Weighted Norm Inequalities for Commutators of
One-sided Discrete Square Functions

ZUNWEI FU

Abstract. The purpose of this paper is to prove the strong type inequalities with
one-sided weights for commutators (with symbol b € Lipg) of one-sided discrete square
functions. We also prove that b € Lipg is a sufficient and necessary condition for the
corresponding boundedness of commutators of one-sided maximal operators.

1 Introduction

A well known result of Coifman-Rochberg-Weiss(¥ states that the commutator

Tof =T(bf) = bT(f)

(where T is a Calderén-Zygmund singular integral operator) is bounded on LP(R"), 1 < p <
00, if and only if b € BMO. There are other links between the boundedness properties of the
operator T}, and the smoothness of b. A particular case of the result of Jason® states that
Typ: LP(R™) — L4(R™) is bounded, 1 < p < ¢ < o0, if and only if b € Lipg,1/p—1/q = /n.
Here, Lipg is the homogeneous Lipschitz space.

Many authors have studied strong and weak type inequalities for commutators with
weights (see [2], [9], [10], [19]). Furthermore, many of the results have been generalized to
commutators of other operators, not only Calderén-Zygmund operators (see [5], [21], [22]).

Very recently, Lorente-Riveros!'! proved the strong type inequalities with one-sided
weights for commutators (with symbol b € BMO) of one-sided discrete square functions.
Highly inspired by [6] and [11], we shall prove the strong type inequalities with one-sided
weights for commutators (with symbol b € Lipg) of one-sided discrete square functions.
We also prove that b € Lipg is a sufficient and necessary condition for the corresponding
boundedness of commutators of one-sided maximal operators.

Throughout this paper the letter C' will be a positive constant, not necessarily the same

at each occurrence. If 1 < p < oo, then its conjugate exponent will be denoted by p’ and
A, will be the classical Muckenhoupt’s class of weights (see [17]).
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2 Definitions and main results

Let f be a measurable function on R. For each n € Z, let us define the operator A, by
A, = 2% f;‘nwn f(y)dy. Tt is a classical problem to study the different kinds of convergence
of the {A,,f}, when the function f belongs to LP(R, dx), being p in the range 1 < p < oo.
A method of measuring the speed of convergence of the sequence {A,, f}, is to analyze the
boundedness of the square function

1/2
Sﬂ@=<§]%ﬂ@—AwﬁmW) .

nel

The square function S is of interest in ergodic theory and it has been extensively studied.
In particular it has been proved in [7] that S~ (under the assumption of n € Z~ U {0}
in the definition of S, we denote S by S7) is of weak type (1,1), maps LP(R) into itself,
1 < p < oo. For the Ergodic theory and connections with Analysis and Probability, we
choose to refer to [3] and [§].

It is not difficult to see that Sf(z) = ||UT f(x)||;2, where U™ is the sequence valued
operator

Ut @) = [ HG =)0,
where
Hm:FXn —1Xn4}
on X(=27,0) 7 5p—1 X(=271,0) —
(See [23].)

Definition 2.1 The one-sided Hardy-Littlewood maximal operators M+ and M~ are
defined for locally integrable functions f by

z+h x
M) sy [ 1] and M f@) =swp [

h>0 N h>0 N Jon

The good weights for these operators are the one-sided weights, A; and A

1 b c 1y p—1 N
e A VO B
M~ w(z) < Cw(z), a.e. (A7)
and
AL =Up=14,. (A%)

The classes A, are defined in a similar way. It is interesting to note that A, = A;{ N
Ay Ay G AY and A, G A M is bounded on LP(w) if and only if satisfies the A}
condition. (See [13], [14], [20] for more definitions and results).
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It is proved in [23] that w € A}, 1 < p < oo, if and only if S is bounded from LP(w) to
LP(w) and that w € Af if and only if S is of weak-type (1,1) with respect to w.

Definition 2.2 The one-sided fractional maximal operator M ,0 < o < 1, is defined for
locally integrable functions f by

1 x+h
+ _
M; flz) =sup / £l

S
h>o 1=

It is proved in [1] that M is bounded from LP(wP) to LI(w?) if and only if w € A1 (p, q),
for1<p<gq,1/p—1/q= «, where

1 T 1/(1 1 x+h , 1/pl
(h/ hw) (h/ wp> <C, (A*(p,q))

1 z+h , 1/p
oxenall (5 [ o) < (A*(p, o))
for all h > 0 and x € R.

Definition 2.318  The Lipschitz space Lipg(R) is the space of functions f satisfying

[f(z+h) — f(z)]
p ny = Su < 00.
HfHL pﬁ(R ) z7h€R7ph7£(] |h’6

Now we shall state our results.

Theorem 2.4 Letb € Lipg(R), and k € N. The k-th order commutator of the one-sided
discrete square function is defined by

i) =

/R (b() — b(y))*H (x — ) f(y)dy

l2

Then for w € AT (p,q), 1 <p < q<oo,1/p—1/q= k3, we have

1/q 1/p
< / |S{ffrqwq) gc( / \f|pwp) ,
R R

for all bounded f with compact support.

Obviously, if > 1, Lipg(R) contains only constants, S{f = 0, so we will only concen-
trate our discussion on the cases 0 < # < 1 in what follows. It should be pointed out that
if 0 < 8 <1, Lipg(R) = Ag(R), where Ag(R) is the homogeneous Besov-Lipschitz space;
but if ﬁ = 1, Lipg(R) ; Aﬁ(R)'
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Theorem 2.5 Let k-th order commutator of the one-sided mazimal operator be defined
by
1

K z+h
Mg = s [ @) = bl )

Then the following conditions are equivalent:

(1) M;’k is bounded from LP(wP) to L1(w?) for pairs (p,q), such that 1 < p < ¢ <
00, 1/p—1/q=kB and w € AT (p,q).

(ii) Mlj’k is bounded from LP(dx) to Li(dx) for some pair (p,q), such that 1 <p < g <
00, 1/p—1/q=kp.

(iii) b € Lipg(R).
Theorem 2.6  Let k-th order commutator of the one-sided fractional maximal operator
be defined by

+.k _ 1
Moy f(@) = sup 2=

z+h
[ b - sy

Then the following conditions are equivalent:
(i) M;f is bounded from LP(wP) to L1(w?) for pairs (p,q), such that 1 < p < q <
0,1/p—1/g=a+kB and w € AT (p,q).

(ii) M;;fC is bounded from LP(dx) to Li(dx) for some pair (p,q), such that 1 <p < g <
00,1/p—1/qg=a+kp.
(iii) b € Lipg(R).

Similarly, it is not difficult to prove strong type inequalities with pairs of related weights
for commutators of one-sided singular integral (given by a Calderén-Zygmund kernel with
support in (—o0,0), see [10]) and the weyl fractional integral.

3 Proof of main results
In order to prove our results, let us first introduce some lemmas and notations.
Lemma 3.118  Forany z,y e R, if f € Lipsg(R), 0 < § < 1, then

() = FI < |z = yl°ll fl i

and given any interval I in R, there is
sup £ (x) = f11 < CUI||f |l is
zel

if I C I, then
| = f1l < Cll fllzips 117,

f1=’1H/1f~

where
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Lemma 3.218  For0< 3 <1,1< ¢ < oo, we have

I lins = 0p s 15~ il = s (1/\f frq)l/q
Lipg ~ T — f1l = el e —J1 )
Ps r I8 g r 1P \|I] Jr

for g = 0o the formula should be interpreted appropriately.

The main tool for proving our results is a extrapolation theorem that appeared in [12],
with slight modifications.

Lemma 3.3 Let1l < py < oo and T be a sublinear operator defined in CZ°. Assume that
for all w € At (pg, o) there exists C = C(w) such that

[T flloo < Cll fwllpo-

Then for all pairs (p,q) such that 1 < p < po,1/p—1/q=1/po and all w € AT (p,q), there
exists C' = C(w) such that
[wT'fllq < Cllfwllp,

provided the left hand side is finite.

We will also need the following result of Martin-Reyes and de la Torre (theorem 4 in
[16]):

Lemma 3.4 Let1<p<oo. Ifwe Al and M*f € LP(w), then there exits C = C(w)
such that

Jartpa<c [
R R
where N
‘ B 1 z+h B 1 z+2h )
f *(x)fggh/x (f(y) h/erh f) dy

and zT =max(z,0).

It is proved in [16] that

F () <spint © -ty + / T @ = P dy < Ol o,
o h>0 a€R T h z+h o

Lemma 3.5[1%200  Let w € A]. Then there exits s > 1 such that w™ € A7, for all r such

that 1 <r <s. Letw € A*(p,q). Then w? € A and wP € A}, where 1 < p < q < 00.

Applying Holder’s inequality in the definition of A™(p,q), we can get the following
Lemma.
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Lemma 3.6 Letw e AT (p,q). Then w € At (po,q) and w € AT (p,pp), where 1 < p <
Po < g < o0.

Proof of Theorem 2.4.  Let w € A*(p,q). Then w? € AJ. By Lemma 3.4, we have

/R 1Sk fl7w7 < C /R IMH(SEf)iwt < C /R (S £ 2.

To prove the theorem for any b € Lipg, we proceed in the same way as in [11]. We will
control (Sl’f )%+ by some one-sided maximal operators. Using Lemma 3.3, we shall prove
that they are bounded from LP(wP) to L1(w?).

Let A\ be an arbitrary constant. Then b(z) — b(y) = (b(x) — A) — (b(y) — A) and

SEf(x) = /R (b() — b(y))*H (x — y) f(y)dy

12

l2

k
— IS crab@) - Ay / (b(y) — NI H(x — ) f(y)dy
=0 R

IN

/R (b(y) — N H(x — ) f(y)dy

l2

#| S Contvlo) = 07 [ bly) = VI @ )iy

12

# 303 Conatblo) = 0 [ (bGa) — b)) H G~ ) )y

l2

k—1
<S((0=NEN@) + D Comlb(x) — AFmSP f (=),
m=0

where C} 1, (respectively Cj 1 s) are absolute constants depending only on j and k (respec-
tively 7, k and s). Let x € R,h > 0. Let ¢ € Z be such that 2! < h < 2! and set
J = [z, 2 + 273]. Then, write f = f1 + f2, where fi = fxs and set A = b;. Then

z+h
1/ ISEF(y) — S((b— by)* f2)(x)]dy

T

z+h
<3 [ st e
1 xx—l—h
b [IS(0 =00 )0 - SO~ 0 ) )y
k—1

1 z+h B "
£ Comgy [ o) = b IS AWy
m=0 z

=1I(z)+ II(x) + I1I(z).
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For II(zx), we have

1 z42013
H(z) < 5 / NUF((b—=b)" f2)(y) = UT((b—bs)* f2) ()] 12ly,
and
1UF((b=b.2)" f2) () =U T ((b=bs)* f2)(2)]]2 < /:HS |b(t)=b|*| £ ()| H (y—t)—H (w—1)|| ;2.

Consider the following sublinear operators defined in Cg°:

1 $+2i+2
M f(z) = sup o5 | 1S((b—b2)* fx5) ()| dy;
1€

x+21+3

MEf@ =swpgs [T [ )= b~ )~ o = Oty
1E€EZL 203
and

z+2h

M, f(x) = sup = / bWy, 0<m <k 1> 1.
h>0 h

The above definitions give that
(SgpHrt<c (Mff( )+ My f(x) Z )) :

We shall prove, using Lemma 3.3, that these operators are bounded from LP(wP) to
Li(w?), we AT (p,q), 1 <p<qg<oo,1/p—1/q=kp.

Boundedness of M": Let w € AT(1/kf,00), then w™/(1=k8) ¢ AT Therefore, there
exists t > 1 such that w=%/0=%%) ¢ AT Let s > 1,7 > 1 be such that s = t/(1 — k3)
and 1/r —1/s = k. Then, using Holder’s inequality and the fact that S maps L"(R) into

itself, we get
1 T+2i12

o 1S((b— b2 F)(W)ldy

x4212 1/r
< (1. / |s<<b—bj>kfo><y>ery>

2Z

w4 2it3 1/r
< (;/ (b — bJ)kf(y)de)

& 1 x+42i+3
<Cswl -wl (5 [ Il
yeJ

1/r
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1/r

) 1 T+2i+3
— oMk, <2 / If(y)l’”wrw”dy)

‘ 1 22i+3 kB 1 24 2it3 1/s
< Cc2"||l5,,,, (21/ |f(y)w|1/kﬁdy> (21/ w—de>

< Clbll s, Ll g ()

The last inequality is deduced by the fact w™* € A7 .

As a consequence,
k
M flloo < ClIBI L, [l fll1np-

Then, by Lemma 3.3, for all w € A% (p,q), 1/p—1/q = kj3,

k
1My fllus.g < ClONZip, [1fllp p-

Boundedness of M,: Set I; = [z, x + 2/71], we have that

/OO b(t) = by * | FONIH (y — t) — H(x — t)][ 2t

+2i+3
o0 r+27+1
<o 3 [T b - b PO -0 - H - Ol
j=it3 et
o0 z427t1
oy bfj—zm’f/ U OINEy — t) - H(z — t)||dt
j=i+3 &+29

We proceed in the same way as in the estimates of M, choose 7’ such that 1/r+1/r' = 1,
by Holder’s inequality, we get

0 Ur g aqitt S\
e <cY (/I‘|<b—bfj>’ffr’“> (/ HH(y—t)—H(x—t)ll?zdt>

j=it3 +2

o 1/r o 2itl 1/r!
<C Y sl byl (/ IfIT) (/ | ||H<y—t>—H<x—t>||:2dt>

j=i+3 I]' I]' x+27

o zpoitl 1/
< Ol i, I flljmpw ™ () D 27" (/ |H(y —t) — H(z — t)m;dt) .

j—=it3 +2/

It is proved in theorem 1.6 of [23] that for all y € [z, x + 27+3] the kernel H satisfies

4271 , 1/r 9i/r’
/ IH(y—t) = H(z—0)|dt ] <2

+27 27
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Then we get
00 9i 1/r
(@) < Cll ol @) Y- (5)
j=i+3
< Ol Sl g (2.

Observe that |by, — by| < C299||b|| Lip,, similar to the estimates of IT1(x), we can get
115(2) < CIbl s | feola g ().

As a consequence,
w5 flloo < ClBIIEip, 1 Fwllr ps-

Then, by Lemma 3.3, for all w € A% (p,q), 1/p —1/q = kp,

k
1M fllwa.g < ClBIZip, [1f lr p-

Boundedness of M?f ¢ We shall prove that Mgr ., are bounded from LP°(wP?) to L (w?),
w € A*(po,q), 1 <p <po<q<oo,1/py—1/q=(k—m)p.
Let w € AT (=2, 00), then w™V/(1=(k=m)8) ¢ AT Therefore, there exists ty > 1 such

(k—m)B’
that w~to/(=(k=m)8) ¢ AT Tet 59 > 1,79 > 1 be such that so = to/(1 — (k —m)3) and

1/rg — 1/s9 = (k —m)B. Then, using Holder’s inequality, we get

1 z+2h .
L / b) — bpearsil* ™ 1))y

h
| [at2n Uro rq  pat2h R~ 1/rg
< (3 [ e man) (5 [ 1000 = bl b
i i 1 [rt+2h i (k=m)B /1 pa+2n 1/s0
<ol (3 [ et emiay) (4 [ o)
< bl el ™ (@)

The last inequality is deduced by the fact w™% € A .

As a consequence,

oM Flloe < ClONE Il h—mys-

Then, by Lemma 3.3, for all w € AT (po,q), 1/po — 1/q = (k —m)p3,

k—
1M fllus.g < ClION i 11 llopo po-

Specially, when k& = 1, by all the above estimates, we can deduce

156 llwa.q < ClIbl Lips f lorr 1
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where w € AT (p1,q), 1/p1 — 1/q = 3,
Using the induction principle, let w € AT (p,po), 1 < p < po < 00, 1/p — 1/py = mp3.
Then 1/p —1/q=kB3, 1 < p < q < 0o, by Lemma 3.6, we get that, for all w € AT (p,q),

1M, (S5 )llur.g < ClBNpr 155 Flloro o < CUBIE i | £ llr -

Proof of Theorem 2.5.
(iii)=-(i) By Lemma 3.1, we have

z+h bl|k . z+h
[ e =Py < ol [ 1wl

Using the fact that M,;Z is bounded from LP(w”) to L4(w?) if and only if w € A*(p, q),
for 1 <p<gq,1/p—1/q=kp, we can get the desired result.

(i)=(ii) Given an appropriate pair (p,q), set w = 1.
(ii)=-(iii) Set I = (a,b), [T = (b,c), and |I| = |I"|. Then

1 C
W/I\b(y)—bﬂdy < W/\b(y)—bﬁldy

1/k
< _ k
<|I| J )b dy)

1|7
c (1 1 B\
< TG (III = [ (b(y) — b(x))dx

dy

I+

I
< (L s

Observe that, for y € I,

1

1]y, b b e = [ ) @ @i < € ),

Then by Hélder’s inequality and (ii),

1 c /1 1/k
=15 [ 1b@) = bildy < = (o | M Fxpe(n)dy
[I11+8 J; 117\ 1] J;

C ik 1/qk
g‘ﬂ(m/w S )y )

C 1 1/Pk

- - p

‘I+|l/pk
[Z[p+37ak

A
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So, by Lemma 3.2, we get b € Lipg.

Similar to Theorem 2.5, we can finish the proof of Theorem 2.6 easily. We omit the

details here.
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