LOWER AND UPPER BOUNDS OF THE CEBYSEV
FUNCTIONAL FOR THE RIEMANN-STIELTJES INTEGRAL

S.S. DRAGOMIR AND A. SOFO

ABSTRACT. Lower and upper bounds of the Cebysev functional for the Riemann-
Stieltjes integral, in the monotonicity case of one function, are given. Applica-
tions in relation with the Steffensen generalisation of the Cebysev inequality
are provided.

1. INTRODUCTION

In [3], S.S. Dragomir introduced the following Cebysev functional for the Riemann-
Stieltjes integral:
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provided u (b) # u (a) and the involved Riemann-Stieltjes integrals exist.

In order to bound the error in approximating the Riemann-Stieltjes integral of
the product in terms of the product of the integrals, as described in the definition
of the Cebysev functional , the first author obtained the inequality:
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provided u is of bounded variation, f, g are continuous on [a,b] and m < f (t) < M
for any ¢ € [a,b]. The constant % is best possible in the sense that it cannot be
replaced by a smaller quantity.

Moreover, if f, g are as above and u is monotonic nondecreasing on [a, b] , then

(1.3) T (f,g;u)l
1
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Si(M_m)u(b)—u(a)/a

and the constant % here is also sharp.
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Finally, if f and g are Riemann integrable and w is Lipschitzian with the constant
L > 0, then also

(1.4) |T(f,g;u)l

1 1 b
[u(®) = u(a)] /s t)‘m/a g(s) du(s)

provided m < f(t) < M, ¢ € [a,b]. The multiplicative constant % is best possible
in .

For results concerning bounds for the Cebysev functional T (f, g;u) see [4] and
[5]. For other recent results on inequalities for the Riemann-Stieltjes integral, see
[, [2] and [6].

The main aim of this paper is to provide an upper and a lower bound for the
functional T (f,g;u) under the monotonicity assumption on the function f. An
application for the Cebysev inequality for Riemann-Stieltjes integrals that is related
to Steffensen’s result from [§] is given as well.

1

2. THE RESULTS

The following result providing upper and lower bounds for the quantity
[h(b) —h(a)] T (f,g,h;a,b) can be stated:

Theorem 1. Let f,g,h : [a,b] — R be such that h(a) # h(b) and the Riemann-
Stieltjes integrals f; ft)dh(t), f;g (t)dh (t) and f; F@)gt)dh(t) exist. If f is
monotonic nondecreasing, then

b b
(2.1) [f(b)—f(a)]teil[r;fb]{/ g(s)dh(s)— Z /g }

s/abmg(t)dh(t) /f B dh (¢ /bg

: ()~ hi) [
<1f ()~ f (a)] sup]{/t g(s)dh(s)—hi-/a g(r)dh(r >}.

t€la,b

If f is monotonic nonincreasing, then:

t b
(22) [f(a)—f(b)]teiﬁfb]{ [a@ane - = [ o6 }
b b
< [ rwgwan - /f Dan)- [ )

oo Lot ht) (@)
<[ (@) f“’”ti[fb]{/ag“dh” oy <>dh<>}.
The inequalities and are sharp.

Proof. We use the following Abel type inequality obtained by Mitrinovié¢ et al. in
[7, p. 336]:

Let u be a nonnegative and monotonic nondecreasing function on |[a, b] and VW
[a,b] — R such that the Riemann-Stieltjes integrals f (t) dw (t) and f v (t)dw (t)
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exist. Then

b b
(2.3) u(b) inf {/t v (1) dw (t)} S/ w (t) v (t) dw (t)

t€la,b]
b
< u(b) sup {/ v(t)dw(t)} .
t€la,b] t

We also use the representation (see [3])
(24) T(f g,h;a,b)

1 b b
h(b)—h(a)/a Lf () =] [g(t)h(b)—h(a)/a g(S)dh(s)] dh (t),

which holds for any v € R.
Now, if we choose v = f (a) , then we observe that the function u (t) = f (t)—f (a)
is nonnegative and monotonic nondecreasing on [a, b] and applying ([2.3)) for w (t) =

h(t) and v (t) = g (t) = 5572507 Ja 9 (s) dh (s) we deduce;

) b 1 b
(25) [f(b)—f(a)]telgb]{ / [g<s>—h<b)_h(a)- / g(r)dhml dh<s>}
1 (8) ~ (@] T (f,,hs )

b 1 b
s[f(b)—fw)]t;gb}{ / lg<3>—h(b>_h<a>' / g(r)dhm] dh(s>},

which is equivalent with the desired inequality (2.1)).
For the second inequality, we use (2.4) with v = f(b) and the following Abel

type result for functions u which are monotonic nonincreasing and nonnegative(see
[T, p. 336]):

(2.6)  wu(a) inf { / o (1) duo (t)} < / " (£) 0 (8) duw ()

t€la,b]
t
< u(a) sup {/ v (t) dw (t)} .
t€la,b] a
The details are omitted.

Let us prove for instance the sharpness of the second inequality in (2.1)).
If we choose h (t) =t and g (t) = sgn (t — “E2) | t € [a,b] then we have to show
that the inequality:

(2.7) /abf(t) sen (t - “;rb> dt

<IF0)~f @] s {/tbsgn <s— ";”) ds}

is sharp provided f is monotonic nondecreasing on [a, b] .
Notice that

b t—a if te€ [a, 4]
b T2
)\(t)::/sgn(s—a;)ds:
t b—t if te (% b]

IN
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and then sup A (t) = 252
t€la,b]
Therefore (2.7] ﬂ ) becomes

(25) /f sgn( )dt<[f<b>—f<a>]-b;“.

Now, if in this inequality we choose f () = sgn (t — ‘%‘b), which is monotonic
nondecreasing on [a, b], we get in both sides of (2.8) the same quantity b — a.
The sharpness of the other inequalities can be shown in a similar way. The

details are omitted. |

Remark 1. We observe that

b _ b
[ aan - 8= [y@ane

(@
b B t b
~ [a@ane - | [ e+ [ <>dh<>]
_ () -hi@ [’ G EICN
e [ @ ane - E=s e
)

Therefore, if we denote by A (g, h;t,a,b) the difference

1 b 1 t
7h(b)—h(t)/t g<s>dh<s>—ih(t)_h(a)/a 9(s)dh (s),

provided h (t) # h(a),h (b) fort € [a,b], then from (2.1) we get

e [l - ()H(b) 0 )
29) [0 (a)] f]{ () A, hit, b)}

t€la,b

provided f is monotonic nondecreasing on [a,b] .
A similar result can be stated from on noticing that

t —hia b
/g<s>dh(s>—M-/ g (r)dh (7)
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Indeed, since

. t W t) ) ,
telﬁfb] (ti&%}) { a 9(s h b) —h(a) /a g(s)dh (s)}
} [h(b) — P (#)]
" o (fﬂ) { Y RN CL t,a,b)}
=— su ]h(b)—h(t)] i
- teﬁl<maw){ b) — I (a) A(%h¢a7w},

then from we get

(O R@IBE RO,
@ - s, {EROZ2IEOZROA g b0

1 b b b
Sm/a f(t)dh(t)/a g(t)dh(t)—/a f(t)g(t)dh(t)

N AU BT [ O EAL
<170 - £ ) s O IEO=2 0 g it}

provided that f is monotonic nonincreasing on [a, b] .

The following corollary gives a particular result of interest for Riemann weighted
integrals.

Corollary 1. Let f,g,w : [a b] — R be such that the Riemann mtegmls fb f@t)w(t)de,

f:g (t)w (t)dt, f; F@)gt)w(t)dt and f t)dt exist, and f t) dt # 0
If f is monotonic nondecreasmg then

(2.10)
b b’LU S S b
[ﬂ@f@h&%{/gwhw$@ fb§$i~/gwnuﬂM}
b
st&M@Mﬁ) i /f / g(t)w(t)dt
B ' ,ﬁﬂ@f.b
svw>fwm$%{lg@wwm5‘gw®@.4 Uwvmﬁ.
If f is monotonic nonincreasing, then
(2.11)
t ¢ wl\Ss S b
[ﬂ@ﬂMé%&/g@w®$ﬁwéﬁg/gﬁmﬁmﬁ

b 1 b b
gwawmwﬁ—jmwﬁéfwwwwlgwmmn
SU@—f@Hw{Lg@w@%—ﬁiggglghWﬁmﬁ-

t€la,b]
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Remark 2. If we define

b t
A(g,w;t,a,b):: L /g(s)w(s)ds—1)d8/g(s)w(s)ds7

ff’ Jyw(
provided fat s)ds, ft s)ds # 0, then, under the assumptions of Corollaryl
we have:
) fatw(s)dsf:w(s)ds.~ '
(2.12)  [f(b) = f(a)] téfifb]{ P ( a5 A(g,w,ua,b)}
b
< [ 10s@wi T [ rww / (1) w (1) dt
f (s)ds [y w(s)ds -
b) — f(a)] su “A(g,w;t,a,b) o,
< [f(b) f()]te[fb]{ oo (s)ds (g, w3t )}
provided f is monotonic nondecreasing on [a,b], and
B _ f;w(s)dsf;w(s)ds.~ .
(213)  [f(a) = f(b)] téﬁf,b]{ P (s)ds A(97w,t,a,b)},
b b
a9~ [ F®s0w @
ftw(s)dsfbw(s)ds - }
< a)— b su @ & AN , W3 7a7b
<[f(a) = f(0)] te[al,)b]{ P u(s) ds (9, wit,a,b)

if f is monotonic nonincreasing on [a,b].

Remark 3. In the particular case where w(t) = 1, t € [a,b], we get the simpler
inequalities:

b —_
214  [f(0) -/ (a) inf]{/ (s)ds — 2= gde}

tela,b

/f dt—/bf(t)dt-/abg(t)dt
b

b—t (7
S[f(b)—f(a)]tzl[fb]{/t g()ds—i— [ g(r)dT}

in the case where f is monotonic nondecreasing on [a,b] .
If f is monotonic nonincreasing on [a,b], then

t [t
(215) [f(a)f(b)]teiﬁfb]{ [awas—i==[ g(T)dT}

< [romon 2 froa oo

t—a [°
s[f(a)f(b)}t%{/a p()ds— == gde}.
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If we denote

< I I
Agstat) =5 [(o@ds— = [aas

then we get from
“w*ﬁﬁméﬁﬁa—@w—wA@mmw}
b
/ [t dt - / g (t)dt
— f(a)]

g sup {(t—a)(b—t)ﬁ(g;t,a,b)},

b —a telab]
provided f is monotonic nondecreasing and from

M inf {(t—a)(b—t)A (gt a,b)}

te(a,b]

<1 /f ﬁ/ @ﬁ‘[ﬂw@ﬁ

—[bif(b)] sup {(t—a)(b—t)A(g;t7a7b)}
—a t€la,b]

if [ is monotonic nonincreasing on |a,b] .

3. APPLICATIONS FOR THE CEBYSEV INEQUALITY

Let f,g: [a,b] — R be integrable functions, both increasing or both decreasing.
Furthermore, let p : [a,b] — [0,00) be an integrable function, then [7, p. 239]:

b b b b
(3.1) /pr/pwfmummz/pmﬂmm/pwmmm

This inequality in known in the literature as Cebysev’s inequality.
For various other results related to this classical fact, see Chapter IX of the book
.

Proposition 1. Let f,g,h: [a,b] = R be such that the Riemann-Stieltjes integrals
f;f(t)dh(t),f g(t)dh(t andf f@)gt)dh(t) exist. If h(b) > h(a), f is

monotonic nondecreasing (' nonmcreasmg) and

t b
(3.2) vmwfhmn/Qﬂﬂww@zvmmfh@n/’w@dh@>

for any t € [a,b], then

(3.3) /f t)dh (t) > ( /f t)dh (t) - /ab (t)dh (t).
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The proof follows by Theorem [I] on utilising

/ g<s>dh<s>—,’M/ g (s)dh (s)

t Ch(a) [
- - V g(s)an(s) - =1 g(s)dh<s>].

Remark 4. The above proposition implies the following Cebysev type inequality for
weighted integrals (with not necessarily positive weights). Let f,g,w : [a,b] — R

be such that the Riemann integrals, fj w (t)dt, f; () w(t)dt, fj g(t)w(t)dt and
[P F () g(t)w(t)dt exist.
If fabw (t)dt > 0, f is monotonic nondecreasing (nonincreasing) and
b b b b
(3.4) / w(s)ds/t g(s)w(s)dsz/t w(s)ds/ g(s)w(s)ds
for any t € [a,b], then
b b b b
65 [wwd [ foeuwaz© [ 1w oouod

In particular (i.e., if w(s) = 1), if f is monotonic nondecreasing (nonincreasing)
and if

t b
(3.6) (b—a)/ g(s)ds > (b—t)/ g (s) ds
for any t € [a,b], then
b b b
(3.7) b-a) [ 1Os0a= ) [ fod [ g

Remark 5. Notice that, the weighted inequality , as pointed out in [, p. 246],
can be also obtained from the Steffensen result [8] which states that: if F,G, H are
integrable functions on [a,b] such that for all x € [a, b]

[FGt)at _ [ H (t)dt
[Pawdt ~ [PH@t)dt

then

Jo F ()G @dt _ [, F (@) H (1) dt
[Pa@wydt [P H(t)dt

provided F is monotonic nondecreasing on [a,b].
The choice F (t) = f (t), H(t) =w (t), and G (t) = g (t)w (t) in [5.8) produces
under the condition that holds and f is monotonic nondecreasing.

(3.8)
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