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Abstract. We establish various new inequalities for the Hurwitz
zeta function. Our results generalize some known results for the
polygamma functions to the Hurwitz zeta function.

1. Introduction

The Hurwitz zeta function ζ(s, x) is traditionally defined for any x,
which is not a negative integer and zero, by the series

ζ(s, x) =
∑∞

n=0

1

(n + x)s

for all complex numbers s with Res > 1. In this paper we restrict x
to positive real numbers. We can analytically continue it to the whole
complex s-plane (except for a simple pole at s = 1) by means of the
contour integral

ζ(s, x) =
Γ(1− s)

2πi

∫

C

zs−1exz

1− ez
dz,

where C is a loop that starts from −∞ along the lower side of the real
axis, encircles the origin and then returns to −∞ along the upper side
of the real axis. For convenience, we will use a slightly non-standard
notation here for this function: Hs(x) = ζ(s, x). Hurwitz zeta function
occurs in a variety of disciplines. Most commonly, it occurs in analytic
number theory. The Riemann zeta function defined for Re s > 1 by

ζ(s) =
∑∞

n=1

1

ns

and the polygamma functions defined for all positive integers m and
positive real numbers x by
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ψ(m)(x) = (−1)m+1m!
∑∞

n=1

1

(x + n)m+1
(1.1)

are special cases of the Hurwitz zeta function, namely Hs(1) = ζ(s),
Hs(1/2) = (2s − 1)ζ(s) and ψ(m)(x) = (−1)m+1m!Hm+1(x).
The Bernoully polynomials defined by the generating function

zezx

ez − 1
=

∑∞
n=0

Bn(x)

n!
zn

are also special cases of the Hurwitz zeta function:

ζ(−m,x) = −Bm+1(x)

m + 1
(m = 0, 1, 2, . . . , ),

please see[6, Theorem 12.13]. It satisfies the following integral repre-
sentation (see [6, Teorem 12.2]):

Hs(x) =
1

Γ(s)

∫ ∞

0

us−1e−xu

1− e−u
du,

where Γ(s) is Euler’s gamma function, is valid for Res > 1. Among
many places in which Hs(x) appears we mention here two of them: The
first is the evaluation by Kolbig [10] of integrals of the form

Rm(µ, υ) =

∫ ∞

0

e−µttυ−1 logm t dt,

an example of which is

R2(µ, υ) = µ−υΓ(υ)[(ψ(υ)− log µ)2 + H2(υ)],

with

ψ(x) =
Γ′(x)

Γ(x)

is logarithmic derivative of Γ(x), also called the digamma function.
The second one is Vardi’s evaluation [11] of the integrals

∫ π/2

π/4

log log(tan x)dx =
π

2
log

(
Γ(3/4)

√
2π

Γ(1/4)

)
.

Its basic properties can be found in [5, 6]. Recently some authors
studied this function and they obtained interesting inequalities, see
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[1, 2, 3, 7]. The main purpose of this paper is to generalize the follow-
ing inequalities for polygamma functions proved by the author [9] to
Hurwitz zeta function: For all positive real number x and all positive
integers n the following inequalities hold:

(n− 1)! exp (−nψ(x + 1/2)) <
∣∣ψ(n)(x)

∣∣ < (n− 1)! exp (−nψ(x)) ,

(n− 1)!

(k − 1)!

∣∣ψ(k)(x + 1/2)
∣∣n/k

<
∣∣ψ(n)(x)

∣∣ <
(n− 1)!

(k − 1)!

∣∣ψ(k)(x)
∣∣n/k

for all k = 1, 2, ..., n− 1,

α <
(
(−1)n−1ψ(n)(x + 1)

)−1/n − (
(−1)n−1ψ(n)(x)

)−1/n
< β,

where the constants α = (n!ζ(n + 1))−1/n and β = ((n − 1)!)−1/n are
best possible, and

(n!)
1

n+1

[
x− (

x−1/n + α
)−n

]− 1
n+1

<
(
(−1)n−1ψ(n)

)−1
(x)

< (n!)
1

n+1

[
x− (

x−1/n + β
)−n

]− 1
n+1

,

where the constants α = ((n − 1)!)−1/n and β = (n!ζ(n + 1))−1/n are
best possible. Our results lead to some new lower and upper bounds
for the Riemann zeta function.

The proofs of our main results are based on the following lemmas.

2. Lemmas

Lemma 2.1. For a fixed real number x > 0 let

hx(s) = ((s− 1)Hs(x))1/(s−1) . (2.1)

Then hx is strictly decreasing for s > 1; (see [1]).

Lemma 2.2. For s > 2 and x > 0 we have

s2 − 1

s2
<

(Hs+1(x))2

Hs(x)Hs+2(x)
< 1. (2.2)

Proof. The proof follows from slight modifications in the proof of The-
orem 2.1 and Corollary 2.3 of [4]. ¤
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Lemma 2.3. Let x and s be positive real numbers with s > 1 and

∆ (s, x) = H−1
s+1

(
1

sxs

)
− x, (2.3)

where H−1
q (t) is the inverse of the function t → Hq(t). Then we have

(a)∂∆(s,x)
∂x

> 0.

(b) 0 < ∆(s, x) < 1/2.

(c) ∂∆(s,x)
∂s

< 0.

(d) ∂2∆(s,x)
∂2x

< 0.

Proof. We define for s > 0 and a fixed real number x > 0

φ(x, s) =
1

hx(s + 1)
,

where hx is defined by (2.1). Using (2.3), we get for all x > 0, and
s > 1

∆(s, φ(x, s)) = x− φ(x, s). (2.4)

Differentiation with respect to x gives for x > 0 and s > 1

∂∆(s, φ(x, s))

∂x
=

1

∂φ(x, s)/∂x
− 1. (2.5)

Since

∂φ(x, s)

∂x
=

[
((s + 1)Hs+2(x))1/(s+1)

(sHs+1(x))1/s

]s+1

=

[
hx(s + 2)

hx(s + 1)

]s+1

(2.6)

and hx is strictly decreasing for x > 0 and s > 1 by Lemma 2.1, (2.5)

implies that ∂∆(s,φ(x,s))
∂x

> 0 for all x > 0 and s > 1. But since the
mapping x → φ (x, s) is strictly increasing and continuous on (0,∞) it

is bijective, leading to ∂∆(s,x)
∂x

> 0 for all x > 0 and s > 1. This proves
(a). From (2.3) we get for x > 0 and s > 1

Hs+1(x + ∆(s, x)) =
1

sxs
. (2.7)
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Also, from the definition of Hs(x) we have H
′
s(x) = −sHs+1(x) and

Hs(x + 1)−Hs(x) = − 1

xs
. (2.8)

If we apply the mean value theorem for differentiation to Hs(t) on the
interval [x, x+1] and use the relation (2.8), there exists an ε, depending
on x and s, such that

sHs+1(x + ε(x, s)) =
1

xs
, (2.9)

with 0 < ε = ε(x) < 1, for all x > 0 and s > 1. From (2.7) and (2.9)
we conclude ε(x, s) = ∆(s, x) that gives 0 < ∆(s, x) < 1 for all real
numbers x > 0 and s > 1. Since the function x → ∆(s, x) is bounded
and monotonic increasing, it has a limit as x tends to infinity. In order
to compute this limit we replace x by x + 1 in (2.7) and use (2.8) to
get

1

(x + ∆(s, x + 1))s+1 = Hs+1(x + ∆(s, x + 1))− 1

s(x + 1)s

or

∆(s, x + 1) =
1(

Hs+1 (x + ∆(s, x + 1))− 1
s(x+1)s

)1/(s+1)
− x.

Since limx→∞ ∆(s, x + 1) = limx→∞ ∆(s, x), using (2.7) this becomes

lim
x→∞

∆(s, x) = lim
x→∞

[(
Hs+1 (x + ∆(s, x))− 1

s(x + 1)s

)−1/(s+1)

− x

]

= lim
x→∞

[(
sxs(x + 1)s

(x + 1)s − xs

)1/(s+1)

− x

]
.

Using L’Hospital’s rule it is easy to see that the value of this limit is
1/2. From (2.3) we also have ∆s(0) = 0, so that we get from (a) for
x > 0 and s > 1 that

0 = ∆(s, 0) < ∆(s, x) < lim
x→∞

∆(s, x) = 1/2.

This proves (b). For our convenience we let y = φ(x, s). Differentiating
both sides of (2.4) with respect to s yields
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∂∆(s, y)

∂s
+

(
1 +

∂∆(s, y)

∂y

)
∂y

∂s
= 0. (2.10)

Since
∂y

∂s
=

∂φ(x, s)

∂s
> 0

by Lemma 2.1 and

∂∆(s, y)

∂y
> 0

by (a), we conclude from (2.10) that

∂∆(s, x)

∂s
< 0

for all x > 0 and s > 1. This proves (c). Now we are ready to prove
(d). Differentiation of both sides of (2.5) with respect to x gives

∂2∆(s, φ(x, s))

∂x2
= − ∂2φ(x, s)/∂x2

(∂φ(x, s)/∂x)2 ,

so that to prove (d) it suffices to see

∂2φ(x, s)

∂x2
> 0.

If we differentiate both sides of (2.6) with respect to x, we obtain for
all s > 1 and x > 0

∂2φ(x, s)

∂x2
= (s + 1)3 (sHs+1(x))2+1/s

×
[
(Hs+2(x))2 − (s + 1)2 − 1

(s + 1)2
Hs+1(x)Hs+3(x)

]
.

Applying Lemma 2.2 this reveals that

∂2φ(x, s)

∂x2
> 0. (2.11)

¤

Now we are ready to establish our main results.
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3. Main Results

Theorem 3.1. For all real numbers x > 0 and s > 1 we have

1

s
exp (−sψ(x + 1/2)) < Hs+1(x) <

1

s
exp(−sψ(x)), (3.1)

where ψ is the logarithmic derivative of the classical gamma function,
known as digamma function.

Proof. Since s → ∆(s, x) is strictly decreasing by Lemma 2.3 (c), we
have for s > 1 and x > 0 that

∆(s, x) < ∆(1, x) = (ψ′)−1
(1/x)− x. (3.2)

In [9], the author proved that

(ψ′)−1
(1/x)− x < ψ−1(log x)− x.

Thus, by virtue of (2.3), (3.2) gives for s > 1 and x > 0

H−1
s+1

(
1

sxs

)
< ψ−1(log x).

Replacing x by eψ(x) here and using the fact that the function x →
H−1

s (x) is decreasing for s > 1, we obtain

Hs+1(x) <
1

s
e−sψ(x).

for all x > 0 and s > 1. This proves the right hand side of (3.1). Since
∆(s, x) < 1/2 by Lemma 2.3.b and

ψ−1(log x)− x < 1/2

by [8], we obtain

ψ−1(log x)− x−∆(s, x) < 1/2

or using (2.3)

ψ−1(log x)−H−1
s+1

(
1

sxs

)
< 1/2.

Replacing x by eψ(x) here again, we get
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x− 1

2
< H−1

s+1

(
1

s
exp (−sψ(x))

)
.

Therefore for x > 1/2 we find that

Hs+1 (x− 1/2) >
1

s
exp (−sψ(x)) .

Replacing x by x + 1
2

here this becomes

Hs+1(x) >
1

s
exp (−sψ(x + 1/2)) .

¤
This completes the proof of Theorem 3.1.

Theorem 3.2. Let x, p and q be positive real numbers with 1 < p < q.
Then we have

(pHp+1(x + 1/2))1/p < (qHq+1(x)1/q < (pHp+1(x))1/p . (3.3)

Proof. The right inequality follows from Lemma 2.1. Applying Lemma
2.3 (b) we get for 1 < p < q

∆(p, x)−∆(q, x) < 1/2.

Using (2.3) this can be rewritten as

H−1
p+1

(
1

pxp

)
− 1

2
< H−1

q+1

(
1

qxq

)
.

Replacing x by

1

(pHp+1(x))1/p

here we get for x > 1/2

x− 1

2
< H−1

q+1

(
1

q
(pHp+1(x))q/p

)
.

This is equivalent to

Hq+1(x− 1/2) >
1

q
(pHp+1(x))q/p .

Replacing x by x + 1/2 here finishes the proof of Theorem 3. 2. ¤
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Theorem 3.3. For all real numbers x > 0 and s > 2 we have

(ζ(s))−1/(s−1) < (Hs(x + 1))−1/(s−1) − (Hs(x))−1/(s−1) < (s− 1)1/(s−1),

where ζ(s) is the Riemann zeta function. Both of the bounds are best
possible.

Proof. For a fixed s > 0 and a positive real number x let

ϕ(x) = ∆ (s, φ(x + 1, s))−∆ (s, φ(x, s)) .

Then if we use (2.4) we find that

ϕ(x) = u(x)− u(x + 1) + 1, (3.4)

where u (x) = φ (x, s). By (2.11) we have u′′ (x) > 0 so that u′ is
strictly increasing on (0,∞). Therefore (3.4) implies that ϕ is strictly
decreasing. This allows us to write ϕ(∞) < ϕ(x) < ϕ(0) for all x > 0.
Since

ϕ(0) = 1− φ(1, s) = 1− (sHs+1(1))−1/s = 1− (sζ(s + 1))−1/s

and ϕ(∞) = limx→∞ ϕ(x) = 1/2− 1/2 = 0, we obtain that

0 < 1− φ(x + 1, s) + φ(x, s) < 1− (sζ(s + 1))−1/s .

Replacing the value of φ (x, s) here and then rearranging these inequal-
ities, we complete the proof of Theorem 3.3. ¤

The Hurwitz zeta function has been investigated by many authors
from many different directions and there have been a lot of literature
about it, but the inverse of it has not been investigated sufficiently,
and we know a little concerning it. In the following theorem, which
provides a beautiful application of Theorem 3.3, we establish sharp
upper and lower bounds for the inverse of the Hurwitz zeta function:
x → H−1

s (x).

Theorem 3.4. For all s > 2 and x > 0 the following double inequality
holds:

[
x− (

x1/(1−s) + a
)1−s

]−1/s

< H−1
s (x) <

[
x− (

x1/(1−s) + b
)1−s

]−1/s

,
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where a = (s−1)1/(s−1) and b = (ζ(s))1/(1−s) are best possible constants.

Proof. If we use (2.8) and replace x by H−1
s (x) in Theorem 3.3 and

then rearrange the resulting inequality we finish the proof. ¤

4. Remarks

Remark 4.1. In [7, Proposition 3] it was obtained that the inequality

ζ(s) <
e(s−1)γ

s− 1
(4.1)

holds for all s > 1. Now if we set x = 1/2 and x = 1 in (3.1),respectively,
we get the following new bounds for the Riemann zeta function:

e(s−1)γ

(s− 1)(2s − 1)
< ζ(s) <

4s−1e−γs

(s− 1)(2s−1 − 1)

and
e−(2−γ)(s−1)

s− 1
< ζ(s) <

e(s−1)γ

s− 1

for all s > 2. Here γ is the Euler’s constant. Thus, Theorem 3.1 gives
a generalization and a converse of (4.1).

Remark 4.2. If we set x = 1 and x = 1/2 in Theorem 3.3, we find the
following new upper bounds for the Riemann zeta function:

ζ(s) <
1

1− 21−s

and

ζ(s) <
2s

2s − 1−
(
1 + (2s − 1)1/(1−s)

)1−s ,

respectively.

Remark 4.3. Theorems 3.1 and 3.2 don’t cover the cases 0 < s ≤ 1 and
0 < p ≤ 1, respectively but we believe that they are also valid for these
values of s and p. Similarly, Theorems 3.3 and 3.4 do not include the
case 1 < s ≤ 2. We believe that they are also valid for these s.

Remark 4.4. Numerical computations carried by the computer program
Mathematica indicate that the constant 1/2 in the left inequalities of
(3.1) and (3.3) can be replaced by a much smaller number.
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Remark 4.5. We conjecture that the function

θ(s) =

(
1− 1

ζ(s + 1)

)1/s

is strictly increasing for s > 0.

Remark 4.6. We also conjecture that the function x → ∂∆(s,x)
∂x

is com-
pletely monotonic for all s > 1 and x > 0. Recall that a function f is
completely monotonic on an interval I if f has derivatives of all order
on I such that (−1)nf (n)(x) ≥ 0 on I, for all non-negative integers n.
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