ON SOME INEQUALITIES SIMPSON-TYPE VIA
QUASI-CONVEX FUNCTIONS WITH APPLICATIONS

MOHAMMAD ALOMARI* AND MASLINA DARUS

ABSTRACT. Some inequalities of Simpson’s type for quasi—convex functions
are introduced. In literature the error estimates for the Midpoint rule is

n—1
|[Ea (f,d)] < 2—11 S (zi41 — x;)2, in this paper we restrict the conditions
i=0

i=
on f to get best error estimates than the original.

1. INTRODUCTION

Suppose f : [a,b] — R is fourth times continuously differentiable mapping on
(a,b) and Hf(4)HOO = sup ’f(‘l) (x)’ < 00 . The following inequality
a,b)

EAS

(1.1) ;f(“);f(b)mf(a;b)] ! /f(x)dx

1
< gl -
= 2880 Hf G
holds, and it is well known in the literature as Simpson’s inequality.

It is well known that if the mapping f is neither four times differentiable nor
is the fourth derivative f(*) bounded on (a,b), then we cannot apply the classical
Simpson quadrature formula.

In recent years many authors were established an error estimations for the Simp-
son’s inequality, for refinements, counterparts, generalizations and new Simpson’s-
type inequalities see [4]-[12] and [14]-[18].

The notion of quasi-convex functions generalizes the notion of convex functions.
More exactly, a function f : [a,b] — R is said quasi-convex on [a, b] if

fOQz+ (1 =Ny) <sup{f(z),f ()},

for all z,y € [a,b] and A € [0,1]. Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex,
(see [13)).
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For recent results and generalizations concerning quasi-convex functions see [1]—

[3] and [13].

The aim o this paper is to establish Simpson’s type inequalities based on quasi-
convexity. We will show that our results can be used in order to give best estimates
for the approximation error of the integral f: f(xz)dz in the Simpson’s formula
without going through its higher derivatives which may not exists, not bounded or
may be hard to find. A restriction made on a quasi—convex functions to deduce a
best error estimates for the midpoint rule.

2. INEQUALITIES OF SIMPSON’S TYPE FOR QUASI-CONVEX FUNCTIONS
In order to prove our main theorems, we need the following lemma (see [16] ):

Lemma 1. Let f : I C R — R be a absolutely continuous mapping on I° where
a,b € I with a <b, such that f" € Lla,b]. Then the following equality holds:

b a
i [ r@an— g @+ (50) + s

(2.1) :(b—a)2/0 p () f" (tb+ (1 —t)a)dt
where,

t(3t-1), teo,1]

p(t) =

Tt-1)(Bt-2), te(3,1]

Proof. We note that
! " _ 1 1/2 "

1:/0 P ' (th+ (1—t)a)dt = 6/0 3t —1) f7 (th+ (1 — ) a) dt

1 ! "
+6/1/2(t—1)(3t—2)f (th+ (1 —t) a) dt.

Integrating by parts, we get

1 F b+ (1—t)a) |/ 1 ftb+(1—1t)a) i
I=ct(3t-1) — . [2t+6(3t1)}(ba)20
V2 p(th+ (1 —t)a) 1 frtb+1—t)a)|
+/0 B T U L CEETE o
1, 1 i+ -ta| L p (bt (1—t)a)
[2 (t=1)+ 6 (3t 2)] (b—a)? e 12 (b—a)? a
_ ) () L e PR (-ta)
24 b-a  3(b-a® 60-a? Jo (b—a)®
B ORI B 0 G o R B AR Cl TP

60—a® 20 b-a  30-a hp (-0

:(bfwzﬁiﬂw+%1‘”@dﬁ_6wiaf[fmy+fwyhﬁ<a§b)}
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Setting x = tb+ (1 — t) a, and dm—(b—a)dt gives
o | F@d g @ (50) < sw).

which gives the desired representatmn (2.1). 1

(b—a)® - I=

The next theorem gives a new refinement of the Simpson inequality for quasi-
convex functions.

Theorem 1. Let f: I C [0,00) — R be an absolutely continuous function on I°
and a,b € I with a <b, such that f” € Lla,b]. If | f"| is quasi-convex on [a,b], for
some ﬁxed s € (0,1], then the following inequality holds:

L [ rwae-tr@+ar (C2) 4 1)
i [ [resar (450) v
02 o (52 o (2]

(2.2)

<

"]

o e {1 @,

Proof. By Lemma 1 and since |f”| is quasi-convex, then we have

ﬁ/abf(@dx_% [f(a)-i—élf (a;-b)+f(b):|

1
(b_a)2 2 "
< 0o /Ot|3t—1\|f (th+ (1 —t)a)| dt

2 1
Gl /1 (= 1] [3t— 2| | (tb+ (1— ) a)| dt
2

f”(a;bﬂ} (/Oét(l—?)t)dt+/1%t(3t—1)dt)

<

e {11 ),

3

(a+b)‘ T2 }(/lg(l_t)(Q—St)dt

2

+/§1 (1-1) (3t—2)dt>

2

(537l

o T {1 @,

which completes the proof. I

<

2}l
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Corollary 1. In Theorem 1, Additionally, if

(1) |f"| is increasing, then we have

bia/abf(x)d:c—é {f(a)+4f(a;b)+f(b)}

().

(b—a)?
(2.3) ST [

(2) |f"| is decreasing, then we have

1 e (5£) 0]

(b_a)2 "
(2.4) < 6 -[f (a)| +

)

The corresponding version for powers of the absolute value of the second deriv-
ative is incorporated in the following result:

Theorem 2. Let ' : I C [0,00) — R be an absolutely continuous function on I°
and a,b € I with a < b, such that " € Lla,b]. If |f”\p/(p71) is quasi-convezr on
[a,b], for some fizred p > 1, then the following inequality holds:

1
N2 —p -p p
< -9 (3—p‘1ﬁ(p+ Lp+1)+ 4(3)12 (;i;2;+;§) D)
p/(p—1) 5
<max{ 1 (—a;b) ROl “"”})

/(p—1) P
*(m“{ A (gb) RNTS <a>|p/<””}>

for p > 1, where, where B(x,y) is the Beta function of Euler type.

-1
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Proof. Suppose that p > 1. From Lemma 1 and using the Holder inequality, we
have

e dm——[f<a>+4f(“§”)+f(b>H
g@/{) L3t — 1)1 (th+ (1 — t) @) dt

(b_a)2 ! 7
+T/% It — 1013t — 2| |f" (tb+ (1 —t) a)| dt

(b—a)?

\ N i

<0 (/0 (t|3t—1|)pdt> (/O 7 (th+ (1—t)a)| dt)
2 1 7
+M</l (|t — 1] |3t —2|)? ) (/ I (tb+ (1 —1t) )|th>

1
3

1
1 P
2
tP (1 — 3t) dt+/1 tp(St—l)”dt>
O
3

1 ‘
(/2 7 (th+ (1 —1) )|th)

1

P

1-t)P2- 3t)pdt+/

wWin

(1—-t)? (3t —2)" dt)

Q|

X (/% If" (tb+ (1 —t)a)|th>

Since f is quasi-convex, we have

1/2
(2.6) /O If" b+ (1 —t)a)|"dt < max{

s {a+b 4
2

1 @i},

and

(2.7) /1/2fll (th+ (1 —t)a)|"dt < max{

s fa+b a
2

1 o).
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Therefore,

é [f(a)+4f (a‘z”’) +f(b)} - bia/abf(m)dx

1
43)7"+3(2) " (p— 1>> g
12(2+ 3p + p?)

(b—a)’
6

< -(3—P—1ﬁ(p+1,p+1)+

p/(p—1) —
[<m{ r (a§b> VOIS M})
p/(p—1) 2
+ (max{ f// (a;'b> 7|f// (a)lp/(P—l)}> ] ,

for p > 1, where we have used the fact that
1
tP(1—3t) dt = /2 (1—-t)PBt—2Pdt=3"P"3(p+1,p+1),

I 3

1

:
/1 t? (3t — 1)P dt = /1 1-t)P(2-3t)dt=
3 2
which completes the proof. I

Wl

and

wWin

4B3)"+3@2) " -1)
12 (2 + 3p + p?) ’

Corollary 2. Let f be as in Theorem 2. Additionally, if

(1) |f'] is increasing, then we have

b_la/abf(x)dx—é {f(a)+4f <a;rb>+f(b)H
2

(b—a)
6

(2.8)

<

12(2+ 3p+p?)

<[l (52 1)
(2) |f'| is decreasing, then we have

b_%/abf(x)dx—% f@+af (“jb>+f(b>H

1
43)7"+3(2) " (p - 1>> v
12(2+ 3p + p?)

r(45)

- (3‘1"16 prlp+1) 4 2B +3@2) " 1)) :

(2.9)

(b—a)*

<
o 6

: (3‘?‘% (p+1p+1)+

< (1 @i+

Proof. 1t follows directly by Theorem 2. |

A generalization of (2.2) is given in the following theorem:
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Theorem 3. Let ' : I C [0,00) — R be an absolutely continuous function on I°
and a,b € I with a < b, such that f” € Lla,b]. If |f"|* is quasi-convex on [a,b],
q > 1, then the following inequality holds:

b_%/abf(x)dx—% [f(a)+4f (a;b> +f(b)H
< ooy Km{ (=) or))
# (max {7 (52) ] 0 <a>|‘1}>;] -

Proof. Suppose that ¢ > 1. From Lemma 1 and using the power mean inequality,
we have

(2.10)

o [r@a- g @ (450) +f(b)H
g(b_6a)2/Oét|3t—1||f”(tb+(1—t)a)|dt

(b—a)’
6

+

1
/1 = 1] [3t — 2| [f" (tb+ (1 — ) a)| dt
2

1
q

1 - 1 2
(b—a)z 2 _ 2 . 1" _ q
< (/O t|3t 1|dt) (/0 t13t — 1) [f” (tb+ (1 —t) a)| dt)
“‘”2(/1 31— 1] )(/ 3= 1]15" (+ (1= ) )é
+ t—1]|3t —1|dt t—1] |13t = 1| f" (tb+ (1 —t)a)|" dt
Y/ %

_ (b6“)2 (/0315(13t)dt+/12t(3t1)dt)

3

1 2
X (/2t|3t—1|f”(tb+(1—t)a)th>
0

+(b_6a)2 (/; (1—t)(2—3t)dt+/;(1—t)(3t—2)dt>

171
q

3

1 q
X (/1 |t—1|3t—2||f”(tb+(1—t)a)th>
2



8 ALOMARI AND DARUS

Since f is quasi-convex, we have

1
(2.11) /02 t13t — 1 |f" (tb+ (1 —t)a)|" dt

q

a+b
— grmac{ |1 (“5) | s @l

and

1
(2.12) /1/2 [t — 113t — 2| |f" (tb+ (1 —t)a)|’ dt

71 " a+b 7 " q
o { | (432)] 1 o
where, we used the fact

1/2 1 1
(2.13) / t|3t—1|dt:/ =13t — 2| di = —.
0 1/2 27
Combination of (2.11), (2.12) and (2.13), gives the required result which completes
the proof. i

Corollary 3. Let f be as in Theorem 3. Additionally, if

(1) |f"| is increasing, then the inequality (2.3).
(2) |f"] is decreasing, then the inequality (2.4).

Proof. 1t follows directly by Theorem 3. I

Remark 1. For

1
4B3)"+3@2) P (p-1))"
12(2+3p+p°) ) b

h(p) = (3_”‘15 (p+1Lp+1)+

we have

lim h(p) = —=

p—1t 277
Using the fact

n

(a; +b;)" < ia'{ +) 0,
i=1

i=1

M-

i=1

for0<r<1,ay,ao,...,a, >0 and by, bs, ..., b, > 0, we obtain
11 1 T 1 1
-+ 1 4p N P (2) —1)p
lim h(p) < lim 37 PG7 (p+1,p+1)+ lim B +37@) (@ - )
p—oo p—0o0 p—00

I I
(12)7 (2+3p +p?)P
1 1

=3 lim f* (p+1,p+1)+1,

also, Stirling’s approzimation gives the asymptotic formula
1 1

Tma¥ 72
B(w,y) =~V prat A
(z+y)"""

)

(SIS



SIMPSON’S INEQUALITIES 9

2p+1
ORI ver L

§ — 00 =
2p+2)%*2 P72z (p+1)

1
lim g7 (p+1,p+1) = V2r lim

p—0o0 p—0o0

N[

so that, lim h(p) — 1, therefore h(p) satisfies

p— 00

1
— < h(p) <1
5 <h(p) <

Hence, we observe that the inequality (2.10) is better than the inequality (2.5)
meaning that the approach via power mean inequality is a better approach than the
one through Hélder’s inequality.

3. APPLICATIONS TO SOME NUMERICAL QUADRATURE RULES

Let d be a division of the interval [a,b], i.e.,d:a =20 < x1 < ... < Tp_1 < Ty, =
b, hi = (x;41 — x;)/2 and consider the Simpson’s formula

i)+ Af (zi+h) + f (i
(31) Z f f s ) f( +1) (-TiJrl _ xz)
It is well known that if the mapping f : [a,b] — is differentiable such that
f@ () exists on (a,b) and M = m(mz) |f&) (2)] < o0, then
b
(32) I= [ f@)do =S (7d)+ Bs (1.0).

a

where the approximation error Eg (f,d) of the integral I by the Simpson’s formula
S (f,d) satisfies

M _
(3.3) |Es (f,d) <5 ; Tipy —5)°

It is clear that if the mapping f is not fourth differentiable or the fourth derivative
is not bounded on (a,b), then (3.2) cannot be applied. In the following we give
many different estimations for the remainder term E (f,d) in terms of the second
derivative.

Proposition 1. Let f: I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b. If | "] is quasi-convex on [a,b], then in (3.2), for every division d of

[a,b], the following holds:
n o Ti+ Tit1
()

o Ti+ Tipa
f( . )

1 n—1
B0 1S (0] < 355 3 (e~ ma {

1" )l

"]

—|—max{
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Proof. Applying Theorem 1 on the subintervals [z;, z;11], ({ = 0,1, ...,n — 1) of the
division d, we get

() +Af (x; ;L h)+f (@) /“ f (@) de

i

I (%) Y ($i+1)|}

() )]

Summing over 4 from 0 to n — 1 and taking into account that |f’| is quasi-convex,

we deduce that
1= i+
i i+l
= 13 ; (Tiv1 — i) [max{ f <2+) Af (l‘i+1)|}

(=) @)

Remark 2. It is well known that, if the mapping f : [a,b] — R, is differentiable
such that f" (z) ezists on (a,b) and K = sup ¢ |f" ()| < 00, then

< (i1 = ) fmax {

+max{

b
S(f,d)—/ f (2) dz

+max{

which completes the proof. |

b

(35) I= [ F@)do =M (£.d) + Eui (£.0),

where the approximation error Ey (f,d) of the integral I by the midpoint formula
M (f,d) satisfies

1

(xi-',-l — xi)?’.

n

(3.6) [y (f,d)] <

2=
I

i
In the following, we introduce a best error estimate for the midpoint inequality with
the assumptions that :

In Theorem 1, Additionally, if f (a) = f (%£2) = f (b), then we have,

ﬁ/ﬂbﬂx)dr—f(“jb)‘
U max {17 @],

+ max{

(3.7)

)
(5]

For instance, for M >0, if |f" ()] < M, for all x € |a,b], then we have

b b h— 2
ﬁ/ f(as)dx—f<a_2|_ )‘s( o

(3.8)
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Therefore, the error Ep; can be estimated, such as:
n—1

(3.9) Bx ()] < 55 3 (ria —a0)”
i=0

Finally, we note that the error estimates in (3.9) is best than the original in (3.6).
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