Received 30/08/11

SOME REVERSES OF THE JENSEN INEQUALITY WITH
APPLICATIONS

S.S. DRAGOMIR!:2

ABSTRACT. Two new reverses of the celebrated Jensen’s inequality for convex
functions in the general settings of the Lebesgue integral with applications for
means, Holder’s inequality and f-divergence measures in information theory
are given.

1. INTRODUCTION

Let (22, A, 1) be a measurable space consisting of a set , a o — algebra A of
parts of 2 and a countably additive and positive measure p on A with values in
R U {oo} . For a u—measurable function w : @ — R, with w (z) > 0 for p — a.e.
(almost every) x € Q, consider the Lebesgue space

Ly, (Qu):={f:Q—R, fis p-measurable and / w(x) |f (z)|dp (x) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead of
Jow () dp(x).

If f,g:Q — R are p—measurable functions and f,g, fg € L, (Q, 1), then we
may consider the Cebysev functional

(1.1) Ty (f,9) = / wfgdp — / wfdu/ wgdj.
Q Q Q
The following result is known in the literature as the Griiss inequality
1
(12) [T ()| < 3 (T =) (A~ ),
provided
(1.3) —0<y< f(z) <T <00, —0<d<g(z) <A<

for ;1 — a.e. (almost every) z € Q.
The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.
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If we assume that —co < v < f(z) < T < oo for pu — ae. © € Q, then by the
Griiss inequality for ¢ = f and by the Schwarz’s integral inequality, we have

(1.4) /Qw‘f/wadﬂ s

< l/gwadu</wadu)2r %(F 7).

In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, S.S. Dragomir obtained in 2002 [12] the following result:

Theorem 1. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f: Q — [m, M] so that o f, f, ® o f, (D' of)f € Ly (Q,un), where w >0
p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the inequality:

(1.5) OS/Qw(tbof)d,u—LI)(/wadu>
< [w@ o) fan= [ w@o)dn [ wran

1
<50 00— ] [ w]r- [
2 Q Q
For a generalization of the first inequality in (1.5) without the differentiability
assumption and the derivative ® replaced with a selection ¢ from the subdifferential

09, see the paper [27] by C.P. Niculescu.
If £(Q) < ccand o f, f, ®of, (Pof)-f € L(Qu), then we have the

inequality:
<y Jy e nan= (g [ 10)
sﬂ(l s [ @ onsan——e [ @epdn— | rau
B 1

1
L@ () — ' ()] o fdu|du.
2 ) Jo

The following discrete inequality is of interest as well.

(16) 0<

1 (£2)

Corollary 1. Let ® : [m, M] — R be a differentiable convex function on (m,M).
If 2, € [m,M] and w; >0 (i=1,...,n) with W,, := >, w; = 1, then one has
the counterpart of Jensen’s weighted discrete inequality:

=1 =1
i=1 i=1 i=1
%[CID' Zwl T — ijw] .

Remark 1. We notice that the inequality between the first and the second term in
(1.7) was proved in 1994 by Dragomir & Ionescu, see [15].

IN
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On making use of the results (1.5) and (1.4), we can state the following string
of reverse inequalities

(1.8) OS/Qw(@Of)du—<I></wadu>

< [w@on fau= [ w@opan [ wra

< ;[MM)<I>’(m)]/9w‘f/§2wfdu'du
< L[ (M)~ @ (m) [ Luwran- (] wfdu>2r
< {19 (M) — @' (m)] (M —m),

provided that ® : [m, M] C R — R is a differentiable convex function on (m, M)
and f: Q — [m, M] so that ®o f, f, & o f, (D' o f) f € Ly (Q, 1), where w > 0
p-a.e. on Q with [, wdp = 1.

Remark 2. We notice that the inequality between the first, second and last term

from (1.8) was proved in the general case of positive linear functionals in 2001 by
S.S. Dragomir in [11].

Motivated by the above results, we establish in the current paper two new re-
verses of Jensen’s integral inequality for a convex function. Some natural appli-
cation for inequalities between means, reverses of Holder’s inequality and for the
f-divergence measure that play an important role in information theory are given
as well.

2. REVERSE INEQUALITIES
The following reverse of the Jensen’s inequality holds:

Theorem 2. Let ® : I — R be a continuous convex function on the interval of
real numbers I and m, M € R, m < M with [m, M) C I, I is the interior of I. If
f:Q — R is u-measurable, satisfies the bounds

—co<m< f(z) <M < oo for p-a.e. x €Q
and such that f,®o f € Ly, (Q,u), then

(2.1) Og/w(%f)du*‘l’(fmu)
Q
(M - f_Q,w) (f_ﬂ,w - m) .
= M —m te(svlrlfM) Yo (fim, M)
< (M fo) (o - m) =002 )
< 3 (M —m) (2L (M)~ @/, (m)],

where fouw = [qw () f(z)dp(z) € [m,M] and Vg (;m, M) : (m,M) — R is
defined by
D (M) —®(t) <I>(t)—<1>(m).

Vo (bm, M) = ———— ———
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We also have the inequality

(M - m) \II<I> (fﬂ,w; m, M)

P

22 0= [w@of)du=2(fay) <

< 3 (M —m) [8 (31) ~ &, (m)],

—

provided that fq .., € (m, M).

Proof. By the convexity of & we have that

(2.3) / w (@) ® (f (2)) dia () — @ (o)

_ m (M — f(z)) + M (f (z) — m)
/Qw(a:)q){ M —m ]d,u(:z:)
m (M — f(z)) + M (f (z) —m)

_q)(/szw(x)[ M—m ]du(aﬂ)>
S/Q(1\4—J‘(:v))<1>(nﬁ+Sn(ac)—m)c1>(z\4)w(m)du(x)

m(MffTQ,w +M(_Qw7m)
_(I)< M —m )
_ (M = fo,w) ® (m) + (fo,u —m) ® (M)

M—-—m

_@(m(M—fQ,z]u\Z[t]\Tz(wi—m)> 5

By denoting

Aq; (t;m,M) =

we have

(2.4)  Ag (t;m, M) = (t—m)®(M)+ (M —1)®(m) — (M —m)®(t)

M—-—m
_ t—m)®(M)+ (M —t)®(m)— (M —t+t—m)P(¢)
M—m
_ (t=m)[®(M) =@ ()] = (M =) [®(t) = P (m)]
M—-—m

for any t € (m, M).
Therefore we have the equality

(M - .fQ,w) (fﬂ,w - m)
M—m

(25) B= Ve (fﬂ,w;maM)

provided that fq, € (m, M).



SOME REVERSES OF THE JENSEN INEQUALITY 5

For fo., = m or fa., = M the inequality (2.1) is obvious. If fq., € (m, M),
then

\I]<I> (fQ,w;m7M) < sup \I/<I> (t7m7M)

te(m,M)
. ‘@(M)@(t)@(t)@(m)}
te(m,M) L M—t t—m
. ‘<I><M><I><t>}+ . [Q)(t)q)(m)}
te(many L M —1 te(m, M) t—m
. ‘@(M)@(t)} - [<I><t><1><m>]
te(m,M) L M-t te(m,M) t—m

= @ (M)~ ¥, (m)

which by (2.3) and (2.5) produces the desired result (2.1).
Since, obviously

(M - fﬂ,w) (fTQ,w - m)
M—-m

Si(M_m)a

then by (2.3) and (2.5) we deduce the first inequality (2.2). The second part is
clear. 0

Corollary 2. Let @ : I — R be a continuous convex function on the interval of
real numbers I and m, M € R, m < M with [m,M] C I. If x; € I and p; > 0 for
i€{1,...,n} with > i, p; =1, then we have the inequalities

(2.6) 0= pid (i) = @ (z)
< (M —3p) (3 —m) sup Vg (t;m, M)
te(m,M)
< (M —3,) (7, - m) 2=~ 2 ()
< 3 (M —m) [# (3) ~ &, (m)],
and
(2.7) 0< Zpl«b (z:) — @ (7)) < i(M —m) Ve (Zp;m, M)
< 3 (M —m) [8 (31) ~ &, (m)],

where Ty, ==Y i pix; € 1.

Remark 3. Define the weighted arithmetic mean of the positive n-tuple © =
(1, ..., xn) with the nonnegative weights w = (w1, ..., wy) by

1 n
A, (w,x) = W Zwimi
" oi=1
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where Wy, := Y1, w; > 0 and the weighted geometric mean of the same n-tuple,

by
Whn

n 1/
G, (w,z) = (wa’)
i=1

It is well know that the following arithmetic mean-geometric mean inequality holds
true

Ay (w,z) > Gy (w, ).

Applying the inequality between the first and third term in (2.6) for the convex
function ® (t) = —1Int,t > 0 we have

Ap (w, ) 1
m < exp |:]\4TTL (M —An (’LU, 17)) (An (’lU,:L‘) — m)

“ e llw—ﬂﬂ |

(2.8) 1<

4 mM

provided that 0 <m < xz; < M < oo fori € {l,...,n}.
Also, if we apply the inequality (2.7) for the same function ® we get that

A, (w, )
e )

M \ME g e
An (w’ x) An (w, 17)

1<M—m>21

(M—m)

S eXp T

The following result also holds

Theorem 3. With the assumptions of Theorem 2, we have the inequalities

(210) 0< / w(@o f)dp (@) - @ (fou)

MM_—JFS;::U’ f;\z/,[w_—mm} {‘I’(m);‘b(M) 3 (m;Mﬂ

< 2max{

< gmax {M — fou, fow —m} [ (M) &, (m)].

Proof. First of all, we recall the following result obtained by the author in [14] that
provides a refinement and a reverse for the weighted Jensen’s discrete inequality:

1< 1
(2.11) nie{qu.l.l,n} {pi} |fl ; D (z;)— @ (n ;xl>]
<L i:piq’ (zi) — @ (1 i:pi%’)
R i=1 Pu i=1
n max {p;} [1276(1)(901) - (1273961)] )
ie{l,...,n} n P n P
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where @ : C — R is a convex function defined on the convex subset C' of the linear
space X, {@i};cqq, .,y are vectors and {pi};c(y 3 are nonnegative numbers with

P, = ZZL:l pi > 0.
For n = 2 we deduce from (2.11) that

(2.12) 2min {t,1 — t} {@(@;@(y) @ <x;y)]
<P (z)+(1—t)D(y)—®(ta+ (1—1t)y)

et ) [@(x);‘b(y) o (x—;yﬂ

for any x,y € C and t € [0,1].
If we use the second inequality in (2.12) for the convex function ® : I — R and

m, M € R, m < M with [m, M] C I, we have for ¢ = % that

(M = fouw) ®(m) + (fo, —m) @ (M)

(2.13)

M—-—m
_ 3 m (M — fouw) + M (fouw—m)
M—m
Mff_‘ﬂ,w f_Q,w*m
meax{ M-m > M-m }

. [@(m);@(M) _(I)(m+M>]

2

Utilizing the inequality (2.3) and (2.13) we deduce the first inequality in (2.10).
Since

<I>(m)J;<I>(]\4) _ % (m;M)

M—m
1|®(M)-o (™M) & (2M) — @ (m)
TA M- e,

and, by the gradient inequality, we have that

e e

and

then we get

2(m)+2(M) _ g (m+M) 1
2 2 / !
— < ¢ [8 (M) — @/, (m)].

On making use of (2.13) and (2.14) we deduce the last part of (2.10). O

(2.14)
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Corollary 3. With the assumptions in Corollary 2, we have the inequalities
n

(2.15) 0<> pi®(2:) — @ ()
i=1

SQMX{M@,, @,m} {@(m)+¢>(M) _@(m;Mﬂ

Remark 4. Since, obviously,
M_,](Tﬂ,w fQ,w_m
M-m > M-m

then we obtain from the first inequality in (2.10) the simpler, however coarser in-
equality

<1

(2.16) 0< /Qw(@ o f)du(z) — @ (fo.u)
ofemgeon g (msuy)

We notice that the discrete version of this result, namely

- _ P (m) + @ (M) m+ M
. < E i@ (i) — <2|——F— -0 ——
(2.17) 07i_1p<1>(x) (7)) 2[ 5 D 5
was obtained in 2008 by S. Simic in [33].

Remark 5. With the assumptions in Remark 3 we have the following reverse of
the arithmetic mean-geometric mean inequality

M—Ap(w,z) Ap(w,z)—m
M M

e (mgye

where A (m, M) is the arithmetic mean while G (m, M) is the geometric mean of
the positive numbers m and M.

(2.18) 1<

b

3. APPLICATIONS FOR THE HOLDER INEQUALITY

It is well known that if f € L, (2, i), p > 1, where the Lebesgue space Ly, (2, 1)
is defined by

L, u) :={f:Q—R, fis p-measurable and /Q|f ()| du (z) < oo}

and g € Ly (2, 1) with % + % =1 then fg € L(Q,p) := L1 (R, 1) and the Holder
inequality holds true

1/p 1/q
P p
[ Vgaldu < (/Qlf du) (/Q ol du) |

Assume that p > 1. If h: Q — R is py-measurable, satisfies the bounds

—oo<m < |h(z)| < M < oo for prae. €
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and is such that h,|h|” € L, (Q, i), for a p—measurable function w : Q — R, with
w(z) >0 for pp —ae. z € Qand [, wdy >0, then from (2.1) we have

. )< fﬂ}sz;:iu _ (fg}SLhLZZuY
(M - |h|QJ,\zz[)_(:|Q’w _ m) By, (m, M)
% (M - m9w> (mﬂw - m)

< ip (M —m) (MP~" —mP~1),

IA

<p

where [h|q, , = f?lhxﬁu € [m,M] and ¥, (-;m, M) : (m, M) — R is defined by
’ Q

MP —¢P P P

U, (t;m, M) = —

p ( 5 m, ) M ¢ t—m

while

(3.2) B,(m,M):= sup U,(m,M).
te(m,M)

From (2.2) we also have the inequality

fQ K| wdp fQ |h| wdp P T
. < — < (M- -
(B3 o=l ) S101-m T (1P M)
< lp(M —m) (MP~' —mP1).

4

Proposition 1. If f € L, (Q, 1), g € Ly (Q, 1) with p > 1, % + % =1 and there
exists the constants v,I' > 0 and such that

y < |g||{:1 <T p-a.e on Q,
then we have
(3.4) 0< Jo £V du (fglfgldu>p
Jolgl®dp  \ [q 19" dp
< By(.D) (F_ Jo Ifgldﬂ> (fg |fgl dpe _7)
- I'—ny Jolgl®du /) \ Jo 1ol du
<= (F o Ifgldu> (fQ gl dp _7>
Ly Jolgl®du ) \ Jo 191" dp
< ip (0 =) (TP~ =P,
and
(3.5) 0< fQ‘f|pd/‘_ <f9|f9|d/i)p
Jolgl®du  \ [q lgl" dp
< i(F -7, (W;%F> < ip(F — ) (P71 =771,

where By, (+,-) and U, (-;+,) are defined above.
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Proof. The inequalities (3.4) and (3.5) follow from (3.1) and (3.3) by choosing
/]

= ol and w = [g|?.

The details are omitted. O

Remark 6. We observe that for p = q¢ = 2 we have Uy (t;7,I') =T —v = By (v,
and then from the first inequality in (8.4) we get the following reverse of the Cauchy-
Bunyakovsky-Schwarz inequality:

(36) /gzglzduLIfIQdu—(Alfgldu)2
(-t (i) o)
< i(r—v)z (/Q glzdu>2,

provided that f,g € La (2, 1), and there exists the constants v,T' > 0 such that

il
Ig\

Corollary 4. With the assumptions of Proposition 1 we have the following additive
reverses of the Hélder inequality

sn o<(f Ifl”du>l/p (f g|qdu)1/q— [ \sslan

< {BP(VF)] v (p _Ja |f9|du>1/p (fg |fgl du _7>1/p

I —~y Jo lgl® dp Jo lgl® dp

X / lg|* dp
Q

-1 —1\ U/p 1/p 1/p
< (D) (- fpllohny ™ (fplralde )

Jo lgl* dp Jo lgl* dp

<T p-a.e on Q.

1 _ 1
< mpl/p (F_,y)l/p (Fp L p 1) /p/ﬂ|g\qd,u

(38) o<([ prdu)l/p (f |g|qczu)1/q— / Fold

1 1/ It fgldu
< —(I'- T’\I;l/p Q / a4
_41/p( ' (igeinar) [loftan

o 1
L e (o )7 (reet ey / 9l ds

whe'rep>1and%+%:1.

< 41/p
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Proof. By multiplying in (3.4) with ([, [g|* d,u)p we have

L[ |g|qdu)pl ([ rslan)’

- BF(—@ <F‘ ﬁ |£g‘1|35> Gﬂ |§|g|35 —7) ( /. lgl"du)p
p—1 _ ~p—1 »
e () (s ) (L)
= ip (T =) (0771 =477 (/Q Iglqdu)p7

which is equivalent with

s ([ |g|‘Jdu)p_1

(fatan) 202 (v i) (g )
</Q glqdu)p

(fsstan)" oo (v 030 (e )
([ora) T

(/Zlfgldu>p+ip(Fv) (TP~ =427 </Q glqdu>p-

Taking the power 1/p with p > 1 and employing the following elementary inequality
that state that for p > 1 and «, 5 > 0,

IN
]

IA

X

IN

X

IN

(a+ B/ <al/v 4 ptir
we have from the first part of (3.9) that

10 [ 1rae( [ Iglqdu)l_;

B w,r)}””( fgfgldu>1/”< I 1 fgl dp )l/p
d —pAb-J r—JLetvAamr Jo /I~
S/Qlfgl u+{ — Flora a7
></Q|g|"du

and since 1 — % = % we get from (3.10) the first inequality in (3.7). The rest is
obvious.

The inequality (3.8) can be proved in a similar manner, however the details are
omitted. (]

If h: Q — R is p-measurable, satisfies the bounds

—oo<m < |h(z)| < M < oo for prae. €
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and is such that h,|h|” € L, (2, 1), for a p—measurable function w : Q — R, with
w(z) >0 for p —ae x € Qand [,wdy > 0, then from (2.10) we also have the
inequality

’ Jo wdp Jo wdp

{mp+M” <m+M)p} {M_|h‘|Qw Vlﬂw_m}
<2 — max : :

2 2 M-m >~ M-—m

1 _
< = 2 (Mp L mp— 1) maX{M — |h|Q$w, \h|Q’w — m} .
where, as above, |h\9w = f?‘hllf:li“ € [m, M].

From the inequality (3.11) we can state:

Proposition 2. With the assumptions of Proposition 1 we have

Jo If1P dp <f9 Ifgldu>p
(3.12) 0= Jolgl*du  \ [qlg|" du

LT LA R W
<o, 2 ( 2 ) maX{F_fQIfgldu fglfgldu_v}
B [—x Jolgldu’ [o 1gl* du
d d
p (17! 7,,1)mx{rfglfglil u’fglfgql no }
fQ lg|* d fQ lg* dp

Finally, the following additive reverse of the Holder inequality can be stated as
well:

M\H

Corollary 5. With the assumptions of Proposition 1 we have

sy o< (] Iflpdu>1/p ([ g|qczu)l/q— [ \sslan

41?47 \? 1/p
2 2

L=y
/p
fogldu)l <fglfg|du > /
X max F—i qd
{< Tololdn )\ Ty lol" d 1" ds
d d 1/1’7
S%pl/pmax (F_fglfgql u) 7(f9|fgq| M—v)
21/p Jo lgl* dp Jo lgl* dp
) [ g
Q

Remark 7. As a simpler, however coarser inequality we have the following result:

1/p 1/q
0 < </Qf|”du> </Q g%) —/Q|fg|du

» I\p 1'\ p 1/17
<2'/r. [7 ; <7; > ] /Iglqdu,
Q

where [ and g are as above.

< 9l/p .
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4. APPLICATIONS FOR f-DIVERGENCE

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [19], Kullback and Leibler [24],
Rényi [30], Havrda and Charvat [17], Kapur [22], Sharma and Mittal [32], Burbea
and Rao [4], Rao [29], Lin [25], Csiszdr [7], Ali and Silvey [1], Vajda [39], Shioya
and Da-te [34] and others (see for example [26] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [29],
genetics [26], finance, economics, and political science [31], [37], [38], biology [28],
the analysis of contingency tables [16], approximation of probability distributions
[6], [23], signal processing [20], [21] and pattern recognition [3], [5]. A number of
these measures of distance are specific cases of Csiszar f-divergence and so further
exploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Assume that a set Q2 and the o—finite measure u are given. Consider the set of all
probability densities on p to be P := {plp: Q@ =R, p(z) > 0, [,p(z)du(z) =1}.
The Kullback-Leibler divergence [24] is well known among the information diver-
gences. It is defined as:

(4.1) Dis(p.0) = [ pa)in |”

q(z)

(z)

}du(x), p,q €P,

where In is to base e.

In Information Theory and Statistics, various divergences are applied in addi-
tion to the Kullback-Leibler divergence. These are the: wariation distance D,,,
Hellinger distance Dy [18], x?— divergence D,:, a—divergence D, Bhattacharyya
distance Dpg [2], Harmonic distance Dpq, Jeffrey’s distance Dy [19], triangular
discrimination Da [36], etc... They are defined as follows:

(42 D, ()= [ Ip@) = a@]dn (o). p.aeP

(4.3) Dy (p,q -—/ ‘\ﬁ \ﬁ‘ dp(z), p.q€P;

(4.49) Do) = [ @ l(%)—l] du(2), pa€P;

45 Dar)= s 1= [ BT @] F du@)] . paeP
(4.6) Dg (p,q /\/7@ , p,q€P;

@) Do ()= [ 2010 u(0), pg e,

(4.8) D3 ()= [ @) = qo)]1n [”(‘””)] du (), p.g e P
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For other divergence measures, see the paper [22] by Kapur or the book on line [35]
by Taneja.
Csiszar f—divergence is defined as follows [8]

du(z), p,q€P.

q(z
(4.10) 1) = [ @) £ | 58] o), e,
Q p(z)
where f is convex on (0,00). It is assumed that f (u) is zero and strictly convex
at v = 1. By appropriately defining this convex function, various divergences

are derived. Most of the above distances (4.1) — (4.9), are particular instances of
Csiszar f—divergence. There are also many others which are not in this class (see
for example [35]). For the basic properties of Csiszdr f—divergence see [8], [9] and
[39].

The following result holds:
Proposition 3. Let f : (0,00) — R be a convex function with the property that

f (1) =0. Assume that p,q € P and there ezists the constants 0 <r <1 < R < o0
such that

(4.11) r < ;Eg < R for p-a.e. x € .
Then we have the inequalities
(4.12) Iy (p,q) < #-Hd-r) sup ¥y (&7, R)
R—r te(r,R)
fL(R) — fi (r)
< (R-1)(1-p) 2
< TER-DL®R) -7,

and ¥y (37, R) : (r,R) — R is defined by

B -F@) fO—f(r)

Wy ltin B) = —p— t—r

We also have the inequality

(4.13) I (p,q) < i (R L0 (?R—_T)J({ %R —1)
= %(R —7) [fL(R) = i (r)].

The proof follows by Theorem 2 by choosing w (z) = p(z), f (x) = %, m=r

and M = R and performing the required calculations. The details are omitted.
Utilising the same approach and Theorem 3 we can also state that:

Proposition 4. With the assumptions of Proposition 3 we have

(4.14) It (p,q) gzmax{g_i7;_Z} [f(r);f(R) _f <r—;Rﬂ

<

max{R— 1,1 —r} [f_(R) — fi (r)].

N | =
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The above results can be utilized to obtain various inequalities for the divergence
measures in Information Theory that are particular instances of f-divergence.
Consider the Kullback-Leibler divergence

Dkr (p,q) ::/Qp(fc)ln [p(x)} du(z), p,q€P,

q(x)
which is an f-divergence for the convex function f: (0,00) — R, f(¢) = —Int.
If p,q € P such that there exists the constants 0 < r < 1 < R < oo with
(4.15) r < a(z) < R for p-a.e. z € .
p(x)
then we get from (4.12) that
R-1)(1—r

from (4.13) that

1 IS U O
Dir (pq) < 7 (R=7)In [R e 1,,.]
and from (4.14) that
R—-1 1-r A(r,R)
4.1 D <9 |
(4.17) kL (p,q) < maX{R_T7R—T‘}n<G(r,R)>
1 R—r
< — _ _
_2maX{R bt r}( rR >’

where A (r, R) is the arithmetic mean and G (r, R) is the geometric mean of the
positive numbers 7 and R.
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