A COMPANION FOR THE OSTROWSKI AND THE
GENERALISED TRAPEZOID INEQUALITIES

N.S. BARNETT, S.S. DRAGOMIR, AND I. GOMM

ABSTRACT. A companion for the Ostrowski and the generalised trapezoid in-
equalites for various classes of functions, including functions of bounded vari-
ation, Lipschitzian, convex and absolutely continuous functions is established.
Applications for weighted means are also given.

1. INTRODUCTION

For a Lebesgue integrable function f : [a,b] — R and for a given t € [a, ], it is
natural to investigate the distances between the quantities

b _ C "
£, 2 [ s ang EZIO 0] (0

respectively, and to seek sharp upper bounds for these distances in terms of different
measures that can be associated with f, where f is restricted to particular classes of
functions, such as the linear space of functions of bounded variation, the subspace of
absolutely continuous functions on [a, b] , or the cone of all convex functions defined
on the specified interval.

Such inequalities providing upper bounds for

b
bia/ f(s)ds

are known in the literature as Ostrowski type inequalities. We note the original
result obtained by Ostrowski in 1938, [13], that, if f : [a,b] — R is continuous on
[a, b] and differentiable on (a,b) and such that |f’ ()] < M for ¢ € (a,b), then

I 1 (-’
b—a/f(s)ds = Z—i_ b—a (b=a) M,

for each t € [a,b]. The constant i is the best possible in the sense that it cannot
be replaced by a smaller quantity.
A similar result obtained by the second author in 1999 (see [7] or [6]) for functions
of bounded variation is that
< 1
=13 +

b
[ @
b—a /,
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for each t € [a,b], where \/Z (f) is the total variation of f on [a,b].
This same author, in [4], showed that if f : [a,b] — R is convex on [a, b], then

(1.4)

N =

b
6-0* -7 0] < [ Feds-b-a) £
Sle—0 o) - - r @),

for any t € (a,b), provided that the lateral derivatives f’ (b) and f! (a) are finite.
The second inequality also holds for ¢ = a and ¢ = b and the constant % is best
possible in both inequalities.

Further, in [8, p. 2], it has been shown that if f : [a,b] — R is absolutely
continuous on [a,b], then

b
(15) p@)—bia/1f@ﬁk

1 (52) | e-air) i f € Lot
4 b—a 0 oo [Uy U]
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for any ¢ € [a,b]. The constants i, % and are the best possible.

1
(¢+1)!/1
For other recent results on Ostrowski type inequalities, see [1], [11], [14] and [15].

Inequalities providing upper bounds for the quantity

(1.6)

—a a - ’
(t—a) f(a) + (b t)f(b)_bia/af(s)ds, t € [a,b)

b—a

are known in the literature as generalised trapezoid inequalities and it has been
shown in [3] that

—-a a - b
(17) (t )f(b)jéb t)f(b)*bia/f(s)ds
1 —atb|] b
<[2+ b—a \a/(f)

for any ¢ € [a,b], provided that f is of bounded variation on [a,b]. The constant 1
is the best possible.
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If f is absolutely continuous on [a, b] , then (see [2, p. 93])

(t—a)fla)+(b-t)f /

1.8

(18) b—a b-a 1
[1+0b)}w@nfn it € Lo [o.1]:

1
q+1 q+1]q .
< W;mﬂﬂﬂ +@i)] (- a) "], i € Lylab),
p>1 s +o=1

L+ 5= 170

for any t € [a,b]. The constants 1 5 Z and W are the best possible.

Finally, for convex functions f : [a,b] — R, we have [5]
1
(L9) 5 [e=0* 1) - —a? 1)

b
S®4U0Hﬁ—®ﬂ@—/fww

< [e-0? 10 -0 £ (@)
for any t € (a,b), provided that f” (b) and f! (a) are finite. As above, the second
inequality also holds for ¢ = a and t = b and the constant % is the best possible on
both sides of (1.9).
For other recent results on the trapezoid inequality, see [9], [10], [12] and [16].
The main aim of this paper is to provide sharp upper bounds for the remaining

difference
fla)it—a)+(b-1)f(b

(110) ()= p o - LD OZDTO)

Obviously, if O (¢) is a bound for the Ostrowski difference (1.1) and 7' (¢) is a
bound for the generalised trapezoid difference (1.6), then by the triangle inequality,
O (t)+T (t) is a bound for the absolute value of the difference ¥ (¢) . However, using
some integral representations for U, we are able to obtain sharp upper bounds for
|W s (t)], which are better than the ones generated by the triangle inequality.

As applications, some bounds for the absolute value of the difference

S (o) - L Eiapizi =)+ £ 0) 0= T pis)

b—a ’

t € [a,b].

where z; € [a,b], p; > 0,7 € {1,...,n} and ), p; = 1, are also given.
2. THE CASE WHEN f 1S OF BOUNDED VARIATION

The following representation holds.
Lemma 1. Let f : [a,b] — R be a bounded function on [a,b] and let T : [a,b]”> — R
be given by
t—a if sé€la,t],
(2.1) T (t,s) :=
t—b if se(tb].
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We then have the representation,

b
(2.2) \pf(t)zﬁ T(t,s)df (), t€lab],

where the integral is considered in the Riemann-Stieltjes sense.
Proof. If f is bounded on [a, b], then for any ¢ € [a, b] the Riemann-Stieltjes integrals

[Ldf (s) and [ df (s) exist and [*df (s) = f(t) — f(a), [7df (s) = f (b) — f(t).
It follows that

1 b
b—a J,

t b
T (t5)df () = (¢~ o) | df(s)+(t—b)/t af (s) = (b—a) Uy (2),
for any ¢ € [a,b]. O

The following provides a sharp bound for the absolute value of ¢, where f is of
bounded variation.

Theorem 1. If f : [a,b] — R is of bounded variation, then

IN

t b
(23) 100 < = [(t—a)\/(f)Jr(b—t)\/(f)]

and the first inequality is sharp. The constant % is also the best possible in both
branches of (2.3).

Proof. Utilising the represenation (2.2), we have

(2.4) Wy ()] = ——

t b
b a (t*a)/a df(S)Jr(t*b)/t df (s)

[df(s) /tbdf(s)

b
<5 [(ta)\/(f)ﬂbt)\/(f)],

+(t—b)
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which proves the first inequality in (2.3).



OSTROWSKI AND THE GENERALISED TRAPEZOID INEQUALITIES 5

Further, on making use of the Holder inequality, we also have

b

(t=a)\/ (H+0-0\ ()

t

max {t = a,b =t} [V, () +V; (/)]
<8 - o0 [(Vr) + (V)] e beio

max {\V}, (). V) (N} (t=a+b-1),
which together with (2.4) produces (2.3).
For t = “TH’, we get, from (2.3),

b

(2.5) ‘f(a);rﬂb)—f(a;b>‘<;\/(f),

a

which will be shown to be sharp.
Assume that there exists a constant A > 0 such that

f(a) £+ f(b) a + b
(2.6) ‘ 5 —f <A \/
Consider the functlon ft |t “;b{ which is of bounded variation on [a,],
with f (a ) =f(b) =152 and \/a (f) = b— a. For this function, the inequality (2.

o=

becomes %52 < A (b — a) which implies that A > %
The following particular case is of interest for applications.

Corollary 1. If f : [a,b] — R is L1— Lipschitzian on [a,t] and Ly— Lipschitzian on
[t,b], L1,Ls >0, t € [a,b], then

Q1) 10 0] < 2 [ (- ) + Lo (- 7]

w2, 12} [+ (55) | 0~ ),

IA
A

1
1 2p 2p|»
(L‘{+L§)Q{(§_3) + () } (b—a), p>1
==k

(L1 + Lg) [§+ — ] (b—a).

In particular, if f is L— Lipschitzian, then

_ atb
(23) IWQNSLi+<b_Z> (b-a)

or any t € [a,b], the constant 1 being the best possible.
1

Proof. Tt is well known that if ¢ : [o, 8] — R is L—Lipschitzian, then g is of bounded
variation and \/g (9) < L (B — «). Therefore, by the first inequality in (2.3) we get
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the corresponding inequality in (2.7). The other inequalities follow by the Holder

inequality and the details are omitted.
a+b

If we now consider ¢t = o we obtain

(2.9) ‘f(a);f(b)—f<a;_b>’§iL(b—a),

for which we will show that i is the best possible.
For this purpose, assume that there exists a B > 0 such that

(2.10) ‘f(a);f(b)—f(a;b>'<BL(b—a).

Consider the function f : [a,b] — R, f(t) = 5 (¢t — “;b)Q and so f(a) = f(b) =

(b—a)® _ a+b _ ' _ b—a
5 (1) =t — %497 and L = supye(o 4 |f' (¢)] = *5*. If we replace these values

in the above inequality (2.10), then we have (b_sa)z < M, which implies that

1
B>1 0

Corollary 2. If f : [a,b] — R is monotonic nondecreasing, then

(211) 0 (0] < 5 (=) [F ()~ F @]+ (0017 ()~ (]}
B+ |52 o - £,

Q=

< (&) + ()T o -r@F +1r6) -7 @ry
p>1, % + % =1;
S-S @]+ 0 - L0H0).
The constant 1 in the first inequality is the best possible.
Proof. The inequalities are obvious by Theorem 1. For ¢ = %%, we obtain
(2.12) ] GO I EECEN )

To show that % is the best possible, assume that there is a constant S > 0 such
that

(213 JOHIO (420 <5170 - £ @)

Consider f: [a,b] — R,
0 if te [a, “7“’]

koif te (45, 0]

with & > 0. Thus f is monotonic nondecreasing on [a,b] and from (2.13) we get
% < Sk, which implies that S > % O
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3. Tue CASE WHEN f 18 ABSOLUTELY CONTINUOUS

When f is absolutely continuous, the following representation of ® can be de-
termined.

Lemma 2. If f : [a,b] — R is absolutely continuous, then

b
(3.1) (1) = 1{/T@$f@M&

b—a

where the integral is considered in the Lebesgue sense and where the kernel T :
[a,b]> — R has been defined in (2.1).

We can state the following result concerning estimates for the absolute value of
¥y (t) in terms of the Lebesgue norms || f[|, 5, P € [1,00], where

b P
1 oo = €55 510 £ O 1wy = <J/ f’(sﬂpds> P>l

tEla,b]
Theorem 2. If f : [a,b] — R is absolutely continuous on [a,b], then
1
(32) W ()] < 52 [ = ) 17 g+ 0= 17 ]
W), telab],

where

(t= ) 1f'llpoe i f € Loolasb]

. 1 .
Wt =370 %y (=) 5 | lluy, o J€Lylab],
1 1 _ 1.
p>1, 5"1‘5—1,
b= 0% If e i I € Loolab]

b_a ) =0T

oo W f € Lylab],
a>1, é + % =1
and W should be seen as all four possible combinations.
Proof. We have, by (3.1), that
1

(3.3) Wy ()] =

S

S|

— |t =a)[f (&) = f (@] + (=) [f (b) = f ()]
1

b_al(t—a) /atf’(s)ds /tbf’(s)ds]

t b
= bia [(t—a)/a If’(s)\ds+(b—t)/t |f’(s)|ds],

for ¢ € [a,b], which proves the first inequality in (3.2).

IN

+ (-1t




8 N.S. BARNETT, S.S. DRAGOMIR, AND I. GOMM

Utilising the Holder inequality, we have

(t—a)ess sup [f'(s)]  if f'€ Loola,b];
s€la,t]

t
EEN NVACITIES QY ([L17 @) ds)" it 5 € Lylab),
p>1, 5+ =1
(t= ) 1 o I € Loc a0

1

= =) [f'llan, i f€Lyplab],
1 1 _ 1.
p>1, 5+E_1’

and, similarly,

=M g0 1 f € Looa,b]

b
/ 1 .
65 [t o . € Lo,
a>1, i + % =1

Utilising (3.3) — (3.5) we deduce the desired inequality. O

Remark 1. Inequality (3.2) has some particular instances of interest. The first is:

(3.6) Wy ()] <

1
el (GNP CE TV

a+b

2
b—a

-
2

] 17 Nl

for any t € [a,b], and the constant % is the best possible.
Another inequality of interest is

2 2
t—a , b—t ,
[(b) oo+ (55) 1 ||[t,b],oo] (- a)
1 _asb\?
i ( b—Z ) (0 —a) £ jap),00

for any t € [a,b], provided that f' € Ly [a,b]. The constant % 18 the best possible.
If we choose o = p and B = q with p > 1, % + % =1, then we also have

o\ te b\ e
(55) |wf<t>§[(2“) 17+ (5=5) ||f’||[t,b]¢,,] (6-a)

37 [V (@)

IN

Q=

a

Foa\TH fpo et 1
< [(b—a) + (b—a) 1 a0, (b — @)

for any t € [a,b], provided that f" € Ly [a,b].
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4. Tug CASE WHEN f 1s CONVEX

The following result for convex functions can be stated as well.

Theorem 3. Let f : [a,b] — R be a convex function on [a,b] with f’ (b) and f! (a)
finite, then, for any t € (a,b), we have

(@) [0 £ @ - -0 1 )

Sl (GO ORI (SO O]

The first inequality also holds fort = a andt = b. The constant 1 is the best possible
on both sides of (4.1).

Proof. From Lemma 1,

42) (b=a)¥s @) =(t—a)[f ) - f(@]=O=0)f®)-f@®],  telab].

Let t € (a,b), then, by the convexity of f we have

(4.3) (t—a) fL ()= f(t) = f(a) > f} (a) (t—a)

and

(4.4) (b—t)fL ()= F(B) = F(£) > (b—1) f} (1)

If we multiply (4.3) by t —a > 0 and (4.4) by b —t > 0, we can write
(4.5) (t—a)’ fL(t) > (t—a) [f () = f(a)] > f} (a) (t—a)®
and

(4.6) —b=t)?fL ) ===t [f )~ F®] =Bt f.(b).

Finally, on adding (4.5) to (4.6) we deduce the desired result (4.1).
When t = %t in (4.1), we obtain

an  0f @ - 7 ) §f<a42rb> @+ f0)

b—al, [a+? , [a+D
) (3)
For f(t) = |t — “£2|, we have f} (a) = —1, f (b) =1, f} (“£2) =1, f (“£2)

—1, f(a) = f(b) = %52 and in (4.7) all terms are —252.

oo

Remark 2. If f is differentiable on (a,b), then the second inequality can be written
in the following simpler form

(1) vw<2(i- 50 7.

for any t € (a,b).
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5. APPLICATIONS FOR WEIGHTED MEANS

In this section we show that the above result can be useful in providing various
bounds for the weighted mean:

(5.1) My (p;x Zpl zi), x; €[a,b], p;>0,ie€{l,...,n}, Z]%ZL

For f (t) =t, we denote by A (p;x) the weighted arithmetic mean.
The following result can be stated.

Proposition 1. If the function f : [a,b] — R is of bounded variation on [a,b], then

(52) |y (o) - LQAWD) —d+ b - Apa)] /() ’

the constant % being the best possible.

Proof. We use the first branch of the second inequality in (2.3) to state:

b
653) |1 @y - K= L IOCZ0)] 1y A 222\ ()

b—a 2 b—aﬂzj

for each i € {1,...,n}.

Now, if we multiply (5.3) by p; > 0, sum over ¢ from {1,...,n} and use the
generalised triangle inequality, we deduce the desired result (5.1).

The fact that % is the best possible follows from the fact that it is the best
possible for n = 1. O

In a similar manner, on utilising the inequality (2.8), we can state the following
result.

Proposition 2. If the function f : [a,b] — R is L—Lipschitzian, then
fa)[A(p;x) —a]+[b— A(p;z)] f(b)

b—a
1 22]91(1 a+b)

(5.4) My (px) —

<L(b-a) ,

the constant % being the best possible.
Finally, on utilising the first inequality in (3.2) we can also state that:

Proposition 3. If f : [a,b] — R is absolutely continuous on [a,b], then

f(a) [A(p;x)a]HbA(p;w)]f(b)’

(55) |0y (pio) - —

i=1

sz Ti—a ||f||arl 1+Zpl T ||f ||[tm1]1‘| ’
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The above results can be useful in providing various inequalities between the
weighted arithmetic mean A (p;x) and the weighted geometric mean G (p;z) =
[T, ¥, for which the following well-known inequality holds:

(5.6) A(p;z) > G (p;x).

If we consider the function f (t) = Int, f : [a,b] — R C (0,00), then My, (p;x) =
InG (p; z) and

F@)A i)zl + b Aol 0) _y, e ppiee)
b—a
Also,
Zp” ) 1 Zpu ) In (z;) — Ina]
and

sz = 2) (1 o0 = D pi (0 — ) [Inb—1n ()]

i=1
Utilising the inequality
Ing—Ina < 1
B-a = Vapf’

and taking into account that 0 < a < z; <b, i € {1,...,n}, then we have

(z;i — a)® < (@i —a)’
VvEzia T a

0<ap

(; —a)[In(z;) —lna] <

and

(b—z;) [Inb—In(x;)] <

which implies that

1
sz zi—a)[In(z;) —Ina) < =Y p;i (z; —a)’
a
i=1
and
Zpl —z;)[Inb—In(x;)] < Zpl — ;)
Now, by (5.5),
[ G (p; ) 2 _a + b
GO o mge= e || < G—ay 107 o Zp T\
Finally, on utilising (5.2) we also have
G (p;w) _a + b b
(5.8) |n [ e + — sz i n(2).
a b-a . b b—a a
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