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NEW GENERALIZATIONS OF OSTROWSKI’S INEQUALITY ON
TIME SCALES

QUÓ̂C ANH NGÔ AND QUÁCH THI. SEN

Abstract. In this short paper, a time scales version of Ostrowski’s inequality

is further generalized via the ∇-integral and ♦α-dynamic integral, which is
defined as a linear combination of the ∆- and ∇ integrals.

1. introduction

The original renowned Ostrowski’s inequality [5] reads as follows

Theorem A. Let a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) be two non-proportional
sequences of real numbers and

|a| =
n∑

i=1

an
i , |b| =

n∑
i=1

bn
i and a.b =

n∑
i=1

aibi.

If x = (x1, x2, ..., xn) is any sequence of real numbers satisfying
n∑

i=1

aix = 0 and
n∑

i=1

bix = 1

then
n∑

i=1

x2
i =

|a|
|a| |b| − |a.b|2

.

Equality occurs if and only if

xk =
bk |a| − ak |b|
|a| |b| − |a.b|2

for all k = 1, n.

The development of the theory of time scales was initiated by Hilger [3] in 1988
as a theory capable to contain both difference and differential calculus in a con-
sistent way. Since then, many authors have studied the theory of certain integral
inequalities on time scales. For example, we refer the reader to [1, 2, 4]. In [9],
Theorem A, by using ∆-integral, was generalized as follows.

Theorem B. Let f, g ∈ Crd([a, b], R) be two linearly independent functions and

A =
∫ b

a

f2 (t)∆t , B =
∫ b

a

g2 (t) ∆t and C =
∫ b

a

f (t) g (t) ∆t.
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(A) If x ∈ Crd([a, b], R) is any function such that∫ b

a

f (t)x(t)∆t = 0 and
∫ b

a

g (t) x(t)∆t = 1 (1)

then ∫ b

a

x2(t)∆t =
A

AB − C2
(2)

with equality if and only if

x(t) =
Ag (t)−Bf (t)

AB − C2
a.e. on [a, b] .

(B) If y(t) = Ag(t)−Bf(t)
AB−C2 on [a, b], then for any α ∈ [−1, 1] and any arbi-

trary x ∈ Crd([a, b], R) satisfying condition (1), the function

αx(t) + (1− α) y(t) , t ∈ [a, b]

satisfies condition (1) and∫ b

a

x2(t)∆t =
∫ b

a

(αx(t) + (1− α) y(t))2 ∆t =
A

AB − C2
. (3)

The first inequality in (3) becomes equality if and only if

|α| = 1 or
∫ b

a

x2(t)∆t =
∫ b

a

y2(t)∆t.

The second inequality in (3) becomes equality if and only if

α = 0 or x(t) = y(t) a.e. on [a, b] .

The main aim of this paper is to further generalize Theorem B first using ∇-
integral and later ♦α-integral on time scale. We refer the reader to [7, 8] for an
account of the calculus corresponding to the ∇-derivative and ♦α-dynamic deriva-
tive respectively. Our main results are included in a couple of theorems below.

Theorem 1. Let f, g ∈ Cld([a, b], R) be two linearly independent functions and

A =
∫ b

a

f2 (t)∇t , B =
∫ b

a

g2 (t)∇t and C =
∫ b

a

f (t) g (t)∇t.

(A) If x ∈ Crd([a, b], R) is any function such that∫ b

a

f (t) x(t)∇t = 0 and
∫ b

a

g (t) x(t)∇t = 1 (4)

then ∫ b

a

x2(t)∇t =
A

AB − C2
(5)

with equality if and only if

x(t) =
Ag (t)−Bf (t)

AB − C2
a.e. on [a, b] .
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(B) If y(t) = Ag(t)−Bf(t)
AB−C2 on [a, b], then for any α ∈ [−1, 1] and any arbi-

trary x ∈ Crd([a, b], R) satisfying condition (4), the function

αx(t) + (1− α) y(t) , t ∈ [a, b]

satisfies condition (4) and∫ b

a

x2(t)∇t =
∫ b

a

(αx(t) + (1− α) y(t))2∇t =
A

AB − C2
. (6)

The first inequality in (6) becomes equality if and only if

|α| = 1 or
∫ b

a

x2(t)∇t =
∫ b

a

y2(t)∇t.

The second inequality in (6) becomes equality if and only if

α = 0 or x(t) = y(t) a.e. on [a, b] .

Theorem 2. Let f, g : [a, b] → R be two linearly independent ♦α-integrable func-
tions and

A =
∫ b

a

f2 (t)♦αt , B =
∫ b

a

g2 (t)♦αt and C =
∫ b

a

f (t) g (t)♦αt.

(A) If x : [a, b] → R is any ♦α-integrable function such that∫ b

a

f (t) x(t)♦αt = 0 and
∫ b

a

g (t) x(t)♦αt = 1 (7)

then ∫ b

a

x2(t)♦αt =
A

AB − C2
(8)

with equality if and only if

x(t) =
Ag (t)−Bf (t)

AB − C2
a.e. on [a, b] .

(B) If y(t) = Ag(t)−Bf(t)
AB−C2 on [a, b], then for any α ∈ [−1, 1] and any ar-

bitrary ♦α-integrable function x : [a, b] → R satisfying condition (7), the
function

αx(t) + (1− α) y(t) , t ∈ [a, b]

satisfies condition (7) and∫ b

a

x2(t)♦αt =
∫ b

a

(αx(t) + (1− α) y(t))2♦αt =
A

AB − C2
. (9)

The first inequality in (9) becomes equality if and only if

|α| = 1 or
∫ b

a

x2(t)♦αt =
∫ b

a

y2(t)♦αt.

The second inequality in (9) becomes equality if and only if

α = 0 or x(t) = y(t) a.e. on [a, b] .
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2. Preliminaries

Definition 1. A time scale T is an arbitrary nonempty closed subset of real num-
bers.

The calculus of time scales was initiated by Stefan Hilger in his PhD thesis [3]
in order to create a theory that can unify discrete and continuous analysis. Let T
be a time scale. T has the topology that it inherits from the real numbers with the
standard topology.

Definition 2. Let σ(t) and ρ(t) be the forward and backward jump operators in T,
respectively. For t ∈ T, we define the forward jump operator σ : T → T by

σ(t) = inf {s ∈ T : s > t} ,

while the backward jump operator ρ : T → T is defined by

ρ(t) = sup {s ∈ T : s < t} .

If σ(t) > t, then we say that t is right-scattered, while if ρ(t) < t then we say that
t is left-scattered.

Point that are right-scattered and left-scattered at the same time are called
isolated. If σ(t) = t, the t is called right-dense, and if ρ(t) = t then t is called
left-dense. Points that are right-dense and left-dense at the same time are called
dense.

Definition 3. Let t ∈ T, then two mappings µ, ν : T → [0,+∞) satisfying

µ (t) := σ(t)−t , ν (t) := t− ρ(t)

are called the graininess functions.

We now introduce the sets Tκ, Tκ and Tκ
κ which are derived from the time scales

T as follows. If T has a left-scattered maximum t, then Tκ := T−{t}, otherwise
Tκ := T. If T has a right-scattered maximum t, then Tκ := T−{t}, otherwise
Tκ := T. Finally, Tκ

κ := Tκ ∩Tκ. If f : T → R is a function, then we define the
function fσ : T → R by f σ(t) = f(σ(t)) for all t ∈ T. If f : T → R is a function,
then we define the function fρ : T → R by f ρ(t) = f(ρ(t)) for all t ∈ T.

Definition 4. Let f : T → R be a function on time scales. Then for t ∈ Tκ,
we define f ∆(t) to be the number, if one exists, such that for all ε > 0 there is a
neighborhood U of t such that for all s ∈ U∣∣f σ(t)−f (s)− f ∆(t) (σ(t)−s)

∣∣ 5 ε |σ(t)−s| .

We say that f is ∆-differentiable on Tκ provided f ∆(t) exists for all t ∈ Tκ. Sim-
ilarly, for t ∈ Tκ, we define f ∇(t) to be the number value, if one exists, such that
for all ε > 0 there is a neighborhood V of t such that for all s ∈ V∣∣f ρ(t)−f (s)− f ∇(t) (ρ(t)−s)

∣∣ 5 ε |ρ(t)−s| .

We say that f is ∇-differentiable on Tκ provided f ∇(t) exists for all t ∈ Tκ.

Assume that f : T → R is a function and let t ∈ Tκ (t 6= min T). Then we have
the following

(i) If f is ∆-differentiable at t, then f is continuous at t.
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(ii) If f is left continuous at t and t is right-scattered, then f is ∆-differentiable
at t with

f ∆(t) =
f σ(t)−f (t)

µ (t)
.

(iii) If t is right-dense, then f is ∆-differentiable at t if and only if

lim
s→t

f (t)− f (s)
t− s

exists a finite number. In this case

f ∆(t) = lim
s→t

f (t)− f (s)
t− s

(iv) If f is ∆-differentiable at t, then

f σ(t) = f(t) + µ(t) f ∆(t) .

Assume that f : T → R is a function and let t ∈ Tκ (t 6= max T). Then we have
the following

(i) If f is ∇-differentiable at t, then f is continuous at t.
(ii) If f is right continuous at t and t is left-scattered, then f is ∇-differentiable

at t with

f ∇(t) =
f (t)− f ρ(t)

ν (t)
.

(iii) If t is left-dense, then f is ∇-differentiable at t if and only if

lim
s→t

f (t)− f (s)
t− s

exists a finite number. In this case

f ∇(t) = lim
s→t

f (t)− f (s)
t− s

(iv) If f is ∇-differentiable at t, then

f ρ(t) = f(t) + ν(t) f ∇(t) .

Remark 1 (See [7]). Assume f : T → R is a function and let t ∈ T. The existence
of the ∆-derivative of f at t does not imply the existence of the ∇-derivative at t,
and vice versa.

Definition 5.
(1) A mapping f : T → R is called rd-continuous provided if it satisfies

(a) f is continuous at each right-dense point or maximal element of T.
(b) The left-sided limit lim

s→t−
f (s) = f (t−) exists at each left-dense point

t of T.
(2) A mapping f : T → R is called ld-continuous provided if it satisfies

(a) f is continuous at each left-dense point or minimal element of T.
(b) The right-sided limit lim

s→t+
f (s) = f (t+) exists at each right-dense

point t of T.

Remark 2.
(1) It follows from Theorem 1.74 of Bohner and Peterson [1] that every rd-

continuous function has an anti-derivative.
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(2) It follows from Theorem 8.45 of Bohner and Peterson [1] that every ld-
continuous function has an anti-derivative.

Definition 6.

(1) A function F : T → R is called a ∆-antiderivative of f : T → R provided
F∆(t) = f(t) holds for all t ∈ Tκ. Then the ∆-integral of f is defined by∫ b

a

f (t) ∆t = F (b)− F (a) .

(2) A function F : T → R is called a ∇-antiderivative of f : T → R provided
F∇(t) = f(t) holds for all t ∈ Tκ. Then the ∇-integral of f is defined by∫ b

a

f (t)∇t = F (b)− F (a) .

Now we briefly introduce the ♦α-dynamic derivative and the ♦α-dynamic inte-
gration and we refer the reader to [7, 8] for a comprehensive development of the
calculus of the ♦α-dynamic derivative and the ♦α-dynamic integration.

Definition 7. Let T be a time scale. We define f ♦α(t) to be the value, if one
exists, such that for all ε > 0 there is a neighborhood U of t such that for all s ∈ U∣∣α (fσ (t)− f (s)) ηts + (1− α) (fρ (t)− f (s))µts − f ♦α(t) µtsηts

∣∣ < ε |µtsηts| .

We say that f is ♦α-differentiable on Tκ
κ provided f ♦α(t) exists for all t ∈ Tκ.

Remark 3. It is clear that f ♦α(t) reduces to f ∆(t) for α = 1 and f ∇(t) for α = 0.
Also, the above definition is well-defined, see [7].

Theorem 3 (See [7], Theorem 3.2). Let 0 5 α 5 1. If f is both ∆- and ∇-
differentiable at t ∈ T, then f is ♦α-differentiable at t and

f ♦α(t) = α f ∆(t)+ (1− α) f ∇(t) .

Theorem 4 (See [7], Theorem 3.9). Let T be a time scale and 0 < α < 1. If f is
♦α-differentiable at t then f is both ∆- and ∇-differentiable at t.

Remark 4. Note that the strict inequalities in 0 < α < 1 are necessary for the
results above. In the case α = 1, the ♦α-derivative reduces to the ∆-derivative,
which does not imply the existence of the ∇-derivative. Similarly for α = 0.

Definition 8. Let a, t ∈ T and h : T → R. Then the ♦α-integral from a to t of h
is defined by∫ t

a

h (τ)♦ατ = α

∫ t

a

h (τ)∆τ + (1− α)
∫ t

a

h (τ)∇τ , 0 5 α 5 1.

You may notice that since ♦α-integral is a combined ∆- and ∇-integral, we in
general do not have (∫ t

a

h (τ)♦ατ

)♦α

= h (t) , t ∈ T .

Throughout this paper, we suppose that T is a time scale, a, b ∈ T with a < b
and an interval means the intersection of real interval with the given time scale.
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3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1.
Proof of (A). Since f, g ∈ Cld([a, b], R) then A, B and C are well-defined. Clearly,
AB − C2 > 0. Let

y(t) :=
Ag (t)− Cf (t)

AB − C2
, a 5 t 5 b.

We see that∫ b

a

y2(t)∇t =
1

(AB − C2)2

∫ b

a

(Ag (t)− Cf (t))2∇t

=
1

(AB − C2)2

∫ b

a

(
A2g2 (t)− 2ACf (t) g (t) + C2f2 (t)

)
∇t

=
A2B − 2AC2 + C2A

(AB − C2)2

=
A

AB − C2
,

and ∫ b

a

f (t) y(t)∇t =
1

AB − C2

∫ b

a

(
Af (t) g (t)− Cf2 (t)

)
∇t

=
1

AB − C2

∫ b

a

Af (t) g (t)∇t− 1
AB − C2

∫ b

a

Cf2 (t)∇t

= 0,

and ∫ b

a

g (t) y(t)∇t =
1

AB − C2

∫ b

a

(
Ag2 (t)− Cf (t) g (t)

)
∇t

=
1

AB − C2

∫ b

a

Ag2 (t)∇t− 1
AB − C2

∫ b

a

Cf (t) f (t)∇t

= 1.

Now for x(t) ∈ Cld([a, b], R) satisfying (4), we have∫ b

a

x(t)y(t)∇t =
1

AB − C2

∫ b

a

(Ag (t) x(t)− Cf (t) x(t))∇t

=
A

AB − C2

∫ b

a

g (t) x(t)∇t

=
A

AB − C2

=
∫ b

a

y2(t)∇t.

On the other hand,

0 5
∫ b

a

(x(t)− y(t))2∇t =
∫ b

a

x2(t)∇t− 2
∫ b

a

x(t)y(t)∇t +
∫ b

a

y2(t)∇t

=
∫ b

a

x2(t)∇t−
∫ b

a

y2(t)∇t.
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It follows that ∫ b

a

x2(t)∇t =
∫ b

a

y2(t)∇t =
A

AB − C2

which gives the desires result.
Proof of (B). For −1 5 α 5 1,∫ b

a

x2(t)∇t =
∫ b

a

α2x2(t)∇t +
∫ b

a

(
1− α2

)
x2(t)∇t

=
∫ b

a

α2x2(t)∇t +
∫ b

a

(
1− α2

)
y2(t)∇t

=
∫ b

a

α2x2(t)∇t +
∫ b

a

[
(1− α)2 + 2α (1− α)

]
y2(t)∇t

=
∫ b

a

α2x2(t)∇t +
∫ b

a

2α (1− α) y2(t)∇t +
∫ b

a

(1− α)2 y2(t)∇t

=
∫ b

a

α2x2(t)∇t +
∫ b

a

2α (1− α) x(t)y(t)∇t +
∫ b

a

(1− α)2 y2(t)∇t

=
∫ b

a

(αx(t) + (1− α) y(t))2∇t

which completes the proof of the first part inequality in (6). Equality occurs if and
only if either |α| = 1 or ∫ b

a

x2(t)∇t =
∫ b

a

y2(t)∇t.

Next,∫ b

a

(αx(t) + (1− α)y(t)2∇t =
∫ b

a

(
α2x2(t) + 2α(1− α)x(t)y(t) + (1− α)2y2(t)

)
∇t

= α2

∫ b

a

(
x2(t)− 2x(t)y(t) + y2(t)

)
∇t + (1− 2α)

∫ b

a

y2(t)∇t + 2α

∫ b

a

x(t)y(t)∇t

= α2

∫ b

a

(x(t)− y(t))2∇t +
A

AB − C2

=
A

AB − C2
.

Equality occurs if and only if either α = 0 or x(t) = y(t) a.e. on [a, b]. �

Proof of Theorem 2. This Theorem is a direct extension of the Theorem 1. So we
omit its proof. �

4. Discussion

Integral inequalities play an important role in the development of a time scales
calculus. Ostrowski’s inequality on the time scales was obtained by Yeh [9] using
∆-integral, we offered inequalities first using ∇-integral and later ♦α-integral which
is the linear combination of the ∆- and ∇-integrals.
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