
SOME REVERSES OF THE JENSEN INEQUALITY WITH
APPLICATIONS

S.S. DRAGOMIR1;2

Abstract. Two new reverses of the celebrated Jensen�s inequality for convex
functions in the general settings of the Lebesgue integral with applications for
means, Hölder�s inequality and f -divergence measures in information theory
are given.

1. Introduction

Let (
;A; �) be a measurable space consisting of a set 
; a � �algebra A of
parts of 
 and a countably additive and positive measure � on A with values in
R [ f1g : For a ��measurable function w : 
 ! R, with w (x) � 0 for � �a.e.
(almost every) x 2 
; consider the Lebesgue space

Lw (
; �) := ff : 
! R; f is �-measurable and
Z



w (x) jf (x)j d� (x) <1g:

For simplicity of notation we write everywhere in the sequel
R


wd� instead ofR



w (x) d� (x) :
If f; g : 
 ! R are ��measurable functions and f; g; fg 2 Lw (
; �) ; then we

may consider the µCeby�ev functional

(1.1) Tw (f; g) :=

Z



wfgd��
Z



wfd�

Z



wgd�:

The following result is known in the literature as the Grüss inequality

(1.2) jTw (f; g)j �
1

4
(�� 
) (�� �) ;

provided

(1.3) �1 < 
 � f (x) � � <1; �1 < � � g (x) � � <1

for � �a.e. (almost every) x 2 
:
The constant 1

4 is sharp in the sense that it cannot be replaced by a smaller
constant.
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If we assume that �1 < 
 � f (x) � � < 1 for � �a.e. x 2 
; then by the
Grüss inequality for g = f and by the Schwarz�s integral inequality, we haveZ




w

����f � Z



wfd�

���� d�(1.4)

�
"Z




wf2d��
�Z




wfd�

�2# 1
2

� 1

2
(�� 
) :

In order to provide a reverse of the celebrated Jensen�s integral inequality for
convex functions, S.S. Dragomir obtained in 2002 [12] the following result:

Theorem 1. Let � : [m;M ] � R! R be a di¤erentiable convex function on (m;M)
and f : 
 ! [m;M ] so that � � f; f; �0 � f; (�0 � f) f 2 Lw (
; �) ; where w � 0
�-a.e. (almost everywhere) on 
 with

R


wd� = 1: Then we have the inequality:

0 �
Z



w (� � f) d�� �
�Z




wfd�

�
(1.5)

�
Z



w (�0 � f) fd��
Z



w (�0 � f) d�
Z



wfd�

� 1

2
[�0 (M)� �0 (m)]

Z



w

����f � Z



wfd�

���� d�:
For a generalization of the �rst inequality in (1.5) without the di¤erentiability

assumption and the derivative �0 replaced with a selection ' from the subdi¤erential
@�, see the paper [27] by C.P. Niculescu.
If � (
) < 1 and � � f; f; �0 � f; (�0 � f) � f 2 L (
; �) ; then we have the

inequality:

0 � 1

� (
)

Z



(� � f) d�� �
�

1

� (
)

Z



fd�

�
(1.6)

� 1

� (
)

Z



(�0 � f) fd�� 1

� (
)

Z



(�0 � f) d� � 1

� (
)

Z



fd�

� 1

2
[�0 (M)� �0 (m)] 1

� (
)

Z



����f � 1

� (
)

Z



fd�

���� d�:
The following discrete inequality is of interest as well.

Corollary 1. Let � : [m;M ] ! R be a di¤erentiable convex function on (m;M) :
If xi 2 [m;M ] and wi � 0 (i = 1; : : : ; n) with Wn :=

Pn
i=1 wi = 1; then one has

the counterpart of Jensen�s weighted discrete inequality:

0 �
nX
i=1

wi� (xi)� �
 

nX
i=1

wixi

!
(1.7)

�
nX
i=1

wi�
0 (xi)xi �

nX
i=1

wi�
0 (xi)

nX
i=1

wixi

� 1

2
[�0 (M)� �0 (m)]

nX
i=1

wi

������xi �
nX
j=1

wjxj

������ :
Remark 1. We notice that the inequality between the �rst and the second term in
(1.7) was proved in 1994 by Dragomir & Ionescu, see [15].
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On making use of the results (1.5) and (1.4), we can state the following string
of reverse inequalities

0 �
Z



w (� � f) d�� �
�Z




wfd�

�
(1.8)

�
Z



w (�0 � f) fd��
Z



w (�0 � f) d�
Z



wfd�

� 1

2
[�0 (M)� �0 (m)]

Z



w

����f � Z



wfd�

���� d�
� 1

2
[�0 (M)� �0 (m)]

"Z



wf2d��
�Z




wfd�

�2# 1
2

� 1

4
[�0 (M)� �0 (m)] (M �m) ;

provided that � : [m;M ] � R! R is a di¤erentiable convex function on (m;M)
and f : 
 ! [m;M ] so that � � f; f; �0 � f; (�0 � f) f 2 Lw (
; �) ; where w � 0
�-a.e. on 
 with

R


wd� = 1:

Remark 2. We notice that the inequality between the �rst, second and last term
from (1.8) was proved in the general case of positive linear functionals in 2001 by
S.S. Dragomir in [11].

Motivated by the above results, we establish in the current paper two new re-
verses of Jensen�s integral inequality for a convex function. Some natural appli-
cation for inequalities between means, reverses of Hölder�s inequality and for the
f -divergence measure that play an important role in information theory are given
as well.

2. Reverse Inequalities

The following reverse of the Jensen�s inequality holds:

Theorem 2. Let � : I ! R be a continuous convex function on the interval of
real numbers I and m;M 2 R, m < M with [m;M ] � �I, �I is the interior of I: If
f : 
! R is �-measurable, satis�es the bounds

�1 < m � f (x) �M <1 for �-a.e. x 2 

and such that f;� � f 2 Lw (
; �) ; then

0 �
Z



w (� � f) d�� �
�
�f
;w

�
(2.1)

�
�
M � �f
;w

� �
�f
;w �m

�
M �m sup

t2(m;M)

	� (t;m;M)

�
�
M � �f
;w

� �
�f
;w �m

� �0� (M)� �0+ (m)
M �m

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

where �f
;w :=
R


w (x) f (x) d� (x) 2 [m;M ] and 	� (�;m;M) : (m;M) ! R is

de�ned by

	� (t;m;M) =
� (M)� � (t)

M � t � � (t)� � (m)
t�m :
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We also have the inequality

0 �
Z



w (� � f) d�� �
�
�f
;w

�
� 1

4
(M �m)	�

�
�f
;w;m;M

�
(2.2)

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

provided that �f
;w 2 (m;M) :

Proof. By the convexity of � we have thatZ



w (x) � (f (x)) d� (x)� �
�
�f
;w

�
(2.3)

=

Z



w (x) �

�
m (M � f (x)) +M (f (x)�m)

M �m

�
d� (x)

� �
�Z




w (x)

�
m (M � f (x)) +M (f (x)�m)

M �m

�
d� (x)

�
�
Z



(M � f (x))� (m) + (f (x)�m) � (M)
M �m w (x) d� (x)

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!

=

�
M � �f
;w

�
� (m) +

�
�f
;w �m

�
� (M)

M �m

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!
:= B:

By denoting

�� (t;m;M) :=
(t�m) � (M) + (M � t)� (m)

M �m � � (t) ; t 2 [m;M ]

we have

�� (t;m;M) =
(t�m)� (M) + (M � t) � (m)� (M �m) � (t)

M �m(2.4)

=
(t�m)� (M) + (M � t) � (m)� (M � t+ t�m) � (t)

M �m

=
(t�m) [� (M)� � (t)]� (M � t) [� (t)� � (m)]

M �m

=
(M � t) (t�m)

M �m 	� (t;m;M)

for any t 2 (m;M) :
Therefore we have the equality

(2.5) B =

�
M � �f
;w

� �
�f
;w �m

�
M �m 	�

�
�f
;w;m;M

�
provided that �f
;w 2 (m;M) :
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For �f
;w = m or �f
;w = M the inequality (2.1) is obvious. If �f
;w 2 (m;M),
then

	�
�
�f
;w;m;M

�
� sup

t2(m;M)

	� (t;m;M)

= sup
t2(m;M)

�
� (M)� � (t)

M � t � � (t)� � (m)
t�m

�
� sup

t2(m;M)

�
� (M)� � (t)

M � t

�
+ sup
t2(m;M)

�
�� (t)� � (m)

t�m

�
= sup

t2(m;M)

�
� (M)� � (t)

M � t

�
� inf
t2(m;M)

�
� (t)� � (m)

t�m

�
= �0� (M)� �0+ (m)

which by (2.3) and (2.5) produces the desired result (2.1).
Since, obviously �

M � �f
;w
� �
�f
;w �m

�
M �m � 1

4
(M �m) ;

then by (2.3) and (2.5) we deduce the �rst inequality (2.2). The second part is
clear. �

Corollary 2. Let � : I ! R be a continuous convex function on the interval of
real numbers I and m;M 2 R, m < M with [m;M ] � �I. If xi 2 I and pi � 0 for
i 2 f1; :::; ng with

Pn
i=1 pi = 1, then we have the inequalities

0 �
nX
i=1

pi� (xi)� � (�xp)(2.6)

� (M � �xp) (�xp �m) sup
t2(m;M)

	� (t;m;M)

� (M � �xp) (�xp �m)
�0� (M)� �0+ (m)

M �m

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

and

0 �
nX
i=1

pi� (xi)� � (�xp) �
1

4
(M �m)	� (�xp;m;M)(2.7)

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

where �xp :=
Pn

i=1 pixi 2 I:

Remark 3. De�ne the weighted arithmetic mean of the positive n-tuple x =
(x1; :::; xn) with the nonnegative weights w = (w1; :::; wn) by

An (w; x) :=
1

Wn

nX
i=1

wixi
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where Wn :=
Pn

i=1 wi > 0 and the weighted geometric mean of the same n-tuple,
by

Gn (w; x) :=

 
nY
i=1

xwii

!1=Wn

:

It is well know that the following arithmetic mean-geometric mean inequality holds
true

An (w; x) � Gn (w; x) :
Applying the inequality between the �rst and third term in (2.6) for the convex
function � (t) = � ln t; t > 0 we have

1 � An (w; x)

Gn (w; x)
� exp

�
1

Mm
(M �An (w; x)) (An (w; x)�m)

�
(2.8)

� exp
"
1

4

(M �m)2

mM

#
;

provided that 0 < m � xi �M <1 for i 2 f1; :::; ng :
Also, if we apply the inequality (2.7) for the same function � we get that

1 � An (w; x)

Gn (w; x)
(2.9)

�
"�

M

An (w; x)

�M�An(w;x)� m

An (w; x)

�An(w;x)�m
# 1
4 (M�m)

� exp
"
1

4

(M �m)2

mM

#
:

The following result also holds

Theorem 3. With the assumptions of Theorem 2, we have the inequalities

0 �
Z



w (� � f) d� (x)� �
�
�f
;w

�
(2.10)

� 2max
�
M � �f
;w
M �m ;

�f
;w �m
M �m

��
� (m) + � (M)

2
� �

�
m+M

2

��
� 1

2
max

�
M � �f
;w; �f
;w �m

	 �
�0� (M)� �0+ (m)

�
:

Proof. First of all, we recall the following result obtained by the author in [14] that
provides a re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
i2f1;:::;ng

fpig
"
1

n

nX
i=1

� (xi)� �
 
1

n

nX
i=1

xi

!#
(2.11)

� 1

Pn

nX
i=1

pi� (xi)� �
 
1

Pn

nX
i=1

pixi

!

n max
i2f1;:::;ng

fpig
"
1

n

nX
i=1

� (xi)� �
 
1

n

nX
i=1

xi

!#
;
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where � : C ! R is a convex function de�ned on the convex subset C of the linear
space X; fxigi2f1;:::;ng are vectors and fpigi2f1;:::;ng are nonnegative numbers with
Pn :=

Pn
i=1 pi > 0:

For n = 2 we deduce from (2.11) that

2min ft; 1� tg
�
� (x) + � (y)

2
� �

�
x+ y

2

��
(2.12)

� t� (x) + (1� t)� (y)� � (tx+ (1� t) y)

� 2max ft; 1� tg
�
� (x) + � (y)

2
� �

�
x+ y

2

��
for any x; y 2 C and t 2 [0; 1] :
If we use the second inequality in (2.12) for the convex function � : I ! R and

m;M 2 R, m < M with [m;M ] � �I; we have for t = M� �f
;w
M�m that�

M � �f
;w
�
� (m) +

�
�f
;w �m

�
� (M)

M �m(2.13)

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!

� 2max
�
M � �f
;w
M �m ;

�f
;w �m
M �m

�
�
�
� (m) + � (M)

2
� �

�
m+M

2

��
:

Utilizing the inequality (2.3) and (2.13) we deduce the �rst inequality in (2.10).
Since

�(m)+�(M)
2 � �

�
m+M
2

�
M �m

=
1

4

"
� (M)� �

�
m+M
2

�
M � m+M

2

�
�
�
m+M
2

�
� � (m)

m+M
2 �m

#
and, by the gradient inequality, we have that

� (M)� �
�
m+M
2

�
M � m+M

2

� �0� (M)

and
�
�
m+M
2

�
� � (m)

m+M
2 �m

� �0+ (m) ;

then we get

(2.14)
�(m)+�(M)

2 � �
�
m+M
2

�
M �m � 1

4

�
�0� (M)� �0+ (m)

�
:

On making use of (2.13) and (2.14) we deduce the last part of (2.10). �
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Corollary 3. With the assumptions in Corollary 2, we have the inequalities

0 �
nX
i=1

pi� (xi)� � (�xp)(2.15)

� 2max
�
M � �xp
M �m ;

�xp �m
M �m

��
� (m) + � (M)

2
� �

�
m+M

2

��
� 1

2
max fM � �xp; �xp �mg

�
�0� (M)� �0+ (m)

�
:

Remark 4. Since, obviously,

M � �f
;w
M �m ;

�f
;w �m
M �m � 1

then we obtain from the �rst inequality in (2.10) the simpler, however coarser in-
equality

0 �
Z



w (� � f) d� (x)� �
�
�f
;w

�
(2.16)

� 2
�
� (m) + � (M)

2
� �

�
m+M

2

��
:

We notice that the discrete version of this result, namely

(2.17) 0 �
nX
i=1

pi� (xi)� � (�xp) � 2
�
� (m) + � (M)

2
� �

�
m+M

2

��
was obtained in 2008 by S. Simic in [33].

Remark 5. With the assumptions in Remark 3 we have the following reverse of
the arithmetic mean-geometric mean inequality

(2.18) 1 � An (w; x)

Gn (w; x)
�
�
A (m;M)

G (m;M)

�2maxfM�An(w;x)
M�m ;

An(w;x)�m
M�m g

;

where A (m;M) is the arithmetic mean while G (m;M) is the geometric mean of
the positive numbers m and M .

3. Applications for the Hölder Inequality

It is well known that if f 2 Lp (
; �) ; p > 1; where the Lebesgue space Lp (
; �)
is de�ned by

Lp (
; �) := ff : 
! R; f is �-measurable and
Z



jf (x)jp d� (x) <1g

and g 2 Lq (
; �) with 1
p +

1
q = 1 then fg 2 L (
; �) := L1 (
; �) and the Hölder

inequality holds trueZ



jfgj d� �
�Z




jf jp d�
�1=p�Z




jgjp d�
�1=q

:

Assume that p > 1: If h : 
! R is �-measurable, satis�es the bounds

�1 < m � jh (x)j �M <1 for �-a.e. x 2 
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and is such that h; jhjp 2 Lw (
; �) ; for a ��measurable function w : 
! R, with
w (x) � 0 for � �a.e. x 2 
 and

R


wd� > 0; then from (2.1) we have

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
(3.1)

�

�
M � jhj
;w

��
jhj
;w �m

�
M �m Bp (m;M)

� pM
p�1 �mp�1

M �m

�
M � jhj
;w

��
jhj
;w �m

�
� 1

4
p (M �m)

�
Mp�1 �mp�1� ;

where jhj
;w :=
R


jhjwd�R


wd�

2 [m;M ] and 	p (�;m;M) : (m;M)! R is de�ned by

	p (t;m;M) =
Mp � tp
M � t � t

p �mp

t�m
while

(3.2) Bp (m;M) := sup
t2(m;M)

	p (t;m;M) :

From (2.2) we also have the inequality

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
� 1

4
(M �m)	p

�
jhj
;w;m;M

�
(3.3)

� 1

4
p (M �m)

�
Mp�1 �mp�1� :

Proposition 1. If f 2 Lp (
; �), g 2 Lq (
; �) with p > 1; 1p +
1
q = 1 and there

exists the constants 
;� > 0 and such that


 � jf j
jgjq�1

� � �-a.e on 
;

then we have

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(3.4)

� Bp (
;�)

�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
� p�

p�1 � 
p�1
�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
� 1

4
p (�� 
)

�
�p�1 � 
p�1

�
;

and

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(3.5)

� 1

4
(�� 
)	p

�R


jfgj d�R



jgjq d� ; 
;�

�
� 1

4
p (�� 
)

�
�p�1 � 
p�1

�
;

where Bp (�; �) and 	p (�; �; �) are de�ned above.
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Proof. The inequalities (3.4) and (3.5) follow from (3.1) and (3.3) by choosing

h =
jf j
jgjq�1

and w = jgjq :

The details are omitted. �

Remark 6. We observe that for p = q = 2 we have 	2 (t; 
;�) = ��
 = B2 (
;�)
and then from the �rst inequality in (3.4) we get the following reverse of the Cauchy-
Bunyakovsky-Schwarz inequality:Z




jgj2 d�
Z



jf j2 d��
�Z




jfgj d�
�2

(3.6)

�
 
��

R


jfgj d�R



jgj2 d�

! R


jfgj d�R



jgj2 d�

� 

!�Z




jgj2 d�
�2

� 1

4
(�� 
)2

�Z



jgj2 d�
�2
;

provided that f; g 2 L2 (
; �), and there exists the constants 
;� > 0 such that


 � jf j
jgj � � �-a.e on 
:

Corollary 4. With the assumptions of Proposition 1 we have the following additive
reverses of the Hölder inequality

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�(3.7)

�
�
Bp (
;�)

�� 


�1=p�
��

R


jfgj d�R



jgjq d�

�1=p�R


jfgj d�R



jgjq d� � 


�1=p
�
Z



jgjq d�

� p1=p
�
�p�1 � 
p�1
�� 


�1=p�
��

R


jfgj d�R



jgjq d�

�1=p�R


jfgj d�R



jgjq d� � 


�1=p
�
Z



jgjq d�

� 1

41=p
p1=p (�� 
)1=p

�
�p�1 � 
p�1

�1=p Z



jgjq d�

and

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�(3.8)

� 1

41=p
(�� 
)1=p	1=pp

�R


jfgj d�R



jgjq d� ;m;M

�Z



jgjq d�

� 1

41=p
p1=p (�� 
)1=p

�
�p�1 � 
p�1

�1=p Z



jgjq d�

where p > 1 and 1
p +

1
q = 1:
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Proof. By multiplying in (3.4) with
�R


jgjq d�

�p
we haveZ




jf jp d�
�Z




jgjq d�
�p�1

�
�Z




jfgj d�
�p

� Bp (
;�)

�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


��Z



jgjq d�
�p

� p�
p�1 � 
p�1
�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


��Z



jgjq d�
�p

� 1

4
p (�� 
)

�
�p�1 � 
p�1

��Z



jgjq d�
�p
;

which is equivalent withZ



jf jp d�
�Z




jgjq d�
�p�1

(3.9)

�
�Z




jfgj d�
�p
+
Bp (
;�)

�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
�
�Z




jgjq d�
�p

�
�Z




jfgj d�
�p
+ p

�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
�
�Z




jgjq d�
�p
�p�1 � 
p�1
�� 


�
�Z




jfgj d�
�p
+
1

4
p (�� 
)

�
�p�1 � 
p�1

��Z



jgjq d�
�p
:

Taking the power 1=p with p > 1 and employing the following elementary inequality
that state that for p > 1 and �; � > 0;

(�+ �)
1=p � �1=p + �1=p

we have from the �rst part of (3.9) thatZ



jf jp d�
�Z




jgjq d�
�1� 1

p

(3.10)

�
Z



jfgj d�+
�
Bp (
;�)

�� 


�1=p�
��

R


jfgj d�R



jgjq d�

�1=p�R


jfgj d�R



jgjq d� � 


�1=p
�
Z



jgjq d�

and since 1 � 1
p =

1
q we get from (3.10) the �rst inequality in (3.7). The rest is

obvious.
The inequality (3.8) can be proved in a similar manner, however the details are

omitted. �

If h : 
! R is �-measurable, satis�es the bounds

�1 < m � jh (x)j �M <1 for �-a.e. x 2 
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and is such that h; jhjp 2 Lw (
; �) ; for a ��measurable function w : 
! R, with
w (x) � 0 for � �a.e. x 2 
 and

R


wd� > 0; then from (2.10) we also have the

inequality

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
(3.11)

� 2
�
mp +Mp

2
�
�
m+M

2

�p�
max

(
M � jhj
;w
M �m ;

jhj
;w �m
M �m

)

� 1

2
p
�
Mp�1 �mp�1�maxnM � jhj
;w; jhj
;w �m

o
:

where, as above, jhj
;w :=
R


jhjwd�R


wd�

2 [m;M ].
From the inequality (3.11) we can state:

Proposition 2. With the assumptions of Proposition 1 we have

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(3.12)

� 2 �

p+�p

2 �
�

+�
2

�p
�� 
 max

�
��

R


jfgj d�R



jgjq d� ;

R


jfgj d�R



jgjq d� � 


�
� 1

2
p
�
�p�1 � 
p�1

�
max

�
��

R


jfgj d�R



jgjq d� ;

R


jfgj d�R



jgjq d� � 


�
:

Finally, the following additive reverse of the Hölder inequality can be stated as
well:

Corollary 5. With the assumptions of Proposition 1 we have

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�(3.13)

� 21=p �

0@ 
p+�p

2 �
�

+�
2

�p
�� 


1A1=p

�max
(�

��
R


jfgj d�R



jgjq d�

�1=p
;

�R


jfgj d�R



jgjq d� � 


�1=p)Z



jgjq d�

� 1

21=p
p1=pmax

(�
��

R


jfgj d�R



jgjq d�

�1=p
;

�R


jfgj d�R



jgjq d� � 


�1=p)

�
�
�p�1 � 
p�1

�1=p Z



jgjq d�:

Remark 7. As a simpler, however coarser inequality we have the following result:

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�

� 21=p �
�

p + �p

2
�
�

 + �

2

�p�1=p Z



jgjq d�;

where f and g are as above.
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4. Applications for f-Divergence

One of the important issues in many applications of Probability Theory is �nding
an appropriate measure of distance (or di¤erence or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Je¤reys [19], Kullback and Leibler [24],
Rényi [30], Havrda and Charvat [17], Kapur [22], Sharma and Mittal [32], Burbea
and Rao [4], Rao [29], Lin [25], Csiszár [7], Ali and Silvey [1], Vajda [39], Shioya
and Da-te [34] and others (see for example [26] and the references therein).
These measures have been applied in a variety of �elds such as: anthropology [29],

genetics [26], �nance, economics, and political science [31], [37], [38], biology [28],
the analysis of contingency tables [16], approximation of probability distributions
[6], [23], signal processing [20], [21] and pattern recognition [3], [5]. A number of
these measures of distance are speci�c cases of Csiszár f -divergence and so further
exploration of this concept will have a �ow on e¤ect to other measures of distance
and to areas in which they are applied.
Assume that a set 
 and the ���nite measure � are given. Consider the set of all

probability densities on � to be P :=
�
pjp : 
! R, p (x) � 0;

R


p (x) d� (x) = 1

	
.

The Kullback-Leibler divergence [24] is well known among the information diver-
gences. It is de�ned as:

(4.1) DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

where ln is to base e.
In Information Theory and Statistics, various divergences are applied in addi-

tion to the Kullback-Leibler divergence. These are the: variation distance Dv,
Hellinger distance DH [18], �2�divergence D�2 , ��divergence D�, Bhattacharyya
distance DB [2], Harmonic distance DHa, Je¤rey�s distance DJ [19], triangular
discrimination D� [36], etc... They are de�ned as follows:

(4.2) Dv (p; q) :=

Z



jp (x)� q (x)j d� (x) ; p; q 2 P;

(4.3) DH (p; q) :=

Z



���pp (x)�pq (x)��� d� (x) ; p; q 2 P;
(4.4) D�2 (p; q) :=

Z



p (x)

"�
q (x)

p (x)

�2
� 1
#
d� (x) ; p; q 2 P;

(4.5) D� (p; q) :=
4

1� �2

�
1�

Z



[p (x)]
1��
2 [q (x)]

1+�
2 d� (x)

�
; p; q 2 P;

(4.6) DB (p; q) :=

Z



p
p (x) q (x)d� (x) ; p; q 2 P;

(4.7) DHa (p; q) :=

Z



2p (x) q (x)

p (x) + q (x)
d� (x) ; p; q 2 P;

(4.8) DJ (p; q) :=

Z



[p (x)� q (x)] ln
�
p (x)

q (x)

�
d� (x) ; p; q 2 P;
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(4.9) D� (p; q) :=

Z



[p (x)� q (x)]2

p (x) + q (x)
d� (x) ; p; q 2 P:

For other divergence measures, see the paper [22] by Kapur or the book on line [35]
by Taneja.
Csiszár f�divergence is de�ned as follows [8]

(4.10) If (p; q) :=

Z



p (x) f

�
q (x)

p (x)

�
d� (x) ; p; q 2 P;

where f is convex on (0;1). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately de�ning this convex function, various divergences
are derived. Most of the above distances (4:1) � (4:9), are particular instances of
Csiszár f�divergence. There are also many others which are not in this class (see
for example [35]). For the basic properties of Csiszár f�divergence see [8], [9] and
[39].
The following result holds:

Proposition 3. Let f : (0;1) ! R be a convex function with the property that
f (1) = 0: Assume that p; q 2 P and there exists the constants 0 < r < 1 < R <1
such that

(4.11) r � q (x)

p (x)
� R for �-a.e. x 2 
:

Then we have the inequalities

If (p; q) �
(R� 1) (1� r)

R� r sup
t2(r;R)

	f (t; r;R)(4.12)

� (R� 1) (1� r)
f 0� (R)� f 0+ (r)

R� r

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
;

and 	f (�; r;R) : (r;R)! R is de�ned by

	f (t; r;R) =
f (R)� f (t)

R� t � f (t)� f (r)
t� r :

We also have the inequality

If (p; q) �
1

4
(R� r) f (R) (1� r) + f (r) (R� 1)

(R� 1) (1� r)(4.13)

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

The proof follows by Theorem 2 by choosing w (x) = p (x) ; f (x) = q(x)
p(x) ;m = r

and M = R and performing the required calculations. The details are omitted.
Utilising the same approach and Theorem 3 we can also state that:

Proposition 4. With the assumptions of Proposition 3 we have

If (p; q) � 2max
�
R� 1
R� r ;

1� r
R� r

��
f (r) + f (R)

2
� f

�
r +R

2

��
(4.14)

� 1

2
max fR� 1; 1� rg

�
f 0� (R)� f 0+ (r)

�
:
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The above results can be utilized to obtain various inequalities for the divergence
measures in Information Theory that are particular instances of f -divergence.
Consider the Kullback-Leibler divergence

DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

which is an f -divergence for the convex function f : (0;1)! R, f (t) = � ln t:
If p; q 2 P such that there exists the constants 0 < r < 1 < R <1 with

(4.15) r � q (x)

p (x)
� R for �-a.e. x 2 
:

then we get from (4.12) that

(4.16) DKL (p; q) �
(R� 1) (1� r)

rR
;

from (4.13) that

DKL (p; q) �
1

4
(R� r) ln

h
R�

1
R�1 r�

1
1�r

i
and from (4.14) that

DKL (p; q) � 2max
�
R� 1
R� r ;

1� r
R� r

�
ln

�
A (r;R)

G (r;R)

�
(4.17)

� 1

2
max fR� 1; 1� rg

�
R� r
rR

�
;

where A (r;R) is the arithmetic mean and G (r;R) is the geometric mean of the
positive numbers r and R:
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