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QUASILINEARITY OF THE JENSEN INTEGRAL INEQUALITY
WITH APPLICATIONS

S.S. DRAGOMIR!»2

ABSTRACT. The quasilinearity and monotonicity of two functionals associated
to the celebrated Jensen’s integral inequality for convex functions with applica-
tions for Hoélder’s inequality and f-divergence measures in information theory
are given.

1. INTRODUCTION

Let (Q,A, 1) be a measurable space consisting of a set £, a o — algebra A of
parts of 2 and a countably additive and positive measure p on A with values in
R U {oo}. For a p—measurable function w : @ — R, with w(z) > 0 for u — a.e.
(almost every) = € Q, consider the Lebesgue space

Ly, (Qu)={f:Q—R, fis p-measurable and / w(x) |f (z)|dp (x) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead of

Jow (@) du(z).
In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, S.S. Dragomir obtained in 2002 [12] the following result:

Theorem 1. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and f : Q — [m, M] so that ®o f, f, ® o f, (®' o f) f € Ly (Q,u), where w >0
p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the inequality:

(1.1) OS/Qw(%f)du@(/wadu)

< [w@ o fin= [ w@ondu | wrd

IN

%[cp' (M) — @' (m)}/ﬂw’f—/ﬂwfdu‘du-

For a generalization of the first inequality in (1.1) without the differentiability
assumption and the derivative ®' replaced with a selection ¢ from the subdifferential
09, see the paper [28] by C.P. Niculescu.

The following discrete inequality is valid as well.
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2 $.8. DRAGOMIR
Corollary 1. Let @ : [m, M] — R be a differentiable convex function on (m,M).

Ifz; € [m,M] and w; >0 (i=1,...,n) with W,, :== >_i"  w; = 1, then one has
the counterpart of Jensen’s weighted discrete inequality:

i=1 i=1
[®" (M) — @ (m)] zn:wl Ti — zn:wjxj )
i=1 j=1

Remark 1. We notice that the inequality between the first and the second term in
(1.2) was proved in 1994 by Dragomir & Ionescu, see [16].
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Utilising a different approach than in [12], we obtained in [15] the following two
results that provide other upper bounds for the Jensen’s difference:

/Qw(qu)du—cp(/ﬂwfdp).

Theorem 2. Let ® : I — R be a continuous convex function on the interval of
real numbers I and m, M € R, m < M with [m, M) C I, I is the interior of I. If
f:Q — R is u-measurable, satisfies the bounds

—co<m< f(x) <M < oo for p-a.e. € Q

and is such that f,®o f € L, (Q, ), then

(1.3) Os/Q (@ o f)dp— (fo,u)
(M fﬂw) (faw —m)

sup g (t;m, M)

te(m,M)
< (M = o) (Fa —m) T =2 ()
< 3 (M —m) [2L (M)~ @, (m)],

where fo.u = [qw (@) f(z)dp(z) € [m,M] and ¥g (;m, M) : (m,M) — R is
defined by

\Ilq>(t;m,M): -

We also have the inequality

(M —m) Ve (fgﬁw;m,M)

| =

14 02 [ w@of)du= (fau) <

< i(M—m) [ (M) — &/, (m)

—

?

provided that f_Q,w € (m,M).
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Theorem 3. With the assumptions of Theorem 4, we have the inequalities

(1.5) 0§A¥M¢oﬂ@ﬂ@f®ﬁhd

Mﬁf_-ﬂ,w fQ,u}m} |:(I)(m)+(1>(M) _(I)<m+M>}
M-m '’ M-m

< 2max{

S max {M - fﬂ,wa.ffl,w - m} [q)/— (M) - (I)ii- (m)} .

DN |

Motivated by these results we establish in the current paper some refinements and
reverses of the Jensen integral inequality by capitalizing on the superadditivity and
monotonicity properties of two associated functionals. Application in connection
with the Holder inequality and for f-divergence measures in Information Theory
are provided as well.

2. SUPERADDITIVITY AND MONOTONICITY PROPERTIES

For a p-measurable function w : @ — R, with w (z) > 0 for u -a.e. z € Q and
fQ wdy > 0 we consider the functional

w(@of)dy—@(M)/deEQ
Q

(2.1) JW@J%=/ o
Q

Q

where ® : I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is p-measurable and such that f,®o f € L, (Q,p).

Theorem 4. Let w; : Q@ — R, with w; () > 0 for p — a.e. (almost every) x € Q
and fQ widp > 0,4 € {1,2}. If @ : I — R is a continuous convex function on the
interval of real numbers I, f : Q — R is p-measurable and such that f,® o f €
Loy, (0, 1) N Luw, (€2, 1) , then

i.e., J is a superadditive functional of weights.
Moreover, if we > wy >0 p — a.e. on €Y, then

(23) J(w27q),f)2‘](w1a(baf)20,

i.e., J is a monotonic nondecreasing functional of weights.
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Proof. Utilising the convexity property of ® we have successively
(24) J (w1 + wo; P, f)

_ o -~ Jo (w1 +ws) fdp wi 4w
_/Q(’LU1+U)2)(<I> f)du (I)<f9(w1+w2)du>/g( 1+ z)du

= [wr@opydut [ wn@op)dn

fQ wldu . 76? ul;llfdduu —+ fQ wgd‘u, . 71“5[7 Ili?fdiu
-9 2 2 / (w1 4+ ws) dp
Jo (w1 4 w2) dp Q

>/Q (®o fd;H—/ wa (Do f)du
[ o () e (e

(w1 + we) dp Jowidp Jq (w1 +w2) dp Jo wadp

></ (w1 + ws) dp
Q
/le (Po f)du— (I)<fﬂ’w1d,u /ledu
d
oine o () o
Q

= J(wi; 9, f) + J (we; @, f)
which proves the superadditivity property.
Now, if we > w; > 0, then on applying the superadditivity property we have
J (w23 @, f) = J (w1 + (w2 —w1); D, f) > J (w3 @, f) + J (w2 — w13 @, f)
> J (w1; @, f)
since by the Jensen’s inequality for the positive weights we have J (wg — wq; @, f) >

0. (]

The above theorem has a simple however interesting consequence that provides
both a refinement and a reverse for the Jensen’s integral inequality:

Corollary 2. Let w; : Q@ — R, with w; (z) >0 for pn — a.e. x € Q, [,wdu>0,i €
{1,2} and there exists the nonnegative constants ,T" such that
(2.5) O§7§%§F<oo,u—a.e. on .

w1
If @ : I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is u-measurable and such that f,® o f € Ly, (1) N Ly, (1), then

v e i o(RE) [
<Aw@wwwwﬁﬁﬁﬁﬁéw@

) o _ fszwlfd“> }
=t {/le(é f)du (I)(fgwld,u /szwldu
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or, equivalently,

Jouwidp [fﬂ wy (®o fldp (fQ wlfd:“)}
@7 0= fQU’?dﬂ wildﬂ ® wildﬂ
wig (®o f)du ® (fﬂwgfdu>
B fQ wadp fQ wadp
r. Jo wrdp [fﬂwl (®o f)du _® (fgwlfd“ﬂ .
T [qwadp Jowidp Jowidp

Proof. From (2.5) we have yw; < we < Tw; < oo prae. on Q and by the
monotonicity property (2.3) we get

Since the the functional is positive homogeneous, namely J (aw; ®, f) = aJ (w; @, f),
then we get from (2.8) the desired result (2.6). O

Remark 2. Assume that p(Q2) < oo and let w : Q@ — R, with w(z) > 0 for p -
a.e. € Q, [wdp >0 and w is essentially bounded, i.e. ess infycqw (x) and ess
sup,cqw (x) are finite.

If ®: I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is u-measurable and such that f,® o f € L, (Qu) N L(Q, ), then

ess infyeqw (z) [ [o (®o f)du 3 Jo fdp
29 Ry R e ()]
fow(@ofdn [ fywtdn
= fQ wdy - ( Jo wdp )
ess supyeqw (7) [ [o (®o f)du B Jo fdu
=T wdn { () q’(mm ﬂ

This result can be used to provide the following result related to the Hermite-
Hadamard inequality for convex functions that states that

1 b a+b
>
b_@/ﬂ@(t)dt_(l)( 5 )

for any convex function ® : [a,b] — R.
Indeed , if w : [a,b] — [0, 00) is Lebesgue integrable, then we have
ess infyepq 5w ()

s fyw (b dt bla/:%)dt—q)(a;b)

Jow®)®(t)dt o [Jow @t
[P w(t)at [P w ( t) dt
ess su w (z 1 b b
< pmbe[a,b] ( ) / P (t) di — & <a + )
= [w)dt  |[b-ala 2
Now we consider another functional depending on the weights

. T, f)  Jow(®o f)du [ wfdp
K (i f) o= D) ot fgwdu @(};MM)zo

(2.10) 0

IN




6 S.S. DRAGOMIR

and the composite functional

D, f) o= ([ w5 (ws . 0) 412 0

where ® : I — R is a continuous convex function on the interval of real numbers I
and f:Q — R is y-measurable and such that f,®o f € L, (Q,u).

Theorem 5. With the assumptions of Theorem 4, L is a superadditive and monotonic
nondecreasing functional of weights.

Proof. Let w; : Q@ — R, with w; (z) > 0 for g — a.e. z € Q and [, widp > 0,7 €
{1,2} such that f,®o f & Ly, (Q,p) N Ly, ().
Utilising the superadditivity property of J we have

(2.11) L (w1 + w2; @, f)
= (/ (w1 +w2)dﬂ) In[K (w1 +wa; @, f) + 1]

J (w1 + wa; @, f)
(w1 + wo d#)l [fQ (w1 + w2) du 1}

-(/,
</ wy + ws) du) [J(wl;é,f)+J(w2;<I>,f)+1]
-(/

Jo (w1 +w2) dp

(w1 + ws) du)

+1
fQ wy + wa) dp

< (w1 + wo du)

J(wy;P, wa2; P,
Jowidp- (220 1) 4 [ wadp- (4220 4 1)
Jo (w1 +w2) dp

J(w1;®, f) J(w2;®, f
{fsz widp - 7} 11u1dH + Jo wadp - f(ﬂfmdu)

X In

= A.
By the weighted arithmetic mean - geometric mean inequality we have
J(wq;9P,) wa;P,
fQ wld/i ’ ( f(Q 111)1(1/):) + 1) + f wzdu ( } i)gd/]:) + 1)
fQ wy + wa) dp
Jo widp Jo wadp
S R G LR R

Jowidp Jo wadp

therefore, by taking the logarithm and utilizing the definition of the functional K,
we get the inequality

(2.12) A> </Qw1du) In (K (wi;®, f) + 1) + (/ngdu> In (K (wy; @, f) + 1)
=L(w;®, f) + L (wy; @, f).

Utilising (2.11) and (2.12) we deduce the superadditivity of the functional L as a
function of weights.
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Since L (w; @, f) > 0 for any weight w and it is superadditive, by employing a
similar argument to the one in the proof of Theorem 4 we conclude that it is also
monotonic nondecreasing as a function of weights. O

The following result provides another refinement and reverse of the Jensen in-
equality:

Corollary 3. Let w; : Q — R with w; () >0 for p — a.e. © €, fQ widp > 0,1 €
{1,2} and there exists the nonnegative constants v,I' such that

w
O§7§—2§F<oo,u—a.e. on €.
w1

If ® : I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is p-measurable and such that f,® o f € Ly, (Q, 1) N Ly, (Q, 1), then

(Jo widp)
Jowi (@0 f)d Jowifd 7 oy wadn)
(2.13) og[al‘_q}(g}u)ﬂ} .
fQ ’U)ld/_j, fQ wldu
Jowa (o f)dp _ <fﬂw2fdg)
T Jqwedn Joy wadps
(o w1dr)
{W’W‘W 9 (fnwfdu) . 1T el
B Jowidp Jowidp :

Proof. Since L is monotonic nondecreasing and positive homogeneous as a function
of weights, we have

YL (w1; @, f) < L(w2; @, f) <TL(wi;®, f)
which is equivalent with

[K (’LU1§ P, f) + I]V(fn w1d“) < [K (w2; P, f) + 1](f9 ’lUQd,LL)
< [K (w1 ®, f) + 1]F(fg widp)
which provides that

(Jo widn)

[K (w13 ®, ) + 1] Uaw2d) —1 < K (ws; B, f)

(Jo widn)

<K (wy; @, f) + 1] Uaw2dn) — 1,

O

Remark 3. Assume that p(2) < oo and let w : Q@ — R, with w(z) > 0 for p -
a.e. x €, fQ wdp > 0 and w is essentially bounded, i.e. ess inf cqw (z) and ess
SUp,ecq W (z) are finite.
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If & : I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is p-measurable and such that f,® o f € Ly, (Q,u) N L(Q, 1), then

essinfyeq w(@)

(214) 0< [W _® (f;!é;l;> 4 1:| ﬁ(fn wdp) 1

fQ dp (fQ wfdu)
B fsz wdu Jo wp
esssupgeq w(z)

< |:fQ (@Of)dﬂ % <fodp,> +1:| ﬁ(fnwdu) 1
1 (9) 1 ()

In particular, if w : [a,b] — [0,00) is Lebesgue integrable, then we have the fol-

lowing result related to the Hermite-Hadamard inequality for the convex function

D :a,b] = R

(2.15) 0< [bl (t)dt — <a;rb>+1

_ @@t <f9 tdt)
T flw ( t) dt S w(t) dt
€53 Sy ela,b) W)

T a+b B o v
— [ d@)dt—® 1 1.
], ¢ ( 2 >+1

3. APPLICATIONS FOR THE HOLDER INEQUALITY

ess infy ey p) w(@)
bia S w(t)dt

-1

It is well known that if f € L, (0, i), p > 1, where the Lebesgue space Ly, (€2, p)
is defined by

L,(Qu):={f:Q2—R, fis p-measurable and /Q|f (2)|P dp (z) < 0o}

and g € L, (9, p) with % + % =1 then fg € L(Q,p) :== L1 (2, 1) and the Holder
inequality holds true

1/p 1/q
d Pa Pd
/Qlfgu§</glf u) (/Q|g| u)

Assume that p > 1. If h : Q — R is p-measurable, p () < oo, |k, |h|” € Ly, (2, )N
L(Q, p), then by (2.9) we have the bounds

ess infeqw (v [ / vy < 1 / )p}
3.1 0< — hld
I T = (i [
1 1 P
Q
ess supzegw [ / WP d < 1 / )p}
< dp— | ——= [ |h|du .
(Q) fQ wdp A 1) Jo A

Proposition 1. If f € L, (Q, 1), g € Lq (Q, 1) with p > 1, % + % =1, p() < oo
and there exists the constants §, A > 0 and such that

(3.2) 0 <lg] <A p-a.e on ),
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then we have

6 1 | fIP 1 1] P
3.3 0 A p
@ 02t o e (e ) |

~ Jo P du (fg |fg|du>p

fQ lgl? dp Jo lgl* dp

N Lo, 1.\
Tty Jalgltdu [ 1(Q) Jo ol Iglql

Proof. The inequalities (3.3) follows from (3.1) by choosing
£

= —1
lg|*

and w = [g|?.

The details are omitted. (I

Remark 4. We observe that for p = q = 2 we have from (3.8) the following reverse
of the Cauchy-Bunyakovsky-Schwarz inequality

f 2

=l dp lgI” dp

g Q

i o] - G |

< [l a [ 1917 du - (/ Ifgldu>
< [ty 4] 0= oy 3] ] [

provided that f,g € Lo (Q, 1) and g satisfies the bounds (3.2).

(3.4) 0<6%u(Q)

g

Similar results can be stated by utilizing the inequality (2.13), however the details
are not presented here.

4. APPLICATIONS FOR f-DIVERGENCE MEASURES

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [20], Kullback and Leibler [25],
Reényi [31], Havrda and Charvat [18], Kapur [23], Sharma and Mittal [33], Burbea
and Rao [4], Rao [30], Lin [26], Csiszér (7], Ali and Silvey [1], Vajda [40], Shioya
and Da-te [35] and others (see for example [27] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [30],
genetics [27], finance, economics, and political science [32], [38], [39], biology [29],
the analysis of contingency tables [17], approximation of probability distributions
[6], [24], signal processing [21], [22] and pattern recognition [3], [5]. A number of
these measures of distance are specific cases of Csiszdr f-divergence and so further
exploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Assume that a set €2 and the o—finite measure p are given. Consider the set of all
probability densities on u to be P := {p|p Q- R, p(z) >0, fﬂp (z)du(z) = 1}.
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Csiszar f—divergence is defined as follows [8]

(4.1) Iy (p,q) ::/p(ﬂc)f {qm] dp(z), p,q€P,
Q p(z)
where f is convex on (0,00). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived.
The Kullback-Leibler divergence [25] is well known among the information diver-
gences. It is defined as:

(42) Dt .0)i= [ o) |20 au o). mac.

where In is to base e.

In Information Theory and Statistics, various divergences are applied in addi-
tion to the Kullback-Leibler divergence. These are the: wariation distance D,,,
Hellinger distance Dy [19], x?— divergence Dy, a—divergence D, Bhattacharyya
distance Dpg [2|, Harmonic distance Dy, Jeffrey’s distance D [20], triangular
discrimination Da [37], etc... They are defined as follows:

(43) D, (p.g) = /Q p(2) — q@)|du (), p.qeP;

(4.4) Dy (p.q) :=/Q‘\/W—\/M‘du(w)a p.q €P;

(4.5) Do) = [ (@ [(ﬁgg) —1] du (). pog € P

1—

= g (@) 5 du <x>} pgeP;

46 Dur)= 1= [ )]

(4.7) D (p.q) == /Q Vo @ a@du (), pqeP;

(48) Diap.0) = | de), pog P

ap()tq(@

@9 D= [ - a@n X

q(x)] dp(z), p,q€P;

2
(4.10) Da (p,q) :Z/deu(w), p,geP.

For other divergence measures, see the paper [23] by Kapur or the book on line [36]
by Taneja.

Most of the above distances (4.2) — (4.10), are particular instances of Csiszar
f—divergence. There are also many others which are not in this class (see for
example [36]). For the basic properties of Csiszar f—divergence see [8], [9] and [40].

The following result holds:
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Proposition 2. Let f : (0,00) — R be a convex function with the property that
f (1) =0. Assume that p,q € P and there exists the constants 0 < s <1 < S < oo
such that

(z)
()

i

(4.11) s <

< S for p-a.e. x € Q.

)

Then we have the inequalities

(4.12) s [If(;) (@.p) = f (Dy2 (p.@) + 1)]
< Iy (p.q)
<5 (1) @p) ~  (Dye (0,0) +1)] -

)
Proof. If we use the inequality (2.6) we get

wo (e (f2)

2
<s|[ar(%)au-1([ Zan)]
Q p Qb
Since
¢
/ —dp =Dz (p,q) +1
Qb
and
af () du=1,01(a.p)
Q P UOR
then from (4.13) we deduce the desired result (4.12). O

Consider the Kullback-Leibler divergence

Dkr (p,q) ::/Qp(x)ln [zgﬂ du(z), p,q€P,

which is an f-divergence for the convex function f : (0,00) — R, f(t) = —Int.
If p, ¢ € P such that there exists the constants 0 < s <1 < § < oo with

(4.14) s < M < S for pra.e. x € Q..
q(z)
then we get from (4.12) that
(4.15) s [In (Dy2 (p,q) + 1) — D1 (q,p)]
< Dkr (p,q)

< S (Dy: (p,g) +1) — D (4,0)] -

Similar results for f-divergence measures can be stated by utilizing the inequality
(2.13), however the details are not presented here.
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