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Abstract. A complete monotonicity property and some inequalities for the

gamma function are given. These results refine the classical Stirling approxi-

mation and its many recent improvements.

1. Introduction

The gamma Γ and psi ψ (or digamma ) functions are defined by

Γ(z) =
∫ ∞

0

uz−1e−udu , ψ(z) =
Γ′(z)
Γ(z)

for all complex numbers z with Rez > 0, respectively. In this paper we restrict z to
a positive real number x. The gamma function is a natural extension of the factorial
from integers n to real (and complex) numbers z. It was first defined and studied
by Leonard Euler(1707-1783), and it is of fundamental importance to many areas of
science, like probability theory, mathematical physics, number theory and special
functions. It also appears in the study of many important series and integrals. For
its basic properties and some historical remarks, we refer to Srinivasan’s paper [23].
and Chapter 1 of [9]. In the literature the derivatives ψ′, ψ′′, ψ′′′, .... are known
as polygamma functions. The polygamma functions have the following integral
representations:

(−1)n−1ψ(n)(u) =
∫ ∞

0

tne−ut

1− e−t
dt (1.1)

for n=1,2,3,... . See these and other properties of these functions the first chapter
of [9] and [24]. Recently numerous interesting inequalities for the gamma func-
tion have been proved by many mathematicians, we refer to [1, 2, 3, 4, 5, 6, 7, 8,
10, 11, 12, 17, 20, 22], and the references therein. In this paper we aim at pre-
senting a new complete monotonicity property and several new upper and lower
bounds for the gamma function. We want to recall that a function f is completely
monotonic in an interval I if f has derivatives of all orders in I which alternate
in sign, that is (−1)nf (n)(x) ≥ 0 for all x ∈ I and n=0,1,2,3,. . . . If this inequal-
ity is strict for all x ∈ I and all non-negative integers n, then f is said to be
strictly completely monotonic. Completely monotonic functions have important
applications in different branches of science, for example, they have applications
in probability theory [14, 18, 21], potential theory[13], physics[16] and numerical
analysis [19]. In particular, completely monotonic functions involving log(Γ(x)) are
important because these functions produce bounds for the polygamma functions.
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The Hausdorff-Bernstein-Widder theorem characterizes completely monotonic func-
tions. This theorem states that f is completely monotonic if and only if

f(x) =
∫ ∞

0

e−xtdµ(t),

where µ is a non-negative measure on [0,∞) such that this integral converges for
all x > 0, see [25, Theorem 12b, p.161]. We collect our basic theorems in Section
2. In Section 3, we prove some Stirling-type formulas which refine and improve the
classical Stirling approximation

Γ(n+ 1) = n! ∼ nne−n
√

2πn = αn,

and Burnside’s formula [15]

n! ∼
√

2π
(
n+ 1/2

e

)n+1/2

= βn.

Numerical computations indicate that the approximation [10]

n! ∼ nn+1e−n
√

2π√
n− 1/6

is better than both of the above approximations in terms of the numbers αn and
βn. Some of our results give much more accurate values for n! than all of the
these approximations. Our results refine the classical Stirling approximation and
its many recent improvements. Our main results are the following theorems:

Theorem 1.1. Let x be a positive real number. Then the function defined by

F (x) = x log x−x+
1
2

log(2π)− log(Γ(x+1))+
1
2

log(x+1/2)− 1
6(x+ 3/8)

is strictly completely monotonic in (0,∞).

Corollary 1.2. Let x be a positive real number. Then the following inequalities
hold

αxxe−x
√
x+ 1/2 exp

{
− 1

6(x+ 3/8)

}
< Γ(x+ 1) (1.2)

< βxxe−x
√
x+ 1/2 exp

{
− 1

6(x+ 3/8)

}
with the best possible constants α =

√
2e4/9 = 2.20564... and β =

√
2π =

2.50662....

It is well known that for any positive integer n ψ(n+1) = Hn+γ, where γ is the
Euler’s constant and Hn =

∑n
k=1

1
k is the nth harmonic number. Using this fact

and monotonic increase of F ′, we get γ − 210
363 = F ′(1) ≤ F ′(n) < lim

n→∞
F ′(n) = 0.

This produces the following new bounds for the harmonic numbers Hn.

Corollary 1.3. Let n be a positive integer. Then it holds that

γ + log n+
1

2(n+ 1/2)
+

1
6(n+ 3/8)2

≤ Hn

<
70
121

+ log n+
1

2(n+ 1/2)
+

1
6(n+ 3/8)2

.
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Theorem 1.4. Let x be a positive real number. Then the following inequalities
hold:

α−αe−x(x+ α)x+α ≤ Γ(x+ 1) ≤ β−βe−x(x+ β)x+β ,

where

α = 1/2 = 0.5 and β = e−γ = 0.56146... . (1.3)

Theorem 1.5. For any positive real number x the following double inequality holds:

a

(
x+ 1/2

e

)x+1/2

≤ Γ(x+ 1) < b

(
x+ 1/2

e

)x+1/2

,

where

a =
√

2e = 2.33164... and b =
√

2π = 2.50662... (1.4)

are best possible constants.

Theorem 1.6. For all positive real numbers x ≥ 1 we have

xxe−x
√

2π(x+ a) < Γ(x+ 1) < xxe−x
√

2π(n+ b), (1.5)

with the best possible constants a = 1/6 = 0.1666666... and b = e2

2π − 1 =
0.176005... .

Numerical computations indicate that the approximations

n! ∼ nne−n
√

2π(n+ 1/6) = γn,

and

n! ∼ nne−n
√
π(2n+ 1) exp

{
− 1

6(n+ 3/8)

}
= δn

are more accurate than the above formulae involving αn and βn. For numerical
comparison of the above inequalities see the tables at the end of the paper. An
other one of our results provides a converse to the well known inequality n! ≤√

2π(n+1/2
e )n+1/2 and we prove that

(2e/3)3/2
(
n+ 1/2

e

)n+1/2

≤ n! ≤
√

2π
(
n+ 1/2

e

)n+1/2

,

where the constants (2e/3)3/2 and
√

2π are best possible. In order to prove our
main results we need the following lemmas.

Lemma 1.7. Let x be a positive real number . Then we have

log(x+ α) < ψ(x+ 1) ≤ log(x+ β), (1.6)

where α = 1/2 and β = e−γ are the best possible constants. If x ≥ 1, then

log(x+ 1/2) < ψ(x+ 1) ≤ log(x+ e1−γ − 1) (1.7)

holds and the constants 1/2 and e1−γ − 1are best possible. Here ψ is the digamma
function.
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Proof. For x > 0, we define g(x) = eψ(x+1) − x. By differentiation we get g′(x) =
ψ′(x+ 1)eψ(x+1) − 1, so that by [12, Lemma 1.2] g is strictly decreasing for x > 0.
In [12] it was proved that lim

x→∞
[x− eψ(x)] = 1/2. This tells us that lim

x→∞
g(x) = 1/2.

Hence we can write for x > 0 1/2 = lim
x→∞

g(x) < g(x) ≤ g(0) = e−γ from which the

proof of (1.6) follows. The proof of (1.7) also follows from the inequalities:

1/2 = lim
x→∞

g(x) < g(x) ≤ g(1) = e1−γ − 1.

�

Lemma 1.8. For all integers k ≥ 7 the following inequality holds.

12k > (2k + 1)4k +
k8k

2
+

32k(k − 1)9k−2

3
. (1.8)

Proof. We apply mathematical induction to k. It is clear that (1.8) holds for k = 7.
We assume that it holds for k = n ≥ 7. In order to complete the proof we need to
prove that it also holds for k = n+ 1. Since Since (1.8) holds for k = n we have

12n+1 =12.12n > 12
(

(2n+ 1)4n +
n8n

2
+

32n(n− 1)9n−2

3

)
=

{
(2n+ 3)4n+1 +

(n+ 1)8n+1

2
+

32n(n+ 1)9n−1

3

}
+

{
n4n+2 + (n− 2)23n+1 + 32n(n− 7)9n−2

}
.

The induction proof is complete because we have shown that

12n+1 > 2n+ 3)4n+1 +
(n+ 1)8n+1

2
+

32n(n+ 1)9n−1

3
for k = n ≥ 7. �

Lemma 1.9. For all real number x ≥ 1 we have:
√
π(x/e)x(8x3+4x2+x+1/100)

1
6 < Γ(x+1) <

√
π(x/e)x(8x3+4x2+x+1/30)

1
6 .

See [6].

2. Proofs of Our Theorems

Proof of Theorem 1.1. By differentiation we obtain for x > 0

F ′(x) = log x− ψ(x)− 1
x

+
1

2(x+ 1/2)
+

1
6(x+ 3/8)2

,

and

F ′′(x) =
1
x

+
1
x2
− 1

2(x+ 1/2)2
− 1

3(x+ 3/8)3
− ψ′(x).

Using the integral representations 1
x =

∫∞
0
e−xtdt, 1

x2 =
∫∞
0
te−xtdt and 1

x3 =
1
2

∫∞
0
t2e−xtdt and (1.1) we can write

F ′′(x) =
∫ ∞

0

e−3t/2φ(t)e−xt

1− e−t
dt, (2.1)
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where φ(t) = 3t+ 6e3t/2 − 6et/2 − 6tet/2 − 3tet − t2e9t/8 + t2et/8. If we expand the
exponential functions as a power series about t = 0, we find

φ(t) = 6
∞∑
n=5

an(t/8)n

n!
,

where

an = 12n − (2n+ 1)4n − n8n

2
− 32n(n− 1)9n

243
+

32n(n− 1)
3

.

By Lemma 1.8 this yields that an ≥ 0 for n ≥ 5. Hence, we have φ(t) ≥ 0 for
t > 0. This immediately gives F ′′(x) > 0 for x > 0 by (2.1). Applying (2.1) gives
that F ′′ is strictly completely monotonic in (0,∞). Using the classical Stirling
formula we find that lim

x→∞
F (x) = lim

x→∞
F ′(x) = 0. This implies that F (x) > 0 and

F ′(x) < 0 for x > 0. Thus we conclude that F is strictly completely monotonic
in (0,∞). �

Proof of Corollary 1.2. Since

F (x) = x log x−x+
1
2

log(2π)− log(Γ(x+1))+
1
2

log(x+1/2)− 1
6(x+ 3/8)

is strictly completely monotonic in (0,∞) by Theorem 1.1, it is strictly decreasing
in the same interval. So, we obtain that

0 = lim
x→∞

F (x) < F (x) ≤ F (0) =
1
2

log(2π)− 1
2

log 2− 4
9
.

Rearranging these inequalities we prove Corollary 1.2. �

Proof of Theorem 1.4. For x > 0 and c > 0, we let

fc(x) = log(Γ(x+ 1))− (x+ c) log(x+ c) + x+ c− 1
2

log(2π). (2.2)

Differentiation gives f ′c(x) = ψ(x + 1) − log(x + c). By Lemma 1.7 we obtain
f ′α(x) > 0 and f ′β(x) < 0 for all x > 0. Namely, fα is strictly increasing and
fβ is strictly decreasing in (0,∞). Now the proof is obtained from fα(x) ≥ fα(0) =
−α logα + α − 1

2 log(2π) and fβ(x) ≤ fβ(0) = −β log β + β − 1
2 log(2π), where α

and β are as defined in (1.3). �

Proof of Theorem 1.5. Define for x > 0

h(x) = log(Γ(x+ 1))− (x+ 1/2) log(x+ 1/2) + x+ 1/2. (2.3)

If we differentiate we get h′(x) = ψ(x+ 1)− log(x+ 1/2). Applying Lemma 1.7 we
arrive at that h is strictly increasing in (0,∞). Using Stirling formula we can see
that h(∞) = lim

x→∞
h(x) =

√
2π. This leads to

h(0) =
1
2

log 2 +
1
2
≤ h(x) < h(∞) =

√
2π.

A simple computation finishes the proof of Theorem 1.5. �
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Proof of Theorem 1.6. We define

g(x) =
(Γ(x+ 1))2

2πx2xe−2x
− x, x > 1.

We shall show that g is strictly decreasing in (1,∞). By differentiation we find that

g′(x) =
(Γ(x+ 1))2

πx2xe−2x
(1/x− (log x− ψ(x))− 1.

By [7, Theorem 8] we have

log x− ψ(x) >
1
2x

+
1

12x2
− 1

120x4
+

1
252x6

.

If we use Lemma 1.9 and this inequality we obtain

g′(x) < (8x3 + 4x2 + x+ 1/30)1/3
(

1
2x
− 1

12x2
+

1
120x4

− 1
252x6

)
− 1.

Hence, in order to prove that g′(x) < 0 for x > 1, it is sufficient to see that

(8x3 + 4x2 + x+ 1/30)(1260x5 − 210x4 + 21x2 − 10)3 − (2520x6)3 < 0

holds for x > 1. Since

(8x3 + 4x2 + x+ 1/30)(1260x5 − 210x4 + 21x2 − 10)3 − (2520x6)3 =

− 13083757429
30

− 32324710974
5

(x− 1)− 91879895093
2

(x− 1)2

− 208012393091(x− 1)3 − 1342666565583
2

(x− 1)4

− 8168534687124
5

(x− 1)5 − 30900300345243
10

(x− 1)6

− 4614947865171(x− 1)7 − 5478102552951(x− 1)8

− 5166967298976(x− 1)9 − 3848019707070(x− 1)10

− 2233636484940(x− 1)11 − 988874277300(x− 1)12

− 322352654400(x− 1)13 − 72895183200(x− 1)14

− 10209326400(x− 1)15 − 666792000(x− 1)16,

this says that g′(x) < 0 for all x > 1. In order to complete the proof we only need
to prove that lim

x→∞
g(x) = 1/6. By Lemma 1.9 we have

(8x3 + 4x2 + x+ 1/100)1/3

2
− x < g(x) <

(8x3 + 4x2 + x+ 1/30)1/3

2
− x.

It is an easy exercise to see that the limits of both of the bounds here tend to 1/6
as x tends to ∞. This tells us that lim

x→∞
g(x) = 1/6. Hence, using this fact and

monotonic decrease of g, we get for any real number x > 1

1
6

= lim
x→∞

g(x) < g(x) =
(Γ(x+ 1))2

2πx2xe−2x
− x ≤ g(1) =

e2

2π
− 1.
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Rearranging these inequalities we complete the proof of Theorem 1.6.

3. Stirling-type Formulas

Corollary 3.1. Let n be a positive integer. Then

(a+ 1)−(a+1)e1−n(n+ a)n+a ≤ n! ≤ (b+ 1)−(b+1)e1−n(n+ b)n+b,

where a = 1/2 and b = e1−γ − 1 are best possible constants.

Proof. Let fc be as defined by (2.2). Since fa is strictly increasing and fb is de-
creasing in (0,∞) , we can write fa(n) ≥ fa(1) and fb(n) ≤ fb(1) for all n ≥ 1. If
we make use the definition of fa, we complete the proof. �

Corollary 3.2. Let n be a positive integer. Then

a

(
n+ 1/2

e

)n+1/2

≤ n! < b

(
n+ 1/2

e

)n+1/2

,

where a = (2e/3)3/2 and b =
√

2π are best possible constants.

Proof. Let h be as defined in (2.3). Since h is strictly increasing in (0,∞), the proof
follows from the fact

−3
2

log(3/2) +
3
2

= h(1) ≤ h(n) < lim
n→∞

h(n) =
√

2π.

�

Corollary 3.3. For all positive integers n we have

nne−n
√

2π(n+ a) < n! < nne−n
√

2π(n+ b),

with the best possible constants a = 1/6 = 0.1666666... and b = e2

2π − 1 =
0.176005... .

Proof. It immediately follows from (1.5) by replacing x by n. �

Corollary 3.4. Let n be a positive integer. Then the following inequalities are
valid:

αnn
√
n+ 1/2 exp

{
−n− 1

6(n+ 3/8)

}
≤ n!

< βnn
√
n+ 1/2 exp

{
−n− 1

6(n+ 3/8)

}
,

where α =
√

2
3e

37/33 = 2.50548... and β =
√

2π = 2.50663....

Proof. It follows from monotonic decrease of F and the relations lim
n→∞

F (n) = 0

and F (1) = 1
2 log(2π) + 1

2 log(3/2)− 4
33 . �
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n n! αn βn δn γn
1
2
3
4
5
6
7
8
9
10

1
2
6
24
120
720
5040
40320
362880
3628800

0.922137
1.919
5.83621
23.5062
118.019
710.078
4980.4
39902.4
359536.87
3.5987106

1.022751
2.03331
6.07152
24.2226
120.911
724.624
5068.05
405187.97
364474.04
3.64322 106

1.00046
2.00011
6.00009
24.0001
120.00031
720.001
5040.004
40320.02
362880.13
3.6288 106

0.996022
1.99736
5.99614
23.9909
119.97
719.873
5039.34
40315.9
362851
3.62856 106

Table 1. The values of αn, βn, γn and δn at the leading terms.

n n! |αn − n!| |βn − n!| |δn − n!| |γn − n!|
1
2
3
4
5
6
7
8
9
10

1
2
6
24
120
720
5040
40320
362880
3628800

0.077863
0.080995
0.16379
0.493825
1.98083
9.92182
59.6042
417.605
3343.13
30104.4

0.0275077
0.0333107
0.0715196
0.222618
0.910795
4.62384
28.0489
197.973
1594.04
14421

0.0004590
0.0001112
0.0000881
0.0001345
0.0003176
0.0010326
0.0043129
0.0221008
0.13451
0.949379

0.003978
0.002636
0.003864
0.009110
0.029969
0.127171
0.662521
4.099718
29.3532
239.175

Table 2. A comparison between the leading terms of αn, βn, γn
and δn.
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