THE TWO-SIDED INEQUALITIES FOR THE EULER-MASCHERONI CONSTANT

CHAO-PING CHEN

ABSTRACT. Let \(\gamma = 0.577215 \ldots \) be the Euler-Mascheroni constant, and let \(R_n = \sum_{k=1}^{n} \frac{1}{k} - \log (n + \frac{1}{2}) \). We prove that for all integers \(n \geq 1 \),
\[
\frac{7}{960(n+a)^4} \leq \gamma - R_n + \frac{1}{24(n+\frac{1}{2})^2} < \frac{7}{960(n+b)^4}
\]
with the best possible constants
\[
a = \frac{1}{\sqrt{\frac{960}{7} \left(\log (\frac{3}{2}) + \gamma - \frac{53}{54} \right)}} - 1 = 0.57027 \ldots \quad \text{and} \quad b = \frac{1}{2}.
\]
This refines the result of D. W. DeTemple, who proved that the two-sided inequalities hold with \(a = 1 \) and \(b = 0 \). Also, the monotonicity properties of functions related to the psi function are obtained.

1. INTRODUCTION

Euler’s constant \(\gamma = 0.57721566490153286 \ldots \) was first introduced by Leonhard Euler (1707-1783) in 1734 as
\[
\gamma = \lim_{n \to \infty} D_n, \quad \text{where} \quad D_n = \sum_{k=1}^{n} \frac{1}{k} - \log n.
\]
It is also known as the Euler-Mascheroni constant. According to Glaisher [11], the use of the symbol \(\gamma \) is probably due to the geometer Lorenzo Mascheroni (1750-1800) who used it in 1790 while Euler used the letter C. The constant \(\gamma \) is deeply related to the gamma function \(\Gamma(x) \) thanks to the Weierstrass formula
\[
\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{p=1}^{\infty} \left(1 + \frac{x}{p} \right) e^{-x/p}.
\]
The Euler-Mascheroni constant plays an important role in Analysis (Gamma function, Bessel functions, exponential-integral, ...) and occurs frequently in Number Theory (order of magnitude of arithmetical functions for instance [12]).

Direct use of formula (1) to compute the Euler-Mascheroni constant is of poor interest since the convergence is very slow. The Euler-Maclaurin summation can be used to have a complete asymptotic expansion of the harmonic numbers \(H_n = \)
\[\sum_{k=1}^{n} \frac{1}{k}, \quad H_n - \log n = \gamma + \frac{1}{2n} - \sum_{k=1}^{\infty} \frac{B_{2k}}{2k} \frac{1}{n^{2k}}, \]

where the \(B_{2k} \) are the Bernoulli numbers defined by

\[\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} t^k. \quad (2) \]

First four Bernoulli numbers with even indices are

\[B_2 = \frac{1}{6}, \quad B_4 = -\frac{1}{30}, \quad B_6 = \frac{1}{42}, \quad B_8 = -\frac{1}{30}, \quad (3) \]

and then

\[\gamma = H_n - \log n - \frac{1}{2n} - \frac{1}{12n^2} - \frac{1}{120n^4} + \frac{1}{252n^6} - \frac{1}{240n^8} + \ldots. \]

Several bounds for \(D_n - \gamma \) have been given in the literature. We recall some of them:

\[\frac{1}{2(n+1)} < D_n - \gamma < \frac{1}{2(n-1)} \quad \text{for} \quad n \geq 2 \quad (18); \]
\[\frac{1}{2(n+1)} < D_n - \gamma < \frac{1}{2n} \quad \text{for} \quad n \geq 1 \quad (15, 21); \]
\[\frac{1}{n} - \gamma \leq D_n - \gamma < \frac{1}{2n} \quad \text{for} \quad n \geq 1 \quad (4); \]
\[\frac{1}{2n + \frac{2}{3}} < D_n - \gamma < \frac{1}{2n + \frac{1}{3}} \quad \text{for} \quad n \geq 1 \quad (19, 20); \]
\[\frac{1}{2n + \frac{2\gamma - 1}{1-\gamma}} \leq D_n - \gamma < \frac{1}{2n + \frac{1}{3}} \quad \text{for} \quad n \geq 1 \quad (3, 6, 19, 20). \]

See also [16, 17].

The convergence of the sequence \(D_n \) to \(\gamma \) is very slow. In 1993, D. W. DeTemple [9] studied a modified sequence which converges faster and proved

\[\frac{1}{24(n+1)^2} < R_n - \gamma < \frac{1}{24n^2}, \quad (4) \]
\[\frac{7}{960(n+1)^4} < \gamma - R_n + \frac{1}{24(n+\frac{1}{2})^2} < \frac{7}{960n^4}, \quad (5) \]

where

\[R_n = \sum_{k=1}^{n} \frac{1}{k} - \log \left(n + \frac{1}{2} \right). \]

Now let

\[H(n) = n^2(R_n - \gamma), \quad n \geq 1. \]

Since

\[\psi(n+1) = -\gamma + \sum_{k=1}^{n} \frac{1}{k}, \]

where \(\psi = \Gamma'/\Gamma \) is the psi function, we see that

\[H(n) = (R_n - \gamma)n^2 = \left[\psi(n+1) - \log \left(n + \frac{1}{2} \right) \right] n^2. \]
Some computer experiments led M. Vuorinen to conjecture that \(H(n) \) increases on the interval \([1, \infty)\) from \(H(1) = -\gamma + 1 - \log(3/2) = 0.0173 \ldots \) to \(1/24 = 0.0416 \ldots \). E. A. Karatsuba [13] proved that for all integers \(n \geq 1 \), \(H(n) < H(n+1) \), by clever use of Stirling formula and Fourier series. Some computer experiments also seem to indicate that \([(n + 1)/n]^2 H(n) \) is a decreasing convex function [5]. The author [7] verified that for all integers \(n \geq 1 \), \(H(n) \) and \([(n + 1)/n]^2 H(n) \) are both strictly increasing concave sequences, while \([(n + 1)/n]^2 H(n) \) is strictly decreasing log-convex sequence.

By the asymptotic formula [2, p. 550]

\[
\psi(x) = \log \left(x - \frac{1}{2} \right) + \frac{1}{24(x - 1/2)^2} + O(x^{-4}) \quad \text{as} \quad x \to \infty, \tag{6}
\]

we conclude that

\[
\lim_{n \to \infty} H(n) = \lim_{n \to \infty} [(n + 1)/n]^2 H(n) = \lim_{n \to \infty} [(n + 1)/n]^2 H(n) = \frac{1}{24}. \tag{7}
\]

From the increasingness of \(H(n) \), decreasingness of \([(n + 1)/n]^2 H(n) \) and (7), we obtain the inequality (4). From the increasingness of \([(n + 1)/n]^2 H(n) \), decreasingness of \([(n + 1)/n]^2 H(n) \) and (7), we get that

\[
\frac{1}{24(n + 1)^2} < R_n - \gamma < \frac{1}{24(n + \frac{1}{2})^2}, \quad n \geq 1. \tag{8}
\]

Obviously, the upper in (8) is sharper than one in (4). We remark that the second inequality in (8) comes out from what D. W. DeTemple [9] wrote on page 470 of the article. Also, A. Sintămărian [16] gave results for a generalization of Euler’s constant and taken \(a = 1 \) in [16, Theorem 3.1, part (iii)] we obtain the second inequality in (8).

Recently, the author [8] proved that for all integers \(n \geq 1 \), then

\[
\frac{1}{24(n + a)^2} \leq R_n - \gamma < \frac{1}{24(n + b)^2} \tag{9}
\]

with the best possible constants

\[
a = \frac{1}{\sqrt{24[-\gamma + 1 - \log(3/2)]}} = 1 = 0.55106 \ldots \quad \text{and} \quad b = \frac{1}{2}.
\]

The inequality (5) can be written as

\[
\frac{7}{960(n + 1)^4} < \log \left(n + \frac{1}{2} \right) - \psi(n + 1) + \frac{1}{24 \left(n + \frac{1}{2} \right)^2} < \frac{7}{960n^4}. \tag{10}
\]

Motivated by the inequality (10), we establish the following results.

Theorem 1. Let \(a \geq 0 \) be a real number and \(J_a(x) \) be defined by

\[
J_a(x) = (x + a)^4 \left[\log \left(x + \frac{1}{2} \right) - \psi(x + 1) + \frac{1}{24 \left(x + \frac{1}{2} \right)^2} \right]. \tag{11}
\]

Then, the functions \(J_{1/2} \) on \((-1/2, \infty)\) and \(J_0 \) on \((0, \infty)\) are strictly increasing.

Remark 1. By the asymptotic formula [2, p. 550]

\[
\psi(x) = \log \left(x - \frac{1}{2} \right) + \frac{1}{24(x - 1/2)^2} - \frac{7}{960(x - \frac{1}{2})^4} + O(x^{-6}) \quad \text{as} \quad x \to \infty,
\]
we conclude that
\[
\lim_{x \to \infty} J_0(x) = \lim_{x \to \infty} J_{1/2}(x) = \lim_{x \to \infty} J_1(x) = \frac{7}{960}.
\] (12)
From the increasingness of \(J_0(x)\), decreasingness of \(J_1(x)\) and (12), we obtain the inequality (5). From the increasingness of \(J_{1/2}(x)\), decreasingness of \(J_1(x)\) and (12), we get that
\[
\frac{7}{960(n + 1)^4} < \gamma - R_n + \frac{1}{24(n + \frac{1}{2})^2} \leq \frac{7}{960(n + \frac{1}{2})^4}, \quad n \geq 1.
\] (13)
Obviously, the upper in (13) is sharper than one in (5).

Recall that a function \(f\) is said to be completely monotonic on an interval \(I\) if \(f\) has derivatives of all orders on \(I\) and
\[
(-1)^n f^{(n)}(x) \geq 0
\] for \(x \in I\) and \(n \geq 0\). Dubourdien [10] pointed out that if a non-constant function \(f\) is completely monotonic, then strict inequality holds in (14). Recall that a function \(f\) is said to be a Bernstein function on an interval \(I\) if \(f > 0\) and \(f'\) is completely monotonic on \(I\).

By Theorem 1, we pose the following conjecture.

Corollary 1. Let \(J_n\) be defined by (11). Then, the functions \(J_{1/2}\) on \((-1/2, \infty)\) and \(J_0\) on \((0, \infty)\) are Bernstein function, while the function \(J_1\) is completely monotonic on \((0, \infty)\).

In view of the inequality (13) it is natural to ask: What is the smallest number \(a\) and what is the largest number \(b\) such that the inequality
\[
\frac{7}{960(n + a)^4} \leq \gamma - R_n + \frac{1}{24(n + \frac{1}{2})^2} \leq \frac{7}{960(n + b)^4},
\]
holds for all integers \(n \geq 1\)? The following Theorem 2 answers this question.

Theorem 2. For all integers \(n \geq 1\), then
\[
\frac{7}{960(n + a)^4} \leq \gamma - R_n + \frac{1}{24(n + \frac{1}{2})^2} < \frac{7}{960(n + b)^4},
\] (15)
with the best possible constants
\[
a = \sqrt{\frac{960}{7}} \left[\log \left(\frac{3}{2} \right) + \gamma - \frac{53}{54} \right] - 1 = 0.57027 \ldots \quad \text{and} \quad b = \frac{1}{2}.
\]

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Define for \(x > 0\),
\[
f(x) = x^4 \left[\log x - \psi \left(x + \frac{1}{2} \right) + \frac{1}{24x^2} \right].
\]
Using the representations [1, p. 259]
\[
\psi(x) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-xt}}{1 - e^{-t}} \right) dt,
\] (16)
\[
\log x = \int_0^\infty \frac{e^{-t} - e^{-xt}}{t} dt
\] (17)
and
\[\frac{1}{x^2} = \int_0^\infty te^{-xt} dt, \]
we imply
\[f(x) = x^4 \int_0^\infty \mu(t)e^{-xt} dt, \]
where
\[\mu(t) = -\frac{1}{t} + \frac{1}{e^{\frac{t}{2}} - e^{-\frac{t}{2}}} + \frac{1}{24} t, \quad t > 0. \]

Easy computations reveal that
\[f'(x) = 4 \int_0^\infty \mu(t)e^{-xt} dt - x \int_0^\infty \mu(t)e^{-xt} dt \]
\[= 4 \int_0^\infty \mu(t)e^{-xt} dt - \int_0^\infty [\mu(t) + t\mu'(t)]e^{-xt} dt \]
\[= \int_0^\infty [3\mu(t) - t\mu'(t)]e^{-xt} dt. \]

It is easy to see that for \(t > 0, \)
\[3\mu(t) - t\mu'(t) > 0 \iff -4 + \frac{3}{e^{\frac{t}{2}} - e^{-\frac{t}{2}}} + \frac{t}{12} + \frac{t(e^{\frac{t}{2}} + e^{-\frac{t}{2}})}{2(e^{\frac{t}{2}} - e^{-\frac{t}{2}})^2} > 0 \]
\[\iff -\frac{2}{u} + \frac{3}{2\sinh u} + \frac{u}{6} + \frac{u \cosh u}{2(\sinh u)^2} > 0 \quad \text{(where} \quad u = \frac{t}{2}) \]
\[\iff -12(\sinh u)^2 + 9u \sinh u + u^2(\sinh u)^2 + 3u^2 \cosh u > 0. \]

Define for \(u > 0, \)
\[g(u) = -12(\sinh u)^2 + 9u \sinh u + u^2(\sinh u)^2 + 3u^2 \cosh u. \]

Then,
\[g(u) = -6[\cosh(2u) - 1] + 9u \sinh u + \frac{u^2[\cosh(2u) - 1]}{2} + 3u^2 \cosh u \]
\[= \sum_{n=4}^{\infty} \frac{2n(2n-1)(2^{n-3} + 3) + 18n - 3 \cdot 2^{n+1} u^{2n}}{(2n)!} u^{2n} > 0, \quad u > 0. \]

Hence, \(f'(x) > 0 \) for \(x > 0. \) Clearly, the function
\[J_{1/2}(x) = \left(x + \frac{1}{2} \right)^4 \left[\log \left(x + \frac{1}{2} \right) - \psi(x + 1) + \frac{1}{24} \left(x + \frac{1}{2} \right)^2 \right] \]
is strictly increasing on \((-\frac{1}{2}, \infty).\) It is easy to see that the function
\[J_0(x) = \left(\frac{x}{x + \frac{1}{2}} \right)^4 J_{1/2}(x) \]
is strictly increasing on \((0, \infty).\) The proof is complete. \(\square\)
In order to prove our Theorem 2 we need to the following results [2]: For $x > \frac{1}{2}, N = 0, 1, 2, \ldots,$

$$
\log \left(x - \frac{1}{2} \right) - \sum_{k=1}^{2N} \frac{B_{2k}(1/2)}{2k(x - \frac{1}{2})^{2k}} < \psi(x) < \log \left(x - \frac{1}{2} \right) - \sum_{k=1}^{2N+1} \frac{B_{2k}(1/2)}{2k(x - \frac{1}{2})^{2k}}
$$

(21)

and

$$
\frac{(n - 1)!}{(x - \frac{1}{2})^n} + \sum_{k=1}^{2N+1} \frac{B_{2k}(1/2) (n + 2k - 1)!}{(2k)! (x - \frac{1}{2})^{n+2k}} < (-1)^{n+1} \psi^{(n)}(x)
$$

$$
< \frac{(n - 1)!}{(x - \frac{1}{2})^n} + \sum_{k=1}^{2N} \frac{B_{2k}(1/2) (n + 2k - 1)!}{(2k)! (x - \frac{1}{2})^{n+2k}}, \quad n = 1, 2, \ldots,
$$

(22)

where

$$
B_k(1/2) = - \left(1 - \frac{1}{2k-1} \right) B_k, \quad k = 0, 1, 2, \ldots,
$$

B_k are Bernoulli numbers defined by (2). By (3) we get

$$
B_2(1/2) = -\frac{1}{12}, \quad B_4(1/2) = \frac{7}{240}, \quad B_6(1/2) = -\frac{31}{1344}, \quad B_8(1/2) = \frac{127}{3840}.
$$

From (21), we obtain for $x > \frac{1}{2},$

$$
\psi(x) - \log \left(x - \frac{1}{2} \right) < \frac{1}{24(x - \frac{1}{2})^2} - \frac{7}{960(x - \frac{1}{2})^4} + \frac{31}{8064(x - \frac{1}{2})^6}.
$$

(23)

From (22), we obtain for $x > \frac{1}{2},$

$$
\frac{1}{12(x - \frac{1}{2})^3} - \frac{7}{240(x - \frac{1}{2})^5} + \frac{31}{1344(x - \frac{1}{2})^7} - \frac{127}{3840(x - \frac{1}{2})^9} < \frac{1}{x - \frac{1}{2}} - \psi'(x).
$$

(24)

Now we are in position to prove our Theorem 2.

Proof of Theorem 2. The inequality (15) can be written as

$$
a \geq \frac{1}{\sqrt{\frac{960}{7} \left[\log \left(n + \frac{1}{2} \right) - \psi(n + 1) + \frac{1}{24(n + \frac{1}{2})^2} \right]}} - n > b.
$$

In order to prove (15) we define

$$
f(x) = \frac{1}{\sqrt{\frac{960}{7} \left[\log \left(x + \frac{1}{2} \right) - \psi(x + 1) + \frac{1}{24(x + \frac{1}{2})^2} \right]}} - x.
$$
Differentiation yields
\[\frac{960}{7} \left(\log \left(x + \frac{1}{2} \right) - \psi(x + 1) + \frac{1}{24(x + \frac{1}{2})^2} \right) \]^{5/4} f'(x)
\[= \frac{240}{7} \left(- \frac{1}{x + \frac{1}{2}} - \psi'(x + 1) + \frac{1}{12(x + \frac{1}{2})^3} \right)
\[- \left[\frac{960}{7} \left(\log \left(x + \frac{1}{2} \right) - \psi(x + 1) + \frac{1}{24(x + \frac{1}{2})^2} \right) \right]^{5/4} \]
\[< \frac{240}{7} \left[- \frac{7}{240(x + \frac{1}{2})^6} - \frac{31}{1344(x + \frac{1}{2})^7} + \frac{127}{3840(x + \frac{1}{2})^9} \right]
\[- \left[\frac{960}{7} \left(\frac{7}{960(x + \frac{1}{2})^4} - \frac{31}{8064(x + \frac{1}{2})^6} \right) \right]^{5/4} \]
\[= \frac{1}{u^6} \left[1 - \frac{155}{196u^2} + \frac{127}{112u^4} \right] - \left(1 - \frac{155}{294u^2} \right)^{5/4} \],

where \(u = x + \frac{1}{2} \).

Now we show that there exists a positive real number \(x_0 \) such that \(f'(x_0) < 0 \) for \(x > x_0 \). In order to find \(x_0 \), we consider
\[1 - \frac{155}{196u^2} + \frac{127}{112u^4} < \left(1 - \frac{155}{294u^2} \right)^{5/4}. \] (25)

By Bernoulli’s inequality: Let \(x \geq -1 \), then for \(\alpha < 0 \) or \(\alpha > 1 \), \((1+x)^\alpha \geq 1 + \alpha x \), the equal sign holds if and only if \(x = 0 \), we have
\[1 - \frac{775}{1176u^2} < \left(1 - \frac{155}{294u^2} \right)^{5/4}, \quad u > 0.726 \ldots \] (26)

The inequality
\[1 - \frac{155}{196u^2} + \frac{127}{112u^4} < 1 - \frac{775}{1176u^2} \] (27)
holds for \(u > 31.041 \ldots \), and then, \(f'(x) < 0 \) for \(x > 30.541 \ldots \) Straightforward calculation produces
\[f(1) = 0.57027 \ldots, f(2) = 0.54774 \ldots, f(3) = 0.53564 \ldots, f(4) = 0.52830 \ldots, \]
\[f(5) = 0.52341 \ldots, f(6) = 0.52268 \ldots, f(7) = 0.51725 \ldots, f(8) = 0.51519 \ldots, \]
\[f(9) = 0.51376 \ldots, f(10) = 0.51246 \ldots, f(11) = 0.51139 \ldots, f(12) = 0.51049 \ldots, \]
\[f(13) = 0.50972 \ldots, f(14) = 0.50905 \ldots, f(15) = 0.50847 \ldots, f(16) = 0.50794 \ldots, \]
\[f(17) = 0.50751 \ldots, f(18) = 0.50705 \ldots, f(19) = 0.50674 \ldots, f(20) = 0.50615 \ldots, \]
\[f(21) = 0.50593 \ldots, f(22) = 0.50584 \ldots, f(23) = 0.50559 \ldots, f(24) = 0.50537 \ldots, \]
\[f(25) = 0.50513 \ldots, f(26) = 0.50496 \ldots, f(27) = 0.50476 \ldots, f(28) = 0.50459 \ldots, \]
\[f(29) = 0.50444 \ldots, f(30) = 0.50431 \ldots, f(31) = 0.50417 \ldots \]

Thus, the sequence
\[f(n) = \frac{1}{\sqrt{\frac{960}{7}} \left(\log \left(n + \frac{1}{2} \right) - \psi(n + 1) + \frac{1}{24(n + \frac{1}{2})^2} \right)} - n \quad (n = 1, 2, \ldots) \]
is strictly decreasing. This leads to
\[
\lim_{n \to \infty} f(n) < f(n) \leq f(1) = \frac{1}{\sqrt[4]{960} \left[\log \left(\frac{3}{2} \right) + \gamma - \frac{53}{54} \right]} - 1 = 0.57027 \ldots \quad (28)
\]
It remains to prove that
\[
\lim_{n \to \infty} f(n) = \frac{1}{2}.
\] (29)
From the asymptotic formula [2, p. 550]
\[
\psi(x) = \log \left(x - \frac{1}{2} \right) + \frac{1}{24(x - \frac{1}{2})^2} - \frac{7}{960(x - \frac{1}{2})^4} + \frac{31}{8064(x - \frac{1}{2})^6} + O(x^{-8})
\]
as \(x \to \infty\), we obtain
\[
f(x) = \frac{1}{\sqrt[4]{960} \left[\log \left(x + \frac{1}{2} \right) - \psi(x + 1) + \frac{1}{24(x + \frac{1}{2})^2} \right]} - x
\]
\[
= 1 - x \sqrt[4]{960} \left[\log \left(x + \frac{1}{2} \right) - \psi(x + 1) + \frac{1}{24(x + \frac{1}{2})^2} \right]
\]
\[
= 1 - x \sqrt[4]{1 - 155 \left(x + \frac{1}{2} \right)^2} + O(x^{-8})
\]
\[
= x + \frac{1}{2} - x \sqrt[4]{1 - \frac{155}{294(x + \frac{1}{2})^2} + O(x^{-4})}
\]
\[
= \frac{1}{2} + O(x^{-1}) \to \frac{1}{2} \quad \text{as} \quad x \to \infty,
\] and then,
\[
\lim_{n \to \infty} f(n) = \frac{1}{2}.
\] (30)
The proof is complete. \(\square\)

References

(Ch.-P. Chen) SCHOOL OF MATHEMATICS AND INFORMATICS, HENAN POLYTECHNIC UNIVERSITY, JIAOYU CITY, HENAN 454003, CHINA
E-mail address: chenchaoping@sina.com