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1 Generalizations of Mitrinovi¢'s inequality

Let A, B, C be the angles of a triangle. Then

cos A +
√

2 (cos B + cos C) ≤ 2. (1)

Inequality (1) is known in literature as Mitrinovi¢'s inequality [1, p.125]. We show here some generaliza-
tions of Mitrinovi¢'s inequality.

Theorem 1. Let λ, µ, A, B, C be positive numbers with A + B + C = θ, 0 < θ ≤ π. Then

cos A + λ cos B + µ cos C ≤
(

λ

µ
+

µ

λ
+ λµ

)
cos

θ

3
. (2)

Proof. Note that the following result due to Wu and Debnath [2]:

yz cos A + zx cos B + xy cos C ≤ (x2 + y2 + z2) cos
θ

3
, (3)

where x, y, z, A, B, C ∈ R+, A + B + C = θ, 0 < θ ≤ π.
By using a substitution x→ x, y → x

λ , z → x
µ (x > 0, λ > 0, µ > 0) in (3), we obtain

x2

λµ
cos A +

x2

µ
cos B +

x2

λ
cos C ≤

(
x2 +

x2

λ2
+

x2

µ2

)
cos

θ

3
,

which leads to the desired inequality (2). The proof of Theorem 1 is complete.

Remark 1. Putting λ = µ = x in (2), we get the following result:

1



Corollary 1. Let x, A, B, C be positive numbers with A + B + C = θ, 0 < θ ≤ π. Then

cos A + x(cos B + cos C) ≤
(
x2 + 2

)
cos

θ

3
. (4)

In a special case when θ = π, the inequality (4) reduce to the following generalization of Mitrinovi¢'s
inequality.

Corollary 2. Let x be a positive number, then for any triangle ABC the following inequality holds

cos A + x(cos B + cos C) ≤ x2

2
+ 1. (5)

Remark 2. We can show that the inequality (5) holds for x ∈ R by the following fact.

cos A + x(cos B + cos C)− 2 + x2

2

= − cos(B + C) + x(cos B + cos C)− 2 + x2

2

= −1
2

(
2 cos B cos C − 2 sinB sinC − 2x cos B − 2x cos C + 2 + x2

)
= −1

2
[
(cos B + cos C − x)2 + (sinB − sinC)2

]
≤ 0.

Based on the above arguments, we have the following further extension of the Mitrinovi¢'s inequality.
Corollary 3. Let x be a real number, then for any triangle ABC the following inequality holds

cos A + x(cos B + cos C) ≤ x2

2
+ 1. (6)

Remark 3. If we put in the inequality (5) or (6) x =
√

2, the Mitrinovi¢'s inequality (1) is derived.

2 Some applications

In what follows, we denote by A, B, C the angles of a triangle, s, R and r denote respectively the
semi-perimeter, circumradius and inradius of a triangle. We will customarily use the notations of cyclic sum
and cyclic product such as∑

f(A) = f(A) + f(B) + f(C),
∏

f(A) = f(A)f(B)f(C).

Proposition 1. Let x be a positive number, then for any triangle ABC the following inequality holds

18R

(3x2 + 4)R− 2r
≤

∑ 1
1 + x2

2 − cos A
≤ R(s2 + 8Rr + 5r2)

xr(s2 + 2Rr + r2)
. (7)

Proof. It follows from Corollary 2 that

1 +
x2

2
− cos A ≥ x(cos B + cos C),

we hence have
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∑ 1
1 + x2

2 − cos A
≤ 1

x

∑ 1
cos B + cos C

=
∑

(cos A + cos B)(cos A + cos C)
x

∏
(cos B + cos C)

.

Now, using the identities (see [3]):∑
(cos A + cos B)(cos A + cos C) =

s2 + 8Rr + 5r2

4R2
,

∏
(cos A + cos B) =

r(s2 + 2Rr + r2)
4R3

,

we obtain that ∑ 1
1 + x2

2 − cos A
≤ R(s2 + 8Rr + 5r2)

xr(s2 + 2Rr + r2)
.

In addition, by applying the Cauchy-Schwarz inequality [4] and the identity
∑

cos A = (R + r)/R, we
have ∑ 1

1 + x2

2 − cos A
≥ 9

3 + 3
2x2 − cos A− cos B − cos C

≥ 18R

(3x2 + 4)R− 2r
.

The inequality (7) is proved.
Putting x =

√
2 in (7), we get the following result:

Proposition 2. For any triangle ABC we have the inequality

9R

5R− r
≤

∑ 1
2− cos A

≤ R(s2 + 8Rr + 5r2)√
2r(s2 + 2Rr + r2)

. (8)

Proposition 3. In all triangle ABC, if x > 1, then

min{cos A, cos B, cos C} ≥ 2x(R + r)− (x2 + 2)R
2R(x− 1)

. (9)

If x < 1, then

max{cos A, cos B, cos C} ≤ 2x(R + r)− (x2 + 2)R
2R(x− 1)

. (10)

Proof. From Corollary 3 we have

cos A + x(cos B + cos C) ≤ x2

2
+ 1

⇐⇒ (1− x) cos A + x(cos A + cos B + cos C) ≤ x2

2
+ 1. (11)

Applying the identity
∑

cos A = (R + r)/R to inequality (11), we deduce the inequalities (9) and (10)
immediately.

Proposition 4. Let x be a real number, then for any triangle ABC the following inequality holds

2(R + r)(x− 1) ≥ 6x(R + r)− 3(x2 + 2)R (12)
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Proof. From inequality (11) we have

(1− x)
∑

cos A + 3x
∑

cos A ≤ 3
(

x2

2
+ 1

)
. (13)

Applying the identity
∑

cos A = (R + r)/R to inequality (13) leads to the inequality (12).
Proposition 5. Let x be a real number, then for any triangle ABC the following inequality holds∑ (

x2

2
+ 1− cos A

) (
x2

2
+ 1− cos B

)
≥ x2(s2 + 8Rr + 5r2)

4R2
. (14)

Proof. From Corollary 3 we have

cos A + x(cos B + cos C) ≤ x2

2
+ 1

⇐⇒ x2

2
+ 1− cos A ≥ x(cos B + cos C). (15)

When x ≥ 0, we have

∑ (
x2

2
+ 1− cos A

) (
x2

2
+ 1− cos B

)
≥ x2

∑
(cos B + cos C)(cos C + cos A)

=
x2(s2 + 8Rr + 5r2)

4R2
. (16)

When x < 0, then −x > 0, it follows from (16) that

∑ (
x2

2
+ 1− cos A

) (
x2

2
+ 1− cos B

)
=

∑ (
(−x)2

2
+ 1− cos A

) (
(−x)2

2
+ 1− cos B

)

≥ x2(s2 + 8Rr + 5r2)
4R2

. (17)

Inequality (14) is proved.
Proposition 6. Let x be a real number, then for any triangle ABC the following inequality holds∏(

x2

2
+ 1− cos A

)
≥ x3r(s2 + 2Rr + r2)

4R3
. (18)

Proof. Obviously, when x ≤ 0, inequality (18) is valid. When x > 0, from inequality (15) we have∏
(
x2

2
+ 1− cos A) ≥ x3

∏
(cos B + cos C) =

x3r(s2 + 2Rr + r2)
4R3

.

Proposition 7. Let x be a real number, then for any acute triangle ABC the following inequality holds

∑ x2

2 + 1− cos A

cos A
≥ x((2R + r)3 + s2r − 2R(s2 + 2Rr + r2))

R(s2 − (2R + r)2)
. (19)

Proof. From Corollary 3 we deduce that
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1 +
x2

2
− cos A ≥ x(cos B + cos C)

⇐⇒
1 + x2

2 − cos A

cos A
≥ x(cos B + cos C)

cos A
.

By using the identities (see [3]): ∏
cos A =

s2 − (2R + r)2

4R2
,

∑
cos A cos B =

s2 − 4R2 + r2

4R2
,

we have

∑ x2

2 + 1− cos A

cos A
≥ x

∑ cos B + cos C

cos A

= x

[
(
∑

cos A)(
∑ 1

cos A
)− 3)

]
= x

[
(
∑

cos A)(
∑

cos B cos C)∏
cos A

− 3
]

=
x((2R + r)3 + s2r − 2R(s2 + 2Rr + r2))

R(s2 − (2R + r)2)
.

Proposition 8. Let x be a positive number, then for any triangle ABC the following inequality holds

108R2

((3x2 + 4)R− 2r)2
≤

∑ 1
(x2

2 + 1− cos A)(x2

2 + 1− cos B)
≤ 8R2(R + r)

x2r(s2 + 2Rr + r2)
. (20)

Proof. From Corollary 3 we have

cos A + x(cos B + cos C) ≤ x2

2
+ 1

⇐⇒ x2

2
+ 1− cos A ≥ x(cos B + cos C). (21)

Thus, it follows that

∑ 1
(x2

2 + 1− cos A)(x2

2 + 1− cos B)
≤ 1

x2

∑ 1
(cos B + cos C)(cos A + cos C)

=
2

∑
cos A

x2
∏

(cos A + cos B)

=
8R2(R + r)

x2r(s2 + 2Rr + r2)
.

In addition, by applying the arithmetic-geometric means inequality and the identity
∑

cos A = (R+r)/R,
we deduce that
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∑ 1
(x2

2 + 1− cos A)(x2

2 + 1− cos B)
=

∑
(x2

2 + 1− cos A)∏
(x2

2 + 1− cos A)

≥ 27
(
∑

(x2

2 + 1− cos A))2

=
108R2

((3x2 + 4)R− 2r)2
.

Proposition 9. Let x be a positive number, then for any acute triangle ABC the following inequality

holds ∑ cos B cos C
x2

2 + 1− cos A
≤ (s2 + r2 − 4R2)2 − 4R(R + r)(s2 − (2R + r)2)

4xRr(s2 + 2Rr + r2)
. (22)

Proof. From Corollary 3 we have

cos A + x(cos B + cos C) ≤ x2

2
+ 1

⇐⇒ x2

2
+ 1− cos A ≥ x(cos B + cos C).

Further, we have

∑ cos B cos C
x2

2 + 1− cos A
≤ 1

x

∑ cos B cos C

cos B + cos C

=
∏

cos A
∑

cos A +
∑

cos2 B cos2 C

x
∏

(cos B + cos C)

=
(
∑

cos B cos C)2 −
∏

cos A
∑

cos A

x
∏

(cos B + cos C)

=
(s2 + r2 − 4R2)2 − 4R(R + r)(s2 − (2R + r)2)

4xRr(s2 + r2 + 2Rr)
.

Proposition 10. Let x be a real number, then for any triangle ABC the following inequality holds

∑ (
x2

2
+ 1− cos A

)2

≥ x2(2(2R + r)2 + r2 − s2)
2R2

. (23)

Proof. In order to prove Proposition 10, it is enough to prove that the inequality (23) holds for x ≥ 0.
We deduce from Corollary 3 that

∑ (
x2

2
+ 1− cos A

)2

≥ x2
∑

(cos B + cos C)2

= x2
∑

(cos2 B + cos2 C + 2 cos B cos C)

= x2(2
∑

cos2 A + 2
∑

cos B cos C)

=
x2(2(2R + r)2 + r2 − s2)

2R2
.
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Proposition 11. Let x be a real number, then for any acute triangle ABC the following inequality holds

∑ x2

2 + 1− cos A

cos B cos C
≥ 2x(s2 − 4R2 + r2)

s2 − (2R + r)2
. (24)

Proof. From Corollary 3 we have

∑ x2

2 + 1− cos A

cos B cos C
≥ x

∑ cos B + cos C

cos B cos C

=
2x

∑
cos A cos B∏
cos A

=
2x(s2 − 4R2 + r2)

s2 − (2R + r)2
.

Proposition 12. Let x be a real number, then for any acute triangle ABC the following inequality holds

∑ (x2

2 + 1− cos A)2

cos B cos C
≥ x2

(
3 +

(R + r)(s2 − 4R2 + r2)
R(s2 − (2R + r)2)

)
. (25)

Proof. In order to prove Proposition 12, it is enough to prove that the inequality (25) holds for x ≥ 0.
We deduce from Corollary 3 that

∑ (x2

2 + 1− cos A)2

cos B cos C
≥ x2

∑ (cos B + cos C)2

cos B cos C

= x2
∑

(
cos B

cos C
+

cos C

cos B
+ 2)

= x2

(∑
cos A

cos C
+

∑
cos A

cos B
+

∑
cos A

cos A
+ 3

)
= x2

(
(
∑

cos A)(
∑

cos A cos B)∏
cos A

+ 3
)

= x2

(
3 +

(R + r)(s2 − 4R2 + r2)
R(s2 − (2R + r)2)

)
.

Proposition 13. Let x be a real number, then for any acute triangle ABC the following inequality holds

∑ (x2

2 + 1− cos A)(x2

2 + 1− cos B)
cos A cos B

≥ x2

(
3 +

2(R + r)(6R2 + r2 + 4Rr − s2)
R(s2 − (2R + r)2)

)
. (26)

Proof. In order to prove Proposition 13, it is enough to prove that the inequality (26) holds for x ≥ 0.
We deduce from Corollary 3 that
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∑ (x2

2 + 1− cos A)(x2

2 + 1− cos B)
cos A cos B

≥ x2
∑ (cos B + cos C)(cos A + cos C)

cos A cos B

= x2
∑ cos A cos B + cos B cos C + cos C cos A + cos2 C

cos A cos B

= x2

(
3 +

(
∑

cos2 A)
∑

cos A∏
cos A

)
= x2

(
3 +

((
∑

cos A)2 − 2
∑

cos A cos B)
∑

cos A∏
cos A

)
= x2

(
3 +

2(R + r)(6R2 + r2 + 4Rr − s2)
R(s2 − (2R + r)2)

)
.

Proposition 14. Let x be a real number, then for any acute triangle ABC the following inequality holds∑ cos A cos B

(x2

2 + 1− cos A)(x2

2 + 1− cos B)
≤ 1

x2

(
1− 2R(s2 − (2R + r)2)

r(s2 + 2Rr + r2)

)
. (27)

Proof. In order to prove Proposition 14, it is enough to prove that the inequality (27) holds for x ≥ 0.
We deduce from Corollary 3 that

∑ cos A cos B

(x2

2 + 1− cos A)(x2

2 + 1− cos B)
≤ 1

x2

∑ cos A cos B

(cos B + cos C)(cos A + cos C)

=
∑

cos A cos B(cos A + cos B)
x2

∏
(cos B + cos C)

=
(
∑

cos A cos B)(
∑

cos A)− 3 cos A cos B cos C)
x2

∏
(cos B + cos C)

=
∏

(cos B + cos C)− 2 cos A cos B cos C)
x2

∏
(cos B + cos C)

=
1
x2

(
1− 2R(s2 − (2R + r)2)

r(s2 + 2Rr + r2)

)
.

Proposition 15. Let x be a positive number, then for any acute triangle ABC the following inequality

holds ∑ cos A
x2

2 + 1− cos A
≤ R(s2 + 8Rr + 5r2)− 2r(s2 −Rr − r2)

xr(s2 + 2Rr + r2)
. (28)

Proof. From Corollary 3 we deduce that

1 +
x2

2
− cos A ≥ x(cos B + cos C)

⇐⇒ cos A

1 + x2

2 − cos A
≤ cos A

x(cos B + cos C)
.

Thus, we have
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∑ cos A
x2

2 + 1− cos A
≤ 1

x

∑ cos A

cos B + cos C

=
1
x

(
(
∑

cos A)(
∑ 1

cos B + cos C
)− 3

)
=

1
x

(
(
∑

cos A)
∑

(cos C + cos A)(cos A + cos B)∏
(cos B + cos C)

− 3
)

=
R(s2 + 8Rr + 5r2)− 2r(s2 −Rr − r2)

xr(s2 + 2Rr + r2)
.
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