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1 Introduction and main results

Throughout this note, we write I and I
′

for the intervals [a, b] and (a, b)
respectively. A function f is said to be convex on I if and only if λf(x) +
(1− λ)f(y) > f(λx + (1− λ)y) for all x, y ∈ I and 0 6 λ 6 1. Conversely, if
the inequality always holds in the opposite direction, the function is said to
be concave on I. A function f that is continuous on I and twice differentiable
on I

′
is convex on I if and only if f

′′
(x) > 0 for all x ∈ I. ( f is concave if

the inequality is flipped).

The classical Hermite-Hadamard inequality gives us an estimate, from below
and from above, of the mean value of a convex function f : I → R which was
first published in [5]:
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f

(
a + b

2

)
6

1

b− a

∫ b

a

f (x) dx 6
f (a) + f (b)

2
. (1.1)

An account on the history of this inequality can be found in [6]. Surveys on
various generalizations and developments can be found in [7] and [3]. The
description of best possible inequalities of Hadamard-Hermite type are due
to Fink [4]. A generalization to higher-order convex functions can be found in
[1], while [2] offers a generalization for functions that are Beckenbach-convex
with respect to a two dimensional linear space of continuous functions.

In [3] , S.S. Dragomir, C.E.M. Pearce have studied this type of inequalities for
twice differential function with bounded second derivative and have obtained
the following:

Theorem A [3, Theorem 30, p. 38] . Assume that f : I → R is continuous
on I, twice differentiable on I

′
and there exist k,K such that k 6 f

′′
(x) 6 K

on I. Then

k

3

(
b− a

2

)2

6
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx 6
K

3

(
b− a

2

)2

. (1.2)

In this paper, we give an estimate, from below and from above, of the
mean value of f : I → R such that f is continuous on I, twice differentiable
on I

′
and there exist m = inf

x∈I
′
f

′′
(x) , or M = sup

x∈I′
f

′′
(x) and we obtain the

following results:

Theorem 1.1 Assume that f : I → R is continuous on I twice differentiable
on I

′
and there exist m = inf

x∈I′
f

′′
(x) . Then we have

f

(
a + b

2

)
+

m

6

(
b− a

2

)2

6
1

b− a

∫ b

a

f (x) dx 6
f (a) + f (b)

2
−m

3

(
b− a

2

)2

,

(1.3)
and equality in (1.3) holds if f (x) = αx2 + βx + γ, α, β, γ ∈ R.

Theorem 1.2 Assume that f : I → R is continuous on I twice differentiable
on I

′
and there exist M = sup

x∈I
′
f

′′
(x) . Then we have
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f (a) + f (b)

2
−M

3

(
b− a

2

)2

6
1

b− a

∫ b

a

f (x) dx 6 f

(
a + b

2

)
+

M

6

(
b− a

2

)2

,

(1.4)
and equality in (1.4) holds if f (x) = αx2 + βx + γ, α, β, γ ∈ R.

From Theorem 1.1 and Theorem 1.2, we obtain the following Corollaries.

Corollary 1.1 Assume that f : I → R is continuous on I, twice differen-
tiable on I

′
and there exist m = inf

x∈I
′
f

′′
(x) and M = sup

x∈I′
f

′′
(x) . Then we

have

m

3

(
b− a

2

)2

6
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx 6
M

3

(
b− a

2

)2

(1.5)

and

m

6

(
b− a

2

)2

6
1

b− a

∫ b

a

f (x) dx− f

(
a + b

2

)
6

M

6

(
b− a

2

)2

, (1.6)

and equality in (1.5) and (1.6) holds if f (x) = αx2 + βx + γ, α, β, γ ∈ R.

Corollary 1.2 Assume that f : I → R is continuous on I, twice differen-
tiable on I

′
and there exist m = inf

x∈I′
f

′′
(x) and M = sup

x∈I
′
f

′′
(x) . Then we

have

1

2

(
m

6
− M

3

) (
b− a

2

)2

6
1

b− a

∫ b

a

f (x) dx−

1

2

(
f (a) + f (b)

2
− f

(
a + b

2

))
6

1

2

(
M

6
− m

3

) (
b− a

2

)2

(1.7)

and

m

2

(
b− a

2

)2

6
f (a) + f (b)

2
− f

(
a + b

2

)
6

M

2

(
b− a

2

)2

, (1.8)
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and equality in (1.7) holds if f (x) = αx2 + βx + γ α, β, γ ∈ R.

In the following corollary, if f : I → R is continuous on I, convex, or
concave and twice differentiable on I

′
, then we obtain estimation better than

(1.1) in [5].

Corollary 1.3 Assume that f : I → R is continuous on I, twice differen-
tiable on I

′
.

(i) If there exists m = inf
x∈I′

f
′′
(x) and f convex on I. Then, we have

f

(
a + b

2

)
6 l 6

1

b− a

∫ b

a

f (x) dx 6 L 6
f (a) + f (b)

2
, (1.9)

where l = f
(

a+b
2

)
+ m

6

(
b−a
2

)2
, L = f(a)+f(b)

2
− m

3

(
b−a
2

)2
.

(ii) If there exists M = inf
x∈I

′
f

′′
(x) and f concave on I. Then, we have

f (a) + f (b)

2
6 λ 6

1

b− a

∫ b

a

f (x) dx 6 µ 6 f

(
a + b

2

)
, (1.10)

where λ = f(a)+f(b)
2

− M
3

(
b−a
2

)2
, µ = f

(
a+b
2

)
+ M

6

(
b−a
2

)2
.

Corollary 1.4 Assume that f : I → R is continuous on I, twice differen-
tiable on I

′
and there exist m = inf

x∈I
′
f

′′
(x) and M = sup

x∈I
′
f

′′
(x) . Then, we

have

∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− f (a) + f (b)

2

∣∣∣∣ 6
1

3

(
b− a

2

)2

max {|m| , |M |} (1.11)

and

∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− f

(
a + b

2

)∣∣∣∣ 6
1

6

(
b− a

2

)2

max {|m| , |M |} . (1.12)

Remark 1.1 In the above if f ∈ C2 ([a, b]) , then we can replace inf and sup
by min and max respectively.
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2 Proof of Theorems and Corollaries

Proof of Theorem 1.1 Let f : I → R be twice differentiable on I
′
. Set

g (x) = f (x)−m
2
x2. Differentiating twice times both sides of g we get g

′′
(x) =

f
′′
(x)−m > 0, then g is a convex function on I. By formula (1.1) , we have

g

(
a + b

2

)
6

1

b− a

∫ b

a

g (x) dx 6
g (a) + g (b)

2
. (2.1)

Substituting g (x) = f (x)− m
2
x2 into (2.1) , we get

f

(
a + b

2

)
− m

2

(
b + a

2

)2

+
1

b− a

∫ b

a

m

2
x2dx 6

1

b− a

∫ b

a

f (x) dx

6
f (a) + f (b)

2
−m

a2 + b2

4
+

1

b− a

∫ b

a

m

2
x2dx. (2.2)

By simple calculus from (2.2) , we get (1.3) .

Proof of Theorem 1.2 Let f : I → R be twice differentiable on I
′
. Set

h (x) = −f (x) + M
2
x2. Differentiating twice times both sides of h we get

h
′′
(x) = −f

′′
(x) + M > 0, then h is a convex function. By formula (1.1) ,

we have

h

(
a + b

2

)
6

1

b− a

∫ b

a

h (x) dx 6
h (a) + h (b)

2
. (2.3)

Substituting g (x) = −f (x) + M
2
x2 into (2.1) we get

−f

(
a + b

2

)
+

M

2

(
b + a

2

)2

− 1

b− a

∫ b

a

M

2
x2dx 6 − 1

b− a

∫ b

a

f (x) dx

6 −f (a) + f (b)

2
+ M

a2 + b2

4
− 1

b− a

∫ b

a

M

2
x2dx. (2.4)

By simple calculus from (2.4) , we get (1.4) .

Proof of corollary 1.1 This can be concluded by using Theorem 1.1 and
Theorem 1.2.
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Proof of corollary 1.2 By Corollary 1.1, we have

m

3

(
b− a

2

)2

6
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx 6
M

3

(
b− a

2

)2

(2.5)

and

−M

6

(
b− a

2

)2

6 − 1

b− a

∫ b

a

f (x) dx+ f

(
a + b

2

)
6 −m

6

(
b− a

2

)2

. (2.6)

By addition from (2.5) and (2.6) , we get (1.7) . Now we prove (1.8) . By using
corollary 1.1, we have

m

3

(
b− a

2

)2

6
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx 6
M

3

(
b− a

2

)2

(2.7)

and

m

6

(
b− a

2

)2

6
1

b− a

∫ b

a

f (x) dx− f

(
a + b

2

)
6

M

6

(
b− a

2

)2

. (2.8)

By addition from (2.7) and (2.8) , we get (1.8) .

Proof of corollary 1.3 (i) By f is convex function, we have m > 0. Then
by (1.3) , we get (1.9). (ii ) Using f is concave function we obtain M 6 0.
Then by (1.4) , we get (1.10).

Proof of corollary 1.4 This can be concluded by using Corollary 1.1.

Open question If f is only convex function on I, does there exist a real
numbers l, L such that

f

(
a + b

2

)
6 l 6

1

b− a

∫ b

a

f (x) dx 6 L 6
f (a) + f (b)

2
?
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[8] J.E. PEČARIĆ , F. PROSCHAN AND Y.C. TONG, Convex
Functions, Partial Orderings and Statistical Applications, Academic Press,
New York, 1992.

7


