
JENSEN TYPE WEIGHTED INEQUALITIES FOR FUNCTIONS
OF SELFADJOINT AND UNITARY OPERATORS

S.S. DRAGOMIR1;2

Abstract. On making use of the spectral representations in terms of the
Riemann-Stieltjes integral for the selfadjoint and unitary operators in Hilbert
spaces we establish here some weighted inequalities of Jensen�s type for convex,
square-convex and Arg-square-convex functions. Some applications for simple
functions of operators that belong to those classes are also provided.

1. Introduction

Let A be a selfadjoint operator on the complex Hilbert space (H; h:; :i) with the
spectrum Sp (A) included in the interval [m;M ] for some real numbers m < M and
let fE�g� be its spectral family. Then for any continuous function f : [m;M ]! R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral (see for instance [19, p. 257]):

(1.1) hf (A)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ;

and

(1.2) kf (A)xk2 =
Z M

m�0
jf (�)j2 d kE�xk2 ;

for any x; y 2 H:
The function gx;y (�) := hE�x; yi is of bounded variation on the interval [m;M ]

and
gx;y (m� 0) = 0 while gx;y (M) = hx; yi

for any x; y 2 H: It is also well known that gx (�) := hE�x; xi is monotonic nonde-
creasing and right continuous on [m;M ] for any x 2 H.
The following result that provides an operator version for the Jensen inequality

is due to Mond & Peµcaríc [23] (see also [18, p. 5]):

Theorem 1 (Mond-Peµcaríc, 1993, [23]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) � [m;M ] for some scalars m;M with
m < M: If h is a convex function on [m;M ] ; then

(MP) h (hAx; xi) � hh (A)x; xi
for each x 2 H with kxk = 1:

As a special case of Theorem 1 we have the following Hölder-McCarthy inequal-
ity:

1991 Mathematics Subject Classi�cation. Primary 26D15, 26D20; Secondary 47A63.
Key words and phrases. Jensen�s inequality, Hölder�s inequality, Measurable functions,

Lebesgue integral, Selfadjoint operators, Unitary operators, Spectral family.

1

sever
Typewriter
Received 04/01/13

sever
Typewriter



2 S.S. DRAGOMIR

Theorem 2 (Hölder-McCarthy, 1967, [21]). Let A be a selfadjoint positive operator
on a Hilbert space H. Then for all x 2 H with kxk = 1;
(i) hArx; xi � hAx; xir for all r > 1;
(ii) hArx; xi � hAx; xir for all 0 < r < 1;
(iii) If A is invertible, then hArx; xi � hAx; xir for all r < 0:

The following reverse for the Mond-Peµcaríc inequality that generalizes the scalar
Lah-Ribaríc inequality for convex functions is well known, see for instance [18, p.
57]:

Theorem 3. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m;M with m < M: If h is a convex function
on [m;M ] ; then

(LR) hh (A)x; xi � M � hAx; xi
M �m � h (m) + hAx; xi �m

M �m � h (M)

for each x 2 H with kxk = 1:

We recall that the bounded linear operator U : H ! H on the Hilbert space H
is unitary i¤ U� = U�1:
It is well known that (see for instance [19, p. 275-p. 276]), if U is a unitary

operator, then there exists a family of projections fE�g�2[0;2�], called the spectral
family of U with the following properties

a) E� � E� for 0 � � � � � 2�;
b) E0 = 0 and E2� = 1H (the identity operator on H);
c) E�+0 = E� for 0 � � < 2�;
d) U =

R 2�
0
ei�dE� where the integral is of Riemann-Stieltjes type.

Moreover, if fF�g�2[0;2�] is a family of projections satisfying the requirements
a)-d) above for the operator U; then F� = E� for all � 2 [0; 2�] :
Also, for every continuous complex valued function f : C (0; 1) ! C on the

complex unit circle C (0; 1), we have

(1.3) f (U) =

Z 2�

0

f
�
ei�
�
dE�

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(1.4) hf (U)x; yi =
Z 2�

0

f
�
ei�
�
d hE�x; yi

and

(1.5) kf (U)xk2 =
Z 2�

0

��f �ei����2 d kE�xk2 = Z 2�

0

��f �ei����2 d hE�x; xi ;
for any x; y 2 H:
From the above properties it follows that the function gx (�) := hE�x; xi is

monotonic nondecreasing and right continuous on [0; 2�] for any x 2 H.
For z 2 Cr f0g we call the principal value of log (z) the complex number

Log (z) := ln jzj+ iArg (z)

where 0 � Arg (z) < 2�:
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We observe that for t 2 [0; 2�) we have

Log
�
eit
�
= it:

If we extend this equality by continuity in the point t = 2�, then we can de�ne the
operator Log(U) : H ! H as

(1.6) Log(U)x =

Z 2�

0

Log
�
ei�
�
dE�x =

Z 2�

0

(i�) dE�x; x 2 H:

Utilizing these spectral representations in terms of the Riemann-Stieltjes integral
for the selfadjoint and unitary operators we establish here some weighted inequal-
ities of Jensen�s type for three classes of functions: convex, square-convex and
Arg-square-convex functions. Some applications for simple functions of operators
that belong to those classes are also provided.
For classical and recent result concerning inequalities for continuos functions of

selfadjoint operators, see [23], [24], [25], [20], [18], [6], [9], [10], [12], [11], [16], [15],
[14], [13], [7], and [8].

2. Weighted Inequalities for the Riemann-Stieltjes Integral

We can state the following result concerning the weighted Riemann-Stieltjes
integral of monotonic nondecreasing integrators:

Theorem 4. Let � : [;�] � R! R be a continuous convex function on the
interval [;�] ; f : [a; b] � R! R be a continuous function on the interval [a; b] and
with the property that

(2.1)  � f (t) � � for any t 2 [a; b]
and w : [a; b]! [0;1) be continuos on [a; b]. Then for each monotonic nondecreas-
ing function u : [a; b]! R such that

R b
a
w (t) du (t) > 0 we have the inequalities

�

 R b
a
w (t) f (t) du (t)R b
a
w (t) du (t)

!
(2.2)

�
R b
a
w (t) (� � f) (t) du (t)R b

a
w (t) du (t)

�
� ()

�
��

R b
a
w(t)f(t)du(t)R b
a
w(t)du(t)

�
+�(�)

� R b
a
w(t)f(t)du(t)R b
a
w(t)du(t)

� 
�

��  :

Proof. Utilising the gradient inequality for the convex function �, namely

� (&)� � (�) � �� (�) (& � �)
for any &; � 2 [;�] where �� (�) 2

�
�0� (�) ;�

0
+ (�)

�
; (for � =  we take �� (�) =

�0+ () and for � = � we take �� (�) = �
0
� (�)) then we get

� (&)� �
 R b

a
w (t) f (t) du (t)R b
a
w (t) du (t)

!
(2.3)

� ��

 R b
a
w (t) f (t) du (t)R b
a
w (t) du (t)

! 
& �

R b
a
w (t) f (t) du (t)R b
a
w (t) du (t)

!
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for any & 2 [;�] ; since obviously, by (2.1)R b
a
w (t) f (t) du (t)R b
a
w (t) du (t)

2 [;�] :

Since f satis�es (2.1), then by (2.3) we get

(� � f) (s)� �
 R b

a
w (t) f (t) du (t)R b
a
w (t) du (t)

!
(2.4)

� ��

 R b
a
w (t) f (t) du (t)R b
a
w (t) du (t)

! 
f (s)�

R b
a
w (t) f (t) du (t)R b
a
w (t) du (t)

!
for any s 2 [a; b] :
Now, if we multiply (2.4) by w (s) � 0 and integrate the result over the monotonic

nondecreasing integrator u on the interval [a; b] we obtain the �rst inequality in
(2.2).
By the convexity of � we also have the inequality

� (�) � (�� �) � () + (� � ) � (�)
�� 

for any � 2 [;�] ; which, by (2.3) implies that

(2.5) (� � f) (s) � (�� f (s))� () + (f (s)� ) � (�)
�� 

for any s 2 [a; b] :
Now, if we multiply (2.5) by w (s) � 0 and integrate the result over the monotonic

nondecreasing integrator u on the interval [a; b] we obtain the second inequality in
(2.5).
The proof is complete. �

Remark 1. The above inequality provides a generalization for the unweighted case,
namely w (t) = 1; t 2 [a; b] ; which can be stated as

�

 R b
a
f (t) du (t)

u (b)� u (a)

!
(2.6)

�
R b
a
(� � f) (t) du (t)
u (b)� u (a)

�
� ()

�
��

R b
a
f(t)du(t)

u(b)�u(a)

�
+�(�)

� R b
a
f(t)du(t)

u(b)�u(a) � 
�

��  :

For inequalities related to the Jensen�s result, see [1], [2], [3], [17], [4], [26] and
[27].

Corollary 1. Let h : [a; b] � R! R be a continuous function on the interval [a; b]
and with the property that

(2.7) 0 �  � h (t) � � for any t 2 [a; b]
and w : [a; b] ! [0;1) be continuos on [a; b]. Assume also that u : [a; b] ! R is a
monotonic nondecreasing function such that

R b
a
w (t) du (t) > 0:
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(i) If p � 1; then Z b

a

w (t)h (t) du (t)

!p
(2.8)

�
"Z b

a

w (t) du (t)

#p�1 Z b

a

w (t)hp (t) du (t)

� 1

�� 

"Z b

a

w (t) du (t)

#p

�
"
p

 
��

R b
a
w (t)h (t) du (t)R b
a
w (t) du (t)

!
+�p

 R b
a
w (t)h (t) du (t)R b
a
w (t) du (t)

� 
!#

:

(ii) If p 2 (0; 1) ; then the inequalities reverse in (2.8).
(iii) If p < 0 and  > 0, then the inequality (2.8) also holds.

The proof follows by Theorem 4 applied for the convex (concave) function f (t) =
tp, p 2 (�1; 0) [ [1;1) (p 2 (0; 1)).
The following result is the well known version of the Hölder inequality for the

Riemann-Stieltjes integral with monotonic nondecreasing integrators u : [a; b]! R:

(2.9)
Z b

a

jf (t) g (t)j du (t) �
"Z b

a

jf (t)jp du (t)
#1=p "Z b

a

jg (t)jq du (t)
#1=q

;

where f; g : [a; b] � R! C are continuous and p; q > 1 with 1=p+ 1=q = 1:

Proposition 1. Let f; g : [a; b] � R ! Cr f0g be continuous on [a; b] and u :
[a; b]! R monotonic nondecreasing on [a; b] : Let p; q 2 Rr f0g with 1=p+1=q = 1
and assume that

(2.10) 0 �  � jf (t)j
jg (t)jq�1

� � for any t 2 [a; b] :

(i) If p > 1; thenZ b

a

jf (t) g (t)j du (t)(2.11)

�
"Z b

a

jg (t)jq du (t)
#1=q "Z b

a

jf (t)jp du (t)
#1=p

� 1

(�� )1=p

Z b

a

jg (t)jq du (t)

�
"
p

 
��

R b
a
jf (t) g (t)j du (t)R b
a
jg (t)jq du (t)

!
+�p

 R b
a
jf (t) g (t)j du (t)R b
a
jg (t)jq du (t)

� 
!#1=p

:

(ii) If p 2 (0; 1) ; then the inequalities in (2.11) reverse.
(iii) If p < 0 and  > 0 then the inequalities in (2.11) also reverse.

Proof. Follows by Corollary 1 on choosing

h =
jf j
jgjq�1

and w = jgjq
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and performing some simple calculation.
The details are omitted. �

Corollary 2. Let h : [a; b] � R! R be a continuous function on the interval [a; b]
and with the property that

(2.12) 0 <  � h (t) � � for any t 2 [a; b]

and w : [a; b] ! [0;1) be continuos on [a; b]. Assume also that u : [a; b] ! R is a
monotonic nondecreasing function such that

R b
a
w (t) du (t) > 0. Then

R b
a
w (t)h (t) du (t)R b
a
w (t) du (t)

(2.13)

� exp
"R b

a
w (t) (ln �h) (t) du (t)R b

a
w (t) du (t)

#

� 
1

��

�
��

R b
a w(t)h(t)du(t)R b
a w(t)du(t)

�
�

1
��

� R b
a w(t)h(t)du(t)R b
a w(t)du(t)

�
�
:

The proof follows by Theorem 4 applied for the convex function � (t) = � ln t; t >
0:

3. Weighted Inequalities for Convex Functions of Selfadjoint
Operators

We can state the following result concerning the weighted Jensen�s inequality for
continuous functions of selfadjoint operators:

Theorem 5. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m;M with m < M: If � : [;�] � R! R
is a continuous convex function on the interval [;�] ; f : [m;M ] � R ! R is a
continuous function on the interval [m;M ] and with the property that

(3.1)  � f (t) � � for any t 2 [m;M ]

and w : [m;M ]! [0;1) is continuos on [m;M ], then

�

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(3.2)

� hw (A) (� � f) (A)x; xi
hw (A)x; xi

�
� ()

�
�� hw(A)f(A)x;xi

hw(A)x;xi

�
+�(�)

�
hw(A)f(A)x;xi
hw(A)x;xi � 

�
��  ;

for any x 2 H with kxk = 1 and hw (A)x; xi 6= 0:
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Proof. Let fE�g� be the spectral family of the operator A: Let " > 0 and write
the inequality (2.2) on the interval [a; b] = [m� ";M ] and for the monotonic non-
decreasing function g (t) = hEtx; xi ; x 2 H with kxk = 1; to get

�

 RM
m�" w (t) f (t) d hEtx; xiRM
m�" w (t) d hEtx; xi

!
(3.3)

�
RM
m�" w (t) (� � f) (t) d hEtx; xiRM

m�" w (t) d hEtx; xi

�

�
��

RM
m�" w(t)f(t)dhEtx;xiRM
m�" w(t)dhEtx;xi

�
� () +

� RM
m�" w(t)f(t)dhEtx;xiRM
m�" w(t)dhEtx;xi

� 
�
� (�)

��  :

Letting "! 0+ and utilizing the spectral representation (1.1) we deduce from (3.3)
the desired result (3.2). �

Remark 2. If we choose w (t) = 1 and f (t) = t with t 2 [m;M ] then we get from
(3.2) the inequalities (MP) and (LR).

We have the following generalization and reverse for the Hölder-McCarthy in-
equality:

Corollary 3. Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) � [m;M ] for some scalars m;M with m < M . If the functions
f; w : [m;M ]! [0;1) are continuous and f satis�es the condition (3.1) with  � 0,
then for any p � 1 we have

hw (A) f (A)x; xip(3.4)

� hw (A) fp (A)x; xi hw (A)x; xip�1

� 1

��  hw (A)x; xi
p�1

� [p (hw (A) [�1H � f (A)]x; xi) + �p (hw (A) [f (A)� 1H ]x; xi)]

where x 2 H with kxk = 1:
If p 2 (0; 1) then the inequalities reverse in (3.4).
If  > 0 and p < 0 the inequalities in (3.4) also hold.

Remark 3. If we choose w (t) = 1 and f (t) = t with t 2 [m;M ] � [0;1) then we
get from (3.4)

hAx; xip � hApx; xi(3.5)

� 1

M �m [mp (h(M1H �A)x; xi) +Mp (h(A�m1H)x; xi)]

for any p � 1; where x 2 H with kxk = 1:
If p 2 (0; 1) ; then the inequalities reverse in (3.5).
If m > 0 and p < 0 then the inequalities in (3.5) also hold.
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Remark 4. If we choose w (t) = f (t) = t with t 2 [m;M ] � [0;1) then we get
from (3.4)


A2x; x
�p � hApx; xi hAx; xip�1(3.6)

� 1

M �m hAx; xip�1

� [mp (hA (M1H �A)x; xi) +Mp (hA (A�m1H)x; xi)]
for any p � 1; where x 2 H with kxk = 1:
If p 2 (0; 1) ; then the inequalities reverse in (3.6).
If m > 0 and p < 0 then the inequalities in (3.6) also hold.

Corollary 4. Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) � [m;M ] for some scalars m;M with m < M . If the functions
f; w : [m;M ]! [0;1) are continuous and f satis�es the condition (3.1) with  > 0
then

hw (A) f (A)x; xi
hw (A)x; xi(3.7)

� exp
�
hw (A) (ln �f) (A)x; xi

hw (A)x; xi

�
� 

1
�� (��

hw(A)f(A)x;xi
hw(A)x;xi )�

1
�� (

hw(A)f(A)x;xi
hw(A)x;xi �)

for any x 2 H with kxk = 1:

Remark 5. If we choose w (t) = 1 and f (t) = t with t 2 [m;M ] � (0;1) then we
get from (3.7)

hAx; xi � exp [hlnAx; xi](3.8)

� m 1
M�m h(M1H�A)x;xiM

1
M�m h(A�1Hm)x;xi

for any x 2 H with kxk = 1:
Also, if we choose w (t) = f (t) = t with t 2 [m;M ] � (0;1) then we get from

(3.7) that 

A2x; x

�
hAx; xi � exp

�
hA lnAx; xi
hAx; xi

�
(3.9)

� m
1

M�m

 
M� hA

2x;xi
hAx;xi

!
M

1
M�m

 
hA2x;xi
hAx;xi �m

!

for any x 2 H with kxk = 1:

Remark 6. If we choose w (t) = tr and f (t) = tq with t 2 [m;M ] � (0;1) where
r; q > 0; then we get from (3.2) that

�

�
hAr+qx; xi
hArx; xi

�
(3.10)

� hAr� (Aq)x; xi
hArx; xi

�
� (q)

�
�q � hA

r+qx;xi
hArx;xi

�
+�(�q)

�
hAr+qx;xi
hArx;xi � q

�
�q � q ;
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for a continuous convex function � : [mq;Mq] ! R and for any x 2 H with
kxk = 1:
We have the following Hölder type inequality for continuous functions of selfad-

joint operators:

Proposition 2. Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) � [m;M ] for some scalars m;M with m < M . If f; g : [a; b] �
R! Cr f0g are continuous on [a; b] and p; q 2 Rr f0g with 1=p+1=q = 1 are such
that

(3.11) 0 �  � jf (t)j
jg (t)jq�1

� � for any t 2 [a; b] ;

then we have the inequalities

hjf (A) g (A)jx; xi(3.12)

� [hjg (A)jq x; xi]1=q [hjf (A)jp x; xi]1=p

� 1

(�� )1=p
hjg (A)jq x; xi

�
�
p
�
�� hjf (A) g (A)jx; xihjg (A)jq x; xi

�
+ �p

�
hjf (A) g (A)jx; xi
hjg (A)jq x; xi � 

��1=p
;

for p > 1 and for any x 2 H with kxk = 1 and hjg (A)jq x; xi 6= 0:
If p 2 (0; 1) ; then the inequalities in (3.12) reverse;
If p < 0 and  > 0 then the inequalities in (3.12) also reverse.

4. Weighted Inequalities for Square-convex Functions

We introduce the following class of complex valued functions:

De�nition 1. A function � : [;�] � R ! C is called square-convex on [;�] if
the associated function ' : [;�]! [0;1), ' (t) = j� (t)j2 is convex on [;�] :
A simple example of such a function is the concave power function � : [;�] �

[0;1) ! [0;1); � (t) = tr with r 2
�
1
2 ; 1
�
: Also, if h : [;�] ! [0;1) is convex

then the complex valued function � : [;�] � R! C given by � (t) = h1=2 (t) eit is
square-convex on [;�] :
Consider the function f (t) = ln (t+ 1) : We observe that it is concave and posi-

tive on (0;1) and if we de�ne ' (t) = [ln (t+ 1)]2 ; then we have that

'00 (t) =
2

(t+ 1)
2 [1� ln (t+ 1)] ; t > �1;

showing that f is square-convex on the interval [0; e� 1] :
Another example for trigonometric functions is for instance f (t) = cos t; t 2�

�
4 ;

�
2

�
: The function ' (t) = cos2 t has the second derivative '00 (t) = �2 cos (2t)

which is positive for t 2
�
�
4 ;

�
2

�
: Therefore f is square-convex on the interval

�
�
4 ;

�
2

�
:

Theorem 6. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m;M with m < M: If � : [;�] � R! C is
a continuous square-convex function on the interval [;�] ; f : [m;M ] � R ! R is
a continuous function on the interval [m;M ] and with the property that

(4.1)  � f (t) � � for any t 2 [m;M ]
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and w : [m;M ]! [0;1) is continuos on [m;M ], then������ hw (A) f (A)x; xihw (A)x; xi

�����(4.2)

�

24
D
w (A)

�
j�j2 � f

�
(A)x; x

E
hw (A)x; xi

351=2

�

24 j� ()j2
�
�� hw(A)f(A)x;xi

hw(A)x;xi

�
+ j� (�)j2

�
hw(A)f(A)x;xi
hw(A)x;xi � 

�
�� 

351=2 ;
for any x 2 H with kxk = 1 and hw (A)x; xi 6= 0:
The proof follows from Theorem 4 applied for the function ' : [;�] ! [0;1),

' (t) = j� (t)j2 that is continuous convex on [;�]. The details are omitted.
Remark 7. If w (t) = 1; then we get from (4.2) the following simpler result

j� (hf (A)x; xi)j(4.3)

� k(� � f) (A)xk

�
"
j� ()j2 h(�1H � f (A))x; xi+ j� (�)j2 h(f (A)� 1H)x; xi

�� 

#1=2
;

for any x 2 H with kxk = 1:
This is true sinceD�

j�j2 � f
�
(A)x; x

E
=

Z M

m�0
j� (f (t))j2 d hEtx; xi

= k� (f (A))xk2

for any x 2 H with kxk = 1 (for the second equality see for instance [19, p. 257]).
Corollary 5. With the assumptions of Theorem 6 for A; f; w and if  > 0; then
we have �

hw (A) f (A)x; xi
hw (A)x; xi

�q
(4.4)

�
"

w (A) f2q (A)x; x

�
hw (A)x; xi

# 1
2

�

242q
�
�� hw(A)f(A)x;xi

hw(A)x;xi

�
+ �2q

�
hw(A)f(A)x;xi
hw(A)x;xi � 

�
�� 

35
1
2

;

for any q 2
�
1
2 ; 1
�
and any x 2 H with kxk = 1 and hw (A)x; xi 6= 0:

Remark 8. If we choose w (t) = 1 and f (t) = t with t 2 [m;M ] � (0;1) then we
get from (4.4)

hAx; xiq � kAqxk(4.5)

�
�
m2q h(M1H �A)x; xi+M2q h(A� 1Hm)x; xi

M �m

�1=2
;
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for any q 2
�
1
2 ; 1
�
and any x 2 H with kxk = 1:

Also, if we choose w (t) = f (t) = t with t 2 [m;M ] � (0;1) then we get from
(4.4)  


A2x; x
�

hAx; xi

!q
�
"

A2q+1x; x

�
hAx; xi

#1=2
(4.6)

�

2664m
2q

�
M � hA

2x;xi
hAx;xi

�
+M2q

�
hA2x;xi
hAx;xi �m

�
M �m

3775
1=2

;

for any q 2
�
1
2 ; 1
�
and any x 2 H with kxk = 1:

Remark 9. If we choose w (t) = tr and f (t) = ts with t 2 [m;M ] � (0;1) where
r; s > 0; then we get from (4.4) that�

hAr+sx; xi
hArx; xi

�q
(4.7)

�
"

Ar+2qsx; x

�
hArx; xi

# 1
2

�

2664m
2qs

�
Ms � hA

r+sx;xi
hArx;xi

�
+M2qs

�
hAr+sx;xi
hArx;xi �ms

�
Ms �ms

3775
1
2

;

for any q 2
�
1
2 ; 1
�
and any x 2 H with kxk = 1:

5. Weighted Inequalities for Arg-square-convex Functions

The function � : C (0; 1) ! C will be called Arg-square-convex if the composite
function ' : [0; 2�]! [0;1);

' (t) :=

8><>:
��� �eit���2 t 2 [0; 2�)

lims!2��
��� �eis���2 t = 2�

is continuous and convex on [0; 2�] :
To make the distinction between the value ' (0) =

��� �ei0���2 = j� (1)j2 and the
value ' (2�) = lims!2��

��� �eis���2 we denote by �c (1) := lims!2���
�
eis
�
: With

this notation we have ' (2�) = j�c (1)j2 :
The function �n : C (0; 1)! C, �n (z) = [Log (z)]n ; where n is a positive integer,

is Arg-square-convex. We have

'n (t) =
���n �eit���2 = ����Log �eit��n���2 = jitj2n = t2n; t 2 [0; 2�);

and

'n (2�) = lim
s!2��

���n �eis���2 = j�n;c (1)j2 = (2�)2n :
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For q � 1
2 de�ne the function �q : C (0; 1) ! [0;1) by �q (z) = jLog (z)jq : We

have
'q (t) =

���q �eit���2 = ��Log �eit���2q = jitj2q = t2q; t 2 [0; 2�)
and

'q (2�) = lim
s!2��

���q �eis���2 = j�q;c (1)j2 = (2�)2q :
The function �q for q � 1

2 is an Arg-square-convex function.
If g : [0; 2�] ! [0;1) is continuous and convex on [0; 2�] ; then the composite

function � : C (0; 1)! [0;1) de�ned by

� (z) := [g (jLog (z)j)]1=2

is an Arg-square-convex function on C (0; 1) :

Theorem 7. Let U 2 B (H) be a unitary operator on the Hilbert space H and
� : C (0; 1) ! C a continuous and Arg-square-convex function on C (0; 1) : If w :
C (0; 1)! [0;1) is a continuous function, then we have������exp � hw (U)Log(U)x; xihw (U)x; xi

������(5.1)

�

24
D
w (U) j� (U)j2 x; x

E
hw (U)x; xi

351=2

�

24
�
2� � hw(U)jLog(U)jx;xi

hw(U)x;xi

�
j� (1)j2 + hw(U)jLog(U)jx;xi

hw(U)x;xi j�c (1)j2

2�

351=2

for any x 2 H; kxk = 1; where �c (1) := lims!2���
�
eis
�
:

Proof. We apply Theorem 4 to the function ' : [0; 2�]! [0;1);

' (t) =

8><>:
��� �eit���2 t 2 [0; 2�)

lims!2��
��� �eis���2 t = 2�

that is continuous and convex on [0; 2�] :
If fE�g�2[0;2�] is the spectral family of the operator U; then we can write the

inequality (2.2) on the interval [a; b] = [0; 2�] for the monotonic nondecreasing
integrator u (t) = hEtx; xi and for the identity function f (t) = t; t 2 [0; 2�] to get������

 
exp

"
i
R 2�
0
w
�
eit
�
td hEtx; xiR 2�

0
w (eit) d hEtx; xi

#!�����
2

(5.2)

�
R 2�
0
w
�
eit
� ��� �eit���2 d hEtx; xiR 2�

0
w (eit) d hEtx; xi

�

�
2� �

R 2�
0

w(eit)tdhEtx;xiR 2�
0

w(eit)dhEtx;xi

�
j� (1)j2 +

� R 2�
0

w(eit)�(t)dhEtx;xiR 2�
0

w(t)dhEtx;xi

�
j�c (1)j2

2�
;

for any x 2 H; kxk = 1:
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Since, by the spectral representation of functions of unitary operators (1.3) we
have

i

Z 2�

0

w
�
eit
�
td hEtx; xi =

Z 2�

0

w
�
eit
�
Log

�
eit
�
d hEtx; xi

= hw (U)Log(U)x; xiZ 2�

0

w
�
eit
�
d hEtx; xi = hw (U)x; xi ;Z 2�

0

w
�
eit
� ��� �eit���2 d hEtx; xi = Dw (U) j� (U)j2 x; xE andZ 2�

0

w
�
eit
�
td hEtx; xi = hw (U) jLog(U)jx; xi

for any x 2 H; kxk = 1; then the inequality (5.2) produces the desired result
(5.1). �

Remark 10. If w (t) = 1; then we get from (5.1) the following simpler result

j� (exp [hLog(U)x; xi])j(5.3)

� k� (U)xk

�
"
h(2�1H � jLog(U)j)x; xi j� (1)j2 + hjLog(U)jx; xi j�c (1)j2

2�

#1=2
for any x 2 H with kxk = 1:
This is true sinceD

j� (U)j2 x; x
E
=

Z 2�

0

��� �eit���2 d hEtx; xi = k� (U)xk2
for any x 2 H with kxk = 1 (for the second equality see (1.5)).

The interested reader may apply the inequality (5.1) for di¤erent examples of
Arg-square-convex functions. We give here only one example, for instance if we
choose the function �q (z) = jLog (z)jq ; q � 1=2 as introduced above, then we get
from (5.1)

����Log�exp � hw (U)Log(U)x; xihw (U)x; xi

������q �
24
D
w (U) jLog (U)j2q x; x

E
hw (U)x; xi

351=2(5.4)

� hw (U) jLog(U)jx; xi1=2

hw (U)x; xi1=2
(2�)

q�1=2

for any x 2 H with kxk = 1 and w : C (0; 1)! [0;1) a continuous function.
In particular we have

jLog (exp [hLog(U)x; xi])jq � kjLog (U)jq xk(5.5)

� (2�)q�1=2 hjLog(U)jx; xi1=2

for any x 2 H with kxk = 1:
Finally, we notice that the following result providing Hölder�s type inequalities

for continuous functions of unitary operators can be stated:
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Proposition 3. Let U 2 B (H) be a unitary operator on the Hilbert space H
and. If f; g : C (0; 1) ! Cr f0g are continuous on C (0; 1) and p; q 2 Rr f0g with
1=p+ 1=q = 1 are such that

(5.6) 0 �  �
��f �eit���
jg (eit)jq�1

� � for any t 2 [0; 2�]

then we have the inequalities

hjf (U) g (U)jx; xi(5.7)

� [hjg (U)jq x; xi]1=q [hjf (U)jp x; xi]1=p

� 1

(�� )1=p
hjg (U)jq x; xi

�
�
p
�
�� hjf (U) g (U)jx; xihjg (U)jq x; xi

�
+ �p

�
hjf (U) g (U)jx; xi
hjg (U)jq x; xi � 

��1=p
;

for p > 1 and for any x 2 H with kxk = 1 and hjg (U)jq x; xi 6= 0:
If p 2 (0; 1) ; then the inequalities in (5.7) reverse;
If p < 0 and  > 0 then the inequalities in (5.7) also reverse.

The proof follows by Proposition 1 and the spectral representation for continuous
functions of unitary operators.
If g : [0; 2�] ! [0;1) is continuous and convex on [0; 2�] ; then the composite

function f : C (0; 1)! [0;1) de�ned by

f (z) := [g (jLog (z)j)]1=2

is an Arg-square-convex function on C (0; 1) :
As examples of such functions we have

f� (z) := exp (� jLog (z)j)
which are Arg-square-convex functions on C (0; 1) for any real number � 6= 0:
We also notice that the family of functions fm;n : C (0; 1) ! C, fm;n (z) =

zm [Log (z)]
n
; where m 6= 0 is an integer and n is a positive integer, are Arg-

square-convex functions.
The reader may apply the above inequalities for these functions as well. However,

the details are omitted.
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