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JENSEN TYPE WEIGHTED INEQUALITIES FOR FUNCTIONS
OF SELFADJOINT AND UNITARY OPERATORS

S.S. DRAGOMIR!»2

ABSTRACT. On making use of the spectral representations in terms of the
Riemann-Stieltjes integral for the selfadjoint and unitary operators in Hilbert
spaces we establish here some weighted inequalities of Jensen’s type for convex,
square-convex and Arg-square-convex functions. Some applications for simple
functions of operators that belong to those classes are also provided.

1. INTRODUCTION

Let A be a selfadjoint operator on the complex Hilbert space (H, (.,.)) with the
spectrum Sp (A) included in the interval [m, M] for some real numbers m < M and
let {Ex}, be its spectral family. Then for any continuous function f : [m, M] — R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral (see for instance [19, p. 257)):

(1.1) G Waw) = [ Fd(Ea)).
and

M
(1.2 I @al” = [ Ir P alEel?,

for any z,y € H.

The function gz, (A) := (Exz,y) is of bounded variation on the interval [m, M]
and

9z,y (m —0) =0 while g, , (M) = (z,y)

for any x,y € H. It is also well known that g, (\) := (E\z, z) is monotonic nonde-
creasing and right continuous on [m, M| for any = € H.

The following result that provides an operator version for the Jensen inequality
is due to Mond & Pecari¢ [23] (see also [18, p. 5]):

Theorem 1 (Mond-Pecari¢, 1993, [23]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp(A) C [m, M] for some scalars m, M with
m < M. If h is a convex function on [m, M|, then

(MP) h((Az,z)) < (h(A)z,z)

for each x € H with ||z| = 1.

As a special case of Theorem 1 we have the following Holder-McCarthy inequal-
ity:
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2 S.S. DRAGOMIR

Theorem 2 (Holder-McCarthy, 1967, [21]). Let A be a selfadjoint positive operator
on a Hilbert space H. Then for all x € H with ||z|| = 1,

(i) (ATz,z) > (Az,z)" for all v > 1;

(ii) (ATz,z) < (Az,z)" for all 0 <r < 1;

(iii) If A is invertible, then (A"x,x) > (Az,z)" for all r < 0.

The following reverse for the Mond-Pecari¢ inequality that generalizes the scalar
Lah-Ribari¢ inequality for convex functions is well known, see for instance [18, p.
57]:

Theorem 3. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M with m < M. If h is a convez function
on [m, M|, then

M—(Ax,a:>.h +<Ax,x)—m

(LR) (h(A)z,2) < === h(m) + ———

~h (M)

for each x € H with ||z|| = 1.

We recall that the bounded linear operator U : H — H on the Hilbert space H
is unitary iff U* = UL
It is well known that (see for instance [19, p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {E/\}Ae[o,zﬂ]» called the spectral
family of U with the following properties
a) Ex <E, for 0 <X <p<2m
b) Ey =0 and Ea, = 1y (the identity operator on H);
C) E)\Jro =F\yfor0< A< 2,
d) U= fo% e'*dE) where the integral is of Riemann-Stieltjes type.
Moreover, if {F)\} A€[0,27] is a family of projections satisfying the requirements
a)-d) above for the operator U, then F = Ej for all A € [0, 27].
Also, for every continuous complex valued function f : C(0,1) — C on the
complex unit circle C (0, 1), we have

(1.3) Fw)= [ 1) aps

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(1.4) (f (U)z.y) = / " F () d (B,

and
27

ws)  If@)a) = / NP d)Bral? = / £ ()P d{Ere,z)

for any z,y € H.

From the above properties it follows that the function g, (\) := (E\z,z) is
monotonic nondecreasing and right continuous on [0, 27| for any « € H.

For z € C\ {0} we call the principal value of log (z) the complex number

Log (z) :=In|z| +iArg (2)
where 0 < Arg (z) < 2.



JENSEN TYPE WEIGHTED INEQUALITIES 3

We observe that for ¢ € [0, 27) we have
Log (eit) = 1it.
If we extend this equality by continuity in the point ¢ = 27, then we can define the

operator Log(U) : H — H as

27

2
(1.6) Log(U)x = / Log (e) dE\z = / (tA)dExz, x € H.
0 0

Utilizing these spectral representations in terms of the Riemann-Stieltjes integral
for the selfadjoint and unitary operators we establish here some weighted inequal-
ities of Jensen’s type for three classes of functions: convex, square-convex and
Arg-square-convex functions. Some applications for simple functions of operators
that belong to those classes are also provided.

For classical and recent result concerning inequalities for continuos functions of
selfadjoint operators, see [23], [24], [25], [20], [18], [6], [9], [10], [12], [11], [16], [15],
[14], [13], [7], and [8].

2. WEIGHTED INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL

We can state the following result concerning the weighted Riemann-Stieltjes
integral of monotonic nondecreasing integrators:

Theorem 4. Let ® : [7,T] € R —R be a continuous convexr function on the
interval [v,T], f : [a,b] C R — R be a continuous function on the interval [a,b] and
with the property that

(2.1) Y < f() <T for anyt € [a,b]

and w : [a,b] — [0,00) be continuos on [a,b]. Then for each monotonic nondecreas-
ing function u : [a,b] — R such that f;w (t) du (t) > 0 we have the inequalities

b
(2.2) & (fa wb (t) f () du (t))
S w (t) du(t)

Jiw <t><<1>of><>du<>
S w(

w(t f(t du(t) P dut)
( T w(tyduts) ) +@(I) ( 77 w(t)du(t) 7)
-~ '

<

\ /\

Proof. Utilising the gradient inequality for the convex function ®, namely
() =®(r) 2 b0 (1) (¢ —7)

for any ¢, 7 € [7,T] where 6¢ (1) € [®" (1), P/ (7)], (for T = v we take dq (1) =
@’ () and for 7 =T we take dg (1) = @’ (I")) then we get

(S w () f () du (1)
= " q)< [Pt du(®) )

s (ffw(t)f(t)du(t)>< _fjw(t)f(t)du(t>>
=09 5 S 5
J, w (t) du(t) S, w (t) du(t)
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for any ¢ € [y, I, since obviously, by (2.1)

Fo@ e o
Fo@ann
Since f satisfies (2.1), then by (2.3) we get
fbw(t)f(t)dU(t)>
2.4 dof)(s)— [ 2
. et (ffw(t)duu)

b b
> b Jo w(t) f(#)du (t) Fls)— Jo w (@) f(t)du(t)
- [Pw () du (2) [P (£) du (2)
for any s € [a,b].

Now, if we multiply (2.4) by w (s) > 0 and integrate the result over the monotonic
nondecreasing integrator u on the interval [a,b] we obtain the first inequality in
(2.2).

By the convexity of ® we also have the inequality
C-—me()+F-—1eT)

=y
for any 7 € [v,T], which, by (2.3) implies that
r- ® —v)® (T
0 e s ToIOEOLUE e

® (1) <

for any s € [a,b].

Now, if we multiply (2.5) by w (s) > 0 and integrate the result over the monotonic
nondecreasing integrator u on the interval [a, b] we obtain the second inequality in
(2.5).

The proof is complete. O

Remark 1. The above inequality provides a generalization for the unweighted case,
namely w (t) = 1, t € [a,b], which can be stated as

P F (8 du (1)
(2.6) o (M)
_ Ja (@0 f) (@) du(t)
- u(®) *U(a)

< T—~
For inequalities related to the Jensen’s result, see [1], [2], [3], [17], [4], [26] and
[27].

Corollary 1. Let h: [a,b] C R — R be a continuous function on the interval [a,b]
and with the property that

(2.7) 0<~y<h(t)<T for anyt € [a,]

and w : [a,b] — [0,00) be continuos on |a,b]. Assume also that u : [a,b] — R is a
monotonic nondecreasing function such that f;w (t)du(t) > 0.
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(i) If p > 1, then

b p=l
SV w(t)du(t)] /w(t)h”()du()
<7 7[ (t)du(t)]
b
l ( <>du<>>+¢,,<fau;<t>h<t>du<t>_M_
£) du (t) S w () du(t)

(ii) Ifp € (0,1) then the mequalztzes reverse in (2.8).
(iii) Ifp < 0 cmd v > 0, then the inequality (2.8) also holds.

The proof follows by Theorem 4 applied for the convex (concave) function f (t) =
#, p € (—00,0) U[1,00) (p € (0,1)).

The following result is the well known version of the Holder inequality for the
Riemann-Stieltjes integral with monotonic nondecreasing integrators u : [a,b] — R:

/q

(29) /|f (8) du (¢ V FOF du(®) ] V 19 ()17 du (1) ] ,

where f, g : [a,b] C R — C are continuous and p,q > 1 with 1/p+1/¢ = 1.

Proposition 1. Let f,g : [a,b] C R — C~ {0} be continuous on [a,b] and u :
[a,b] — R monotonic nondecreasing on [a,b]. Let p,q € R\ {0} with 1/p+1/¢=1
and assume that

(2.10) 0<fy<g|Jc(t)|_1§Ff0ranyte[a,b].

(i) Ifp> 1, then

(2.11) /|f (1) du (1)
V g (8] du () ] [/ (@) du (2) ]
s(F_l// 9 ()] du (1)

oo (o L@@ dute ) (f It |du<>>]””'
[7<F Pooran ) oo

(ii) If p € (0,1), then the inequalities in (2.11) reverse.
(i) If p <0 and v > 0 then the inequalities in (2.11) also reverse.

/p

Proof. Follows by Corollary 1 on choosing
/]

= —1
lg|*

and w = |g|*
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and performing some simple calculation.
The details are omitted. ([l

Corollary 2. Let h:[a,b] C R — R be a continuous function on the interval [a, D]
and with the property that

(2.12) 0<v<h(t) <T foranyt € [a,b]

and w : [a,b] — [0,00) be continuos on [a,b]. Assume also that u : [a,b] — R is a
monotonic nondecreasing function such that f;w (t)du (t) > 0. Then

[P w (£) o (£) du (t)
S w () du (1)
[P w (t) (Inoh) (£) du (t)
S w (t) du (2)

1 S w®mht)du(t) 1 ((LEwmr@wdu)

IN da NN T N
> ,YF—w ( SO w(t)du(t) )FF—v ( SO w(t)du(t) 7) .

(2.13)

> exp

The proof follows by Theorem 4 applied for the convex function ® (t) = —Int,t >
0.

3. WEIGHTED INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT
OPERATORS

We can state the following result concerning the weighted Jensen’s inequality for
continuous functions of selfadjoint operators:

Theorem 5. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M with m < M. If ® : [y, /] C R—R

is a continuous convex function on the interval [v,T], f: [m,M] CR — R is a
continuous function on the interval [m, M| and with the property that

(3.1) v< f(t)<T foranyt € [m, M]

and w : [m, M] — [0,00) is continuos on [m, M], then

py o)

w (A)
(w(4)(®of)(4)z,z)
- (w(A)z, )
(F w(A)f(;i;w) + & () (<<(£()£()i);>¢> _7)
I'—~ ’

for any x € H with ||z|]| = 1 and (w (A) z,z) # 0.
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Proof. Let {E)}, be the spectral family of the operator A. Let ¢ > 0 and write
the inequality (2.2) on the interval [a,b] = [m — ¢, M] and for the monotonic non-
decreasing function ¢ (t) = (Eyx,z), € H with ||z|]| = 1, to get

(33) @ ( S2 w(t) £ (1) d (B, x>>
M w(t)d (B, )

m—eg

oo w(®) (R0 f) (1) d (B x)
M
St o w (£) d (B, )

m—e

Jice WO (e c) L2 w(®) F(0)d(Eu.)
(F . w®dEa) ?0)+ I w@®dEwzy ) ()

< T
Letting e — 0+ and utilizing the spectral representation (1.1) we deduce from (3.3)
the desired result (3.2). O

Remark 2. If we choose w(t) =1 and f (t) =t with t € [m, M] then we get from
(3.2) the inequalities (MP) and (LR).

We have the following generalization and reverse for the Holder-McCarthy in-
equality:

Corollary 3. Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) C [m, M] for some scalars m, M with m < M. If the functions
fyw : [m, M] — [0,00) are continuous and f satisfies the condition (3.1) with vy > 0,
then for any p > 1 we have

f(A)z
A) fP (A, z) (w(A) z,2)""

p

(3.4) (w (A
<A(w

) )
(
1

=y
X [P ((w (A) [P1a — [ (A)] 2, 2)) + T ((w (A) [f (A) = y1m]z, 7))
where x € H with ||z| = 1.

If p € (0,1) then the inequalities reverse in (3.4).
If v > 0 and p < 0 the inequalities in (3.4) also hold.

< (w(A)z,z)’ "

Remark 3. If we choose w(t) =1 and f (t) =t with t € [m, M] C [0,00) then we
get from (3.4)

(3.5) (Ax, x)? < (APz, x)

N

< 37— M ((M1g = A) z,2)) + MP (A - mlg) 2, 2))]
for any p > 1, where x € H with ||z| = 1.

If p € (0,1), then the inequalities reverse in (3.5).

If m >0 and p < 0 then the inequalities in (3.5) also hold.
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Remark 4. If we choose w(t) = f(t) =t with t € [m, M] C [0,00) then we get
from (3.4)
(3.6) (A%z,2)" < (APz,z) (Az, )P

< 7 L — (Az,2)""!

X [mP ((A(M1lpg —A)z,z)) + MP ((A(A—mly)z,x))]

for any p > 1, where x € H with ||z| = 1.
If p € (0,1), then the inequalities reverse in (3.6).
If m >0 and p < 0 then the inequalities in (3.6) also hold.

Corollary 4. Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) C [m, M] for some scalars m, M with m < M. If the functions
fyw : [m, M] — [0,00) are continuous and f satisfies the condition (3.1) with v > 0
then

(w(A) f(A)z, z)

(3.7)

(w(4) 2, 2)
2 o [(@ ) (l0f) () 2.2

(w(A)2,2)
s s (- SRy (el )

for any x € H with ||z| = 1.

Remark 5. If we choose w (t) =1 and f (t) =t with t € [m, M] C (0,00) then we
get from (3.7)

(3.8) (Az,z) > exp [(In Az, z)]

Z mﬁ((MleA)m,@MMim ((A=1gm)z,z)

for any x € H with ||z| = 1.
Also, if we choose w (t) = f(t) =t with t € [m, M] C (0,00) then we get from
(8.7) that
(A%z,x) (Aln Az, x)
. > Akt Rt
) T 2o |G

A2z, A2g 2
1\4£7n <M_ <<A:,:>> ) Mim (<<A:,:>> —m)
M

for any x € H with ||z|| = 1.

Remark 6. If we choose w(t) =t" and f (t) = t? with t € [m, M] C (0,00) where
r,q > 0, then we get from (3.2) that

(A7 (A9) 2, )
(Arzx, x)

ATTe ;s ATTa ,
3 ®(77) (Fq - H) +@ (1) (W - 7q>

- | R

9
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for a continuous convex function ® : [m?, M? — R and for any x € H with
]| = 1.

We have the following Hoélder type inequality for continuous functions of selfad-
joint operators:

Proposition 2. Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) C [m, M] for some scalars m, M with m < M. If f,g : [a,b] C
R — C~ {0} are continuous on [a,b] and p,q € R\ {0} with 1/p+1/q =1 are such
that

£ (0]

3.11 0
(3.11) <v< 2O

<T for anyt € [a,b],

then we have the inequalities

(312)  (If (A)g(A)|z,z)
< g ()| 2, 2)]V [ (AP z,2)]""

1 Ty x

gmqgmn )
ol A gWlz)\ | o (U AgA)za)  \]V7
X[” (F 9 (A, z) )”( 19 (A, z) ”ﬂ ’

forp>1 and for any x € H with ||z|| =1 and (|g (A)|? z,z) # 0.
If p € (0,1), then the inequalities in (3.12) reverse;
If p < 0 and v > 0 then the inequalities in (3.12) also reverse.

4. WEIGHTED INEQUALITIES FOR SQUARE-CONVEX FUNCTIONS
We introduce the following class of complex valued functions:

Definition 1. A function ® : [y,T] C R — C is called square-convezr on [y,T] if
the associated function ¢ : [v,T] — [0,00), @ () = |® (£)| is convex on [y,T].

A simple example of such a function is the concave power function ® : [y,T] C
[0,00) — [0,00), ®(t) = ¢" with r € [£,1]. Also, if h : [y,I'] — [0,00) is convex
then the complex valued function @ : [y,T] C R — C given by ® (t) = h'/2 () e is
square-convex on [y, I'].

Consider the function f (¢) =In (¢t 4+ 1). We observe that it is concave and posi-
tive on (0,00) and if we define ¢ (t) = [In (£ 4+ 1)]?, then we have that

2
1
¢ (1) =
(t+1)°
showing that f is square-convex on the interval [0,e — 1].
Another example for trigonometric functions is for instance f(t) = cost,t €
[Z,Z]. The function ¢ (¢) = cos?¢ has the second derivative ¢” (t) = —2cos (2t)

which is positive for t € [%, g] . Therefore f is square-convex on the interval [%, %} .

[1—In(t+1)], t > -1,

Theorem 6. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M| for some scalars m, M withm < M. If ®: [y,[] CR — C is
a continuous square-convex function on the interval [y, T, f:[m,M] CR — R is
a continuous function on the interval [m, M| and with the property that

(4.1) ¥ < () <T for any t € [m, M]
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and w : [m, M] — [0,00) is continuos on [m, M], then
(w(A) f(A)z )
a2 o (M)
_ 1/2
B <w (A) (|<I>|2 o f) (A)x x>]
1 (w(A)z,z)

1/2

<

=«

2 (w(A)f(A)z,z) 2 ((w(A)f(A)z,x)
1@ (v)] (F*W)JF@(F” ((w(A)ar,x)V)]
for any x € H with ||z|]| = 1 and (w (A) z,z) # 0.

The proof follows from Theorem 4 applied for the function ¢ : [y,T] — [0, c0),
¢ (t) = |® ()] that is continuous convex on [y,T]. The details are omitted.

Remark 7. If w(t) = 1, then we get from (4.2) the following simpler result
(43) [ (f(A)z,))|
< [(@o f)(A) |

|2 (DI (Tl = £ (A) z,2) + | (D) ((f (A) — 1) z,z)

for any x € H with ||z|| = 1.
This s true since

(19 ) (A)z,2) = /M [ (f (1) d(Era, )

m—0
2
1@ (f(A)) ]|
for any x € H with ||z|| = 1 (for the second equality see for instance [19, p. 257]).

Corollary 5. With the assumptions of Theorem 6 for A, f,w and if v > 0, then
we have

(w(4) f(A) .2}
(44 ( (w(A) 7. 2) )
_ w2 @)z 2]
| (w(A)z,x)
[ (o ) ¢ on (gt v)] f
-~ 1—\_’_)/ )

for any q € [3,1] and any x € H with ||z|| =1 and (w (A)z,z) # 0.
Remark 8. If we choose w (t) =1 and f (t) =t with t € [m, M] C (0,00) then we
get from (4.4)
(4.5) (Az,z)T < || A%
20 (M1y — A)z,z) + M2 (A —1gm)z, )]
— M —m )
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for any q € [3,1] and any x € H with ||z|| = 1.
Also, if we choose w (t) = f(t) =t with t € [m, M] C (0,00) then we get from
(4-4)

2 g [/ A2q+1 1/2
(4.6) <<A x,w>> < (A +x,w>]

(A, 7) (Az,7)

IN

for any q € [%, 1] and any x € H with ||z| = 1.

Remark 9. If we choose w(t) =t" and f (t) = t° with t € [m, M] C (0,00) where
r,s > 0, then we get from (4.4) that

o ()

< - (AT+20, ) '
- (Arzx, x)

1
B s s ATt o s A"t x s 2
qu (M _W>+MQQ (W—m)

Ms —ms ?

IA

for any q € [3,1] and any v € H with ||z| = 1.

5. WEIGHTED INEQUALITIES FOR ARG-SQUARE-CONVEX FUNCTIONS

The function ® : C (0,1) — C will be called Arg-square-convez if the composite
function ¢ : [0,27] — [0, 00),

| ()| t € [0,27)
p(t) = o
limg_or_ |<I> (e’s)| t =27
is continuous and convez on [0, 27].

To make the distinction between the value ¢ (0) = |® (&™) |2 = |® (1)|* and the
value ¢ (27) = limg_2,— |<I> (eis) ’2 we denote by @, (1) := limg_,0,— P (eis) . With
this notation we have ¢ (27) = |®, (1)[?.

The function ®,, : C (0,1) — C, ®,, (2) = [Log (z)]" , where n is a positive integer,
is Arg-square-convex. We have

o (®) = [, (1) ! = |[Log (¢4)]"[" = it = .1 & [0.2n),
and

0n 2m) = lim |®, ()" = |, (1)) = (27)*".

s—2m—
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For ¢ > 1 define the function @, : C (0,1) — [0, 00) by @, (z) = |Log (2)|?. We
have

0 ) = [, (1) = |Log ()" = i = 1,1 € 0,20
and
. is 2
Pq (2m) = S_l}g_ |q)q (e )| = |<I)q,c (1)|2 = (277)2q

The function ®, for ¢ > % is an Arg-square-convex function.
If g : [0,27] — [0,00) is continuous and convex on [0,27], then the composite
function ® : C (0,1) — [0, 00) defined by

® () = [g (|Log ()]
is an Arg-square-convex function on C (0,1).

Theorem 7. Let U € B(H) be a unitary operator on the Hilbert space H and
®:C(0,1) — C a continuous and Arg-square-convex function on C(0,1). If w :
C(0,1) — [0,00) is a continuous function, then we have

o[

(w(U)z,

- 1/2

(w@)le ) z,z)
<

(w(U)z,z)

B 9 (w(U)|Log((U)|z,x ® 2 w(U)|Log(U)|z,z o, 1/2
<(7r W)|()|+W\ (1)
B 2w

for any x € H,||z| = 1, where ® (1) := lim,_z,_ ® (&) .
Proof. We apply Theorem 4 to the function ¢ : [0, 27] — [0, 00),

| ()| t € [0,27)

hms_,gﬂ-_ |q) (Gis) |2 t =27
that is continuous and convex on [0, 27].
If {E)\}AE[O,QN] is the spectral family of the operator U, then we can write the

inequality (2.2) on the interval [a,b] = [0,27] for the monotonic nondecreasing
integrator u (t) = (Eix,x) and for the identity function f (¢) =t¢,t € [0, 27] to get

w (e') td (Ey, x>]>|2
5.2 P | ex
2 ( p[ w () d (e, )
S ) o )Pl
- f w (™) d (Eyz, )
2m ( td{E¢x,x) . (en)q)(t) (Eiz,x)
; (27T— f27rw61t))d ) >|‘I’( )| +< J7 w(t)d(Bea,x) >|(I) e )|

— 2’]T )

for any z € H, ||z|| = 1.
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Since, by the spectral representation of functions of unitary operators (1.3) we
have

2w ) 2 ) )
z/ w (") td (Eyx, z) = / w (") Log (e) d (Eyx, z)
0 0
= (w (U) Log(U)x, x)

2m
/0 w (e”) d{Ex,z) = (w{U)z,x),
/ 7T'w (e")|® (eit)‘2d<Etac,m> = <w U)|® (U)\2x,x> and
0

2m
/0 w (") td (Eyx, z) = (w (U) |Log(U)| z, )

for any x € H,|jz|| = 1, then the inequality (5.2) produces the desired result

(5.1). O
Remark 10. If w (t) = 1, then we get from (5.1) the following simpler result
(5.3) |© (exp [(Log(U)z, z)])|

<|[|eU)z|

571/2

< [((27711{ — [Log(U)]) z,z) [® (1)]* + (| Log(U)| =, ) | (1)]
- 2w

for any x € H with ||z| = 1.
This is true since

2m
i 2
<|<I>(U)|2x,x> :/0 1B (¢)[* d (B, 2) = |® (U) 2|
for any x € H with ||z|| =1 (for the second equality see (1.5)).

The interested reader may apply the inequality (5.1) for different examples of
Arg-square-convex functions. We give here only one example, for instance if we
choose the function ®,(z) = |Log (2)|?,q > 1/2 as introduced above, then we get

from (5.1)
% 1/2

(5.4) |Log (exp Pw ) Log(U)x,xq) ' < <w () 1Log (1) x,a:>

' (w(U)z,z) - (w(U)z,z)

. (w(U)|Log(U)| 32@”2 (2m)1- 12
(w(U)z,z)

for any x € H with ||| =1 and w : C(0,1) — [0,00) a continuous function.

In particular we have
(5:5) | Log (exp [(Log(U)z, z)])|* < [[|Log (U)|" |

< (2m)*?(|Log(U)| z, )"/

for any x € H with ||z| = 1.
Finally, we notice that the following result providing Hoélder’s type inequalities
for continuous functions of unitary operators can be stated:
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Proposition 3. Let U € B(H) be a unitary operator on the Hilbert space H
and. If f,g: C(0,1) — C~ {0} are continuous on C (0,1) and p,q € R\ {0} with
1/p+1/q =1 are such that

|/ (e")]

(5.6) 0<y< ———F—
lg (eit)| """

<T for any t € [0, 2]

then we have the inequalities
67 (fO)gU)|z,z)

< g )"z, 2)]" (| f )P 2, 2)]"”
1

Smﬂg(lfﬂ z,T)
o @ gWz,2)\ |, (IO g@)za) N7
X[” (F g ()7 z,2) )” ( 9 () z.2) ”ﬂ ’

forp>1 and for any x € H with ||z|| =1 and (|g (U)|* z,z) # 0.
If p € (0,1), then the inequalities in (5.7) reverse;
If p < 0 and v > 0 then the inequalities in (5.7) also reverse.

The proof follows by Proposition 1 and the spectral representation for continuous
functions of unitary operators.

If g : [0,27] — [0,00) is continuous and convex on [0, 27|, then the composite
function f:C(0,1) — [0, 00) defined by

f(2) = lg(|Log ()"
is an Arg-square-convex function on C (0,1).
As examples of such functions we have

fa (2) = exp (a|Log (z)|)
which are Arg-square-convex functions on C (0, 1) for any real number « # 0.

We also notice that the family of functions f,,, : C(0,1) — C, fmn(2) =
2™ [Log (z)]", where m # 0 is an integer and n is a positive integer, are Arg-
square-convex functions.

The reader may apply the above inequalities for these functions as well. However,
the details are omitted.
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