SOME REVERSES OF THE JENSEN INEQUALITY WITH APPLICATIONS

S.S. DRAGOMIR 1,2

ABSTRACT. Two new reverses of the celebrated Jensen's inequality for convex functions in the general settings of the Lebesgue integral with applications for means, Hölder's inequality and f-divergence measures in information theory are given.

1. Introduction

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω , a σ – algebra \mathcal{A} of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup \{\infty\}$. For a μ -measurable function $w : \Omega \to \mathbb{R}$, with $w(x) \geq 0$ for μ – a.e. (almost every) $x \in \Omega$, consider the Lebesgue space

$$L_{w}\left(\Omega,\mu\right):=\left\{ f:\Omega\to\mathbb{R},\ f\ \text{is μ-measurable and }\int_{\Omega}w\left(x\right)\left|f\left(x\right)\right|d\mu\left(x\right)<\infty\right\} .$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega}wd\mu$ instead of $\int_{\Omega}w\left(x\right)d\mu\left(x\right)$.

If $f, g: \Omega \to \mathbb{R}$ are μ -measurable functions and $f, g, fg \in L_w(\Omega, \mu)$, then we may consider the Čebyšev functional

$$(1.1) T_{w}\left(f,g\right):=\int_{\Omega}wfgd\mu-\int_{\Omega}wfd\mu\int_{\Omega}wgd\mu.$$

The following result is known in the literature as the Grüss inequality

$$|T_w(f,g)| \le \frac{1}{4} (\Gamma - \gamma) (\Delta - \delta),$$

provided

$$(1.3) -\infty < \gamma \le f(x) \le \Gamma < \infty, -\infty < \delta \le g(x) \le \Delta < \infty$$

for μ – a.e. (almost every) $x \in \Omega$.

The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller constant.

Date: August, 2011.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26D15, 26D20; Secondary 94A05...

Key words and phrases. Jensen's inequality, Hölder's inequality, Measurable functions, Lebesgue integral, Divergence measures, f-Divergence measures.

If we assume that $-\infty < \gamma \le f(x) \le \Gamma < \infty$ for μ – a.e. $x \in \Omega$, then by the Grüss inequality for g = f and by the Schwarz's integral inequality, we have

(1.4)
$$\int_{\Omega} w \left| f - \int_{\Omega} w f d\mu \right| d\mu$$

$$\leq \left[\int_{\Omega} w f^{2} d\mu - \left(\int_{\Omega} w f d\mu \right)^{2} \right]^{\frac{1}{2}} \leq \frac{1}{2} (\Gamma - \gamma).$$

In order to provide a reverse of the celebrated Jensen's integral inequality for convex functions, S.S. Dragomir obtained in 2002 [12] the following result:

Theorem 1. Let $\Phi : [m, M] \subset \mathbb{R} \to \mathbb{R}$ be a differentiable convex function on (m, M) and $f : \Omega \to [m, M]$ so that $\Phi \circ f$, f, $\Phi' \circ f$, $(\Phi' \circ f) f \in L_w(\Omega, \mu)$, where $w \ge 0$ μ -a.e. (almost everywhere) on Ω with $\int_{\Omega} w d\mu = 1$. Then we have the inequality:

$$(1.5) 0 \leq \int_{\Omega} w \left(\Phi \circ f \right) d\mu - \Phi \left(\int_{\Omega} w f d\mu \right)$$

$$\leq \int_{\Omega} w \left(\Phi' \circ f \right) f d\mu - \int_{\Omega} w \left(\Phi' \circ f \right) d\mu \int_{\Omega} w f d\mu$$

$$\leq \frac{1}{2} \left[\Phi' \left(M \right) - \Phi' \left(m \right) \right] \int_{\Omega} w \left| f - \int_{\Omega} w f d\mu \right| d\mu.$$

For a generalization of the first inequality in (1.5) without the differentiability assumption and the derivative Φ' replaced with a selection φ from the subdifferential $\partial \Phi$, see the paper [27] by C.P. Niculescu.

If $\mu(\Omega) < \infty$ and $\Phi \circ f$, f, $\Phi' \circ f$, $(\Phi' \circ f) \cdot f \in L(\Omega, \mu)$, then we have the inequality:

$$(1.6) 0 \leq \frac{1}{\mu(\Omega)} \int_{\Omega} (\Phi \circ f) d\mu - \Phi \left(\frac{1}{\mu(\Omega)} \int_{\Omega} f d\mu \right)$$

$$\leq \frac{1}{\mu(\Omega)} \int_{\Omega} (\Phi' \circ f) f d\mu - \frac{1}{\mu(\Omega)} \int_{\Omega} (\Phi' \circ f) d\mu \cdot \frac{1}{\mu(\Omega)} \int_{\Omega} f d\mu$$

$$\leq \frac{1}{2} \left[\Phi'(M) - \Phi'(m) \right] \frac{1}{\mu(\Omega)} \int_{\Omega} \left| f - \frac{1}{\mu(\Omega)} \int_{\Omega} f d\mu \right| d\mu.$$

The following discrete inequality is of interest as well.

Corollary 1. Let $\Phi: [m,M] \to \mathbb{R}$ be a differentiable convex function on (m,M). If $x_i \in [m,M]$ and $w_i \geq 0$ $(i=1,\ldots,n)$ with $W_n := \sum_{i=1}^n w_i = 1$, then one has the counterpart of Jensen's weighted discrete inequality:

(1.7)
$$0 \leq \sum_{i=1}^{n} w_{i} \Phi(x_{i}) - \Phi\left(\sum_{i=1}^{n} w_{i} x_{i}\right)$$
$$\leq \sum_{i=1}^{n} w_{i} \Phi'(x_{i}) x_{i} - \sum_{i=1}^{n} w_{i} \Phi'(x_{i}) \sum_{i=1}^{n} w_{i} x_{i}$$
$$\leq \frac{1}{2} \left[\Phi'(M) - \Phi'(m)\right] \sum_{i=1}^{n} w_{i} \left|x_{i} - \sum_{j=1}^{n} w_{j} x_{j}\right|.$$

Remark 1. We notice that the inequality between the first and the second term in (1.7) was proved in 1994 by Dragomir & Ionescu, see [15].

On making use of the results (1.5) and (1.4), we can state the following string of reverse inequalities

$$(1.8) 0 \leq \int_{\Omega} w \left(\Phi \circ f \right) d\mu - \Phi \left(\int_{\Omega} w f d\mu \right)$$

$$\leq \int_{\Omega} w \left(\Phi' \circ f \right) f d\mu - \int_{\Omega} w \left(\Phi' \circ f \right) d\mu \int_{\Omega} w f d\mu$$

$$\leq \frac{1}{2} \left[\Phi' \left(M \right) - \Phi' \left(m \right) \right] \int_{\Omega} w \left| f - \int_{\Omega} w f d\mu \right| d\mu$$

$$\leq \frac{1}{2} \left[\Phi' \left(M \right) - \Phi' \left(m \right) \right] \left[\int_{\Omega} w f^{2} d\mu - \left(\int_{\Omega} w f d\mu \right)^{2} \right]^{\frac{1}{2}}$$

$$\leq \frac{1}{4} \left[\Phi' \left(M \right) - \Phi' \left(m \right) \right] \left(M - m \right),$$

provided that $\Phi: [m,M] \subset \mathbb{R} \to \mathbb{R}$ is a differentiable convex function on (m,M) and $f: \Omega \to [m,M]$ so that $\Phi \circ f$, f, $\Phi' \circ f$, $(\Phi' \circ f) f \in L_w(\Omega,\mu)$, where $w \geq 0$ μ -a.e. on Ω with $\int_{\Omega} w d\mu = 1$.

Remark 2. We notice that the inequality between the first, second and last term from (1.8) was proved in the general case of positive linear functionals in 2001 by S.S. Dragomir in [11].

Motivated by the above results, we establish in the current paper two new reverses of Jensen's integral inequality for a convex function. Some natural application for inequalities between means, reverses of Hölder's inequality and for the f-divergence measure that play an important role in information theory are given as well.

2. Reverse Inequalities

The following reverse of the Jensen's inequality holds:

Theorem 2. Let $\Phi: I \to \mathbb{R}$ be a continuous convex function on the interval of real numbers I and $m, M \in \mathbb{R}$, m < M with $[m, M] \subset \mathring{I}$, \mathring{I} is the interior of I. If $f: \Omega \to \mathbb{R}$ is μ -measurable, satisfies the bounds

$$-\infty < m < f(x) < M < \infty$$
 for μ -a.e. $x \in \Omega$

and such that $f, \Phi \circ f \in L_w(\Omega, \mu)$, then

$$(2.1) \qquad 0 \leq \int_{\Omega} w \left(\Phi \circ f\right) d\mu - \Phi\left(\bar{f}_{\Omega,w}\right)$$

$$\leq \frac{\left(M - \bar{f}_{\Omega,w}\right) \left(\bar{f}_{\Omega,w} - m\right)}{M - m} \sup_{t \in (m,M)} \Psi_{\Phi}\left(t; m, M\right)$$

$$\leq \left(M - \bar{f}_{\Omega,w}\right) \left(\bar{f}_{\Omega,w} - m\right) \frac{\Phi'_{-}\left(M\right) - \Phi'_{+}\left(m\right)}{M - m}$$

$$\leq \frac{1}{4} \left(M - m\right) \left[\Phi'_{-}\left(M\right) - \Phi'_{+}\left(m\right)\right],$$

where $\bar{f}_{\Omega,w}:=\int_{\Omega}w\left(x\right)f\left(x\right)d\mu\left(x\right)\in\left[m,M\right]$ and $\Psi_{\Phi}\left(\cdot;m,M\right):\left(m,M\right)\to\mathbb{R}$ is defined by

$$\Psi_{\Phi}\left(t;m,M\right) = \frac{\Phi\left(M\right) - \Phi\left(t\right)}{M - t} - \frac{\Phi\left(t\right) - \Phi\left(m\right)}{t - m}.$$

We also have the inequality

$$(2.2) 0 \leq \int_{\Omega} w \left(\Phi \circ f \right) d\mu - \Phi \left(\bar{f}_{\Omega, w} \right) \leq \frac{1}{4} \left(M - m \right) \Psi_{\Phi} \left(\bar{f}_{\Omega, w}; m, M \right)$$

$$\leq \frac{1}{4} \left(M - m \right) \left[\Phi'_{-} \left(M \right) - \Phi'_{+} \left(m \right) \right],$$

provided that $\bar{f}_{\Omega,w} \in (m,M)$.

Proof. By the convexity of Φ we have that

$$(2.3) \qquad \int_{\Omega} w(x) \Phi(f(x)) d\mu(x) - \Phi(\bar{f}_{\Omega,w})$$

$$= \int_{\Omega} w(x) \Phi\left[\frac{m(M - f(x)) + M(f(x) - m)}{M - m}\right] d\mu(x)$$

$$- \Phi\left(\int_{\Omega} w(x) \left[\frac{m(M - f(x)) + M(f(x) - m)}{M - m}\right] d\mu(x)\right)$$

$$\leq \int_{\Omega} \frac{(M - f(x)) \Phi(m) + (f(x) - m) \Phi(M)}{M - m} w(x) d\mu(x)$$

$$- \Phi\left(\frac{m(M - \bar{f}_{\Omega,w}) + M(\bar{f}_{\Omega,w} - m)}{M - m}\right)$$

$$= \frac{(M - \bar{f}_{\Omega,w}) \Phi(m) + (\bar{f}_{\Omega,w} - m) \Phi(M)}{M - m}$$

$$- \Phi\left(\frac{m(M - \bar{f}_{\Omega,w}) + M(\bar{f}_{\Omega,w} - m)}{M - m}\right) := B.$$

By denoting

$$\Delta_{\Phi}(t; m, M) := \frac{(t-m)\Phi(M) + (M-t)\Phi(m)}{M-m} - \Phi(t), \quad t \in [m, M]$$

we have

(2.4)
$$\Delta_{\Phi}(t; m, M) = \frac{(t - m) \Phi(M) + (M - t) \Phi(m) - (M - m) \Phi(t)}{M - m}$$

$$= \frac{(t - m) \Phi(M) + (M - t) \Phi(m) - (M - t + t - m) \Phi(t)}{M - m}$$

$$= \frac{(t - m) [\Phi(M) - \Phi(t)] - (M - t) [\Phi(t) - \Phi(m)]}{M - m}$$

$$= \frac{(M - t) (t - m)}{M - m} \Psi_{\Phi}(t; m, M)$$

for any $t \in (m, M)$.

Therefore we have the equality

(2.5)
$$B = \frac{\left(M - \bar{f}_{\Omega,w}\right)\left(\bar{f}_{\Omega,w} - m\right)}{M - m} \Psi_{\Phi}\left(\bar{f}_{\Omega,w}; m, M\right)$$

provided that $\bar{f}_{\Omega,w} \in (m,M)$.

For $\bar{f}_{\Omega,w} = m$ or $\bar{f}_{\Omega,w} = M$ the inequality (2.1) is obvious. If $\bar{f}_{\Omega,w} \in (m,M)$, then

$$\begin{split} \Psi_{\Phi}\left(\bar{f}_{\Omega,w};m,M\right) &\leq \sup_{t \in (m,M)} \Psi_{\Phi}\left(t;m,M\right) \\ &= \sup_{t \in (m,M)} \left[\frac{\Phi\left(M\right) - \Phi\left(t\right)}{M - t} - \frac{\Phi\left(t\right) - \Phi\left(m\right)}{t - m}\right] \\ &\leq \sup_{t \in (m,M)} \left[\frac{\Phi\left(M\right) - \Phi\left(t\right)}{M - t}\right] + \sup_{t \in (m,M)} \left[-\frac{\Phi\left(t\right) - \Phi\left(m\right)}{t - m}\right] \\ &= \sup_{t \in (m,M)} \left[\frac{\Phi\left(M\right) - \Phi\left(t\right)}{M - t}\right] - \inf_{t \in (m,M)} \left[\frac{\Phi\left(t\right) - \Phi\left(m\right)}{t - m}\right] \\ &= \Phi'_{-}\left(M\right) - \Phi'_{+}\left(m\right) \end{split}$$

which by (2.3) and (2.5) produces the desired result (2.1). Since, obviously

$$\frac{\left(M - \bar{f}_{\Omega,w}\right)\left(\bar{f}_{\Omega,w} - m\right)}{M - m} \le \frac{1}{4}\left(M - m\right),$$

then by (2.3) and (2.5) we deduce the first inequality (2.2). The second part is clear.

Corollary 2. Let $\Phi: I \to \mathbb{R}$ be a continuous convex function on the interval of real numbers I and $m, M \in \mathbb{R}$, m < M with $[m, M] \subset \mathring{I}$. If $x_i \in I$ and $p_i \geq 0$ for $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$, then we have the inequalities

(2.6)
$$0 \leq \sum_{i=1}^{n} p_{i} \Phi\left(x_{i}\right) - \Phi\left(\bar{x}_{p}\right)$$

$$\leq \left(M - \bar{x}_{p}\right) \left(\bar{x}_{p} - m\right) \sup_{t \in (m, M)} \Psi_{\Phi}\left(t; m, M\right)$$

$$\leq \left(M - \bar{x}_{p}\right) \left(\bar{x}_{p} - m\right) \frac{\Phi'_{-}\left(M\right) - \Phi'_{+}\left(m\right)}{M - m}$$

$$\leq \frac{1}{4} \left(M - m\right) \left[\Phi'_{-}\left(M\right) - \Phi'_{+}\left(m\right)\right],$$

and

(2.7)
$$0 \leq \sum_{i=1}^{n} p_{i} \Phi(x_{i}) - \Phi(\bar{x}_{p}) \leq \frac{1}{4} (M - m) \Psi_{\Phi}(\bar{x}_{p}; m, M)$$
$$\leq \frac{1}{4} (M - m) \left[\Phi'_{-}(M) - \Phi'_{+}(m) \right],$$

where $\bar{x}_p := \sum_{i=1}^n p_i x_i \in I$.

Remark 3. Define the weighted arithmetic mean of the positive n-tuple $x = (x_1, ..., x_n)$ with the nonnegative weights $w = (w_1, ..., w_n)$ by

$$A_n(w,x) := \frac{1}{W_n} \sum_{i=1}^n w_i x_i$$

where $W_n := \sum_{i=1}^n w_i > 0$ and the weighted geometric mean of the same n-tuple, by

$$G_n(w,x) := \left(\prod_{i=1}^n x_i^{w_i}\right)^{1/W_n}.$$

It is well know that the following arithmetic mean-geometric mean inequality holds true

$$A_n(w,x) \ge G_n(w,x)$$
.

Applying the inequality between the first and third term in (2.6) for the convex function $\Phi(t) = -\ln t, t > 0$ we have

$$(2.8) 1 \leq \frac{A_n(w,x)}{G_n(w,x)} \leq \exp\left[\frac{1}{Mm}(M - A_n(w,x))(A_n(w,x) - m)\right]$$
$$\leq \exp\left[\frac{1}{4}\frac{(M-m)^2}{mM}\right],$$

provided that $0 < m \le x_i \le M < \infty$ for $i \in \{1, ..., n\}$.

Also, if we apply the inequality (2.7) for the same function Φ we get that

$$(2.9) 1 \leq \frac{A_n(w,x)}{G_n(w,x)}$$

$$\leq \left[\left(\frac{M}{A_n(w,x)} \right)^{M-A_n(w,x)} \left(\frac{m}{A_n(w,x)} \right)^{A_n(w,x)-m} \right]^{\frac{1}{4}(M-m)}$$

$$\leq \exp \left[\frac{1}{4} \frac{(M-m)^2}{mM} \right].$$

The following result also holds

Theorem 3. With the assumptions of Theorem 2, we have the inequalities

$$(2.10) \qquad 0 \leq \int_{\Omega} w \left(\Phi \circ f\right) d\mu \left(x\right) - \Phi\left(\bar{f}_{\Omega,w}\right)$$

$$\leq 2 \max\left\{\frac{M - \bar{f}_{\Omega,w}}{M - m}, \frac{\bar{f}_{\Omega,w} - m}{M - m}\right\} \left[\frac{\Phi\left(m\right) + \Phi\left(M\right)}{2} - \Phi\left(\frac{m + M}{2}\right)\right]$$

$$\leq \frac{1}{2} \max\left\{M - \bar{f}_{\Omega,w}, \bar{f}_{\Omega,w} - m\right\} \left[\Phi'_{-}\left(M\right) - \Phi'_{+}\left(m\right)\right].$$

Proof. First of all, we recall the following result obtained by the author in [14] that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

(2.11)
$$n \min_{i \in \{1, ..., n\}} \{p_i\} \left[\frac{1}{n} \sum_{i=1}^n \Phi(x_i) - \Phi\left(\frac{1}{n} \sum_{i=1}^n x_i\right) \right]$$

$$\leq \frac{1}{P_n} \sum_{i=1}^n p_i \Phi(x_i) - \Phi\left(\frac{1}{P_n} \sum_{i=1}^n p_i x_i\right)$$

$$n \max_{i \in \{1, ..., n\}} \{p_i\} \left[\frac{1}{n} \sum_{i=1}^n \Phi(x_i) - \Phi\left(\frac{1}{n} \sum_{i=1}^n x_i\right) \right],$$

where $\Phi: C \to \mathbb{R}$ is a convex function defined on the convex subset C of the linear space X, $\{x_i\}_{i\in\{1,\ldots,n\}}$ are vectors and $\{p_i\}_{i\in\{1,\ldots,n\}}$ are nonnegative numbers with $P_n := \sum_{i=1}^n p_i > 0.$ For n=2 we deduce from (2.11) that

$$(2.12) 2\min\left\{t, 1-t\right\} \left[\frac{\Phi\left(x\right) + \Phi\left(y\right)}{2} - \Phi\left(\frac{x+y}{2}\right)\right]$$

$$\leq t\Phi\left(x\right) + (1-t)\Phi\left(y\right) - \Phi\left(tx + (1-t)y\right)$$

$$\leq 2\max\left\{t, 1-t\right\} \left[\frac{\Phi\left(x\right) + \Phi\left(y\right)}{2} - \Phi\left(\frac{x+y}{2}\right)\right]$$

for any $x, y \in C$ and $t \in [0, 1]$.

If we use the second inequality in (2.12) for the convex function $\Phi: I \to \mathbb{R}$ and $m, M \in \mathbb{R}, m < M \text{ with } [m, M] \subset \mathring{I}, \text{ we have for } t = \frac{M - \bar{f}_{\Omega, w}}{M - m} \text{ that }$

$$(2.13) \qquad \frac{\left(M - \bar{f}_{\Omega,w}\right)\Phi\left(m\right) + \left(\bar{f}_{\Omega,w} - m\right)\Phi\left(M\right)}{M - m}$$

$$-\Phi\left(\frac{m\left(M - \bar{f}_{\Omega,w}\right) + M\left(\bar{f}_{\Omega,w} - m\right)}{M - m}\right)$$

$$\leq 2\max\left\{\frac{M - \bar{f}_{\Omega,w}}{M - m}, \frac{\bar{f}_{\Omega,w} - m}{M - m}\right\}$$

$$\times \left[\frac{\Phi\left(m\right) + \Phi\left(M\right)}{2} - \Phi\left(\frac{m + M}{2}\right)\right].$$

Utilizing the inequality (2.3) and (2.13) we deduce the first inequality in (2.10). Since

$$\begin{split} &\frac{\Phi\left(m\right)+\Phi\left(M\right)}{2}-\Phi\left(\frac{m+M}{2}\right)\\ &M-m\\ &=\frac{1}{4}\left[\frac{\Phi\left(M\right)-\Phi\left(\frac{m+M}{2}\right)}{M-\frac{m+M}{2}}-\frac{\Phi\left(\frac{m+M}{2}\right)-\Phi\left(m\right)}{\frac{m+M}{2}-m}\right] \end{split}$$

and, by the gradient inequality, we have that

$$\frac{\Phi\left(M\right) - \Phi\left(\frac{m+M}{2}\right)}{M - \frac{m+M}{2}} \le \Phi'_{-}\left(M\right)$$

and

$$\frac{\Phi\left(\frac{m+M}{2}\right) - \Phi\left(m\right)}{\frac{m+M}{2} - m} \ge \Phi'_{+}\left(m\right),$$

then we get

$$\frac{\Phi(m)+\Phi(M)}{2} - \Phi\left(\frac{m+M}{2}\right) \le \frac{1}{4} \left[\Phi'_{-}(M) - \Phi'_{+}(m)\right].$$

On making use of (2.13) and (2.14) we deduce the last part of (2.10).

Corollary 3. With the assumptions in Corollary 2, we have the inequalities

$$(2.15) 0 \leq \sum_{i=1}^{n} p_{i} \Phi\left(x_{i}\right) - \Phi\left(\bar{x}_{p}\right)$$

$$\leq 2 \max\left\{\frac{M - \bar{x}_{p}}{M - m}, \frac{\bar{x}_{p} - m}{M - m}\right\} \left[\frac{\Phi\left(m\right) + \Phi\left(M\right)}{2} - \Phi\left(\frac{m + M}{2}\right)\right]$$

$$\leq \frac{1}{2} \max\left\{M - \bar{x}_{p}, \bar{x}_{p} - m\right\} \left[\Phi'_{-}\left(M\right) - \Phi'_{+}\left(m\right)\right].$$

Remark 4. Since, obviously,

$$\frac{M - \bar{f}_{\Omega,w}}{M - m}, \frac{\bar{f}_{\Omega,w} - m}{M - m} \le 1$$

then we obtain from the first inequality in (2.10) the simpler, however coarser inequality

(2.16)
$$0 \leq \int_{\Omega} w \left(\Phi \circ f \right) d\mu \left(x \right) - \Phi \left(\bar{f}_{\Omega, w} \right)$$
$$\leq 2 \left[\frac{\Phi \left(m \right) + \Phi \left(M \right)}{2} - \Phi \left(\frac{m + M}{2} \right) \right].$$

We notice that the discrete version of this result, namely

$$(2.17) 0 \le \sum_{i=1}^{n} p_{i} \Phi\left(x_{i}\right) - \Phi\left(\bar{x}_{p}\right) \le 2 \left[\frac{\Phi\left(m\right) + \Phi\left(M\right)}{2} - \Phi\left(\frac{m+M}{2}\right)\right]$$

was obtained in 2008 by S. Simic in [33].

Remark 5. With the assumptions in Remark 3 we have the following reverse of the arithmetic mean-geometric mean inequality

$$(2.18) 1 \leq \frac{A_n\left(w,x\right)}{G_n\left(w,x\right)} \leq \left(\frac{A\left(m,M\right)}{G\left(m,M\right)}\right)^{2\max\left\{\frac{M-A_n\left(w,x\right)}{M-m},\frac{A_n\left(w,x\right)-m}{M-m}\right\}}.$$

where A(m, M) is the arithmetic mean while G(m, M) is the geometric mean of the positive numbers m and M.

3. Applications for the Hölder Inequality

It is well known that if $f \in L_p(\Omega, \mu)$, p > 1, where the Lebesgue space $L_p(\Omega, \mu)$ is defined by

$$L_{p}\left(\Omega,\mu\right):=\left\{ f:\Omega\to\mathbb{R},\ f\ \text{is μ-measurable and }\int_{\Omega}\left|f\left(x\right)\right|^{p}d\mu\left(x\right)<\infty\right\}$$

and $g \in L_q(\Omega, \mu)$ with $\frac{1}{p} + \frac{1}{q} = 1$ then $fg \in L(\Omega, \mu) := L_1(\Omega, \mu)$ and the Hölder inequality holds true

$$\int_{\Omega} |fg| \, d\mu \le \left(\int_{\Omega} |f|^p \, d\mu \right)^{1/p} \left(\int_{\Omega} |g|^p \, d\mu \right)^{1/q}.$$

Assume that p > 1. If $h : \Omega \to \mathbb{R}$ is μ -measurable, satisfies the bounds

$$-\infty < m \le |h(x)| \le M < \infty$$
 for μ -a.e. $x \in \Omega$

and is such that $h, |h|^p \in L_w(\Omega, \mu)$, for a μ -measurable function $w : \Omega \to \mathbb{R}$, with $w(x) \ge 0$ for μ - a.e. $x \in \Omega$ and $\int_{\Omega} w d\mu > 0$, then from (2.1) we have

$$(3.1) 0 \leq \frac{\int_{\Omega} |h|^{p} w d\mu}{\int_{\Omega} w d\mu} - \left(\frac{\int_{\Omega} |h| w d\mu}{\int_{\Omega} w d\mu}\right)^{p}$$

$$\leq \frac{\left(M - \overline{|h|}_{\Omega, w}\right) \left(\overline{|h|}_{\Omega, w} - m\right)}{M - m} B_{p} (m, M)$$

$$\leq p \frac{M^{p-1} - m^{p-1}}{M - m} \left(M - \overline{|h|}_{\Omega, w}\right) \left(\overline{|h|}_{\Omega, w} - m\right)$$

$$\leq \frac{1}{4} p (M - m) \left(M^{p-1} - m^{p-1}\right),$$

where $\overline{|h|}_{\Omega,w}:=\frac{\int_{\Omega}|h|wd\mu}{\int_{\Omega}wd\mu}\in[m,M]$ and $\Psi_{p}\left(\cdot;m,M\right):\left(m,M\right)\to\mathbb{R}$ is defined by

$$\Psi_{p}\left(t;m,M\right) = \frac{M^{p} - t^{p}}{M - t} - \frac{t^{p} - m^{p}}{t - m}$$

while

$$(3.2) B_p(m,M) := \sup_{t \in (m,M)} \Psi_p(t;m,M).$$

From (2.2) we also have the inequality

$$(3.3) 0 \leq \frac{\int_{\Omega} |h|^{p} w d\mu}{\int_{\Omega} w d\mu} - \left(\frac{\int_{\Omega} |h| w d\mu}{\int_{\Omega} w d\mu}\right)^{p} \leq \frac{1}{4} (M - m) \Psi_{p} \left(\overline{|h|}_{\Omega, w}; m, M\right)$$
$$\leq \frac{1}{4} p (M - m) \left(M^{p-1} - m^{p-1}\right).$$

Proposition 1. If $f \in L_p(\Omega, \mu)$, $g \in L_q(\Omega, \mu)$ with $p > 1, \frac{1}{p} + \frac{1}{q} = 1$ and there exists the constants $\gamma, \Gamma > 0$ and such that

$$\gamma \le \frac{|f|}{|g|^{q-1}} \le \Gamma \ \mu$$
-a.e on Ω ,

then we have

$$(3.4) \qquad 0 \leq \frac{\int_{\Omega} |f|^{p} d\mu}{\int_{\Omega} |g|^{q} d\mu} - \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right)^{p}$$

$$\leq \frac{B_{p} (\gamma, \Gamma)}{\Gamma - \gamma} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right) \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right)$$

$$\leq p \frac{\Gamma^{p-1} - \gamma^{p-1}}{\Gamma - \gamma} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right) \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right)$$

$$\leq \frac{1}{4} p (\Gamma - \gamma) \left(\Gamma^{p-1} - \gamma^{p-1}\right),$$

and

$$(3.5) 0 \leq \frac{\int_{\Omega} |f|^{p} d\mu}{\int_{\Omega} |g|^{q} d\mu} - \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right)^{p}$$

$$\leq \frac{1}{4} (\Gamma - \gamma) \Psi_{p} \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}; \gamma, \Gamma\right) \leq \frac{1}{4} p (\Gamma - \gamma) \left(\Gamma^{p-1} - \gamma^{p-1}\right),$$

where $B_{p}\left(\cdot,\cdot\right)$ and $\Psi_{p}\left(\cdot;\cdot,\cdot\right)$ are defined above.

Proof. The inequalities (3.4) and (3.5) follow from (3.1) and (3.3) by choosing

$$h = \frac{|f|}{|g|^{q-1}}$$
 and $w = |g|^q$.

The details are omitted.

Remark 6. We observe that for p = q = 2 we have $\Psi_2(t; \gamma, \Gamma) = \Gamma - \gamma = B_2(\gamma, \Gamma)$ and then from the first inequality in (3.4) we get the following reverse of the Cauchy-Bunyakovsky-Schwarz inequality:

$$(3.6) \qquad \int_{\Omega} |g|^{2} d\mu \int_{\Omega} |f|^{2} d\mu - \left(\int_{\Omega} |fg| d\mu \right)^{2}$$

$$\leq \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{2} d\mu} \right) \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{2} d\mu} - \gamma \right) \left(\int_{\Omega} |g|^{2} d\mu \right)^{2}$$

$$\leq \frac{1}{4} (\Gamma - \gamma)^{2} \left(\int_{\Omega} |g|^{2} d\mu \right)^{2},$$

provided that $f, g \in L_2(\Omega, \mu)$, and there exists the constants $\gamma, \Gamma > 0$ such that

$$\gamma \leq \frac{|f|}{|g|} \leq \Gamma \ \mu$$
-a.e on Ω .

Corollary 4. With the assumptions of Proposition 1 we have the following additive reverses of the Hölder inequality

$$(3.7) \qquad 0 \leq \left(\int_{\Omega} |f|^{p} d\mu\right)^{1/p} \left(\int_{\Omega} |g|^{q} d\mu\right)^{1/q} - \int_{\Omega} |fg| d\mu$$

$$\leq \left[\frac{B_{p}(\gamma, \Gamma)}{\Gamma - \gamma}\right]^{1/p} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right)^{1/p} \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right)^{1/p}$$

$$\times \int_{\Omega} |g|^{q} d\mu$$

$$\leq p^{1/p} \left(\frac{\Gamma^{p-1} - \gamma^{p-1}}{\Gamma - \gamma}\right)^{1/p} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right)^{1/p} \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right)^{1/p}$$

$$\times \int_{\Omega} |g|^{q} d\mu$$

$$\leq \frac{1}{4^{1/p}} p^{1/p} (\Gamma - \gamma)^{1/p} (\Gamma^{p-1} - \gamma^{p-1})^{1/p} \int_{\Omega} |g|^{q} d\mu$$

and

$$(3.8) 0 \leq \left(\int_{\Omega} |f|^{p} d\mu\right)^{1/p} \left(\int_{\Omega} |g|^{q} d\mu\right)^{1/q} - \int_{\Omega} |fg| d\mu$$

$$\leq \frac{1}{4^{1/p}} (\Gamma - \gamma)^{1/p} \Psi_{p}^{1/p} \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}; m, M\right) \int_{\Omega} |g|^{q} d\mu$$

$$\leq \frac{1}{4^{1/p}} p^{1/p} (\Gamma - \gamma)^{1/p} \left(\Gamma^{p-1} - \gamma^{p-1}\right)^{1/p} \int_{\Omega} |g|^{q} d\mu$$

where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By multiplying in (3.4) with $\left(\int_{\Omega} |g|^q d\mu\right)^p$ we have

$$\begin{split} & \int_{\Omega} |f|^{p} d\mu \left(\int_{\Omega} |g|^{q} d\mu \right)^{p-1} - \left(\int_{\Omega} |fg| d\mu \right)^{p} \\ & \leq \frac{B_{p} (\gamma, \Gamma)}{\Gamma - \gamma} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} \right) \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma \right) \left(\int_{\Omega} |g|^{q} d\mu \right)^{p} \\ & \leq p \frac{\Gamma^{p-1} - \gamma^{p-1}}{\Gamma - \gamma} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} \right) \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma \right) \left(\int_{\Omega} |g|^{q} d\mu \right)^{p} \\ & \leq \frac{1}{4} p (\Gamma - \gamma) \left(\Gamma^{p-1} - \gamma^{p-1} \right) \left(\int_{\Omega} |g|^{q} d\mu \right)^{p}, \end{split}$$

which is equivalent with

$$(3.9) \qquad \int_{\Omega} |f|^{p} d\mu \left(\int_{\Omega} |g|^{q} d\mu \right)^{p-1}$$

$$\leq \left(\int_{\Omega} |fg| d\mu \right)^{p} + \frac{B_{p} (\gamma, \Gamma)}{\Gamma - \gamma} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} \right) \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma \right)$$

$$\times \left(\int_{\Omega} |g|^{q} d\mu \right)^{p}$$

$$\leq \left(\int_{\Omega} |fg| d\mu \right)^{p} + p \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} \right) \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma \right)$$

$$\times \left(\int_{\Omega} |g|^{q} d\mu \right)^{p} \frac{\Gamma^{p-1} - \gamma^{p-1}}{\Gamma - \gamma}$$

$$\leq \left(\int_{\Omega} |fg| d\mu \right)^{p} + \frac{1}{4} p (\Gamma - \gamma) (\Gamma^{p-1} - \gamma^{p-1}) \left(\int_{\Omega} |g|^{q} d\mu \right)^{p} .$$

Taking the power 1/p with p > 1 and employing the following elementary inequality that state that for p > 1 and $\alpha, \beta > 0$,

$$(\alpha + \beta)^{1/p} \le \alpha^{1/p} + \beta^{1/p}$$

we have from the first part of (3.9) that

$$(3.10) \int_{\Omega} |f|^{p} d\mu \left(\int_{\Omega} |g|^{q} d\mu \right)^{1-\frac{1}{p}}$$

$$\leq \int_{\Omega} |fg| d\mu + \left[\frac{B_{p} (\gamma, \Gamma)}{\Gamma - \gamma} \right]^{1/p} \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} \right)^{1/p} \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma \right)^{1/p}$$

$$\times \int_{\Omega} |g|^{q} d\mu$$

and since $1 - \frac{1}{p} = \frac{1}{q}$ we get from (3.10) the first inequality in (3.7). The rest is obvious.

The inequality (3.8) can be proved in a similar manner, however the details are omitted. $\hfill\Box$

If $h: \Omega \to \mathbb{R}$ is μ -measurable, satisfies the bounds

$$-\infty < m < |h(x)| < M < \infty$$
 for μ -a.e. $x \in \Omega$

and is such that $h, |h|^p \in L_w(\Omega, \mu)$, for a μ -measurable function $w : \Omega \to \mathbb{R}$, with $w(x) \ge 0$ for μ – a.e. $x \in \Omega$ and $\int_{\Omega} w d\mu > 0$, then from (2.10) we also have the

$$(3.11) \qquad 0 \leq \frac{\int_{\Omega} |h|^{p} w d\mu}{\int_{\Omega} w d\mu} - \left(\frac{\int_{\Omega} |h| w d\mu}{\int_{\Omega} w d\mu}\right)^{p}$$

$$\leq 2 \left[\frac{m^{p} + M^{p}}{2} - \left(\frac{m + M}{2}\right)^{p}\right] \max \left\{\frac{M - |\overline{h}|_{\Omega, w}}{M - m}, \frac{|\overline{h}|_{\Omega, w} - m}{M - m}\right\}$$

$$\leq \frac{1}{2} p \left(M^{p-1} - m^{p-1}\right) \max \left\{M - |\overline{h}|_{\Omega, w}, |\overline{h}|_{\Omega, w} - m\right\}.$$

where, as above, $\overline{|h|}_{\Omega,w} := \frac{\int_{\Omega} |h| w d\mu}{\int_{\Omega} w d\mu} \in [m, M]$. From the inequality (3.11) we can state:

Proposition 2. With the assumptions of Proposition 1 we have

$$(3.12) \qquad 0 \leq \frac{\int_{\Omega} |f|^{p} d\mu}{\int_{\Omega} |g|^{q} d\mu} - \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right)^{p}$$

$$\leq 2 \cdot \frac{\frac{\gamma^{p} + \Gamma^{p}}{2} - \left(\frac{\gamma + \Gamma}{2}\right)^{p}}{\Gamma - \gamma} \max \left\{\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}, \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right\}$$

$$\leq \frac{1}{2} p \left(\Gamma^{p-1} - \gamma^{p-1}\right) \max \left\{\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}, \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right\}.$$

Finally, the following additive reverse of the Hölder inequality can be stated as

Corollary 5. With the assumptions of Proposition 1 we have

$$(3.13) \qquad 0 \leq \left(\int_{\Omega} |f|^{p} d\mu\right)^{1/p} \left(\int_{\Omega} |g|^{q} d\mu\right)^{1/q} - \int_{\Omega} |fg| d\mu$$

$$\leq 2^{1/p} \cdot \left(\frac{\gamma^{p} + \Gamma^{p}}{2} - \left(\frac{\gamma + \Gamma}{2}\right)^{p}}{\Gamma - \gamma}\right)^{1/p}$$

$$\times \max \left\{ \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right)^{1/p}, \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right)^{1/p} \right\} \int_{\Omega} |g|^{q} d\mu$$

$$\leq \frac{1}{2^{1/p}} p^{1/p} \max \left\{ \left(\Gamma - \frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu}\right)^{1/p}, \left(\frac{\int_{\Omega} |fg| d\mu}{\int_{\Omega} |g|^{q} d\mu} - \gamma\right)^{1/p} \right\}$$

$$\times \left(\Gamma^{p-1} - \gamma^{p-1}\right)^{1/p} \int_{\Omega} |g|^{q} d\mu.$$

Remark 7. As a simpler, however coarser inequality we have the following result:

$$0 \le \left(\int_{\Omega} |f|^p d\mu \right)^{1/p} \left(\int_{\Omega} |g|^q d\mu \right)^{1/q} - \int_{\Omega} |fg| d\mu$$
$$\le 2^{1/p} \cdot \left[\frac{\gamma^p + \Gamma^p}{2} - \left(\frac{\gamma + \Gamma}{2} \right)^p \right]^{1/p} \int_{\Omega} |g|^q d\mu,$$

where f and g are as above.

4. Applications for f-Divergence

One of the important issues in many applications of Probability Theory is finding an appropriate measure of distance (or difference or discrimination) between two probability distributions. A number of divergence measures for this purpose have been proposed and extensively studied by Jeffreys [19], Kullback and Leibler [24], Rényi [30], Havrda and Charvat [17], Kapur [22], Sharma and Mittal [32], Burbea and Rao [4], Rao [29], Lin [25], Csiszár [7], Ali and Silvey [1], Vajda [39], Shioya and Da-te [34] and others (see for example [26] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [29], genetics [26], finance, economics, and political science [31], [37], [38], biology [28], the analysis of contingency tables [16], approximation of probability distributions [6], [23], signal processing [20], [21] and pattern recognition [3], [5]. A number of these measures of distance are specific cases of Csiszár f-divergence and so further exploration of this concept will have a flow on effect to other measures of distance and to areas in which they are applied.

Assume that a set Ω and the σ -finite measure μ are given. Consider the set of all probability densities on μ to be $\mathcal{P} := \{p|p: \Omega \to \mathbb{R}, \ p(x) \geq 0, \ \int_{\Omega} p(x) \, d\mu(x) = 1\}$. The Kullback-Leibler divergence [24] is well known among the information divergences. It is defined as:

(4.1)
$$D_{KL}(p,q) := \int_{\Omega} p(x) \ln \left[\frac{p(x)}{q(x)} \right] d\mu(x), \quad p,q \in \mathcal{P},$$

where \ln is to base e.

In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler divergence. These are the: variation distance D_v , Hellinger distance D_H [18], χ^2 -divergence D_{χ^2} , α -divergence D_{α} , Bhattacharyya distance D_B [2], Harmonic distance D_{Ha} , Jeffrey's distance D_J [19], triangular discrimination D_{Δ} [36], etc... They are defined as follows:

$$(4.2) D_v(p,q) := \int_{\Omega} |p(x) - q(x)| d\mu(x), \quad p, q \in \mathcal{P};$$

$$(4.3) D_{H}\left(p,q\right) := \int_{\Omega} \left| \sqrt{p\left(x\right)} - \sqrt{q\left(x\right)} \right| d\mu\left(x\right), \ p,q \in \mathcal{P};$$

$$(4.4) D_{\chi^{2}}\left(p,q\right):=\int_{\Omega}p\left(x\right)\left[\left(\frac{q\left(x\right)}{p\left(x\right)}\right)^{2}-1\right]d\mu\left(x\right), \ p,q\in\mathcal{P};$$

$$(4.5) D_{\alpha}\left(p,q\right) := \frac{4}{1-\alpha^{2}} \left[1 - \int_{\Omega}\left[p\left(x\right)\right]^{\frac{1-\alpha}{2}} \left[q\left(x\right)\right]^{\frac{1+\alpha}{2}} d\mu\left(x\right)\right], \ p,q \in \mathcal{P};$$

(4.6)
$$D_{B}\left(p,q\right) := \int_{\Omega} \sqrt{p\left(x\right)q\left(x\right)} d\mu\left(x\right), \ p,q \in \mathcal{P};$$

$$(4.7) D_{Ha}\left(p,q\right) := \int_{\Omega} \frac{2p\left(x\right)q\left(x\right)}{p\left(x\right) + q\left(x\right)} d\mu\left(x\right), \ p,q \in \mathcal{P};$$

$$(4.8) D_{J}(p,q) := \int_{\Omega} \left[p(x) - q(x) \right] \ln \left[\frac{p(x)}{q(x)} \right] d\mu(x), \quad p,q \in \mathcal{P};$$

$$(4.9) D_{\Delta}(p,q) := \int_{\Omega} \frac{\left[p(x) - q(x)\right]^2}{p(x) + q(x)} d\mu(x), \quad p, q \in \mathcal{P}.$$

For other divergence measures, see the paper [22] by Kapur or the book on line [35] by Taneja.

Csiszár f-divergence is defined as follows [8]

$$(4.10) I_{f}(p,q) := \int_{\Omega} p(x) f\left[\frac{q(x)}{p(x)}\right] d\mu(x), \ p,q \in \mathcal{P},$$

where f is convex on $(0, \infty)$. It is assumed that f(u) is zero and strictly convex at u = 1. By appropriately defining this convex function, various divergences are derived. Most of the above distances (4.1) - (4.9), are particular instances of Csiszár f-divergence. There are also many others which are not in this class (see for example [35]). For the basic properties of Csiszár f-divergence see [8], [9] and [39].

The following result holds:

Proposition 3. Let $f:(0,\infty) \to \mathbb{R}$ be a convex function with the property that f(1) = 0. Assume that $p, q \in \mathcal{P}$ and there exists the constants $0 < r < 1 < R < \infty$ such that

(4.11)
$$r \le \frac{q(x)}{p(x)} \le R \text{ for } \mu\text{-a.e. } x \in \Omega.$$

Then we have the inequalities

$$(4.12) I_{f}(p,q) \leq \frac{(R-1)(1-r)}{R-r} \sup_{t \in (r,R)} \Psi_{f}(t;r,R)$$

$$\leq (R-1)(1-r) \frac{f'_{-}(R) - f'_{+}(r)}{R-r}$$

$$\leq \frac{1}{4}(R-r) \left[f'_{-}(R) - f'_{+}(r) \right],$$

and $\Psi_f(\cdot; r, R) : (r, R) \to \mathbb{R}$ is defined by

$$\Psi_{f}\left(t;r,R\right) = \frac{f\left(R\right) - f\left(t\right)}{R - t} - \frac{f\left(t\right) - f\left(r\right)}{t - r}.$$

We also have the inequality

(4.13)
$$I_{f}(p,q) \leq \frac{1}{4} (R-r) \frac{f(R)(1-r) + f(r)(R-1)}{(R-1)(1-r)}$$
$$\leq \frac{1}{4} (R-r) \left[f'_{-}(R) - f'_{+}(r) \right].$$

The proof follows by Theorem 2 by choosing w(x) = p(x), $f(x) = \frac{q(x)}{p(x)}$, m = r and M = R and performing the required calculations. The details are omitted. Utilising the same approach and Theorem 3 we can also state that:

Proposition 4. With the assumptions of Proposition 3 we have

$$(4.14) I_{f}(p,q) \leq 2 \max \left\{ \frac{R-1}{R-r}, \frac{1-r}{R-r} \right\} \left[\frac{f(r)+f(R)}{2} - f\left(\frac{r+R}{2}\right) \right]$$

$$\leq \frac{1}{2} \max \left\{ R-1, 1-r \right\} \left[f'_{-}(R) - f'_{+}(r) \right].$$

The above results can be utilized to obtain various inequalities for the divergence measures in Information Theory that are particular instances of f-divergence.

Consider the Kullback-Leibler divergence

$$D_{KL}(p,q) := \int_{\Omega} p(x) \ln \left[\frac{p(x)}{q(x)} \right] d\mu(x), \ p,q \in \mathcal{P},$$

which is an f-divergence for the convex function $f:(0,\infty)\to\mathbb{R}$, $f(t)=-\ln t$. If $p,q\in\mathcal{P}$ such that there exists the constants $0< r<1< R<\infty$ with

(4.15)
$$r \le \frac{q(x)}{p(x)} \le R \text{ for } \mu\text{-a.e. } x \in \Omega.$$

then we get from (4.12) that

(4.16)
$$D_{KL}(p,q) \le \frac{(R-1)(1-r)}{rR},$$

from (4.13) that

$$D_{KL}(p,q) \le \frac{1}{4} (R-r) \ln \left[R^{-\frac{1}{R-1}} r^{-\frac{1}{1-r}} \right]$$

and from (4.14) that

$$(4.17) D_{KL}(p,q) \leq 2 \max \left\{ \frac{R-1}{R-r}, \frac{1-r}{R-r} \right\} \ln \left(\frac{A(r,R)}{G(r,R)} \right)$$

$$\leq \frac{1}{2} \max \left\{ R - 1, 1 - r \right\} \left(\frac{R-r}{rR} \right),$$

where A(r,R) is the arithmetic mean and G(r,R) is the geometric mean of the positive numbers r and R.

REFERENCES

- S.M. ALI and S.D. SILVEY, A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Sec B, 28 (1966), 131-142.
- [2] A. BHATTACHARYYA, On a measure of divergence between two statistical populations defined by their probability distributions, *Bull. Calcutta Math. Soc.*, **35** (1943), 99-109.
- [3] M. BETH BASSAT, f-entropies, probability of error and feature selection, Inform. Control, 39 (1978), 227-242.
- [4] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy function, IEEE Trans. Inf. Th., 28 (3) (1982), 489-495.
- [5] C.H. CHEN, Statistical Pattern Recognition, Rocelle Park, New York, Hoyderc Book Co., 1973.
- [6] C.K. CHOW and C.N. LIN, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inf. Th., 14 (3) (1968), 462-467.
- [7] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
- [8] I. CSISZÁR, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-339.
- [9] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
- [10] S.S. DRAGOMIR, A converse result for Jensen's discrete inequality via Gruss' inequality and applications in information theory. An. Univ. Oradea Fasc. Mat. 7 (1999/2000), 178–189.
- [11] S.S. DRAGOMIR, On a reverse of Jessen's inequality for isotonic linear functionals, J. Ineq. Pure & Appl. Math., 2(2001), No. 3, Article 36.
- [12] S.S. DRAGOMIR, A Grüss type inequality for isotonic linear functionals and applications. Demonstratio Math. 36 (2003), no. 3, 551-562. Preprint RGMIA Res. Rep. Coll. 5(2002), Suplement, Art. 12. [Online http://rgmia.org/v5(E).php].

- [13] S.S. DRAGOMIR, Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225–248.
- [14] S.S. DRAGOMIR, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 471-476.
- [15] S.S. DRAGOMIR and N.M. IONESCU, Some converse of Jensen's inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, 71–78.
- [16] D.V. GOKHALE and S. KULLBACK, Information in Contingency Tables, New York, Marcel Decker, 1978.
- [17] J.H. HAVRDA and F. CHARVAT, Quantification method classification process: concept of structural α-entropy, Kybernetika, 3 (1967), 30-35.
- [18] E. HELLINGER, Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. für reine and Augeur. Math., 36 (1909), 210-271.
- [19] H. JEFFREYS, An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London, 186 A (1946), 453-461.
- [20] T.T. KADOTA and L.A. SHEPP, On the best finite set of linear observables for discriminating two Gaussian signals, IEEE Trans. Inf. Th., 13 (1967), 288-294.
- [21] T. KAILATH, The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Comm. Technology., Vol COM-15 (1967), 52-60.
- [22] J.N. KAPUR, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3 (1984), 1-16.
- [23] D. KAZAKOS and T. COTSIDAS, A decision theory approach to the approximation of discrete probability densities, IEEE Trans. Perform. Anal. Machine Intell., 1 (1980), 61-67.
- [24] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Annals Math. Statist., 22 (1951), 79-86.
- [25] J. LIN, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Th., 37 (1) (1991), 145-151.
- [26] M. MEI, The theory of genetic distance and evaluation of human races, Japan J. Human Genetics, 23 (1978), 341-369.
- [27] C.P. NICULESCU, An extension of Chebyshev's inequality and its connection with Jensen's inequality. J. Inequal. Appl. 6 (2001), no. 4, 451–462.
- [28] E.C. PIELOU, Ecological Diversity, Wiley, New York, 1975.
- [29] C.R. RAO, Diversity and dissimilarity coefficients: a unified approach, Theoretic Population Biology, 21 (1982), 24-43.
- [30] A. RÉNYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Stat. and Prob., University of California Press, 1 (1961), 547-561.
- [31] A. SEN, On Economic Inequality, Oxford University Press, London 1973.
- [32] B.D. SHARMA and D.P. MITTAL, New non-additive measures of relative information, Journ. Comb. Inf. Sys. Sci., 2 (4)(1977), 122-132.
- [33] S. SIMIC, On a global upper bound for Jensen's inequality, J. Math. Anal. Appl. 343(2008), 414-419.
- [34] H. SHIOYA and T. DA-TE, A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 37-40.
- [35] I. J. TANEJA, Generalised Information Measures and their Applications (http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html).
- [36] F. TOPSOE, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll., RGMIA, 2 (1) (1999), 85-98.
- [37] H. THEIL, Economics and Information Theory, North-Holland, Amsterdam, 1967.
- [38] H. THEIL, Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.
- [39] I. VAJDA, Theory of Statistical Inference and Information, Dordrecht-Boston, Kluwer Academic Publishers, 1989.

¹Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

 2 School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa