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Abstract. A relation of weak majorization for n-dimensional real vectors is

established, the result is then used to derive some inequalities involving the
power mean, the arithmetic mean and the geometric mean in n variables.

1. Introduction

Over the years, the theory of majorization as a powerful tool has widely been
applied to the related research areas of pure mathematics and the applied mathe-
matics (see [1]). A good survey on the theory of majorization was given by Marshall
and Olkin in [2]. Recently, the authors have given considerable attention to the ap-
plications of majorization in the field of inequalities, for details, we refer the reader
to our papers [3–18].

In this paper, we shall establish a weak majorization relation for positive real
numbers x1, x2, . . . , xn with x1x2 · · ·xn ≥ 1, and discuss the Schur-convexity of the
elementary symmetric function. In Section 4, the result is used to derive some in-
equalities involving the power mean, the arithmetic mean and the geometric mean
in n variables.

Throughout the paper, R denotes the set of real numbers, x = (x1, x2, · · · , xn)
denotes n-tuple (n-dimensional real vector), the set of vectors can be written as

Rn = {x = (x1, · · · , xn) : xi ∈ R, i = 1, . . . , n} ,
Rn

+ = {x = (x1, . . . , xn) : xi ≥ 0, i = 1, . . . , n},
Rn

++ = {x = (x1, . . . , xn) : xi > 0, i = 1, . . . , n}.
Definition 1 ([1, 2]). Let x = (x1, . . . , xn) ∈ Rn, the kth elementary symmetric
function is defined as follows:

Ek(x) = Ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

∏k

j=1
xij
, k = 1, . . . , n.

The dual form of the elementary symmetric function is defined by

E∗k(x) = E∗k(x1, . . . , xn) =
∏

1≤i1<...<ik≤n

∑k

j=1
xij
, k = 1, . . . , n.
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Definition 2 ([1, 2]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(1) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i]
for k = 1, 2, . . . , n − 1 and

∑n
i=1 xi =

∑n
i=1 yi; x is said to be weakly

submajorized by y (in symbols x ≺w y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for k =
1, 2, . . . , n, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements
of x and y in a descending order.

(2) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n. Let Ω ⊂ Rn, ϕ: Ω → R is said
to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said to be decreasing if
and only if −ϕ is increasing.

(3) let Ω ⊂ Rn, ϕ: Ω → R be said to be a Schur-convex function on Ω if x ≺ y
on Ω implies ϕ (x) ≤ ϕ (y) . ϕ is said to be the Schur-concave function on
Ω if and only if −ϕ is Schur-convex function.

2. Lemmas

To prove the main results stated in Sections 3 and 4, we need the following
lemmas.

Lemma 1 ([1]). Let x ∈ Rn
+, y ∈ Rn and δ =

∑n
i=1(yi − xi). If x ≺w y, thenx,

δ

n
, . . . ,

δ

n︸ ︷︷ ︸
n

 ≺

y, 0, . . . , 0︸ ︷︷ ︸
n

 . (1)

Lemma 2 ([2]). Let x, y ∈ Rn. If x ≺w y, then

(x, xn+1) ≺ (y, yn+1) , (2)

where xn+1 = min {x1, · · · , xn, y1, · · · , yn} , yn+1 =
n+1∑
i=1

xi −
n∑

i=1

yi.

Lemma 3 ([1]). Let x,y ∈ Rn, and let I ⊂ R be an interval, g : I → R. Then

(1) x ≺ y if and only if

n∑
i=1

g(xi) ≤
n∑

i=1

g(yi) (3)

holds for all convex functions g;
(2) x ≺ y if and only if the reverse inequality of (3) holds for all concave

functions g.

Lemma 4 ([1]). Let I ⊂ R, g : I → B, ϕ : Bn → R, ψ (x) = ϕ (g (x1) , · · · , g (xn)).
If g is concave on I, ϕ is increasing and Schur-concave on Bn, then ψ is Schur-
concave on In.

Lemma 5 ([1, 2]). Let x = (x1, . . . , xn) ∈ Rn
+, 1 ≤ k ≤ n, then the elementary

symmetric function Ek(x) and its dual version E∗k(x) are increasing and Schur-
concave on Rn

+.
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3. Main results and their proofs

Our main results are given in the Theorem 1 and Corollary 2 below.

Theorem 1. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2 and

∏n
i=1 xi ≥ 1. Then1, . . . , 1︸ ︷︷ ︸

n

 ≺w (x1, . . . , xn) . (4)

Proof. We show the validity of majorization relation (4) by induction.
When n = 2, without loss of generality, we may assume that x1 ≥ x2. From

x1, x2 > 0 and x1x2 ≥ 1, it follows that x1 ≥ 1 and x1 + x2 ≥ 2
√
x1x2 ≥ 2 = 1 + 1.

This means that (1, 1) ≺w (x1, x2).
We now assume that (4) holds true for n = k. In the following, we need to prove

that (4) holds true for n = k + 1.
Let x = (x1, . . . , xk+1) ∈ Rk+1

++ and
∏k+1

i=1 xi ≥ 1. Without loss of generality, we
may assume that x1 ≥ x2 ≥ . . . ≥ xk+1 > 0.

If xk+1 > 1, then xi > 1 for i = 1, . . . , k + 1. It is clear that1, . . . , 1︸ ︷︷ ︸
k+1

 ≺w (x1, . . . , xk+1) .

If xk+1 ≤ 1, then x1 ≥ x2 ≥ . . . ≥ xk−1 ≥ xkxk+1. By using the above
assumption, we have 1, . . . , 1︸ ︷︷ ︸

k

 ≺w (x1, . . . , xk−1, xkxk+1) .

It follows that
t∑

i=1

xi ≥ t for t = 1, . . . k − 1

and
k−1∑
i=1

xi + xkxki+1 ≥ k.

Thus, we have
k∑

i=1

xi ≥
k−1∑
i=1

xi + xkxk+1 ≥ k

and
k+1∑
i=1

xi ≥ (k + 1) k+1
√
x1 . . . xk+1 ≥ k + 1.

This proves that (4) holds true for n = k + 1, hence the proof of Theorem 1 is
completed. �

Remark 1. As a direct consequence of Theorem 1, we obtain the following weak
majorization relations.
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Corollary 1. Let x1, x2, x3 be positive real numbers. Then

(1, 1, 1) ≺w

(
x2 + x3

x3 + x1
,
x3 + x1

x1 + x2
,
x1 + x2

x2 + x3

)
, (5)

(1, 1, 1) ≺w

(
x1√
x2x3

,
x2√
x3x1

,
x3√
x1x2

)
, (6)

(1, 1, 1) ≺w

(√
x2x3

x1
,

√
x3x1

x2
,

√
x1x2

x3

)
. (7)

Corollary 2. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2 and

∏n
i=1 xi ≥ 1. Then1, . . . , 1︸ ︷︷ ︸

n

, A− 1, . . . , A− 1︸ ︷︷ ︸
n

 ≺

x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
n

 , (8)

1, . . . , 1︸ ︷︷ ︸
n

, a

 ≺ (x1, . . . , xn, xn+1) , (9)

where A = 1
n

∑n
i=1 xi, a = min{x1, . . . , xn, 1}, xn+1 = n+ a−

∑n
i=1 xi.

Proof. By using Theorem 1, Lemma 1 and Lemma 2, the majorization relations (8)
and (9) follow respectively. �

4. Some Applications

In this section, we show that our results can be used to establish some new
inequalities for means.

As in [19], the power mean, the arithmetic mean and the geometric mean for
positive numbers x1, x2, . . . , xn are defined respectively by

Mα =

(
1
n

n∑
i=1

xα
i

)1/α

, A =
1
n

n∑
i=1

xi, G =

(
n∏

i=1

xi

)1/n

.

Theorem 2. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2 and

∏n
i=1 xi ≥ 1.

If α ≥ 1, then

Mα ≥
(

1 +
(

1
n

∑n

i=1
(xi − 1)

)α)1/α

. (10)

If α ≥ 1 and
∑n

i=1 xi ≤ n+ a, then

Mα ≥
(

1 +
aα − (n+ a−

∑n
i=1 xi)α

n

)1/α

, (11)

where a = min{x1, . . . , xn, 1}.
Furthermore, the inequalities (10) and (11) are reversed for 0 < α < 1.

Proof. When α ≥ 1, the function f(x) = xα is convex on (0,+∞).
By using Lemma 3, we deduce from (8) and (9) that

n∑
i=1

f(xi) + nf(0) ≥ nf(1) + nf(A− 1) (12)
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and
n∑

i=1

f(xi) + f

(
n+ a−

n∑
i=1

xi

)
≥ nf(1) + f(a). (13)

After a simple calculation, the inequalities (12) and (13) can be transformed to
the inequalities (10) and (11) respectively.

When 0 < α < 1, the function f(x) = xα is concave on (0,+∞). By using
Lemma 3 and the majorization relations (8) and (9), we obtain the reverse inequal-
ities of (10) and (11). Theorem 2 is proved. �

Corollary 3. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2.

If α ≥ 1, then
Mα ≥ (Gα + (A−G)α)1/α ≥ G. (14)

If α ≥ 1 and b ≥ n(A−G), then

Mα ≥
(
Gα +

bα − (b− n(A−G))α

n

)1/α

≥ G, (15)

where b = min{x1, . . . , xn, G}.

Proof. For positive numbers x1/G, x2/G, . . . , xn/G, we have

n∏
i=1

xi

G
= 1,

1
n

n∑
i=1

xi

G
=
A

G
,

(
1
n

n∑
i=1

(xi

G

)α
) 1

α

=
Mα

G
,

min
{
x1

G
, . . . ,

xn

G
, 1
}

=
b

G
.

In (10) and (11), replacing x1, x2 . . . , xn by x1/G, x2/G, . . . , xn/G, respec-
tively, we obtain

Mα

G
≥
(

1 +
(
A

G
− 1
)α)1/α

(16)

and
Mα

G
≥

(
1 +

(
b
G

)α − (n+ b
G −

∑n
i=1

xi

G

)α
n

)1/α

. (17)

After a simple calculation, the inequalities (16) and (17) reduce to the inequalities
(14) and (15) respectively. �

Theorem 3. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2, 0 < α ≤ 1 and

∏n
i=1 xi ≥ 1.

If 1 ≤ k ≤ n, then

Ek(xα) ≤
k∑

i=0

Ci
nC

k−i
n (A− 1)(k−i)α. (18)

If n+ 1 ≤ k ≤ 2n, then
n∏

l=k−n

(E∗l (xα))Ck−l
n ≤

n∏
l=k−n

(l + (k − l)(A− 1)α)Cl
nCk−l

n . (19)

Proof. By Lemma 4 and Lemma 5, we conclude that Ek(xα) and E∗k(xα) are Schur-
concave on Rn

++. Using the majorization relation (8) with the definition of Schur-
concavity leads us to the desired inequalities (18) and (19). �
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Corollary 4. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2 and 0 < α ≤ 1.

If 1 ≤ k ≤ n, then

Ek(xα) ≤
k∑

i=0

Ci
nC

k−i
n G(i−k+Ck

n)α (A−G)(k−i)α
. (20)

If n+ 1 ≤ k ≤ 2n, then
n∏

l=k−n

(E∗l (xα))Ck−l
n ≤

n∏
l=k−n

(lGα + (k − l)(A−G)α)Cl
nCk−l

n . (21)

Proof. Using a substitution: x1 7−→ x1/G, x2 7−→ x2/G, . . . , xn 7−→ xn/G in
(18) and (19), respectively, we obtain

∑
1≤i1<...<ik≤n

∏k

j=1

(xij

G

)α

≤
k∑

i=0

Ci
nC

k−i
n

(
A

G
− 1
)(k−i)α

(22)

and
n∏

l=k−n

(
E∗l

(
xα

Gα

))Ck−l
n

≤
n∏

l=k−n

(
l + (k − l)

(
A−G

G

)α)Cl
nCk−l

n

. (23)

By a simple calculation, the inequalities (22) and (23) can be simplified to the
inequalities (20) and (21) respectively. �

Theorem 4. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2,

∏n
i=1 xi ≥ 1 and

∑n
i=1 xi ≤ n+a.

If 1 ≤ k ≤ n and 0 < α ≤ 1, then

Ek(xα) +

(
n+ a−

n∑
i=1

xi

)α

Ek−1(xα) ≤ Ck
n + Ck−1

n aα (24)

and

E∗k(xα)
∏

1≤i1<...<ik≤n

(n+ a−
n∑

i=1

xi

)α

+
k−1∑
j=1

xα
ij

 ≤ kCk
n (aα + k − 1)Ck−1

n ,

(25)

where a = min{x1, . . . , xn, 1}.

Proof. From Lemma 4 and Lemma 5, it is easy to find that Ek(xα) and E∗k(xα) are
Schur-concave on Rn

++. Using the majorization relation (9) with the definition of
Schur-concavity, inequalities (24) and (25) follow immediately. �

Corollary 5. Let x = (x1, . . . , xn) ∈ Rn
++, n ≥ 2 and b ≥ n(A−G).

If 1 ≤ k ≤ n and 0 < α ≤ 1, then

Ek(xα) + (b− n(A−G))αEk−1(xα) ≤ Ck
nG

kα + Ck−1
n bαG(k−1)α, (26)

and

E∗k(xα)
∏

1≤i1<...<ik≤n

(b− n(A−G))α +
k−1∑
j=1

xα
ij

 ≤ kCk
nGαCk

n (bα + (k − 1)Gα)Ck−1
n ,

(27)

where b = min{x1, . . . , xn, G}.
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Proof. Using a substitution: x1 7−→ x1/G, x2 7−→ x2/G, . . . , xn 7−→ xn/G in
(24) and (25), respectively, it follows that

Ek

(( x
G

)α)
+

 b

G
+ n−

n∑
j=1

xj

G

α

Ek−1

(( x
G

)α)
≤ Ck

n + Ck−1
n

(
b

G

)α

(28)

and

E∗k

(( x
G

)α) ∏
1≤i1<...<ik≤n

( b

G
+ n−

n∑
i=1

xi

G

)α

+
k−1∑
j=1

(xij

G

)α


≤ kCk

n

((
b

G

)α

+ k − 1
)Ck−1

n

, (29)

which leads to the desired inequalities (26) and (27). �

Remark 2. Theorems 2,3,4 and their corollaries enable us to obtain a large number
of inequalities by assigning appropriate values to the parameters α, n and k. For
example, if we take n = 3, k = 2 in (20) and take n = 3, k = 5 in (21), respectively,
we get the following interesting inequalities:

(xα
1x

α
2 + xα

2 x
α
3 + xα

3 x
α
1 ) /3 ≤ Gα(A−G)2α + 3G2α(A−G)α +G3α, (30)

(xα
1 + xα

2 + xα
3 ) 3

√
(xα

1 + xα
2 ) (xα

2 + xα
3 ) (xα

3 + xα
1 )

≤ (2Gα + 3(A−G)α) (3Gα + 2(A−G)α) , (31)

where xi > 0 (i = 1, 2, 3) and 0 < α ≤ 1.
In particular, putting α = 1 in (30) and (31), respectively, gives

(x1x2 + x2x3 + x3x1) /3 ≤ G(A2 +AG−G2), (32)

(x1 + x2 + x3) 3
√

(x1 + x2) (x2 + x3) (x3 + x1) ≤ (3A−G)(G+ 2A). (33)
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