
Weighted Norm Inequalities for Commutators of

One-sided Discrete Square Functions

ZUNWEI FU

Abstract. The purpose of this paper is to prove the strong type inequalities with
one-sided weights for commutators (with symbol b ∈ Lipβ) of one-sided discrete square
functions. We also prove that b ∈ Lipβ is a sufficient and necessary condition for the
corresponding boundedness of commutators of one-sided maximal operators.

1 Introduction

A well known result of Coifman-Rochberg-Weiss[4] states that the commutator

Tbf = T (bf)− bT (f)

(where T is a Calderón-Zygmund singular integral operator) is bounded on Lp(Rn), 1 < p <
∞, if and only if b ∈ BMO. There are other links between the boundedness properties of the
operator Tb and the smoothness of b. A particular case of the result of Jason[6] states that
Tb: Lp(Rn) → Lq(Rn) is bounded, 1 < p < q < ∞, if and only if b ∈ Lipβ , 1/p−1/q = β/n.
Here, Lipβ is the homogeneous Lipschitz space.

Many authors have studied strong and weak type inequalities for commutators with
weights (see [2], [9], [10], [19]). Furthermore, many of the results have been generalized to
commutators of other operators, not only Calderón-Zygmund operators (see [5], [21], [22]).

Very recently, Lorente-Riveros[11] proved the strong type inequalities with one-sided
weights for commutators (with symbol b ∈ BMO) of one-sided discrete square functions.
Highly inspired by [6] and [11], we shall prove the strong type inequalities with one-sided
weights for commutators (with symbol b ∈ Lipβ) of one-sided discrete square functions.
We also prove that b ∈ Lipβ is a sufficient and necessary condition for the corresponding
boundedness of commutators of one-sided maximal operators.

Throughout this paper the letter C will be a positive constant, not necessarily the same
at each occurrence. If 1 ≤ p ≤ ∞, then its conjugate exponent will be denoted by p′ and
Ap will be the classical Muckenhoupt’s class of weights (see [17]).

The paper was supported by the NNSF of China, No.10571014 and the SEDF of China, No.20040027001.
AMS subject classification: 42B20, 42B25.
Keywords: commutator, one-sided weight, one-sided discrete square function, Lipschitz function, one-

sided maximal function.
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2 Definitions and main results

Let f be a measurable function on R. For each n ∈ Z, let us define the operator An by
An = 1

2n

∫ x+2n

x f(y)dy. It is a classical problem to study the different kinds of convergence
of the {Anf}n when the function f belongs to Lp(R, dx), being p in the range 1 ≤ p < ∞.
A method of measuring the speed of convergence of the sequence {Anf}n is to analyze the
boundedness of the square function

Sf(x) =

(∑
n∈Z

|Anf(x)−An−1f(x)|2
)1/2

.

The square function S is of interest in ergodic theory and it has been extensively studied.
In particular it has been proved in [7] that S−(under the assumption of n ∈ Z− ∪ {0}
in the definition of S, we denote S by S−) is of weak type (1, 1), maps Lp(R) into itself,
1 < p < ∞. For the Ergodic theory and connections with Analysis and Probability, we
choose to refer to [3] and [8].

It is not difficult to see that Sf(x) = ‖U+f(x)‖l2 , where U+ is the sequence valued
operator

U+f(x) =
∫

R
H(x− y)f(y)dy,

where

H(x) =
{

1
2n

χ(−2n,0) −
1

2n−1
χ(−2n−1,0)

}
n∈Z

.

(See [23].)

Definition 2.1 The one-sided Hardy-Littlewood maximal operators M+ and M− are
defined for locally integrable functions f by

M+f(x) = sup
h>0

1
h

∫ x+h

x
|f | and M−f(x) = sup

h>0

1
h

∫ x

x−h
|f |.

The good weights for these operators are the one-sided weights, A+
p and A−

p :

sup
a<b<c

1
(c− a)p

∫ b

a
ω

(∫ c

b
ω1−p′

)p−1

< ∞, 1 < p < ∞, (A+
p )

M−ω(x) < Cω(x), a.e. (A+
1 )

and
A+
∞ = ∪p≥1A

+
p . (A+

∞)

The classes A−
p are defined in a similar way. It is interesting to note that Ap = A+

p ∩
A−

p , Ap $ A+
p and Ap $ A−

p . M+ is bounded on Lp(ω) if and only if satisfies the A+
p

condition. (See [13], [14], [20] for more definitions and results).
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It is proved in [23] that ω ∈ A+
p , 1 < p < ∞, if and only if S is bounded from Lp(ω) to

Lp(ω) and that ω ∈ A+
1 if and only if S is of weak-type (1, 1) with respect to ω.

Definition 2.2 The one-sided fractional maximal operator M+
α , 0 < α < 1, is defined for

locally integrable functions f by

M+
α f(x) = sup

h>0

1
h1−α

∫ x+h

x
|f |.

It is proved in [1] that M+
α is bounded from Lp(ωp) to Lq(ωq) if and only if ω ∈ A+(p, q),

for 1 < p < q, 1/p− 1/q = α, where

(
1
h

∫ x

x−h
ωq

)1/q (1
h

∫ x+h

x
ω−p′

)1/p′

≤ C, (A+(p, q))

‖ωχ[x−h,x]‖∞
(

1
h

∫ x+h

x
ω−p′

)1/p′

≤ C, (A+(p,∞))

for all h > 0 and x ∈ R.

Definition 2.3[18] The Lipschitz space Lipβ(R) is the space of functions f satisfying

‖f‖Lipβ(Rn) = sup
x,h∈R,h 6=0

|f(x + h)− f(x)|
|h|β

< ∞.

Now we shall state our results.

Theorem 2.4 Let b ∈ Lipβ(R), and k ∈ N. The k-th order commutator of the one-sided
discrete square function is defined by

Sk
b f(x) =

∥∥∥∥∫
R
(b(x)− b(y))kH(x− y)f(y)dy

∥∥∥∥
l2

.

Then for ω ∈ A+(p, q), 1 < p < q < ∞, 1/p− 1/q = kβ, we have(∫
R
|Sk

b f |qωq

)1/q

≤ C

(∫
R
|f |pωp

)1/p

,

for all bounded f with compact support.

Obviously, if β > 1, Lipβ(R) contains only constants, Sk
b ≡ 0, so we will only concen-

trate our discussion on the cases 0 < β ≤ 1 in what follows. It should be pointed out that
if 0 < β < 1, Lipβ(R) = ∧̇β(R), where ∧̇β(R) is the homogeneous Besov-Lipschitz space;
but if β = 1, Lipβ(R) $ ∧̇β(R).
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Theorem 2.5 Let k-th order commutator of the one-sided maximal operator be defined
by

M+,k
b f(x) = sup

h>0

1
h

∫ x+h

x
|b(x)− b(y)|k|f(y)|dy.

Then the following conditions are equivalent:
(i) M+,k

b is bounded from Lp(ωp) to Lq(ωq) for pairs (p, q), such that 1 < p < q <
∞, 1/p− 1/q = kβ and ω ∈ A+(p, q).

(ii) M+,k
b is bounded from Lp(dx) to Lq(dx) for some pair (p, q), such that 1 < p < q <

∞, 1/p− 1/q = kβ.
(iii) b ∈ Lipβ(R).

Theorem 2.6 Let k-th order commutator of the one-sided fractional maximal operator
be defined by

M+,k
α,b f(x) = sup

h>0

1
h1−α

∫ x+h

x
|b(x)− b(y)|k|f(y)|dy.

Then the following conditions are equivalent:
(i) M+,k

α,b is bounded from Lp(ωp) to Lq(ωq) for pairs (p, q), such that 1 < p < q <

∞, 1/p− 1/q = α + kβ and ω ∈ A+(p, q).

(ii) M+,k
α,b is bounded from Lp(dx) to Lq(dx) for some pair (p, q), such that 1 < p < q <

∞, 1/p− 1/q = α + kβ.
(iii) b ∈ Lipβ(R).

Similarly, it is not difficult to prove strong type inequalities with pairs of related weights
for commutators of one-sided singular integral (given by a Calderón-Zygmund kernel with
support in (−∞, 0), see [10]) and the weyl fractional integral.

3 Proof of main results

In order to prove our results, let us first introduce some lemmas and notations.

Lemma 3.1[18] For any x, y ∈ R, if f ∈ Lipβ(R), 0 < β < 1, then

|f(x)− f(y)| ≤ |x− y|β‖f‖Lipβ
,

and given any interval I in R, there is

sup
x∈I

|f(x)− fI | ≤ C|I|β‖f‖Lipβ
,

if I∗ ⊂ I, then
|fI∗ − fI | ≤ C‖f‖Lipβ

|I|β ,

where

fI =
1
|I|

∫
I
f.
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Lemma 3.2[18] For 0 < β < 1, 1 ≤ q < ∞, we have

‖f‖Lipβ
≈ sup

I

1
|I|1+β

∫
I
|f − fI | ≈ sup

I

1
|I|β

(
1
|I|

∫
I
|f − fI |q

)1/q

,

for q = ∞ the formula should be interpreted appropriately.

The main tool for proving our results is a extrapolation theorem that appeared in [12],
with slight modifications.

Lemma 3.3 Let 1 < p0 < ∞ and T be a sublinear operator defined in C∞
c . Assume that

for all ω ∈ A+(p0,∞) there exists C = C(ω) such that

‖ωTf‖∞ ≤ C‖fω‖p0 .

Then for all pairs (p, q) such that 1 < p < p0, 1/p− 1/q = 1/p0 and all ω ∈ A+(p, q), there
exists C = C(ω) such that

‖ωTf‖q ≤ C‖fω‖p,

provided the left hand side is finite.

We will also need the following result of Mart́ın-Reyes and de la Torre (theorem 4 in
[16]):

Lemma 3.4 Let 1 < p < ∞. If ω ∈ A+
p and M+f ∈ Lp(ω), then there exits C = C(ω)

such that ∫
R
(M+f)pω ≤ C

∫
R
(f ],+)pω,

where

f ],+(x) = sup
h>0

1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h
f

)+

dy

and z+=max(z, 0).

It is proved in [16] that

f ],+(x) ≤ sup
h>0

inf
a∈R

1
h

∫ x+h

x
(f(y)− a)+ dy +

1
h

∫ x+2h

x+h
(a− f(y))+ dy ≤ C‖f‖BMO.

Lemma 3.5[15,20] Let ω ∈ A−
1 . Then there exits s > 1 such that ωr ∈ A−

1 , for all r such
that 1 < r ≤ s. Let ω ∈ A+(p, q). Then ωq ∈ A+

q and ωp ∈ A+
p , where 1 < p < q < ∞.

Applying Hölder’s inequality in the definition of A+(p, q), we can get the following
Lemma.
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Lemma 3.6 Let ω ∈ A+(p, q). Then ω ∈ A+(p0, q) and ω ∈ A+(p, p0), where 1 < p <
p0 < q < ∞.

Proof of Theorem 2.4. Let ω ∈ A+(p, q). Then ωq ∈ A+
q . By Lemma 3.4, we have∫

R
|Sk

b f |qωq ≤ C

∫
R
|M+(Sk

b f)|qωq ≤ C

∫
R
|(Sk

b f)],+|qωq.

To prove the theorem for any b ∈ Lipβ, we proceed in the same way as in [11]. We will
control (Sk

b f)],+ by some one-sided maximal operators. Using Lemma 3.3, we shall prove
that they are bounded from Lp(ωp) to Lq(ωq).

Let λ be an arbitrary constant. Then b(x)− b(y) = (b(x)− λ)− (b(y)− λ) and

Sk
b f(x) =

∥∥∥∥∫
R
(b(x)− b(y))kH(x− y)f(y)dy

∥∥∥∥
l2

=
∥∥∥ k∑

j=0

Cj,k(b(x)− λ)j

∫
R
(b(y)− λ)k−jH(x− y)f(y)dy

∥∥∥
l2

≤
∥∥∥∥∫

R
(b(y)− λ)kH(x− y)f(y)dy

∥∥∥∥
l2

+
∥∥∥ k∑

j=1

Cj,k(b(x)− λ)j

∫
R
(b(y)− λ)k−jH(x− y)f(y)dy

∥∥∥
l2

≤ S((b− λ)kf)(x)

+
∥∥∥ k∑

j=1

k−j∑
s=0

Cj,k,s(b(x)− λ)s+j

∫
R
(b(x)− b(y))k−j−sH(x− y)f(y)dy

∥∥∥
l2

≤ S((b− λ)kf)(x) +
k−1∑
m=0

Ck,m|b(x)− λ|k−mSm
b f(x),

where Cj,k (respectively Cj,k,s) are absolute constants depending only on j and k (respec-
tively j, k and s). Let x ∈ R, h > 0. Let i ∈ Z be such that 2i ≤ h < 2i+1 and set
J = [x, x + 2i+3]. Then, write f = f1 + f2, where f1 = fχJ and set λ = bJ . Then

1
h

∫ x+h

x
|Sk

b f(y)− S((b− bJ)kf2)(x)|dy

≤ 1
h

∫ x+h

x
|S((b− bJ)kf1)(y)|dy

+
1
h

∫ x+h

x
|S((b− bJ)kf2)(y)− S((b− bJ)kf2)(x)|dy

+
k−1∑
m=0

Ck,m
1
h

∫ x+h

x
|b(y)− bJ |k−m|Sm

b f(y)|dy

= I(x) + II(x) + III(x).
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For II(x), we have

II(x) ≤ 1
h

∫ x+2i+3

x
||U+((b− bJ)kf2)(y)− U+((b− bJ)kf2)(x)||l2dy,

and

||U+((b−bJ)kf2)(y)−U+((b−bJ)kf2)(x)||l2 ≤
∫ ∞

x+2i+3

|b(t)−bJ |k|f(t)|||H(y−t)−H(x−t)||l2dt.

Consider the following sublinear operators defined in C∞
c :

M+
1 f(x) = sup

i∈Z

1
2i

∫ x+2i+2

x
|S((b− bJ)kfχJ)(y)|dy;

M+
2 f(x) = sup

i∈Z

1
2i

∫ x+2i+3

x

∫ ∞

x+2i+3

|b(t)− bJ |k|f(t)|||H(y − t)−H(x− t)||l2dtdy;

and

M+
3,mf(x) = sup

h>0

1
h

∫ x+2h

x
|b(y)− b[x,x+8h]|k−m|f(y)|dy, 0 ≤ m ≤ k − 1, k ≥ 1.

The above definitions give that

(Sk
b f)],+ ≤ C

(
M+

1 f(x) + M+
2 f(x) +

k−1∑
m=0

M+
3,m(Sm

b f)(x)

)
.

We shall prove, using Lemma 3.3, that these operators are bounded from Lp(ωp) to
Lq(ωq), ω ∈ A+(p, q), 1 < p < q < ∞, 1/p− 1/q = kβ.

Boundedness of M+
1 : Let ω ∈ A+(1/kβ,∞), then ω−1/(1−kβ) ∈ A−

1 . Therefore, there
exists t > 1 such that ω−t/(1−kβ) ∈ A−

1 . Let s > 1, r > 1 be such that s = t/(1 − kβ)
and 1/r− 1/s = kβ. Then, using Hölder’s inequality and the fact that S maps Lr(R) into
itself, we get

1
2i

∫ x+2i+2

x
|S((b− bJ)kfχJ)(y)|dy

≤

(
1
2i

∫ x+2i+2

x
|S((b− bJ)kfχJ)(y)|rdy

)1/r

≤

(
1
2i

∫ x+2i+3

x
|(b− bJ)kf(y)|rdy

)1/r

≤ C sup
y∈J

|b(y)− bJ |k
(

1
2i

∫ x+2i+3

x
|f(y)|rdy

)1/r
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= C2ikβ‖b‖k
Lipβ

(
1
2i

∫ x+2i+3

x
|f(y)|rωrω−rdy

)1/r

≤ C2ikβ‖b‖k
Lipβ

(
1
2i

∫ x+2i+3

x
|f(y)ω|1/kβdy

)kβ (
1
2i

∫ x+2i+3

x
ω−sdy

)1/s

≤ C‖b‖k
Lipβ

‖fω‖1/kβω−1(x)

The last inequality is deduced by the fact ω−s ∈ A−
1 .

As a consequence,
‖ωM+

1 f‖∞ ≤ C‖b‖k
Lipβ

‖fω‖1/kβ .

Then, by Lemma 3.3, for all ω ∈ A+(p, q), 1/p− 1/q = kβ,

‖M+
1 f‖ωq ,q ≤ C‖b‖k

Lipβ
‖f‖ωp,p.

Boundedness of M+
2 : Set Ij = [x, x + 2j+1], we have that∫ ∞

x+2i+3

|b(t)− bJ |k|f(t)|||H(y − t)−H(x− t)||l2dt

≤ C

∞∑
j=i+3

∫ x+2j+1

x+2j

|b(t)− bIj |k|f(t)|||H(y − t)−H(x− t)||l2dt

+C

∞∑
j=i+3

|bIj − bJ |k
∫ x+2j+1

x+2j

|f(t)|||H(y − t)−H(x− t)||l2dt

= II1(x) + II2(x).

We proceed in the same way as in the estimates of M+
1 , choose r′ such that 1/r +1/r′ = 1,

by Hölder’s inequality, we get

II1(x) ≤ C

∞∑
j=i+3

(∫
Ij

|(b− bIj )
kf |r

)1/r(∫ x+2j+1

x+2j

||H(y − t)−H(x− t)||r′l2dt

)1/r′

≤ C
∞∑

j=i+3

sup
Ij

|b− bIj |k
(∫

Ij

|f |r
)1/r(∫ x+2j+1

x+2j

||H(y − t)−H(x− t)||r′l2dt

)1/r′

≤ C‖b‖k
Lipβ

‖fω‖1/kβω−1(x)
∞∑

j=i+3

2j/r

(∫ x+2j+1

x+2j

||H(y − t)−H(x− t)||r′l2dt

)1/r′

.

It is proved in theorem 1.6 of [23] that for all y ∈ [x, x + 2i+3] the kernel H satisfies(∫ x+2j+1

x+2j

||H(y − t)−H(x− t)||r′l2dt

)1/r′

≤ C
2i/r′

2j
.
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Then we get

II1(x) ≤ C‖b‖k
Lipβ

‖fω‖1/kβω−1(x)
∞∑

j=i+3

(
2i

2j

)1/r′

≤ C‖b‖k
Lipβ

‖fω‖1/kβω−1(x).

Observe that |bIj − bJ | ≤ C2jβ‖b‖Lipβ
, similar to the estimates of II1(x), we can get

II2(x) ≤ C‖b‖k
Lipβ

‖fω‖1/kβω−1(x).

As a consequence,
‖ωM+

2 f‖∞ ≤ C‖b‖k
Lipβ

‖fω‖1/kβ .

Then, by Lemma 3.3, for all ω ∈ A+(p, q), 1/p− 1/q = kβ,

‖M+
2 f‖ωq ,q ≤ C‖b‖k

Lipβ
‖f‖ωp,p.

Boundedness of M+
3,m: We shall prove that M+

3,m are bounded from Lp0(ωp0) to Lq(ωq),
ω ∈ A+(p0, q), 1 < p < p0 < q < ∞, 1/p0 − 1/q = (k −m)β.

Let ω ∈ A+( 1
(k−m)β ,∞), then ω−1/(1−(k−m)β) ∈ A−

1 . Therefore, there exists t0 > 1 such

that ω−t0/(1−(k−m)β) ∈ A−
1 . Let s0 > 1, r0 > 1 be such that s0 = t0/(1 − (k −m)β) and

1/r0 − 1/s0 = (k −m)β. Then, using Hölder’s inequality, we get

1
h

∫ x+2h

x
|b(y)− b[x,x+8h]|k−m|f(y)|dy

≤
(

1
h

∫ x+2h

x
|f(y)|r0ωr0ω−r0dy

)1/r0 (1
h

∫ x+2h

x
|b(y)− b[x,x+8h]|(k−m)r′0dy

)1/r′0

≤ Ch(k−m)β‖b‖k−m
Lipβ

(
1
h

∫ x+2h

x
|f(y)ω|1/(k−m)βdy

)(k−m)β (
1
h

∫ x+2h

x
ω−s0dy

)1/s0

≤ C‖b‖k−m
Lipβ

‖fω‖1/(k−m)βω−1(x).

The last inequality is deduced by the fact ω−s0 ∈ A−
1 .

As a consequence,

‖ωM+
3,mf‖∞ ≤ C‖b‖k−m

Lipβ
‖fω‖1/(k−m)β.

Then, by Lemma 3.3, for all ω ∈ A+(p0, q), 1/p0 − 1/q = (k −m)β,

‖M+
3,mf‖ωq ,q ≤ C‖b‖k−m

Lipβ
‖f‖ωp0 ,p0 .

Specially, when k = 1, by all the above estimates, we can deduce

‖Sbf‖ωq ,q ≤ C‖b‖Lipβ
‖f‖ωp1 ,p1 ,
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where ω ∈ A+(p1, q), 1/p1 − 1/q = β,
Using the induction principle, let ω ∈ A+(p, p0), 1 < p < p0 < ∞, 1/p − 1/p0 = mβ.

Then 1/p− 1/q = kβ, 1 < p < q < ∞, by Lemma 3.6, we get that, for all ω ∈ A+(p, q),

‖M+
3,m(Sm

b f)‖ωq ,q ≤ C‖b‖k−m
Lipβ

‖Sm
b f‖ωp0 ,p0 ≤ C‖b‖k

Lipβ
‖f‖ωp,p.

Proof of Theorem 2.5.
(iii)⇒(i) By Lemma 3.1, we have

1
h

∫ x+h

x
|b(x)− b(y)|k|f(y)|dy ≤ C

‖b‖k
Lipβ

h1−kβ

∫ x+h

x
|f(y)|dy.

Using the fact that M+
kβ is bounded from Lp(ω

p
) to Lq(ωq) if and only if ω ∈ A+(p, q),

for 1 < p < q, 1/p− 1/q = kβ, we can get the desired result.
(i)⇒(ii) Given an appropriate pair (p, q), set ω ≡ 1.

(ii)⇒(iii) Set I = (a, b), I+ = (b, c), and |I| = |I+|. Then

1
|I|1+β

∫
I
|b(y)− bI |dy ≤ C

|I|1+β

∫
I
|b(y)− bI+ |dy

≤ C

|I|β

(
1
|I|

∫
I
|b(y)− bI+ |kdy

)1/k

≤ C

|I|β

(
1
|I|

∫
I

∣∣∣∣ 1
|I+|

∫
I+

(b(y)− b(x))dx

∣∣∣∣k dy

)1/k

≤ C

|I|β

(
1
|I|

∫
I

(
1
|I+|

∫
I+

|b(y)− b(x)|k dx

)
dy

)1/k

.

Observe that, for y ∈ I,

1
|I+|

∫
I+

|b(y)− b(x)|k dx =
1
|I+|

∫ c

y
|b(y)− b(x)|k χI+(x)dx ≤ CM+,k

b χI+(y).

Then by Hölder’s inequality and (ii),

1
|I|1+β

∫
I
|b(y)− bI |dy ≤ C

|I|β

(
1
|I|

∫
I
M+,k

b χI+(y)dy

)1/k

≤ C

|I|β

(
1
|I|

∫
I
|M+,k

b χI+(y)|qdy

)1/qk

≤ C

|I|β
1

|I|1/qk

(∫
R
|χI+(y)|pdy

)1/pk

≤ C
|I+|1/pk

|I|β+1/qk
= C.



Weighted Norm Inequalities for Commutators 11

So, by Lemma 3.2, we get b ∈ Lipβ .
Similar to Theorem 2.5, we can finish the proof of Theorem 2.6 easily. We omit the

details here.
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