On Trigonometrical Proofs of the Steiner-Lehmus Theorem

Róbert Oláh-Gál and József Sándor

Dedicated to the memory of Professor Ferenc Radó (1921-1990)

Abstract

We offer a survey of some less known or new trigonometrical proofs of the Steiner-Lehmus theorem. A new proof of a recent refined variant is pointed out, too.

1 Introduction

The famous Steiner-Lehmus theorem states that if the internal angle bisectors of two angles of a triangle are equal, then the triangle is isosceles. For a recent survey of the Steiner-Lehmus theorem, see M. Hajja [6]. From the References in [6] one can find many methods of proof of this theorem, including pure geometrical, trigonometrical, etc. proofs. One aim of this note is also to add some new references; to call the attention to some little or not-known proofs, especially trigonometrical ones. On the other hand, we will obtain also a new trigonometric proof of a refined version of the Steiner-Lehmus theorem, published recently [7].

For the first aim, we want to point out some classical geometrical proofs published in 1967 by A. Froda [4], attributed to W.T Williams and G.T. Savage. Another interesting proof by A. Froda appears in his book [5] (see also the book of the second author [12]). Another pure-geometrical proof was published in 1973 by M. K. Sathya Narayama [13]. Other papers are by K. Seydel and C. Newman [14], or the more recents by D. Beran [1] or D. Rüthing [10]. None of the recent extensive surveys connected with the Steiner-Lehmus theorem mentions the use of complex numbers in the proof. Such a method appears in the paper by C.I. Lubin [8] from 1959. Related to the question, first posed by Sylvester (and mentioned in [6], too) whether there is a direct proof of the Steiner-Lehmus theorem, recently J. Conway (see [2]) has given an intriguing argument that there is no such proof. However, there are discussions on the valubility of this proof, as perhaps we should formulate in a completely precise manner this proposition: "the Steiner-Lehmus theorem has no direct proof" (by using e.g., concept of intuitionistic logic)

2 Trigonometric proofs of the Steiner-Lehmus theorem

Perhaps one of the shortest trigonometric proofs of the Steiner-Lehmus theorem one can find in a forgotten paper (written in Romanian) from 1916 by V. Cristescu [3]. Let $B B^{\prime}$ and $C C^{\prime}$ denote two angle bisectors of the triangle $A B C$ (see fig. 1).

Figure 1:
By using the sinus theorem in triangle $B B^{\prime} C$, one gets $\frac{B B^{\prime}}{\sin C}=\frac{B C}{\sin \left(C+\frac{B}{2}\right)}$. As $C+\frac{B}{2}=C+\frac{180^{\circ}-C-A}{2}=90^{\circ}-\frac{A-C}{2}$, one has

$$
\begin{equation*}
B B^{\prime}=a \cdot \frac{\sin C}{\cos \frac{A-C}{2}} \tag{1}
\end{equation*}
$$

One can obtain in a similar manner the relation

$$
\begin{equation*}
C C^{\prime}=a \cdot \frac{\sin B}{\cos \frac{A-B}{2}} . \tag{2}
\end{equation*}
$$

Assuming $B B^{\prime}=C C^{\prime}$, and remarking that $\sin C=2 \sin \frac{C}{2} \cos \frac{C}{2}$, and $\sin \frac{C}{2}=$ $\cos \frac{A+B}{2}, \sin \frac{B}{2}=\cos \frac{A+C}{2}$, we get the equality

$$
\begin{equation*}
\cos \frac{C}{2} \cdot \cos \frac{A+B}{2} \cos \frac{A-B}{2}=\cos \frac{B}{2} \cos \frac{A+C}{2} \cos \frac{A-C}{2} . \tag{3}
\end{equation*}
$$

Now from the identity

$$
\begin{equation*}
\cos (x+y) \cdot \cos (x-y)=\cos ^{2} x+\cos ^{2} y-1 \tag{4}
\end{equation*}
$$

relation (4) becomes

$$
\begin{equation*}
\cos \frac{C}{2}\left(\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}-1\right)=\cos \frac{B}{2}\left(\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{C}{2}-1\right) . \tag{5}
\end{equation*}
$$

A simple remark shows that (5) can be rewritten also as

$$
\begin{equation*}
\left(\cos \frac{B}{2}-\cos \frac{C}{2}\right) \cdot\left(\sin ^{2} \frac{A}{2}+\cos \frac{B}{2} \cos \frac{C}{2}\right)=0 \tag{6}
\end{equation*}
$$

As the second paranthesis of (6) is strictly positive, this implies $\cos \frac{B}{2}-\cos \frac{C}{2}=$ 0 , so $B=C$.

In 2000, resp. 2001 the German mathematicians D. Plachky [9], and D. Rüthing [11] have given other direct trigonometric proofs of the Steiner-Lehmus theorem, based on area considerations.

We will present here shortly the method by D. Plachky [9]. Denote the angles from B and C resp. by β and γ, and the angle bisectors $B B^{\prime}$ and $A A^{\prime}$ by w_{b} and w_{a} (see fig.2).

Figure 2:
By using the trigonometric form of the area of a triangle $A B C$ as $\frac{1}{2} a b \sin \gamma$, and decomposing the initial triangle in two triangles, we get

$$
\frac{1}{2} a w_{\beta} \sin \frac{\beta}{2}+\frac{1}{2} c w_{\beta} \sin \frac{\beta}{2}=\frac{1}{2} b w_{\alpha} \sin \frac{\alpha}{2}+\frac{1}{2} c w_{\alpha} \sin \frac{\alpha}{2} .
$$

By the sinus-law we have

$$
\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin (\pi-(\alpha+\beta))}{c}
$$

so assuming $w_{\alpha}=w_{\beta}$, we obtain

$$
c \frac{\sin \alpha}{\sin (\alpha+\beta)} \sin \frac{\beta}{2}+c \sin \frac{\beta}{2}=c \frac{\sin \beta}{\sin (\alpha+\beta)} \sin \frac{\alpha}{2}+c \sin \frac{\alpha}{2},
$$

or

$$
\begin{equation*}
\sin (\alpha+\beta)\left(\sin \frac{\alpha}{2}-\sin \frac{\beta}{2}\right)+\sin \frac{\alpha}{2} \sin \beta-\sin \alpha \sin \frac{\beta}{2}=0 \tag{7}
\end{equation*}
$$

Writing $\sin \alpha=2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$, etc; and using also the formulae

$$
\begin{equation*}
\sin u-\sin v=2 \sin \frac{u-v}{2} \cos \frac{u+v}{2}, \quad \cos u-\cos v=-2 \sin \frac{u-v}{2} \sin \frac{u+v}{2}, \tag{8}
\end{equation*}
$$

we get from (7)

$$
\begin{equation*}
2 \sin \frac{\alpha-\beta}{4}\left[\sin (\alpha+\beta) \cos \frac{\alpha+\beta}{4}+2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\alpha+\beta}{2}\right]=0 . \tag{9}
\end{equation*}
$$

As in (9) the paranthesis is strictly positive (by $0<\frac{\alpha+\beta}{2}<\frac{\pi}{4}, 0<\alpha+\beta<$ π), (9) implies $\alpha=\beta$.

The following trigonometric proof (due to the authors) seems to be much simpler. Writing the area of triangle $A B C$ in two distinct ways (using triangles $A B B^{\prime}$ and $B B^{\prime} C$) we get immediately

$$
\begin{equation*}
w_{b}=\frac{2 a c}{a+c} \cos \frac{\beta}{2} . \tag{10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
w_{a}=\frac{2 b c}{b+c} \cos \frac{\alpha}{2} . \tag{11}
\end{equation*}
$$

Suppose now that, $a>b$. Then $\alpha>\beta$, so $\frac{\alpha}{2}>\frac{\beta}{2}$. As $\frac{\alpha}{2}, \frac{\beta}{2} \in\left(0, \frac{\pi}{2}\right)$, one gets $\cos \frac{\alpha}{2}<\cos \frac{\beta}{2}$. Remark also that $\frac{b c}{b+c}<\frac{a c}{a+c}$ is equivalent to $b<a$. Thus (10) and (11) imply $w_{a}>w_{b}$. This is indeed a proof of the Steiner-Lehmus theorem, as supposing $w_{a}=w_{b}$ and letting $a>b$, we would obtain $w_{a}>w_{b}$, a contradiction; and if $a<b$, then $w_{a}<w_{b}$, again a contradiction.

3 A new trigonometric proof of a refined version

Recently, M. Hajja [7] proved the following stronger version of the SteinerLehmus theorem. Let $B Y$ and $C Z$ be the angle bisectors and denote $B Y=y$, $C Z=z, Y C=v, B Z=V$ (see fig. 3).

Then

$$
\begin{equation*}
c>b \Rightarrow y+v>z+V . \tag{12}
\end{equation*}
$$

As $V=\frac{a c}{a+b}, v=\frac{a b}{a+c}$, it is immediate that $c>b \Rightarrow V>v$. Thus, assuming $c>b$, on base of (12) we get $y>z$, i.e. the Steiner-Lehmus theorem (see the last proof of paragraph 2). In the proof of (12), in [7] a strong lemma by R. Breuch is applied.

Figure 3:

Our aim here is to offer a new trigonometric proof of (12), based only on the sinus-law, and simple trigonometrical facts.

In triangle $B C Y$ one can write

$$
\begin{gather*}
\frac{a}{\sin \left(C+\frac{B}{2}\right)}=\frac{C Y}{\sin \frac{B}{2}}=\frac{B Y}{\sin C}, \text { so } \frac{y+v}{\sin C+\sin \frac{B}{2}}=\frac{a}{\sin \left(C+\frac{B}{2}\right)} \text { implying, } \\
y+v=\frac{a\left(\sin C+\sin \frac{B}{2}\right)}{\sin \left(C+\frac{B}{2}\right)} . \tag{13}
\end{gather*}
$$

In completely similar manner one gets

$$
\begin{equation*}
z+V=\frac{a\left(\sin B+\sin \frac{C}{2}\right)}{\sin \left(B+\frac{C}{2}\right)} \tag{14}
\end{equation*}
$$

Assume now that $y+v>z+V$. Applying $\sin u+\sin v=2 \sin \frac{u+v}{2} \cos \frac{u-v}{2}$ and remarking that $\cos \left(\frac{C}{2}+\frac{B}{4}\right)>0, \cos \left(\frac{B}{2}+\frac{C}{4}\right)>0$, after simplification, from (13)-(14) we get the inequality

$$
\begin{equation*}
\cos \left(\frac{C}{2}-\frac{B}{4}\right) \cos \left(\frac{B}{2}+\frac{C}{4}\right)>\cos \left(\frac{B}{2}-\frac{C}{4}\right) \cos \left(\frac{C}{2}+\frac{B}{4}\right) . \tag{15}
\end{equation*}
$$

Using $2 \cos u \cos v=\cos \frac{u+v}{2}+\cos \frac{u-v}{2}$, this implies

$$
\cos \left(\frac{3 C}{4}+\frac{B}{4}\right)+\cos \left(\frac{C}{4}-\frac{3 B}{4}\right)>\cos \left(\frac{3 B}{4}+\frac{C}{4}\right)+\cos \left(\frac{B}{4}-\frac{3 C}{4}\right)
$$

or

$$
\begin{equation*}
\cos \left(\frac{3 C}{4}+\frac{B}{4}\right)-\cos \left(\frac{3 B}{4}+\frac{C}{4}\right)>\cos \left(\frac{B}{4}-\frac{3 C}{4}\right)-\cos \left(\frac{C}{4}-\frac{3 B}{4}\right) . \tag{16}
\end{equation*}
$$

Now applying the second formula of (8), we get

$$
\begin{equation*}
-\sin \frac{B}{2} \sin \frac{3 C}{2}>-\sin \frac{C}{2} \sin \frac{3 B}{2} \tag{17}
\end{equation*}
$$

By $\sin 3 u=3 \sin u-4 \sin ^{3} u$ we get immediately from (17) that

$$
\begin{equation*}
-3+4 \sin ^{2} \frac{C}{2}>-3+4 \sin ^{2} \frac{B}{2} \tag{18}
\end{equation*}
$$

Remark now that the function $x \mapsto \sin ^{2} x$ is strictly increasing in $x \in\left(0, \frac{\pi}{2}\right)$, so as (18) gives $\sin ^{2} \frac{C}{2}>\sin ^{2} \frac{B}{2}$, this is possible only if

$$
\begin{equation*}
C>B \tag{19}
\end{equation*}
$$

This finishes the proof of (12), as if the implication in (12) would not be true, then the argument above would imply $C \leq B$, contrary to $c>b$.

Acknowledgements. The authors thank Professor D. Plachky for a reprint of [9] and to Professor A. Furdek for providing a copy of [11].

References

[1] D. Beran, SSA and the Steiner-Lehmus theorem, Math. Teacher, 85(1992), no. 5, 381-383
[2] J. Conway, http://www.mathematik.uni-bielefeld.de/~sillke/ PUZZLES/steiner_lehmus
[3] V. Cristescu, On a problem of geometry (Romanian), Gazeta Matematică (Bucureşti), 22(1916),no.2, 35-37
[4] A. Froda, Nontrivial aspects of certain questions of euclidean geometry (Romanian), Gazeta Matematică, 72(1967), no. 1, 1-7
[5] A. Froda, Errors and paradoxes in Mathematics (Romanian), Ed. Enc. Rom., Bucureşti, 1971
[6] M. Hajja, A short trigonometric proof of the Steiner-Lehmus theorem, Forum Geometricorum, 8(2008), 34-42
[7] M. Hajja, Stronger forms of the Steiner-Lehmus theorem, Forum Geometricorum, 8(2008), 157-161
[8] C. I. Lubin, The theorem of Lehmus and complex numbers, Scripta Math., 24(1959), 137-140
[9] D. Plachky, Ein direkter und elementar-trigonometrischer Beweis des Satzes von Steiner-Lehmus und trigonometrisch-geometrische Lösung einer Variante. Preprints Universität Münster ,,Angewandte Mathematik und Informatik, 22/2000, S. 5
[10] D. Rüthing, Ein einfacher elementar geometrischer Beweis des Satzes von Steiner-Lehmus, Praxis Math. Heft, 4/2000, S. 176
[11] D. Rüthing, Ein direkter trigonometrischer Beweis des Satzes von SteinerLehmus, Wurzel, 7/2001, 160-163
[12] J. Sándor, Geometric inequalities (Hungarian), Ed. Dacia, Cluj, 1988
[13] M. K. Sathya Narayama, A proof of the Steiner-Lehmus theorem, Math. Student, XLI, no. 4(1973), 395-396
[14] K. Seydel and C. Newman, The Steiner-Lehmus theorem as a challenge problem, The Two-Year College Math. J., 14 (1983), no. 1, 72-75

Róbert Oláh-Gál and József Sándor:
Department of Mathematics and Informatics, Babeş-Bolyai University, Extension of Miercurea-Ciuc, Romania
Str. Topliţa Nr. 20. Miercurea-Ciuc.
E-mail addresses:
olah_gal@topnet.ro
jsandor@math.ubbcluj.ro

