then is 
useful. But, it is not better than that in (2.3).  

 
figure 1. 
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The proof of the next Theorem is similar to those of Theorem 2.1 in [14] and it is sufficient to be 
presented here one of them. 
Theorem 2.3 For all 0>r , 
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Proof. Since  
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by applying the elementary two- sided inequality (2.1), we obtain  
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Applying the well-known integral formula (see [13], p.446) 
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The proof is complete. 
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i.e. the inequality  (1.15) for 1,2,2 === βαμ  is stronger than the right hand sided inequality  
(2.4). Comparing the inequalities (1.15) and (2.4) we get the following double inequalities for  
alternating Mathieu series ( ).~ rS  
 
Corollary 2.1 If 0>r then the following two-sided inequality holds 
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Theorem 2.4 [12] For all 0>r ,  
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Remark 2.4 It is easy to show that when 28668,00 << r , the upper bound in (2.6) is better than 
the upper bound in (2.7). Namely, let  
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When ...912173,00 << r , the lower bound in (2.6) is positive, and then is useful. It is better than 
the lower bound in (2.7) when ...808583,00 << r .(see figure 2) 
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figure 2. 

 
Applying the same technique as Qi did in [14], that is, by using the fact that ( )11 +− xex  is an 
increasing function for 27846,10 ≈> cx  ( 0c  is a root of the equation 01 =+− xx xee ), the well-
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2
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 would yield the following result, which appears erroneously in the 

works by Pogany et al. [12, Theorem 4] and we will present here the correct formulation. 
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3. Inequalities for generalized Mathieu series 
 
In this section we shall refine double  inequalities given in [18] and prove that the inequality  
(1.15) for 1,2 == βα  is sharpened than inequlity of [12]  given by 
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Theorem 3.1 [18] For 0,0,0 >>> αμr  the following integral representation for ( )αμ ,1 rS +  holds 
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where 12 F  denotes the Gauss hypergeometric function and B is the Euler Beta function. 
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Applying the integral formula (see [7], page 663) 
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and  definition of the Beta function 
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we finally get (3.3). 
Specially for 2=α and μμ →+1  we get two sided inequality for ( ).rSμ  
Corollary 3.1 For 1,0 >> μr , 
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The next result was proved recently by Tomovski and Hilfer in [19], but  we shall give here a 
modified proof illustrated  graphically. 
 
Theorem 3.3 For 1,2 == βα  the inequality (1.15) is stronger than inequality (3.1). 
Proof. Let 
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We shall prove that ( ) 1, <μrP  for 
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For the proof of this theorem we need Gautschi’s inequality (see [8],[11, page 286] ) 
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2
1       [ ]⎟

⎠
⎞

⎜
⎝
⎛ ∈

−
> 1,0,

2
1 ββμ                                         (3.10) 

which for 
2
1

=β  gives  

                                                   ( )
( ) )

4
1(

4/1
1

2/1
>μ

−μ
≤

+μΓ
μΓ                                    (3.11) 

The function ( )
( )μ

μ

2

23

1 r

rrf
+

=
−

has a maximum at the point  
2/3
2/3

0 +
−

=
μ
μr . 

 

Then, 

                     ( ) ( ) ( ) ( )
( ) =

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+μ
−μ

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+μ
−μ

⋅
+μΓ
μΓ

⋅
π

−μ
=μ≤μ

μ

−μ
μ

2

23

31

0

2/3
2/31

2/3
2/32

212
23

,,
Lb

rPrP   



 9

                    ( ) ( )
( )

( )
( )

( )μ
μμ

−μ

−μ
μ

+μ

μ
+μ

−μ

⋅
+μΓ
μΓ

⋅
π

−μ
=

2/3
2

2/3
2/32

212
23 432

432

31

Lb
 

                   ( ) ( ) ( )
( ) 21

31432432

41
232/32/3

2
1

−μ

−μ
⋅

μ

+μ⋅−μ
⋅

π
≤

μ

+μ−μ

Lb
                            (3.12) 

( ) 1,0 ≤μrP  for 2/3>μ (see figure 3) 
 

 
figure 3. 

 
i) 2≥μ . 

The function ( ) ( )
( ) 2/1

3/1

4/1
2/3

−

−
=

x
xxf  has maximum at 4=x . 

Therefore, since (3.12), we have 

                                    ( ) ( )μ
π

μ L
b

rP
L

⋅

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⋅≤ 21

31

4
15
2
5

2
1,                                  (3.13) 

where  

                                         ( ) ( ) ( )
μ

μμ

μ
μμμ

432432 2/32/3 +− +⋅−
=L .  

Let 2/3−= μa . It is clear that 21≥a .  Then 
                                      
 

                                      ( ) ( ) ( )( )

2
32

232

2
32

32/3
+

+

⎟
⎠
⎞

⎜
⎝
⎛ +

+⋅
=+=

a

aa

a

aaaLL μ  
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3

2

32

3

2
31

31

4
931

31

2
31

31

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
⋅

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++

+
=

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

=
+

+

a

a

aa

a

a

a

a

a

a

 

                                      
233

3

4
7

32
31

2
31

31
⎟
⎠
⎞

⎜
⎝
⎛≤⎟

⎠
⎞

⎜
⎝
⎛

+
+=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
≤

a
a

a                                                 (3.14) 

 
Since (3.13) and (3.14) we have 

            ( ) 196,031504,2
93649,1
35721,159113,0

4
7

4
15
2
5

2
1,

23

21

31

<≤⋅⋅≤⎟
⎠
⎞

⎜
⎝
⎛⋅

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⋅
π

≤μ
Lb

rP  

So, for 2≥μ , it holds ( ) 1, <μrP . 
 

ii) ⎟
⎠
⎞

⎜
⎝
⎛ ≤<≤<

6
12

6
92

2
3 μμ  

 
We will rewrite (3.12) in the following form 
 

                       ( ) ( ) ( )
( ) 21

4321252

41
2/32/3

2
1,

−μ⋅μ
+μ⋅−μ

⋅
π

≤μ
μ

+μ−μ

Lb
rP                                (3.15) 

 

Since 1
2
30 <−μ<  by (3.15), we have  

a) (
3
5

2
3

≤μ< )   

    ( ) 19825,0

4
5

2
3

6
19

6
1

2
1, 2123

121931

<<

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
π

<μ
Lb

rP   

b) (
6

11
3
5

≤< μ )  

     ( ) 199764,0

12
17

3
5

6
20

3
1

2
1, 2135

1220125

<<

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
π

<μ
Lb

rP  

c) ( 2
6

11
≤< μ )   

     ( ) 197931,0

12
19

6
11

2
7

2
1

2
1, 21611

4721

<<

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
π

<μ
Lb

rP  

This completes the proof. 
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