
A COMPANION FOR THE OSTROWSKI AND THE
GENERALISED TRAPEZOID INEQUALITIES

N.S. BARNETT, S.S. DRAGOMIR, AND I. GOMM

Abstract. A companion for the Ostrowski and the generalised trapezoid in-
equalites for various classes of functions, including functions of bounded vari-
ation, Lipschitzian, convex and absolutely continuous functions is established.
Applications for weighted means are also given.

1. Introduction

For a Lebesgue integrable function f : [a; b] ! R and for a given t 2 [a; b], it is
natural to investigate the distances between the quantities

f (t) ;
1

b� a

Z b

a

f (s) ds and
(b� t) f (b) + (t� a) f (a)

b� a
respectively, and to seek sharp upper bounds for these distances in terms of di¤erent
measures that can be associated with f; where f is restricted to particular classes of
functions, such as the linear space of functions of bounded variation, the subspace of
absolutely continuous functions on [a; b] ; or the cone of all convex functions de�ned
on the speci�ed interval.
Such inequalities providing upper bounds for

(1.1)

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� ; t 2 [a; b] ;

are known in the literature as Ostrowski type inequalities. We note the original
result obtained by Ostrowski in 1938, [13], that, if f : [a; b] ! R is continuous on
[a; b] and di¤erentiable on (a; b) and such that jf 0 (t)j �M for t 2 (a; b) ; then

(1.2)

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� �
241
4
+

 
t� a+b

2

b� a

!235 (b� a)M;

for each t 2 [a; b] : The constant 1
4 is the best possible in the sense that it cannot

be replaced by a smaller quantity.
A similar result obtained by the second author in 1999 (see [7] or [6]) for functions

of bounded variation is that

(1.3)

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� �
"
1

2
+

����� t� a+b
2

b� a

�����
#

b_
a

(f) ;
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for each t 2 [a; b] ; where
Wb
a (f) is the total variation of f on [a; b] :

This same author, in [4], showed that if f : [a; b]! R is convex on [a; b] ; then

(1.4)
1

2

h
(b� t)2 f 0+ (t)� (t� a)

2
f 0� (t)

i
�
Z b

a

f (s) ds� (b� a) f (t)

� 1

2

h
(b� t)2 f 0� (b)� (t� a)

2
f 0+ (a)

i
;

for any t 2 (a; b), provided that the lateral derivatives f 0� (b) and f 0+ (a) are �nite.
The second inequality also holds for t = a and t = b and the constant 1

2 is best
possible in both inequalities.
Further, in [8, p. 2], it has been shown that if f : [a; b] ! R is absolutely

continuous on [a; b] ; then

(1.5)

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����

�

8>>>>>>>><>>>>>>>>:

�
1
4 +

�
t� a+b

2

b�a

�2�
(b� a) kf 0k1 if f 0 2 L1 [a; b] ;

1
(q+1)1=q

��
t�a
b�a

�q+1
+
�
b�t
b�a

�q+1� 1q
(b� a)1=q kf 0kp if f 0 2 Lp [a; b] ;

p > 1; 1
p +

1
q = 1;h

1
2 +

��� t� a+b
2

b�a

���i kf 0k1
for any t 2 [a; b] : The constants 1

4 ;
1
2 and

1
(q+1)1=q

are the best possible.

For other recent results on Ostrowski type inequalities, see [1], [11], [14] and [15].
Inequalities providing upper bounds for the quantity

(1.6)

����� (t� a) f (a) + (b� t) f (b)b� a � 1

b� a

Z b

a

f (s) ds

����� ; t 2 [a; b]

are known in the literature as generalised trapezoid inequalities and it has been
shown in [3] that

(1.7)

����� (t� a) f (a) + (b� t) f (b)b� a � 1

b� a

Z b

a

f (s) ds

�����
�
"
1

2
+

����� t� a+b
2

b� a

�����
#

b_
a

(f)

for any t 2 [a; b] ; provided that f is of bounded variation on [a; b] : The constant 12
is the best possible.
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If f is absolutely continuous on [a; b] ; then (see [2, p. 93])

(1.8)

����� (t� a) f (a) + (b� t) f (b)b� a � 1

b� a

Z b

a

f (s) ds

�����

�

8>>>>>>>><>>>>>>>>:

�
1
4 +

�
t� a+b

2

b�a

�2�
(b� a) kf 0k1 if f 0 2 L1 [a; b] ;

1
(q+1)1=q

��
t�a
b�a

�q+1
+
�
b�t
b�a

�q+1� 1q
(b� a)1=q kf 0kp if f 0 2 Lp [a; b] ;

p > 1; 1
p +

1
q = 1;h

1
2 +

��� t� a+b
2

b�a

���i kf 0k1
for any t 2 [a; b] : The constants 1

2 ;
1
4 and

1
(q+1)1=q

are the best possible.

Finally, for convex functions f : [a; b]! R, we have [5]

(1.9)
1

2

h
(b� t)2 f 0+ (t)� (t� a)

2
f 0� (t)

i
� (b� t) f (f) + (t� a) f (a)�

Z b

a

f (s) ds

� 1

2

h
(b� t)2 f 0� (b)� (t� a)

2
f 0� (a)

i
for any t 2 (a; b), provided that f 0� (b) and f 0+ (a) are �nite. As above, the second
inequality also holds for t = a and t = b and the constant 12 is the best possible on
both sides of (1.9).
For other recent results on the trapezoid inequality, see [9], [10], [12] and [16].
The main aim of this paper is to provide sharp upper bounds for the remaining

di¤erence

(1.10) 	f (t) := f (t)� f (a) (t� a) + (b� t) f (b)
b� a ; t 2 [a; b] :

Obviously, if O (t) is a bound for the Ostrowski di¤erence (1.1) and T (t) is a
bound for the generalised trapezoid di¤erence (1.6), then by the triangle inequality,
O (t)+T (t) is a bound for the absolute value of the di¤erence	f (t) : However, using
some integral representations for 	f ; we are able to obtain sharp upper bounds for
j	f (t)j ; which are better than the ones generated by the triangle inequality.
As applications, some bounds for the absolute value of the di¤erence

nX
i=1

pif (xi)�
f (a) (

Pn
i=1 pixi � a) + f (b) (b�

Pn
i=1 pixi)

b� a ;

where xi 2 [a; b] ; pi � 0; i 2 f1; : : : ; ng and
Pn

i=1 pi = 1; are also given.

2. The Case when f is of Bounded Variation

The following representation holds.

Lemma 1. Let f : [a; b]! R be a bounded function on [a; b] and let T : [a; b]2 ! R
be given by

(2.1) T (t; s) :=

8<: t� a if s 2 [a; t] ;

t� b if s 2 (t; b] :
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We then have the representation,

(2.2) 	f (t) =
1

b� a

Z b

a

T (t; s) df (s) ; t 2 [a; b] ;

where the integral is considered in the Riemann-Stieltjes sense.

Proof. If f is bounded on [a; b], then for any t 2 [a; b] the Riemann-Stieltjes integralsR t
a
df (s) and

R b
t
df (s) exist and

R t
a
df (s) = f (t) � f (a) ;

R b
t
df (s) = f (b) � f (t) :

It follows that

1

b� a

Z b

a

T (t; s) df (s) = (t� a)
Z t

a

df (s) + (t� b)
Z b

t

df (s) = (b� a)	f (t) ;

for any t 2 [a; b] : �

The following provides a sharp bound for the absolute value of  f where f is of
bounded variation.

Theorem 1. If f : [a; b]! R is of bounded variation, then

(2.3) j	f (t)j �
1

b� a

"
(t� a)

t_
a

(f) + (b� t)
b_
t

(f)

#

�

8>>>>>><>>>>>>:

�
1
2 +

jt� a+b
2 j

b�a

�Wb
a (f) ;h�

t�a
b�a

�q
+
�
b�t
b�a

�qi 1q h�Wt
a f
�p
+
�Wb

t f
�pi 1p

p > 1; 1
p +

1
q = 1;

1
2

Wb
a (f) +

1
2

���Wta (f)�Wbt (f)��� :
and the �rst inequality is sharp. The constant 1

2 is also the best possible in both
branches of (2.3).

Proof. Utilising the represenation (2.2), we have

j	f (t)j =
1

b� a

�����(t� a)
Z t

a

df (s) + (t� b)
Z b

t

df (s)

�����(2.4)

� 1

b� a

"
(t� a)

����Z t

a

df (s)

����+ (t� b)
�����
Z b

t

df (s)

�����
#

� 1

b� a

"
(t� a)

t_
a

(f) + (b� t)
b_
t

(f)

#
;

which proves the �rst inequality in (2.3).
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Further, on making use of the Hölder inequality, we also have

(t� a)
t_
a

(f) + (b� t)
b_
t

(f)

�

8>>>>>><>>>>>>:

max ft� a; b� tg
hWt

a (f) +
Wb
t (f)

i
;

[(t� a)q + (b� t)q]
1
q

h�Wt
a f
�p
+
�Wb

t f
�pi 1p

p > 1; 1
p +

1
q = 1;

max
nWt

a (f) ;
Wb
t (f)

o
(t� a+ b� t) ;

which together with (2.4) produces (2.3).
For t = a+b

2 , we get, from (2.3),

(2.5)

����f (a) + f (b)2
� f

�
a+ b

2

����� � 1

2

b_
a

(f) ;

which will be shown to be sharp.
Assume that there exists a constant A > 0 such that

(2.6)

����f (a) + f (b)2
� f

�
a+ b

2

����� � A
b_
a

(f) :

Consider the function f (t) =
��t� a+b

2

�� which is of bounded variation on [a; b] ;
with f (a) = f (b) = b�a

2 and
Wb
a (f) = b� a: For this function, the inequality (2.6)

becomes b�a
2 � A (b� a) which implies that A � 1

2 : �

The following particular case is of interest for applications.

Corollary 1. If f : [a; b]! R is L1�Lipschitzian on [a; t] and L2�Lipschitzian on
[t; b] ; L1; L2 > 0; t 2 [a; b] ; then

(2.7) j	f (t)j �
1

b� a

h
L1 (t� a)2 + L2 (b� t)2

i

�

8>>>>>>>><>>>>>>>>:

max fL1; L2g
�
1
4 +

�
t� a+b

2

b�a

�2�
(b� a) ;

(Lq1 + L
q
2)

1
q

��
t�a
b�a

�2p
+
�
b�t
b�a

�2p� 1p
(b� a) ; p > 1; 1

p +
1
q = 1;

(L1 + L2)

�
1
2 +

jt� a+b
2 j

b�a

�2
(b� a) :

In particular, if f is L�Lipschitzian, then

(2.8) j	f (t)j � L

241
4
+

 
t� a+b

2

b� a

!235 (b� a)
for any t 2 [a; b] ; the constant 14 being the best possible.

Proof. It is well known that if g : [�; �]! R is L�Lipschitzian, then g is of bounded
variation and

W�
� (g) � L (� � �) : Therefore, by the �rst inequality in (2.3) we get
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the corresponding inequality in (2.7). The other inequalities follow by the Hölder
inequality and the details are omitted.
If we now consider t = a+b

2 we obtain

(2.9)

����f (a) + f (b)2
� f

�
a+ b

2

����� � 1

4
L (b� a) ;

for which we will show that 14 is the best possible.
For this purpose, assume that there exists a B > 0 such that

(2.10)

����f (a) + f (b)2
� f

�
a+ b

2

����� � BL (b� a) :

Consider the function f : [a; b] ! R, f (t) = 1
2

�
t� a+b

2

�2
and so f (a) = f (b) =

(b�a)2
8 ; f 0 (t) = t� a+b

2 and L = supt2[a;b] jf 0 (t)j = b�a
2 : If we replace these values

in the above inequality (2.10), then we have (b�a)2
8 � B(b�a)2

2 ; which implies that
B � 1

4 : �

Corollary 2. If f : [a; b]! R is monotonic nondecreasing, then

j	f (t)j �
1

b� a f(t� a) [f (t)� f (a)] + (b� t) [f (b)� f (t)]g(2.11)

�

8>>>>>>><>>>>>>>:

h
1
2 +

��� t� a+b
2

b�a

���i [f (b)� f (a)] ;h�
t�a
b�a

�q
+
�
b�t
b�a

�qi 1q
[[f (t)� f (a)]p + [f (b)� f (t)]p]

1
p

p > 1; 1
p +

1
q = 1;

1
2 [f (b)� f (a)] +

���f (t)� f(a)+f(b)
2

��� :
The constant 12 in the �rst inequality is the best possible.

Proof. The inequalities are obvious by Theorem 1. For t = a+b
2 ; we obtain

(2.12)

����f (a) + f (b)2
� f

�
a+ b

2

����� � 1

2
[f (b)� f (a)] :

To show that 1
2 is the best possible, assume that there is a constant S > 0 such

that

(2.13)

����f (a) + f (b)2
� f

�
a+ b

2

����� � S [f (b)� f (a)] :

Consider f : [a; b]! R,

f (t) =

8<: 0 if t 2
�
a; a+b2

�
k if t 2

�
a+b
2 ; b

�
with k > 0: Thus f is monotonic nondecreasing on [a; b] and from (2.13) we get
k
2 � Sk; which implies that S � 1

2 : �
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3. The Case when f is Absolutely Continuous

When f is absolutely continuous, the following representation of � can be de-
termined.

Lemma 2. If f : [a; b]! R is absolutely continuous, then

(3.1) 	f (t) =
1

b� a

Z b

a

T (t; s) f 0 (s) ds;

where the integral is considered in the Lebesgue sense and where the kernel T :
[a; b]

2 ! R has been de�ned in (2.1).

We can state the following result concerning estimates for the absolute value of
 f (t) in terms of the Lebesgue norms kf 0k[a;b];p ; p 2 [1;1] ; where

kf 0k[a;b];1 := ess sup
t2[a;b]

jf 0 (t)j ; kf 0k[a;b];p :=
 Z b

a

jf 0 (s)jp ds
! 1

p

; p � 1:

Theorem 2. If f : [a; b]! R is absolutely continuous on [a; b] ; then

j	f (t)j �
1

b� a

h
(t� a) kf 0k[a;t];1 + (b� t) kf

0k[t;b];1
i

(3.2)

�W (t) ; t 2 [a; b] ;

where

W (t) :=
1

b� a �

8>>><>>>:
(t� a)2 kf 0k[a;t];1 if f 0 2 L1 [a; b]

(t� a)1+
1
q kf 0k[a;t];p if f 0 2 Lp [a; b] ;

p > 1; 1
p +

1
q = 1;

+
1

b� a �

8>>><>>>:
(b� t)2 kf 0k[t;b];1 if f 0 2 L1 [a; b]

(b� t)1+
1
� kf 0k[t;b];� if f 0 2 L� [a; b] ;

� > 1; 1
� +

1
� = 1;

and W should be seen as all four possible combinations.

Proof. We have, by (3.1), that

j	f (t)j =
1

b� a j(t� a) [f (t)� f (a)] + (b� t) [f (b)� f (t)]j(3.3)

� 1

b� a

"
(t� a)

����Z t

a

f 0 (s) ds

����+ (b� t)
�����
Z b

t

f 0 (s) ds

�����
#

� 1

b� a

"
(t� a)

Z t

a

jf 0 (s)j ds+ (b� t)
Z b

t

jf 0 (s)j ds
#
;

for t 2 [a; b] ; which proves the �rst inequality in (3.2).
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Utilising the Hölder inequality, we have

Z t

a

jf 0 (s)j ds �

8>>><>>>:
(t� a) ess sup

s2[a;t]
jf 0 (s)j if f 0 2 L1 [a; b] ;

(t� a)
1
q

�R t
a
jf 0 (s)jp ds

� 1
p

if f 0 2 Lp [a; b] ;
p > 1; 1

p +
1
q = 1;

(3.4)

=

8>>><>>>:
(t� a) kf 0k[a;t];1 if f 0 2 L1 [a; b]

(t� a)
1
q kf 0k[a;t];p if f 0 2 Lp [a; b] ;

p > 1; 1
p +

1
q = 1;

and, similarly,

(3.5)
Z b

t

jf 0 (s)j ds �

8>>><>>>:
(b� t) kf 0k[t;b];1 if f 0 2 L1 [a; b]

(b� t)
1
� kf 0k[t;b];� if f 0 2 L� [a; b] ;

� > 1; 1
� +

1
� = 1:

Utilising (3.3) �(3.5) we deduce the desired inequality. �

Remark 1. Inequality (3.2) has some particular instances of interest. The �rst is:

j	f (t)j �
1

b� a

h
(t� a) kf 0k[a;t];1 + (b� t) kf

0k[t;b];1
i

(3.6)

�
"
1

2
+

����� t� a+b
2

b� a

�����
#
kf 0k[a;b];1 ;

for any t 2 [a; b] ; and the constant 12 is the best possible.
Another inequality of interest is

j	f (t)j �
"�

t� a
b� a

�2
kf 0k[a;t];1 +

�
b� t
b� a

�2
kf 0k[t;b];1

#
(b� a)(3.7)

�

241
4
+

 
t� a+b

2

b� a

!235 (b� a) kf 0k[a;b];1
for any t 2 [a; b] ; provided that f 0 2 L1 [a; b] : The constant 14 is the best possible.
If we choose � = p and � = q with p > 1; 1p +

1
q = 1; then we also have

j	f (t)j �
"�

t� a
b� a

�1+ 1
q

kf 0k[a;t];p +
�
b� t
b� a

�1+ 1
q

kf 0k[t;b];p

#
(b� a)

1
q(3.8)

�
"�

t� a
b� a

�q+1
+

�
b� t
b� a

�q+1# 1
q

kf 0k[a;b];p (b� a)
1
q

for any t 2 [a; b], provided that f 0 2 Lp [a; b] :
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4. The Case when f is Convex

The following result for convex functions can be stated as well.

Theorem 3. Let f : [a; b]! R be a convex function on [a; b] with f 0� (b) and f 0+ (a)
�nite, then, for any t 2 (a; b) ; we have

(4.1)
1

b� a

h
(t� a)2 f 0+ (a)� (b� t)

2
f 0� (b)

i
� 	f (t) �

1

b� a

h
(t� a)2 f 0� (t)� (b� t)

2
f 0+ (t)

i
:

The �rst inequality also holds for t = a and t = b: The constant 1 is the best possible
on both sides of (4.1).

Proof. From Lemma 1,

(4.2) (b� a)	f (t) = (t� a) [f (t)� f (a)]� (b� t) [f (b)� f (t)] ; t 2 [a; b] :

Let t 2 (a; b) ; then, by the convexity of f we have

(4.3) (t� a) f 0� (t) � f (t)� f (a) � f 0+ (a) (t� a)

and

(4.4) (b� t) f 0� (b) � f (b)� f (t) � (b� t) f 0+ (t) :

If we multiply (4.3) by t� a > 0 and (4.4) by b� t > 0; we can write

(4.5) (t� a)2 f 0� (t) � (t� a) [f (t)� f (a)] � f 0+ (a) (t� a)
2

and

(4.6) � (b� t)2 f 0+ (t) � � (b� t) [f (b)� f (t)] � � (b� t)
2
f 0� (b) :

Finally, on adding (4.5) to (4.6) we deduce the desired result (4.1).
When t = a+b

2 in (4.1), we obtain

b� a
4

�
f 0+ (a)� f 0� (b)

�
� f

�
a+ b

2

�
� f (a) + f (b)

2
(4.7)

� b� a
4

�
f 0�

�
a+ b

2

�
� f 0+

�
a+ b

2

��
:

For f (t) =
��t� a+b

2

�� ; we have f 0+ (a) = �1; f 0� (b) = 1; f 0+ �a+b2 � = 1; f 0� �a+b2 � =
�1; f (a) = f (b) = b�a

2 and in (4.7) all terms are � b�a
2 : �

Remark 2. If f is di¤erentiable on (a; b) ; then the second inequality can be written
in the following simpler form

(4.8) 	f (t) � 2
�
t� a+ b

2

�
f 0 (t) ;

for any t 2 (a; b) :
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5. Applications for Weighted Means

In this section we show that the above result can be useful in providing various
bounds for the weighted mean:

(5.1) Mf (p;x) :=
nX
i=1

pif (xi) ; xi 2 [a; b] ; pi � 0; i 2 f1; : : : ; ng ;
nX
i=1

pi = 1:

For f (t) = t; we denote by A (p;x) the weighted arithmetic mean.
The following result can be stated.

Proposition 1. If the function f : [a; b]! R is of bounded variation on [a; b] ; then

(5.2)

����Mf (p;x)�
f (a) [A (p;x)� a] + [b�A (p;x)] f (b)

b� a

����
�
"
1

2
+

1

b� a

nX
i=1

pi

����xi � a+ b

2

����
#

b_
a

(f) ;

the constant 12 being the best possible.

Proof. We use the �rst branch of the second inequality in (2.3) to state:

(5.3)

����f (xi)� f (a) (xi � a) + f (b) (b� xi)
b� a

���� � �12 + 1

b� a

����xi � a+ b

2

����� b_
a

(f)

for each i 2 f1; : : : ; ng :
Now, if we multiply (5.3) by pi � 0; sum over i from f1; : : : ; ng and use the

generalised triangle inequality, we deduce the desired result (5.1).
The fact that 1

2 is the best possible follows from the fact that it is the best
possible for n = 1: �

In a similar manner, on utilising the inequality (2.8), we can state the following
result.

Proposition 2. If the function f : [a; b]! R is L�Lipschitzian, then

(5.4)

����Mf (p;x)�
f (a) [A (p;x)� a] + [b�A (p;x)] f (b)

b� a

����
� L (b� a)

"
1

4
+

1

(b� a)2
nX
i=1

pi

�
xi �

a+ b

2

�2#
;

the constant 14 being the best possible.

Finally, on utilising the �rst inequality in (3.2) we can also state that:

Proposition 3. If f : [a; b]! R is absolutely continuous on [a; b] ; then

(5.5)

����Mf (p;x)�
f (a) [A (p;x)� a] + [b�A (p;x)] f (b)

b� a

����
� 1

b� a

"
nX
i=1

pi (xi � a) kf 0k[a;xi];1 +
nX
i=1

pi (b� xi) kf 0k[t;xi];1

#
:
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The above results can be useful in providing various inequalities between the
weighted arithmetic mean A (p;x) and the weighted geometric mean G (p;x) :=Qn
i=1 x

pi
i ; for which the following well-known inequality holds:

(5.6) A (p;x) � G (p;x) :

If we consider the function f (t) = ln t; f : [a; b]! R � (0;1) ; then Mln(�) (p;x) =
lnG (p;x) and

f (a) [A (p;x)� a] + [b�A (p;x)] f (b)
b� a = ln

h
a
A(p;x)�a

b�a � b
b�A(p;x)

b�a

i
:

Also,
nX
i=1

pi (xi � a) kf 0k[a;xi];1 =
nX
i=1

pi (xi � a) [ln (xi)� ln a]

and
nX
i=1

pi (b� xi) kf 0k[t;xi];1 =
nX
i=1

pi (b� xi) [ln b� ln (xi)] :

Utilising the inequality

ln� � ln�
� � � � 1p

��
; 0 < �; �

and taking into account that 0 < a � xi � b; i 2 f1; : : : ; ng ; then we have

(xi � a) [ln (xi)� ln a] �
(xi � a)2p

xia
� (xi � a)2

a

and

(b� xi) [ln b� ln (xi)] �
(b� xi)2p

xib
� (b� xi)2p

ab
� (b� xi)2

a
;

which implies that

nX
i=1

pi (xi � a) [ln (xi)� ln a] �
1

a

nX
i=1

pi (xi � a)2

and
nX
i=1

pi (b� xi) [ln b� ln (xi)] �
1

a

nX
i=1

pi (b� xi)2 :

Now, by (5.5),

(5.7)

����ln � G (p;x)

a
A(p;x)�a

b�a � b
b�A(p;x)

b�a

����� � 2

a (b� a)

"
1

4
(b� a)2 +

nX
i=1

pi

�
xi �

a+ b

2

�2#
:

Finally, on utilising (5.2) we also have

(5.8)

����ln � G (p;x)

a
A(p;x)�a

b�a � b
b�A(p;x)

b�a

����� �
"
1

2
+

1

b� a

nX
i=1

pi

����xi � a+ b

2

����
#
ln

�
b

a

�
:
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