
QUASILINEARITY OF THE JENSEN INTEGRAL INEQUALITY
WITH APPLICATIONS

S.S. DRAGOMIR1;2

Abstract. The quasilinearity and monotonicity of two functionals associated
to the celebrated Jensen�s integral inequality for convex functions with applica-
tions for Hölder�s inequality and f -divergence measures in information theory
are given.

1. Introduction

Let (
;A; �) be a measurable space consisting of a set 
; a � �algebra A of
parts of 
 and a countably additive and positive measure � on A with values in
R [ f1g : For a ��measurable function w : 
 ! R, with w (x) � 0 for � �a.e.
(almost every) x 2 
; consider the Lebesgue space

Lw (
; �) := ff : 
! R; f is �-measurable and
Z



w (x) jf (x)j d� (x) <1g:

For simplicity of notation we write everywhere in the sequel
R


wd� instead ofR



w (x) d� (x) :
In order to provide a reverse of the celebrated Jensen�s integral inequality for

convex functions, S.S. Dragomir obtained in 2002 [12] the following result:

Theorem 1. Let � : [m;M ] � R! R be a di¤erentiable convex function on (m;M)
and f : 
 ! [m;M ] so that � � f; f; �0 � f; (�0 � f) f 2 Lw (
; �) ; where w � 0
�-a.e. (almost everywhere) on 
 with

R


wd� = 1: Then we have the inequality:

0 �
Z



w (� � f) d�� �
�Z




wfd�

�
(1.1)

�
Z



w (�0 � f) fd��
Z



w (�0 � f) d�
Z



wfd�

� 1

2
[�0 (M)� �0 (m)]

Z



w

����f � Z



wfd�

���� d�:
For a generalization of the �rst inequality in (1.1) without the di¤erentiability

assumption and the derivative �0 replaced with a selection ' from the subdi¤erential
@�, see the paper [28] by C.P. Niculescu.
The following discrete inequality is valid as well.

Date : August, 2011.
1991 Mathematics Subject Classi�cation. Primary 26D15, 26D20; Secondary 94A05..
Key words and phrases. Jensen�s inequality, Hölder�s inequality, Measurable functions,

Lebesgue integral, Divergence measures, f -Divergence measures.

1

sever
Typewriter
Received 07/9/11

sever
Typewriter



2 S.S. DRAGOMIR

Corollary 1. Let � : [m;M ] ! R be a di¤erentiable convex function on (m;M) :
If xi 2 [m;M ] and wi � 0 (i = 1; : : : ; n) with Wn :=

Pn
i=1 wi = 1; then one has

the counterpart of Jensen�s weighted discrete inequality:

0 �
nX
i=1

wi� (xi)� �
 

nX
i=1

wixi

!
(1.2)

�
nX
i=1

wi�
0 (xi)xi �

nX
i=1

wi�
0 (xi)

nX
i=1

wixi

� 1

2
[�0 (M)� �0 (m)]

nX
i=1

wi

������xi �
nX
j=1

wjxj

������ :
Remark 1. We notice that the inequality between the �rst and the second term in
(1.2) was proved in 1994 by Dragomir & Ionescu, see [16].

Utilising a di¤erent approach than in [12], we obtained in [15] the following two
results that provide other upper bounds for the Jensen�s di¤erence:Z




w (� � f) d�� �
�Z




wfd�

�
:

Theorem 2. Let � : I ! R be a continuous convex function on the interval of
real numbers I and m;M 2 R, m < M with [m;M ] � �I, �I is the interior of I: If
f : 
! R is �-measurable, satis�es the bounds

�1 < m � f (x) �M <1 for �-a.e. x 2 


and is such that f;� � f 2 Lw (
; �) ; then

0 �
Z



w (� � f) d�� �
�
�f
;w

�
(1.3)

�
�
M � �f
;w

� �
�f
;w �m

�
M �m sup

t2(m;M)

	� (t;m;M)

�
�
M � �f
;w

� �
�f
;w �m

� �0� (M)� �0+ (m)
M �m

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

where �f
;w :=
R


w (x) f (x) d� (x) 2 [m;M ] and 	� (�;m;M) : (m;M) ! R is

de�ned by

	� (t;m;M) =
� (M)� � (t)

M � t � � (t)� � (m)
t�m :

We also have the inequality

0 �
Z



w (� � f) d�� �
�
�f
;w

�
� 1

4
(M �m)	�

�
�f
;w;m;M

�
(1.4)

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

provided that �f
;w 2 (m;M) :
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Theorem 3. With the assumptions of Theorem 4, we have the inequalities

0 �
Z



w (� � f) d� (x)� �
�
�f
;w

�
(1.5)

� 2max
�
M � �f
;w
M �m ;

�f
;w �m
M �m

��
� (m) + � (M)

2
� �

�
m+M

2

��
� 1

2
max

�
M � �f
;w; �f
;w �m

	 �
�0� (M)� �0+ (m)

�
:

Motivated by these results we establish in the current paper some re�nements and
reverses of the Jensen integral inequality by capitalizing on the superadditivity and
monotonicity properties of two associated functionals. Application in connection
with the Hölder inequality and for f -divergence measures in Information Theory
are provided as well.

2. Superadditivity and Monotonicity Properties

For a �-measurable function w : 
 ! R, with w (x) � 0 for � -a.e. x 2 
 andR


wd� > 0 we consider the functional

(2.1) J (w; �; f) :=

Z



w (� � f) d�� �
�R



wfd�R


wd�

�Z



wd� � 0;

where � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f;� � f 2 Lw (
; �) :

Theorem 4. Let wi : 
 ! R, with wi (x) � 0 for � �a.e. (almost every) x 2 

and

R


wid� > 0; i 2 f1; 2g : If � : I ! R is a continuous convex function on the

interval of real numbers I; f : 
 ! R is �-measurable and such that f;� � f 2
Lw1 (
; �) \ Lw2 (
; �) ; then

(2.2) J (w1 + w2; �; f) � J (w1; �; f) + J (w2; �; f) � 0

i.e., J is a superadditive functional of weights.
Moreover, if w2 � w1 � 0 � �a.e. on 
; then

(2.3) J (w2; �; f) � J (w1; �; f) � 0;

i.e., J is a monotonic nondecreasing functional of weights.
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Proof. Utilising the convexity property of � we have successively

J (w1 + w2; �; f)(2.4)

=

Z



(w1 + w2) (� � f) d�� �
�R



(w1 + w2) fd�R


(w1 + w2) d�

�Z



(w1 + w2) d�

=

Z



w1 (� � f) d�+
Z



w2 (� � f) d�

� �

0@R
 w1d� �
R


w1fd�R



w1d�

+
R


w2d� �

R


w2fd�R



w2d�R



(w1 + w2) d�

1AZ



(w1 + w2) d�

�
Z



w1 (� � f) d�+
Z



w2 (� � f) d�

�
� R



w1d�R



(w1 + w2) d�

�

�R


w1fd�R


w1d�

�
+

R


w2d�R



(w1 + w2) d�

�

�R


w2fd�R


w2d�

��
�
Z



(w1 + w2) d�

=

Z



w1 (� � f) d�� �
�R



w1fd�R


w1d�

�Z



w1d�

+

Z



w2 (� � f) d�� �
�R



w2fd�R


w2d�

�Z



w2d�

= J (w1; �; f) + J (w2; �; f)

which proves the superadditivity property.
Now, if w2 � w1 � 0; then on applying the superadditivity property we have
J (w2; �; f) = J (w1 + (w2 � w1) ; �; f) � J (w1; �; f) + J (w2 � w1; �; f)

� J (w1; �; f)
since by the Jensen�s inequality for the positive weights we have J (w2 � w1; �; f) �
0: �

The above theorem has a simple however interesting consequence that provides
both a re�nement and a reverse for the Jensen�s integral inequality:

Corollary 2. Let wi : 
! R, with wi (x) � 0 for � �a.e. x 2 
,
R


wid� > 0; i 2

f1; 2g and there exists the nonnegative constants ;� such that

(2.5) 0 �  � w2
w1

� � <1 �-a.e. on 
:

If � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f;� � f 2 Lw1 (
; �) \ Lw2 (
; �) ; then

0 �  �
�Z




w1 (� � f) d�� �
�R



w1fd�R


w1d�

�Z



w1d�

�
(2.6)

�
Z



w2 (� � f) d�� �
�R



w2fd�R


w2d�

�Z



w2d�

� � �
�Z




w1 (� � f) d�� �
�R



w1fd�R


w1d�

�Z



w1d�

�
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or, equivalently,

0 �  �
R


w1d�R



w2d�

�R


w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

��
(2.7)

�
R


w2 (� � f) d�R


w2d�

� �
�R



w2fd�R


w2d�

�
� � �

R


w1d�R



w2d�

�R


w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

��
:

Proof. From (2.5) we have w1 � w2 � �w1 < 1 �-a.e. on 
 and by the
monotonicity property (2.3) we get

(2.8) J (�w1; �; f) � J (w2; �; f) � J (w1; �; f) :
Since the the functional is positive homogeneous, namely J (�w; �; f) = �J (w; �; f),
then we get from (2.8) the desired result (2.6). �

Remark 2. Assume that � (
) < 1 and let w : 
 ! R, with w (x) � 0 for � �
a.e. x 2 
,

R


wd� > 0 and w is essentially bounded, i.e. ess infx2
 w (x) and ess

supx2
 w (x) are �nite.
If � : I ! R is a continuous convex function on the interval of real numbers I;

f : 
! R is �-measurable and such that f;� � f 2 Lw (
; �) \ L (
; �) ; then

0 � ess infx2
 w (x)
1

�(
)

R


wd�

�R


(� � f) d�
� (
)

� �
�R



fd�

� (
)

��
(2.9)

�
R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�
� ess supx2
 w (x)

1
�(
)

R


wd�

�R


(� � f) d�
� (
)

� �
�R



fd�

� (
)

��
:

This result can be used to provide the following result related to the Hermite-
Hadamard inequality for convex functions that states that

1

b� a

Z b

a

� (t) dt � �
�
a+ b

2

�
for any convex function � : [a; b]! R.
Indeed , if w : [a; b]! [0;1) is Lebesgue integrable, then we have

0 �
ess infx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

"
1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�#
(2.10)

�
R b
a
w (t) � (t) dtR b
a
w (t) dt

� �
 R



w (t) tdtR b

a
w (t) dt

!

�
ess supx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

"
1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�#
:

Now we consider another functional depending on the weights

K (w; �; f) :=
J (w; �; f)R



wd�

=

R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�
� 0
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and the composite functional

L (w; �; f) :=

�Z



wd�

�
ln [K (w; �; f) + 1] � 0;

where � : I ! R is a continuous convex function on the interval of real numbers I
and f : 
! R is �-measurable and such that f;� � f 2 Lw (
; �) :

Theorem 5. With the assumptions of Theorem 4, L is a superadditive and monotonic
nondecreasing functional of weights.

Proof. Let wi : 
 ! R, with wi (x) � 0 for � �a.e. x 2 
 and
R


wid� > 0; i 2

f1; 2g such that f;� � f 2 Lw1 (
; �) \ Lw2 (
; �) :
Utilising the superadditivity property of J we have

L (w1 + w2; �; f)(2.11)

=

�Z



(w1 + w2) d�

�
ln [K (w1 + w2; �; f) + 1]

=

�Z



(w1 + w2) d�

�
ln

�
J (w1 + w2; �; f)R


(w1 + w2) d�

+ 1

�
�
�Z




(w1 + w2) d�

�
ln

�
J (w1; �; f) + J (w2; �; f)R



(w1 + w2) d�

+ 1

�
=

�Z



(w1 + w2) d�

�

� ln

24R
 w1d� � J(w1;�;f)R


w1d�

+
R


w2d� � J(w2;�;f)R



w2d�R



(w1 + w2) d�

+ 1

35
=

�Z



(w1 + w2) d�

�

� ln

24R
 w1d� �
�
J(w1;�;f)R


w1d�

+ 1
�
+
R


w2d� �

�
J(w2;�;f)R


w2d�

+ 1
�

R


(w1 + w2) d�

35
:= A:

By the weighted arithmetic mean - geometric mean inequality we haveR


w1d� �

�
J(w1;�;f)R


w1d�

+ 1
�
+
R


w2d� �

�
J(w2;�;f)R


w2d�

+ 1
�

R


(w1 + w2) d�

�
�
J (w1; �; f)R



w1d�

+ 1

� R

 w1d�R


(w1+w2)d�
�
J (w2; �; f)R



w2d�

+ 1

� R

 w2d�R


(w1+w2)d�

;

therefore, by taking the logarithm and utilizing the de�nition of the functional K;
we get the inequality

A �
�Z




w1d�

�
ln (K (w1; �; f) + 1) +

�Z



w2d�

�
ln (K (w2; �; f) + 1)(2.12)

= L (w1; �; f) + L (w2; �; f) :

Utilising (2.11) and (2.12) we deduce the superadditivity of the functional L as a
function of weights.
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Since L (w; �; f) � 0 for any weight w and it is superadditive, by employing a
similar argument to the one in the proof of Theorem 4 we conclude that it is also
monotonic nondecreasing as a function of weights. �

The following result provides another re�nement and reverse of the Jensen in-
equality:

Corollary 3. Let wi : 
! R with wi (x) � 0 for � �a.e. x 2 
,
R


wid� > 0; i 2

f1; 2g and there exists the nonnegative constants ;� such that

0 �  � w2
w1

� � <1 �-a.e. on 
:

If � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f;� � f 2 Lw1 (
; �) \ Lw2 (
; �) ; then

0 �
�R



w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

�
+ 1

�� (R
 w1d�)
(
R

 w2d�)

� 1(2.13)

�
R


w2 (� � f) d�R


w2d�

� �
�R



w2fd�R


w2d�

�

�
�R



w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

�
+ 1

��� (R
 w1d�)
(
R

 w2d�)

� 1:

Proof. Since L is monotonic nondecreasing and positive homogeneous as a function
of weights, we have

L (w1; �; f) � L (w2; �; f) � �L (w1; �; f)

which is equivalent with

[K (w1; �; f) + 1]
(
R


w1d�) � [K (w2; �; f) + 1](

R


w2d�)

� [K (w1; �; f) + 1]�(
R


w1d�)

which provides that

[K (w1; �; f) + 1]

(
R

 w1d�)

(
R

 w2d�) � 1 � K (w2; �; f)

� [K (w1; �; f) + 1]
�
(
R

 w1d�)

(
R

 w2d�) � 1:

�

Remark 3. Assume that � (
) < 1 and let w : 
 ! R, with w (x) � 0 for � �
a.e. x 2 
,

R


wd� > 0 and w is essentially bounded, i.e. ess infx2
 w (x) and ess

supx2
 w (x) are �nite.
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If � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f;� � f 2 Lw (
; �) \ L (
; �) ; then

0 �
�R



(� � f) d�
� (
)

� �
�R



fd�

� (
)

�
+ 1

� ess infx2
 w(x)

1
�(
) (

R

 wd�)

� 1(2.14)

�
R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�

�
�R



(� � f) d�
� (
)

� �
�R



fd�

� (
)

�
+ 1

� ess supx2
 w(x)

1
�(
) (

R

 wd�)

� 1:

In particular, if w : [a; b] ! [0;1) is Lebesgue integrable, then we have the fol-
lowing result related to the Hermite-Hadamard inequality for the convex function
� : [a; b]! R

0 �
"

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
+ 1

# ess infx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1(2.15)

�
R b
a
w (t)� (t) dtR b
a
w (t) dt

� �
 R



w (t) tdtR b

a
w (t) dt

!

�
"

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
+ 1

# ess supx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1:

3. Applications for the Hölder Inequality

It is well known that if f 2 Lp (
; �) ; p > 1; where the Lebesgue space Lp (
; �)
is de�ned by

Lp (
; �) := ff : 
! R; f is �-measurable and
Z



jf (x)jp d� (x) <1g

and g 2 Lq (
; �) with 1
p +

1
q = 1 then fg 2 L (
; �) := L1 (
; �) and the Hölder

inequality holds trueZ



jfgj d� �
�Z




jf jp d�
�1=p�Z




jgjp d�
�1=q

:

Assume that p > 1: If h : 
! R is �-measurable, � (
) <1; jhj ; jhjp 2 Lw (
; �)\
L (
; �) ; then by (2.9) we have the bounds

0 � ess infx2
 w (x)
1

�(
)

R


wd�

�
1

� (
)

Z



jhjp d��
�

1

� (
)

Z



jhj d�
�p�

(3.1)

� 1R


wd�

Z



w jhjp d��
�

1R


wd�

Z



w jhj d�
�p

� ess supx2
 w (x)
1

�(
)

R


wd�

�
1

� (
)

Z



jhjp d��
�

1

� (
)

Z



jhj d�
�p�

:

Proposition 1. If f 2 Lp (
; �), g 2 Lq (
; �) with p > 1; 1p +
1
q = 1; � (
) < 1

and there exists the constants �;� > 0 and such that

(3.2) � � jgj � � �-a.e on 
;
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then we have

0 � �q

1
�(
)

R


jgjq d�

"
1

� (
)

Z



jf jp

jgjq d��
 

1

� (
)

Z



jf j
jgjq�1

d�

!p#
(3.3)

�
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
� �q

1
�(
)

R


jgjq d�

"
1

� (
)

Z



jf jp

jgjq d��
 

1

� (
)

Z



jf j
jgjq�1

d�

!p#
:

Proof. The inequalities (3.3) follows from (3.1) by choosing

h =
jf j
jgjq�1

and w = jgjq :

The details are omitted. �

Remark 4. We observe that for p = q = 2 we have from (3.3) the following reverse
of the Cauchy-Bunyakovsky-Schwarz inequality

0 � �2� (
)
"

1

� (
)

Z



����fg
����2 d�� � 1

� (
)

Z



����fg
���� d��2

#Z



jgj2 d�(3.4)

�
Z



jgj2 d�
Z



jf j2 d��
�Z




jfgj d�
�2

� �2� (
)
"

1

� (
)

Z



����fg
����2 d�� � 1

� (
)

Z



����fg
���� d��2

#Z



jgj2 d�;

provided that f; g 2 L2 (
; �) and g satis�es the bounds (3.2).

Similar results can be stated by utilizing the inequality (2.13), however the details
are not presented here.

4. Applications for f-Divergence Measures

One of the important issues in many applications of Probability Theory is �nding
an appropriate measure of distance (or di¤erence or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Je¤reys [20], Kullback and Leibler [25],
Rényi [31], Havrda and Charvat [18], Kapur [23], Sharma and Mittal [33], Burbea
and Rao [4], Rao [30], Lin [26], Csiszár [7], Ali and Silvey [1], Vajda [40], Shioya
and Da-te [35] and others (see for example [27] and the references therein).
These measures have been applied in a variety of �elds such as: anthropology [30],

genetics [27], �nance, economics, and political science [32], [38], [39], biology [29],
the analysis of contingency tables [17], approximation of probability distributions
[6], [24], signal processing [21], [22] and pattern recognition [3], [5]. A number of
these measures of distance are speci�c cases of Csiszár f -divergence and so further
exploration of this concept will have a �ow on e¤ect to other measures of distance
and to areas in which they are applied.
Assume that a set 
 and the ���nite measure � are given. Consider the set of all

probability densities on � to be P :=
�
pjp : 
! R, p (x) � 0;

R


p (x) d� (x) = 1

	
.
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Csiszár f�divergence is de�ned as follows [8]

(4.1) If (p; q) :=

Z



p (x) f

�
q (x)

p (x)

�
d� (x) ; p; q 2 P;

where f is convex on (0;1). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately de�ning this convex function, various divergences are
derived.
The Kullback-Leibler divergence [25] is well known among the information diver-

gences. It is de�ned as:

(4.2) DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

where ln is to base e.
In Information Theory and Statistics, various divergences are applied in addi-

tion to the Kullback-Leibler divergence. These are the: variation distance Dv,
Hellinger distance DH [19], �2�divergence D�2 , ��divergence D�, Bhattacharyya
distance DB [2], Harmonic distance DHa, Je¤rey�s distance DJ [20], triangular
discrimination D� [37], etc... They are de�ned as follows:

(4.3) Dv (p; q) :=

Z



jp (x)� q (x)j d� (x) ; p; q 2 P;

(4.4) DH (p; q) :=

Z



���pp (x)�pq (x)��� d� (x) ; p; q 2 P;
(4.5) D�2 (p; q) :=

Z



p (x)

"�
q (x)

p (x)

�2
� 1
#
d� (x) ; p; q 2 P;

(4.6) D� (p; q) :=
4

1� �2

�
1�

Z



[p (x)]
1��
2 [q (x)]

1+�
2 d� (x)

�
; p; q 2 P;

(4.7) DB (p; q) :=

Z



p
p (x) q (x)d� (x) ; p; q 2 P;

(4.8) DHa (p; q) :=

Z



2p (x) q (x)

p (x) + q (x)
d� (x) ; p; q 2 P;

(4.9) DJ (p; q) :=

Z



[p (x)� q (x)] ln
�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

(4.10) D� (p; q) :=

Z



[p (x)� q (x)]2

p (x) + q (x)
d� (x) ; p; q 2 P:

For other divergence measures, see the paper [23] by Kapur or the book on line [36]
by Taneja.
Most of the above distances (4:2) � (4:10), are particular instances of Csiszár

f�divergence. There are also many others which are not in this class (see for
example [36]). For the basic properties of Csiszár f�divergence see [8], [9] and [40].
The following result holds:
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Proposition 2. Let f : (0;1) ! R be a convex function with the property that
f (1) = 0: Assume that p; q 2 P and there exists the constants 0 < s < 1 < S <1
such that

(4.11) s � p (x)

q (x)
� S for �-a.e. x 2 
:

Then we have the inequalities

s
h
If( 1� )

(q; p)� f
�
D�2 (p; q) + 1

�i
(4.12)

� If (p; q)

� S
h
If( 1� )

(q; p)� f
�
D�2 (p; q) + 1

�i
:

Proof. If we use the inequality (2.6) we get

s

�Z



qf

�
q

p

�
d�� f

�Z



q2

p
d�

��
(4.13)

�
Z



pf

�
q

p

�
d�

� S
�Z




qf

�
q

p

�
d�� f

�Z



q2

p
d�

��
:

Since Z



q2

p
d� = D�2 (p; q) + 1

and Z



qf

�
q

p

�
d� = If( 1� )

(q; p) ;

then from (4.13) we deduce the desired result (4.12). �

Consider the Kullback-Leibler divergence

DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

which is an f -divergence for the convex function f : (0;1)! R, f (t) = � ln t:
If p; q 2 P such that there exists the constants 0 < s < 1 < S <1 with

(4.14) s � p (x)

q (x)
� S for �-a.e. x 2 
::

then we get from (4.12) that

s
�
ln
�
D�2 (p; q) + 1

�
�DKL (q; p)

�
(4.15)

� DKL (p; q)
� S

�
ln
�
D�2 (p; q) + 1

�
�DKL (q; p)

�
:

Similar results for f -divergence measures can be stated by utilizing the inequality
(2.13), however the details are not presented here.
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