ON TWO- AND FOUR-PARAMETER FAMILIES
ALFRED WITKOWSKI

ABSTRACT. We investigate monotonicity and convexity properties of the two-parameter

function of the form
f(a:p, yp) ) 1/(p—q)
f(xe,y9) '

Hy(p,q;x,y) =(

1. INTRODUCTION

Let f:R%? — Ry be a symmetric and positively homogeneous function (i.e. for A > 0
f(Az, Ay) = \f(x,y)), satisfying f(1,1) = 1. For real p, ¢ we define the function

f(:l:.p7 yp> 1/(p—q)
(f(xq, yq>) 7

exp( log f(a?,4%)) p=4q#0,

VTY p=q=0.

We call H the two-parameter family generated by f. In 2005 Zhen-Hang Yang published
series of preprints (|7, 8, 9, 10, 11]) investigating monotonicity and logarithmic convexity
of H;. He showed that the sign of (log f)., is responsible for monotonicity of H; in p and
¢, while (z — y)(z(log f)4y). decides the logarithmic convexity along some horizontal and
vertical half-lines in the space (p, q).
This note extends the results of Yang, simplifies proofs and gives other conditions equiv-
alent to monotonicity and convexity of H;. As a corollary we obtain some inequalities
between Stolarsky, Heronian and Gini means.
We also investigate four-parameter families being iteration of the procedure (1.1).

While Yang uses straightforward differentiations to investigate convexity and mono-
tonicity properties, we chose a different approach. Two functions will play an important

-~ ~

role: f(t) = f(t,1) and f(t) = log f(exp(t)). Due to homogeneity of f the identity

(1.1) He(p,q;x,y) =

(1.2) ft) = tf(1/1)

holds for all positive ¢. Note that the formula yf(z/y) = f(x,y) gives 1-1 correspondence
between homogeneous functions f and functions satisfying (1.2).
The function f is important due to the following identity:

~ -~

f(plog(z/y)) — f(qlog(x/y))
p—q

(1.3) Hs(p,q;x,y) = yexp

which allows to express the properties of Hy by those of ]?
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Replacing ¢ by €' in (1.2) and differentiating we obtain the formulas

~

(1.4) fty=t+f(-t)
(1.5) Flty—1/2=1/2—f'(-t)
(1.6) Frt) = F"(-t)
(1.7) Frt)y=—F"(=t)

The identities below follow immediately from definition
(1.8) Hy(p, —p;z,y) = /2y,
(19) Hf<p7Q;'xa7ya) :H?(ap7 GQ;xvy)u
(110 Hilopmgny) Hi(p,g;2,y)

The last formula can be also written as
(1.11) log Hy(—p, —q; x,y) = log(zy) —log Hy(p, ¢; x,y)
and generalized as follows:

Lemma 1.1. Forp+q#0

1 1
[Hf(p,q;x,y)} Pre {Hf(\p], \q[;x,y)} [p[+1dl
vy NG

Proof. For p,q > 0 the lemma is obvious, case p, ¢ < 0 follows from identity (1.11), so let
us assume that ¢ < 0 < p. We have

f(x’”,yp))”(”) _ ( [, ) )1”“) _
ft,y)  \(wy)rf(aldl, yla) N

L (f<x|p yp|))1/(|pl+QI)

= (xy) [p[+]al W

Ipl+la|=(p+q)

= (x 2(|pl+lal) ‘T Ipp\ﬁlﬂ,
(zy) (Hs(Ipl, lals 2, y))

Help,q;z,y) = (

O

2. MONOTONICITY
In this section we will discuss the monotonigity2 of Hy. Taking f(z,y) = zTer we see
that although f is increasing, H(2,1;x,y) = % is not, so we need something more to

grant monotonicity in x and y. But this property is sufficient for H to be a mean:

Theorem 2.1. The following conditions are equivalent:
(a) f is increasing in both variables.
(b) f:is increasing.
(c) f is increasing.
(d) for all p,q Hy is a mean, i.e. for all x <y

v < Hsilp, gz, y) <y.
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Proof. The equivalence (a) < (b) < (c) is obvious.
(a) = (d): due to symmetry we can assume that p > ¢q. We have

o — @yl faPyP) ety gty

— < < = P
f@t,y7) f@t,y7) S, y9)
(d) = (b) Let z < y.
If 1 < x then y = 2P for some p > 1 and this yields
f(ya 1) _ f(xp’ 1) _ p—1 .
1)~ f@D) =H; (p,Lz,1) > 1,
similarly if x < 1 then y = 2P for some p < 1 and the same inequality holds. 0

The two theorems that follow state the necessary and sufficient conditions for H to be
monotone in p,q and x,y respectively.
Theorem 2.2. The following conditions are equivalent
(a) (The Holder inequality). If p,q > 1 and i + é =1, then for all x1,22,y1,y2 >0

f(z1m2, y172) < fl/p(l‘i yf)fl/q@ga Ys)
(b) The function
G(u,v) = log f(e", €")
1S CONVEL.
(c) For every x,y > 0 the function

T(p) = log f(a,y")

IS CONver.
(d) f is multipicatively conver, i.e. for every 0 < A <1

Fry ™) < [F] [Fw]

(e) f is convex
(f) The function H(p, q; x,y) increases in p and q.

Note: the result of Yang states that if (log f),, > 0 then 2.2(f) holds. In fact, the
Yang’s condition is equivalent to 7" (p) > 0.

Proof.
(a)(b) Set exp(u;) =z}, exp(vi) = ;.
(d)<(e) obvious.
(e)<(f) h is convex (concave) if and only if the divided difference function
increasing (decreasing) in p and ¢ [12]. By (1.3)

h(p)—h(q)
P—q

is

~ ~

s 55.0) sy ot L) bt

hence the assertion follows.
(b)=(c)
T(p) = G(plogz,plogy).
(c)<(e) follows from the identity

~

T(p) = plogy +log f((x/y)", 1) = plogy + f(plog(z/y))
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(4)=(a)
Forwn, ) =y f (/)" (/)"

<y f7 (@ /y0) FUP (25 /y3) = Pt ) £ (a5, )
O

A homogeneous positive symmetric function cannot decrease in it’s whole domain be-
cause it satisfies the identity f(z,x) = xf(1,1). Thus if it is monotone then it has to
increase.

Theorem 2.3. For every p,q the function Hs(p, q;x,y) is increasing in x and y if and
only if the function tf'(t) is increasing .

Proof. Due to homogeneity and symmetry of H; in x and y if is enough to prove the
theorem in case y = 1.

The monotonicity of H(p, ¢;z, 1) is the same as that of log H(p, ¢; exp(x), 1). Differen-
tiating we obtain by (1.3)

dlog Hy(p, gsexp(t),1)  pf'(pt) —af '(qt)

2.1 =
(2.1) 7 p—
tf ' (pt) — gt f ' (qt
(2.2) _ ptf'(pt) —atf'(at)
pt — qt
The divided difference (2.2) preserves sign if and only if the function ¢f(¢) is monotone
and the proof is complete. O

If f'(t) is nonnegative and pg < 0 then the numerator and the denominator of (2.1)
are of the same sign, so we have

Corollary 2.4. If f is increasing and pg < 0 then H(p,q;x,y) is increasing in  and y.
Note the following necessary condition for monotonicity in x, y:

Theorem 2.5. If for every p,q Hg(p,q;x,y) is increasing in x and y then f(x,y) =
max(x,y) or lim, o f(t) = 0.

Proof. The limit of fat 0 exists because of monotonicity. If it is positive then for positive

pPF#q

f(aﬁp) /(p—q)
lim Hs(p,q;x,1) = lim | = =1=Hsp,q1,1
lim M (p, ¢; 2, 1) = lim (f(a:q)> 1(pg; 1,1)

and this is possible only if fis constant on (0, 1) which corresponds to f = max. O

We conclude this section with some kind of Chebyhshev’s inequality:

Corollary 2.6. Iff 18 convex then the inequality

(2.3) f(@i,y) f(a,y2) < (resp. 2) f(z122,y1y2)
holds if and only if
(2.4) (21 —y1) (w2 — y2) > (resp. <)0.

For concave f the inequality in (2.3) reverses.



ON TWO- AND FOUR-PARAMETER FAMILIES 5

Proof. Let a = x1/y1,b = x2/y2. Then (x; —y1)(x2 —y2) > (<)0 holds if and only if there
exists p > (<)0 such that b = a?. By Theorem 2.2

fla,1) =Hs(0,15a,1) < (>)He(p,p+ 1;a,1) =

and this is equivalent to (2.3). O

3. LOGARITHMIC CONVEXITY

In this section we will cover the log-convexity of H; in variables p and ¢. The identity
(1.11) shows that concavity of log H; at some point implies convexity at its antipode.
Milan Merkle [3] discovered the following characterization of convexity of divided differ-
ence functions:

Theorem 3.1. Let f : I — R be differentiable and

f(p) — f(q)
F(p,q) = P—q P7
f'(p) p=q.

. Then the following conditions are equivalent:

(a) f"is conver on I,

(b) f'(P3%) < F(p,q) for allp.q € I,
(©) Flp.q) < f'(p) + f'(a)
(

d) F is convex on 12
(e) F is Schur-conver on I*.

forallp,qel,

The egivalence remains valid if the word ’conver’ is replaced with ’concave’ and inequalities
in (b) and (c) are reversed.

Suppose now that I C Ry and log H; is convex in p,q for all z,y > 0. Using the
representation (1.3) and Theorem 3.1 we see that dﬂ%gp(x/y)) = log(x/y)f’(p log(z/y))

must be convex on I. Because log(z/y) takes arbitrary values, this is possible only if J?’
is convex on R, and concave otherwise.

On the other hand (1.5) shows that convexity (concavity) of f on (0,00) implies its
concavity (convexity) on (—oo,0). Hence we have

Theorem 3.2. The following conditions are equivalent:

(a) For allp,q >0 and all x,y >0 logH; is convexr (concave) in p and q.

(b) For all p,q > 0 and all x,y > 0 logHy is Schur-conver (Schur-concave) in p
and q.

(c) f'(t) is convex (concave) for t > 0.

(d) For all p,q <0 and all x,y >0 logHy is concave (convez) in p and q.

(e) For all p,qg < 0 and all x,y > 0 logHy is Schur-concave (Schur-convex) in p
and q.

(f) f'(t) is concave (convex) for t < 0.

Before we investigate how H; behaves along some straight lines in (p, ¢) we formulate
an useful lemma:
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Lemma 3.3. Let f : R — R be an even function. Then f is strictly increasing in (0, 00)
if and only if for all a,b

(3.1) sgn w =sgn(a +b)
and strictly decreasing if and only if
(3.2) sgn w = —sgn(a+b)
Proof.
f(aiié”(b) _ (a+b)f(|a|3:£2(lb|) ~(a+b) |52| - Ibl;I (f|c|t(|l)’ - f;(||b|)
and the lemma follows because sgn 4=1% = 1. O

Consider first the covexity on lines passing through the origin.
Theorem 3.4. Let ]?’(t) be concave (convex) for t > 0. Then for p+q >0
h(t) = log H¢(tp, tq; =, y)

is concave (convex) for t > 0 and convex (concave) for t < 0. The convezity reverses if
p+q<0.

Proof. By Lemma 1.1 we have

Ip| +1q| — (p+q)
log /2y + ———
Ip| + |q| Ip| + gl |+! |

and the theorem follows from Theorem 3.2. O

log Hy(tp, tq; x,y) = log Hs(t|p|, tlql; =, y)

A concave function that is bounded in +o00 must be increasing. The same applies to
a convex function bounded in —oo. If H; is a mean then obviously h is bounded, so we
have

Corollary 3.5. If f’(t) is concave fort > 0 and f(t) is increasing then h(t) is increasing.

Consider now lines that are parallel to the diagonal. The theorem that follows gener-
alizes results obtained by Horst Alzer |1, 2] and the author [13].

Theorem 3.6. Let f'(t) be concave (convex) for t > 0. Then

Sn(t) = Hy(t +h,t;z,y)
is log-concave (log-convez) for t > —h/2 and log-convex (log-concave) for t < —h/2.
Proof. By (1.3) we have

\ o T ) log(aefy)) — T (tog(a/y))
(log 50)"(t) = dog™ (/Y Vo /y) — t1oa(a/y)

and the assertion follows from (1.6), (1.7) and Lemma 3.3. O

Applying the same reasoning as before we obtain
Corollary 3.7. If f’(t) is concave fort > 0 and f(t) is increasing then Sy(t) is increasing.

Finally let us consider lines perpendicular to the diagonal:
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Theorem 3.8. Let ]/“\,(t) be concave (convez) fort > 0. For a > 0 the even function
Vo(r) =Hsla+r,a—1;2,9)

is decreasing (increasing) for r > 0. The monotonicity reverses if a < 0.

Proof. In the proof we shall assume that ]?’(t) is concave. Suppose that a > 0. For
—a < 1 < a w(r) is concave by Theorem 3.2 hence is decreasing if » > 0 due to
symmetry. For r > a we apply Lemma 1.1 and obtain

va(r) =

Taking the logarithm we get

He(r +a,r —a;z,y) a/r

JTY

IOg Ua(r) _ alog SZCL(T B Cl) — lOg SQ(JL(_G)’
r

where S is defined in Theorem 3.6. log Sa, (%) is concave, so its divided difference decreases.
O

4. COMPARISON OF Hy AND H,

It is natural to ask whether H; and H, can be compared. The identity (1.11) shows
that the inequality H; < H, reverses when p, g change signs. The next theorem establises
sufficient and necessary conditions for the ineqality to hold for p + ¢ > 0.

Theorem 4.1. The conditions are equivalent

(a) The inequality

Hi(p, a2, y) < Hy(p, a2, y)
holds for all x,y > 0 and all p+q > 0.

(b) (f/g)( ) increases for 0 <t < 1.

(c) (f/§)(t) decreases fort > 1.

(d) f(t) —g(t) increases fort < 0.

(e) f(t) —G(t) decreases fort < 0.
Proof. The equivalence (b)<(c) follows from (1.2). Obviously (b) and (d) are equivalent
and so are (c¢) and (d). For 0 < p < ¢ and y = 1 the inequality (a) is equivalent to
(f/§)(z%) < (f/)(«?), which shows that (a) implies (b) and (c). This also shows that
(b) and (c¢) imply (a) in case of positive parameters p,q. To complete the proof we apply
the Lemma 1.1 and obtain

1 1
{Hf(p,q;x,yq pre [Hf(\p!, \QI;x,y)} P+l
Ho(p, 7, y) Hy(lpl, lal; 2, y) ’
hence the inequality (a) holds for p + ¢ > 0. O

e

Note: the condition (c) is denoted in [4] by f < § and called strong inequality, so our
theorem can be restated as follows

Theorem 4.2. The inequality
Hi(p, a3z, y) < Hog(ps g5 2, y)
holds for all x,y > 0 and all p+ q > 0 if and only z'ff <g.

For real a the function f,(z,y) = f(z%,y*)"/* generates H;, (p, ¢; z,y) = Hs(ap, ag; x, y)
so the Corollary 3.5 yields
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Corollary 4.3. If J/C\/(t) is concave for t > 0 and J/C\(t) is increasing then for a < 3 the
strong inequality fo = fg holds.

5. FOUR-PARAMETER FAMILY

If f is positively homogeneous then so are H; for every (r,s) and we can create a
four-parameter family in the same way:

(5.1) Fi(p,a;7,82,Y) = Hatp(r5) (05 G 2, ).

Now we can easily apply the results from previous chapters, because we have simple
formula

~ ~

52) Myt s)(t) = L) =0

r—s
Theorem 5.1. All members of the four-parameter family are means if and only if tf’(t)
1S Increasing.
Proof. By Theorem 2.1 all F; are means if and only if all H; increase in z and y, and
this is equivalent to monotonicity of ¢f ’(¢) by Theorem 2.3. OJ

Theorem 5.2. F; increases (decreases) in p and q if and only if r +s > 0 and th”(t)
increases (decreases) for t >0 orr+ s <0 and t*f " (t) decreases (increases) for t > 0.

Proof. By 1.6 the function tzf”(t) is even. Applying Theorem 2.2 it is enough to check
convexity of Hs(r,s)(t).

(53) Hm)”@) — ’I“QL]?//(’I“t) - 52f//(3t) _ 1T2t2f//(7“{;) — S2t2f//(st)

r—S8 t rt — st

and by Lemma 3.3 the convexity depends on monotonicity of thA”(t) and the sign of
st—:rt =S+ O

Theorem 5.3. If r + s > 0 the following conditions are equivalent:
(a) For allp,q >0 and all z,y >0 log F; is convex (concave) in p and q.
(b) Forallp,q >0 and all z,y >0 logFy is Schur-conver (Schur-concave) in p and
q.
(c) B3f7(t) increases (decreases) for t > 0.
(d) For all p,q <0 and all x,y >0 logF; is concave (convex) in p and q.
(e) Forallp,q <0 andallz,y >0 logFy is Schur-concave (Schur-convex) in p and

q.
(f) 3f () decreases (increases) for t < 0.
If r +s < 0 then the conditions (¢) and (f) reverse.

Proof. Assume r + s > 0 and ¢t > 0. By Theorem 3.2 it is enough to check convexity of

—

Hy(r,s) . We have

o 7”3]?”/(7“75) i 83]?”/(815) 1 T,StBJ/c\///(Tt) _ 83753]?/”(875)
t = = —
Hyrs) (1 - ; p—
and again the theorem follows from Lemma 3.3. 0

PRy
Theorem 5.4. The four-parameter means Fy increase in x,y if and only if t [tf ’} n-
creases.
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—_—

Proof. By Theorem 2.3 F; increases in z,y if and only if tH¢(r, s) (¢) increase. Differen-
tiating we get

7‘]?’(7‘25) + rztf”(’rt) — Sf’(st) + SQt]?”(st)
r—s

) )] =

and the theorem follows. O

Till the end of this section we shall assume that f generates four-parameter family of
means. Let us have a closer look at convexity of S-means defined in Theorem 3.6. In our
case
Hy(r, s; 2ttt yt+h)

Hy(r, s;at,yt)

From Theorems 3.6 and 5.3 we know that if r+s > 0 and ¢3f "(t) decreases (increases)
for t > 0 then the function S;(¢) is log-concave (log-convex) for ¢ > —1/2 and log-convex
(log-concave) otherwise. In this section we investigate the function

r S
V(t)=1logSi | t, ——, ——; :
() 0og 1<72t+172t+17x7y)
A simple calculation shows that the function V' is symmetric with respect to the line

t=-1/2.
The main result we aim to prove here is the following

Si(tyr, sy, y) = Fp(t+ 1, tr, s52,y) =

—

Theorem 5.5. If Hs(r,s)'(t) is concave (convex) for t > 0 then V(t) increases (de-
creases) and is concave (convez) for t > —1/2.

For t > —1/2let t = 5-5. The function ¢ — ¢ maps the half-line (—1/2, co) onto itself,

is decreasing, ¢ = ¢ and (2t + 1)(2f+ 1) = 1.
The function S; satisfies the identity

(5.4) Si(tyr,s;2,y) = (xy) ST (555 (2t + 1)r, (2t + 1)s)

To show it, let =2t +1 and v = —t/(2t + 1). Then —t = pv, and t + 1 = p(v + 1).
Using identities (1.8), (1.9), (1.10), we obtain
Hyrssat ™) gl

Hf(r7s;xtayt) a (xy)tHf(ras;xiayit)

oy, syt et

= (o)

f(T, ST, Y )
— (ay) " Sulvir, 510, y)

= (zy) 'SP <(2;f1); (2t + D)r, (2t + 1)r; z, y) :

Si(t;r, s;x,y) =

The identity (5.4) can be written in the form

tQ (4. _ el (7. T S
(5.5) (xy) Si(t;r,s) = S} <t, 1 T 1) :

Now we can prove Theorem 5.5:

Proof. Let —1/2 < u < v. Then —1/2 < ¥ < u and we can write T as a convex

combination of —1/2 and @
12a-25 | 20+1

22w+t T awma &

U=
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The log-concavity of S; implies the inequality
2u-—20 25+1
S (=125, 5) S (@ v, 5) < S1(Ts 7, 5)
and since S1(—1/2;7,s,x,y) = /Ty we have

A v L
(zy) 251 ST (W, 5) < (wy) 7+ S Ty, 8)

and applying (5.5) we obtain

(5.6) 51 (“; (2u:- 1)’ (2ui 1)) < S (”; (211:— 1) (zvi 1)> '

so the monotonicity is proved (obviously if S; is log-convex the inequalities are reversed).
To show thet V' is concave it is enough to prove that for fixed v > —1/2 the function

u—v

is decreasing. Let

_log Si(u;r, s;2,y) — log Si(v;r, 552, y)

u—v

Since log S; is concave n is decreasing and applying once more (5.5) we have

o 1 Vi(u) V(v)
(@ =—logley) + o= ' ) @+ )
(20 + 1)V (u) — (2u + 1)V (v)

V—Uu

Vi) = V(u)

= —log(zy) +

= —log(zy) + 2V (v) — (2v + 1)
= —log(xy) + 2V (v) — (2v + 1)m(u)
This means that n and m are of the same monotonicity and the proof is complete. 0
6. APPLICATIONS

6.1. Geometric mean. One can easily check that if f(x,y) = /2y = G(z,y) then for
every p,q  Hs(p,¢; 2, y) = /2y

6.2. Arithmetic mean. Taking f(z,y) = A(z,y) = 5% we obtain Gini means

($q+yq 1/(¢—p) q%p
(6.1) Gini(p, g;z,y) = § \* U |
(xplogx + P logy)
exp qg=r.
TP + yp
We have
2
-~ 1
(6.2) A(2t) = log Ty + log cosht
(6.3) 2A'(2t) = 1+ tanht > 0
~ 1
6.4 4A"(2t) = 0
(6.4) cosh? t
~ inht
(6.5) 8A"(2t) = —2
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so by (6.3) and Theorem 2.1
Property of Gini means 1. For every p,q Gini(p, ¢; x,y) are means.
Combining (6.4) and Theorem 2.3 we see that

Property of Gini means 2. Gini(p, ¢; z,y) increases in p and q.

-~

By (6.5) A’(t) is concave for t > 0 and convex for ¢ < 0 so Theorem 3.2 yields

Property of Gini means 3. Gini(p, q) is logarithmically concave in pg > 0 and loga-
rithmically convex for pg < 0.

As A(0,1) = 1/2, Theorem 2.5 implies that Gini means are not monotone in x,y for
p,q > 0. However, Corollary 2.4 shows that they are monotone if pg < 0.

The following result of Horst Alzer ([2]) is a consequence of Theorem 3.6:

Corollary 6.1. For fized x,y

2 4y
;ET‘ _'_ y’f‘

is increasing and log-concave for r > —1/2, and log-conver otherwise.

K(r;z,y) = Gini(r + 1,r;z,y) =

6.3. Logarithmic mean. The logarithmic mean f(x,y) = L(x,y) = ﬁ leads to
Stolarsky means
( 1/(q—p)
py! —af
i _ _ 0,
(qyp_mp) ap(q —p)(z —y) #

1 yp — P 1/p

e p(r —y) #0, ¢=0,
(6.6) E(p.q;z,y) = (plogy —logx (=)

o 2P\ 1/ (yP—a?
e=r (g [ )T — g ple —y) £ 0,

NET p=q=0,

E T =y.
In this case
~ 2t _q inh ¢
(6.7) L(2t) = log & =t + log =
~ 1 1 cosht 1
. 2’2 =2 (— - — | =1 — =
(6.8) (21) (1 —e 2 Qt) + sinht ¢ >0
~ 1 1
6.9 AL"(2t) = = — >0
(6.9) (2t) t2 ginh?t
~ sinh®t — 3 cosh t
6.10 SL"(2t) = =2
( ) (2t) 3 sinh® ¢

L increases, so by Theorem 2.1
Property of Stolarsky means 1. For every p,q FE(p,q; z;y) is a mean.
Theorem 2.2 combined with (6.9) shows

Property of Stolarsky means 2. F is increasing in p and gq.

e t—1
t

t
)

The function
hence so is tL'(t)

is increasing as the divided difference of the convex function e~

—— — 1, therefore
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Property of Stolarsky means 3. FE increases in x and y.
To investigate further properties of Stolarsky means we need the following

Lemma 6.2. The function
t3 cosht
h(t) =
®) sinh® ¢

increases from 0 to 1 on (—00,0) and decreases on (0, 00).

Proof. It is clear that h(0) = 1 and h(£o0) = 0, and since it is even all we have to do is
to show that it decreases for positive t. Direct diffrentiation leads to quite complicated
inequality, so let us make a little trick here: let

; sinh ¢

9(t) = ——5—
cosh/3¢

then

2 1
g'(t) =3 cosh?? ¢ + 3 cosh™/3¢,

4
g"(t) =5 sinh cosh /2 ¢ (1 — cosh™2¢)

so g is convex for ¢ > 0, therefore its divided difference ¢(t)/t increases and h is its cubed
reciprocal. ([l

From this Lemma and (6.10) we see that L ’(¢) is concave for ¢ > 0 and convex otherwise,
so by Theorem 3.2

Property of Stolarsky means 4. F is logarithmically concave in variables p, ¢ in the
quadrant p,q > 0 and logarithmically convex in p,q < 0

The following result of Horst Alzer ([1]) is a consequence of Theorem 3.6:

Corollary 6.3. For fized x,y

r+1 r+1

r T —y
r+1 ar—y"

is increasing and log-concave for r > —1/2, and log-convez otherwise.

J(riz,y) =E(r+1,r1y) =

Consider now some one-parameter families generated by classical means:

® DOweEr means

" T 1/
M) = (“31) = B2,

e Heronian means

7«+ + rN\ /7
RPN CE; £ -

e Identric means
[(T;I’, y) _ e—l/r (yyr/xa:T)l/(yT—xr) _ E(T, ra, y)’

e Stolarsky means

L) (

1 " _yT 1/r
——_— = E(r,0;x,y).
rlogx —logy
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They are all monotone in r and by Theorem 3.4 they are log-concave for » > 0 and
log-convex otherwise.

Classical result of Tung-Po Lin ([5]) states that L(x,y) < M(1/3;z,y). Let us refine
it:
Corollary 6.4.

L(z,y) < L2, ) IPPP(1/252,y) < M(1/3;2,y)
Proof. We have
L=BO1), M(1/3)=E(1/3,2/3), 1(1/2)=E(1/2,1/2).

As E(p,q) is log-concave in pg > 0 we have M(1/3) > L'/31?/3(1/2), and Theorem 3.8
implies that L < M (1/3) < I(1/2) O

6.4. Logarithmic mean once more. Consider now the four-parameter means gener-
ated by the logaritmic mean (in other words the two-parameter means generated by the
Stolarsky means E(r,s;x,y)). They are important, because they contain two-parameter
families generated by logarithmic, Heronian, arithmetic and centroidal means :

Fr(0,1;r, s52,y) = E(r, s;2,y),

° + (Ty)* + ys)l/ST

FL/2.3/2r5) = Nrsiay) = (St

Fr(1,2;7, s;2,y) = Gini(r, s; 2, y),

2%+ (zy)* + > ¥ + (2y) +y2r>l/5_r

Fr(0, ;7 s52,y) =T(r,s;x,y) = ( 5 + Y x4 yr

Stolarsky means increase in x and y, thus F, are means, but in general they are not
monotone (Gini means are not monotone).
Formula (6.9) combined with Theorem 5.2 shows that F;(p, ¢; r, s) increase in p, ¢ if r+s >
0
Lemma 6.2 and (6.10) show that t3L"(t) decreases for ¢ > 0, thus by Theorem 5.3 FJ,
is log-concave in the quadrant p,q > 0 if » +.5 > 0. Additionally by Theorem 3.6 the
function
E(r, s; 2t yt+)

E(r, s; 2t yt)
is log-concave in t for t > —1/2 and log-convex otherwise and in consequence increasing
in ¢t. This establishes inequalities

E(r,s) < N(r,s) < Gini(r,s) < T(r, s)

Frt+1,t;r,s;2,y) = St s;x,y) =

valid for r+s > 0 and x # y. Theorem 5.5 implies also stronger inequalities (see [14] and
references therein:

E(r,s) < N(r.2,s/2) < Gini(r/3,s/3) < T(r/5,s/5).

6.5. Product function. If fi,..., f, : R3 — R are positively homogeneous and sym-
metric, satisfy f;(1,1,) =1, aq,...,q, are positive and ay + - - - + «,, = 1, then

y) = H Ji (xaivyai)
=1
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has the same property. In particular if all f;’s are means then f is also a mean. Clearly

= Z filait)

so if f;’s generate means, monotone or log-convex two-parameter families, then so does
their product.
We give two examples here:

6.5.1. Heinz means. For 0 < o < 1/2 Heinz means are defined by
xayl—a +x1—aya

AO&(':E’ y) = 2

Both G and A generate two-parameter means that are increasing in p and ¢, log-concave
in p,q for p,q > 0, so the two-parameter means generated by A, have the same proper-
ties. Monotonicity in z, y is interesting, because Heinz means establish homotopy between
monotone (o = 1/2) and nonmonotone (a = 0) families. Let us check when they fail to

— G( a a) A (1,1—204’ y1—2a) )

—/
be monotone. By Theorem 2.3 we have to investigate when tA, (¢) is increasing:

] -4 (5-2)o ()

where u(t) = SRLOSIl - The function  attains its minimun M ~ —1.999679 at t ~
—1.1995, so the two-parameter families generated by A, are increasing in = and y for

a > 0.24996....
6.5.2. logarithmic analogue of Heinz means. Using the logaritmic instead of the arithmetic
mean we get

Lo(z,y) =

_ ml—a «

zy'” y
(1 —2a)(logy — logz)

-«
_G( a a) L (xl—Za’yl—Qa) — : _12a/ .’I?Syl_SdS.

Obviously, the two-parameter families admit the same properties as Stolarsky means.

6.6. Seiffert mean. The Seiffert mean

r—=y
P(z,y) =
(z.9) 2 arcsin %

was introduced in [6]. Peter Hést6 proved in [4] that M (1/2) < P < M(2/3) and that the
constants 1/2 and 2/3 cannot be improved, therefore, by Theorem 4.1 the inequalities

Gini(p/2,q/2;z,y) < Hp(p, ¢; =, y) < Gini(2p/3;2q/3; x,y)
hold for all p, ¢ such that p + ¢ > 0.

6.7. Nondiffrentiable case. Consider now two-parameter means generated by max(zx, y)
and min(z,y) (means, because max and min are monotone in both variables). We have

max(t) = max(¢,0), min(¢) = min(¢,0)

Elementary calculations lead to the following formulae:

ptq
\pI-Hq\
max

Humax(D, ¢; 2, y) = /7Y \/

Hlln
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and

p+q
\p\+\q|
mln
max(x,y)

Hounin (P, ¢; 7, y) = \/_\/

Applying our results we see that H ., increases and H,,;, decreases in p, ¢, both increase in
r,y (max is not differentiable, but tmax (¢) can be interpreted as [tmax(t)] (t) — max(t)).
Application of Theorem 3.2 is immaterial here, because in areas pg > 0 our functions are
constant in variables p, ¢, but Theorem 4.1 gives an interesting (in case pq<0) result:

Corollary 6.5. If for some f and all p,q Hs(p,q) are means, then for p+q >0
Huin(p: @2, y) < Hp(p, ¢32,Y) < Hinax (P, 45 7, Y).

Proof. By Theorem 2.1 f increases, max is constant in (0,1) and min is constatnt in
(1,00) thus by Theorem 4.1 required inequalities are valid. O

6.8. Application of comparison result. For w > 0 the weighted Heronian mean is
defined by

T+ wy/ry +y
he(z,y) = )
(z.9) 24w
Clearly hg = A and hoo = G. If w > v > 0, then
B (£) 24w

) 2t (i)

increases for 0 <t < 1, so h,, = h,. and by Theorem 4.1 we have

Hh, (0, @2, y) < Hp, (P, ¢; 2, Y)
for all z,y > 0 and p, ¢ such that p+ ¢ > 0.

7. OPEN QUESTIONS

If f is homogeneous of order 1, then so are Hy(p, q) for every p,q. We can iterate this
process bnulding a sequence of 2n-parameter functions Hy,. The geometric mean is a
fixed point of this operation. Examples above show, that means do not necessary generate
means. [t would be interesting to answer the following questions:

e Does there exist for every n a function f such that for all £ < n H;; are means.
If yes, do they converge in some sense to G7
e Does there exist a function f # G such that all Hy,, are means?

It seems that G(x®, y*)L(z'~%, y'~%) for a sufficiently close to 1 can give positive answer
to the first question.
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