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GRUSS TYPE INEQUALITIES FOR COMPLEX FUNCTIONS
DEFINED ON UNIT CIRCLE WITH APPLICATIONS FOR
UNITARY OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR1:2

ABSTRACT. Some Griiss type inequalities for the Riemann-Stieltjes integral
of continuous complex valued integrands defined on the complex unit circle
C(0,1) and various subclasses of integrators are given. Natural applications
for functions of unitary operators in Hilbert spaces are provided.

1. INTRODUCTION

In [10], in order to extend the Griiss inequality to Riemann-Stieltjes integral, the
author introduced the following Cebysev functional

b
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where f,g are continuous on [a,b] and wu is of bounded variation on [a,b] with
u(b) #u(a). )

The following result that provides sharp bounds for the Cebysev functional de-
fined above was obtained in [10].

Theorem 1. Let f : [a,b] = R, g : [a,b] — C be continuous functions on [a,b] and
u: [a,b] — C with u(a) # u(b). Assume also that there exists the real constants
v, T such that

(1.2) vy< f({t)<T foreacht € la,b].

a) If u is of bounded variation on [a,b], then we have the inequality
(13) T (f g5 )
1 T-n
2 Ju(b) —u(a)l

<

V().

co @

b
0 [, o

where \/Z (u) denotes the total variation of u in [a,b]. The constant % is
sharp, in the sense that it cannot be replaced by a smaller quantity.
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b) If u : [a,b] — R is monotonic nondecreasing on [a,b], then one has the
inequality:

(1.4) T (f,g;u)

b

s T=r /

2 u(b)—ula)

The constant % is sharp.

c) Assume that f,g are Riemann integrable functions on [a,b] and f satisfies

the condition (1.2). If u : [a,b] — C is Lipschitzian with the constant L,
then we have the inequality

(1.5) |T(f,g;U)|

eI AL
< Z.
T2 Iu a)l

The constant % is best possible in (1.5).

du (t).

1

_— (a) dt.

/abg<s> du (s)

For some recent inequalities for Riemann-Stieltjes integral see [1]-[5], [6]-[13] and
[16].

For continuous functions f,g : C (0,1) — C, where C (0, 1) is the unit circle from
C centered in 0 and u : [a,b] C [0,27] — C is a function of bounded variation on
[a,b] with u (a) # u (b), we can define the following functional as well

b
(1.6) Sc(f,g;u,a,b) = m/ f (e”) g (e”) du (t)

! " et v ’ et du
‘m/ﬂ@ >d“<t>u<b>,u<a>/ag< ) du(t).

In this paper we establish some bounds for the magnitude of S¢ (f, g;u, a,b) when
the integrands f,g: C (0,1) — C satisfy some Hélder’s type conditions on the circle
C (0,1) while the integrator u is of bonded variation.

It is also shown that this functional can be naturally connected with continu-
ous functions of unitary operators on Hilbert spaces to obtain some Griiss type
inequalities for two functions of such operators.

We recall here some basic facts on unitary operators and spectral families that
will be used in the sequel.

We say that the bounded linear operator U : H — H on the Hilbert space H is
unitary iff U* = UL,

It is well known that (see for instance [15, p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {E/\})\E[O,Zﬂ]’ called the spectral
family of U with the following properties:

a) Ex < E, for0< X< pu < 2m;

b) Ey =0 and E2, = 1y (the identity operator on H);

¢) Exyo= E) for 0 <\ < 2m;

d) U= f027r e dFE), where the integral is of Riemann-Stieltjes type.

Moreover, if {F)\} Ae[0,27] is a family of projections satisfying the requirements
a)-d) above for the operator U, then F = Ej for all A € [0, 27].
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Also, for every continuous complex valued function f : C(0,1) — C on the
complex unit circle C (0,1), we have

2
(1.7) Fwy= [ r(eap,

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(18) UWMM=AﬂHWM@wm

and

(1.9) |vme=AWU@NFMWWW=AWU@%fwa%m,

for any z,y € H.
Examples of such functions of unitary operators are

2
exp (U) = / exp (eM) dE)
0
and
2 )
U" = / ezn)\dE)\
0

for n an integer.
We can also define the trigonometric functions for a unitary operator U by

2m 2
sin (U) = / sin (ei)‘) dEy and cos (U) = / cos (ei’\) dE)
0 0
and the hyperbolic functions by
2m 2
sinh (U) = / sinh (ei)‘) dE) and cosh (U) = / cosh (e“‘) dE)
0 0

where

sinh (z) := % [expz — exp (—z)] and cosh (z) := % [exp z + exp (—2)],z € C.

2. INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL

We say that the complex function f : C (0,1) — C satisfies an H-r-Hélder’s type
condition on the circle C (0,1), where H > 0 and r € (0, 1] are given, if

(2.1) 1f (2) = [ (w)| < H |z —w|"
for any w,z € C(0,1).

If r=1and L = H then we call it of L-Lipschitz type.

Consider the power function f : C\ {0} — C, f(z) = 2™ where m is a nonzero
integer. Then, obviously, for any z,w belonging to the unit circle C (0,1) we have
the inequality

1f (2) = f (w)] < m| [z — w|
which shows that f is Lipschitzian with the constant L = |m/| on the circle C (0,1).

For a # +1,0 real numbers, consider the function f : C (0,1) — C, fa (z) = 1.
Observe that
(2.2) fa(2) = fa (w)| =

1 —az| |1 - aw|

lal [z — w|
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for any z,w € C(0,1).
If 2 = ¢!t with ¢ € [0, 27, then we have

1—az]> = 1-2aRe(z)+a?|z]> =1—2acost +d”
> 1-2Jal+a® = (1 a])’
therefore
(2.3) 1 < 1 1 < 1
. = an >
[1—az| = |1 —al| 1 —aw| = |1 —al|

for any z,w € C(0,1).
Utilising (2.2) and (2.3) we deduce

(2.4) [fa(2) = fa (w)] <

la|
5 |2 —w|

(1 = lal)

for any z,w € C (0, 1), showing that the function f, is Lipschitzian with the constant

L, = (1_“@‘)2 on the circle C (0,1).
For other examples of Lipschitzian functions that can be constructed for power
series on Banach algebras see [14].

The following result holds:

Theorem 2. Assume that f : C(0,1) — C is of H-r-Hélder’s type and g :
C(0,1) — C is of K-q-Hélder’s type. If u : [a,b] C [0,2n] — C is a function
of bounded variation with u (a) # u (b), then

: 2
1
2.5 Sc (f,g;u,a,b)| < HKB, 4 (a,b) | ———F— U

( ) | ( )| q( ) |u(b)—u(a)|\a/()

where
s—t\|"?

(2.6) B4 (a,b) ;=211 max |sin < >

’ (s,t)E[a,b)? 2

Proof. We have the following identity

(27) SC (fag3uvavb)
1

" 2ub) - ula) /ab (fab () =7 ()] [9 (") — g ()] du <s>) du (t).

It is known that if p : [¢,d] — C is a continuous function and v : [¢,d] — C is of

bounded variation, then the Riemann-Stieltjes integral fcd p(t) dv (t) exists and the
following inequality holds

d

< max [p(8)] \/ (v).

2.8
( ) T t€le,d]

d
/ p(t) do (1)
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Applying this property twice, we have
(29) |SC (f7g;u7aab)|
1
2|u (b) = u(a)l?
[ ([ e s e -senae) ao
RN
2u(b) = u(a)l?

[ 1@ = 5@ o () o ()] dute

X

IN

X max
t€la,b)

b
\ ()

<
2[u(b) — u (o)

i |[F ()~ £ ()] [g(eit)g(e“>1|[\/<u>].

(t,5)€[a,0]? a

Utilising the properties of f and g we have

(2.10) (£ (€)= £ ()] [9 (") =g (€")]] < HE [ =&
for any s,t € [a,b].
Since
|eis B eit|2 _ |eis|2 — 9Re (ei(s—t)) + |eit‘2

s—t

2 —2cos (s —t) = 4sin® (2>

for any t,s € R, then

17 +q " s—t\|
(2.11) e — | =271 |sin (2>
for any t,s € R.
Utilising (2.9) and (2.11) we deduce the desired result (2.5). O

Remark 1. If b = 27 and a = 0 then obviously there are s,t € [0,2n] such that
s —t =7 showing that

s—1 r+q
max sin ( ) =1.
(s,t)€[0,27]? 2
In this situation we have
1 27 2
2.12 S cu,0,27)| < 27VHK | —————— .

Moreover, if f and g are Lipschitzian with the constants L and N the inequality
(2.12) becomes

(2.13) 1S (f, g;u,0,2m)| < 2LN

o 2
1
[ @m) — u(0)] \0/‘“)] |
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Remark 2. For intervals smaller than w, i.e. 0 < b—a < 7 then for all t,s €
[a,b] C [0,27] we have 3 |t — s| < 1 (b—a) < Z. Since the function sin is increasing
on [0, g] , then we have successively that

() (o) o ()
sin =sin max —|t—s| | =sin .
2 (t,s)€E[a,b])? 2

In this case we get the inequality

(2.14) max
(t,8)€[a,b)?

[\

b 2
(2.15) ISc (f, g5 u,a,b)] < HK By 4 (a,b) lM V (U)]
where
(2.16) Byq (a,b) := 2791 |gin <b 5 “) o

Moreover, if f and g are Lipschitzian with the constants L and N then

b—
B (a,b) := By (a,b) = 2sin® ( 5 a)

and the inequality (2.15) becomes

(2.17) Se (£, g;u,a,b)| < 2LN sin <b 5 “) lIU(b) iu(a)| \/ (u)‘| .

We also have:
Theorem 3. Assume that f : C(0,1) — C is of H-r-Hélder’s type and g :

C(0,1) — C is of K-q-Holder’s type. If u : [a,b] C [0,27] — C is a M-Lipschitzian
function with u (a) # u (b), then

M?HK
(218) ‘SC (fag;uaaﬂb)' < 2p+q71—20P79 (a” b)
|u(b) — u(a)|
where
b rb s—1t r+q
(2.19) Crqla,b) : = / / sin <2) dsdt
! (b—a)Fe+?,

2rta=l(r4+q+1)(r+q+2)

Proof. Tt is well known that if p : [a,b] — C is a Riemann integrable function and
v : [a,b] — C is Lipschitzian with the constant M > 0, then the Riemann-Stieltjes

integral f: p(t) dv (t) exists and the following inequality holds

b b
(2.20) / p(t)dv ()] < M / ip (1) dt.
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Utilising this property and the identity (2.7) we have

(2.21) |Se (f7g;u a,b)|
2 |u<b> u(a)?
X (/ e”)] [g (e”) -9 (e”)] du (s)) du (t)
M

<
~2fu() —u(o)f
[f () = £ ()] g (¢) =g ()] du(s)

M2
< 2
2| (b) - u(a)

/ / 15 F(e®)] [g(e) =g (e")]] dsdt.

Utilising the properties of f and g we have
1) £ ()] T () — o (M)]] < B Je — |7

for any s,t € [a,b], which implies that
b b
/ /|U@ﬂ—f@ﬂ]b@ﬂ—g@ﬂH%ﬁ

< HK/ / |eis — eit| " dsdt*Z’"*qHK/ /

Utilising the well known inequality

dt

dsdt.

<s t>
sin
2

|sinz| < |z| for any z € R

1 b b
2T+q/ / |s — t|" "9 dsdt
1 o[ gt . b .
— _ o)t _ e
= 2T+q/a, /a (t—s) ds—f—/75 (s—t)" "ds| dt

L [y
- 2rta r+q+1
B 2(b—a)r+q+2
2t (r+ g+ 1) (r+q+2)
1
_ b_ar+q+2
2T+q*1(r+q+1)(r+q+2)( )

and the bound in (2.19) is proved. O

we have

[L

r+q
dsdt <

sin L_t
2

dt

The case of Lipschitzian integrators is of importance and can be stated as follows:
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Corollary 1. Assume that u : [a,b] C [0,27] — C is a M-Lipschitzian function
with u (a) #w (b). If f and g are Lipschitzian with the constants L and N then
| < 2
|u(b) = u(a)]

b—a\® | 5 (b—a
— sin .
2 2
Proof. We have to calculate

Cii(ab) — //sm< )dsdt
- // Locos(s=t) )

b
= l(ba)Z/ [sm(bt)sin(at)]dt].

AM2NL
(2.22) |Se (f, g5 u,a,b)

2
Since
b
/ sin(b—t)dt =1—cos(b—a)
and
b
/ sin(a—t)dt =cos(b—a)—1
then
1
Cia(ab) = 3 [(b —a)® —2(1—cos (b a))}
_ 1 [(b —a)® — 4sin? (b_ aﬂ
2 2
b—a\® | 9 (b—a
(w5
and the inequality (2.22) then follows from (2.18). O

The case of monotonic nondecreasing integrators is as follows:

Theorem 4. Assume that f : C(0,1) — C is of H-r-Hélder’s type and g :
C(0,1) — C is of K-q-Hélder’s type. If u : [a,b] C [0,27] — R is a monotonic
nondecreasing function with u (a) < u(b), then

wp+a-1 K

2.23 Se (f,9;u,a,b0)| < ——— =D, 4(a,b

(2.23) S (170,00 < - D (00

where

b b 5 — r+q

(2.24) D, ,(a,b) :z/ / sin( 2t> du (s) du (t)
_ r+q

< max |sin (S > t) [ (b) — u ()2
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Proof. Tt is well known that if p : [a,b] — C is a continuous function and v :
[a,b] — R is monotonic nondecreasing on [a, b] , then the Riemann-Stieltjes integral

f; p(t) dv (t) exists and the following inequality holds

b
/pww@

Utilising this property and the identity (2.7) we have

b
(2.25) < [N,

(2.26) 1Se (f, 95 u,a,b)|
1
2[u(b) - u (@)’

/: ( /: [ (") =7 ()] [g(e") = g ()] du<8>> At

X

x / b / [ () = £ ()] [9(e") = g (€™)]| du (s) du (t).
Since
[[F (") = £ (%)) [9 (") — g (e)]| < HE [e™* — €|

for any s,t € [a,b], then
|1 @ =1 @) o (e) =g () du(s) du 0
b b
< HK/ / !eis — e“’H_q du (s) du (t)

b b r+q
-t
:2T+‘1HK/ / sin(s2 >

du (s) du (t)
and the inequality (2.23) is proved.
The bound (2.24) for D, 4 (a,b) is obvious. O

The Lipschitzian case is of interest due to many examples that can be provided
and is as follows:
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Corollary 2. If f and g are Lipschitzian with the constants L and N and u :

[a,b] C [0,27] — R is a monotonic nondecreasing function with u(a) < u (b), then
(227) ‘SC (fag;uaa7b)|
LN

< - =
T [u(®) ~u @)

b 2 b 2
x | [u(b) —u(a)]® — (/ cos sdu(s)> - (/ sin sdu (s))

Proof. We have to calculate
//sm < >du( ) du (t)

/ / 1‘“’““ L=eos (=) 4 (s du ()

5 [w® —u@)? - 7 @)

D171 (a, b)

where
b b
J (a,b) ;= / / cos (s —t)du(s) du(t).

a a

Since
cos (s —t) = cosscost+sinssint
then
b 2 b 2
J(a,b) = (/ cos sdu (s)) + (/ sin sdu (s))

Utilising (2.23) we deduce the desired result (2.27). O

Remark 3. Utilising the integration by parts formula for the Riemann-Stieltjes
integral, we have

b b
/ cos sdu (s) = u (b)cosb — u (a) cosa+/ u (8) sin sds
a a
and
b b
/ sin sdu (s) = u (b)sinb — u (a) sina — / u (8) cos sds.
a a

If we insert these values in the right hand side of (2.27) we can get some expressions
containing only Riemann integrals. However they are complicated and will not be
presented here.

3. APPLICATIONS FOR FUNCTIONS OF UNITARY OPERATORS

We have the following vector inequality for functions of unitary operators.

Theorem 5. Assume that f : C(0,1) — C is of H-r-Hélder’s type and g :
C(0,1) — C is of K-q-Holder’s type. If the operator U : H — H on the Hilbert
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space H is unitary, then

(3.1) () (F () g (U) ) — (f (U) ,9) (g (U) )]
2 2
<2 K |\ <E<<>w,y>1 < 2HHE (ol [y
0

for any x,y € H.
In particular, if f and g are Lipschitzian with the constants L and N, then

(3.2) Kz, ) (F(U) g (U)z,y) — (f (U)z,y) (g (U) z, )|
<2LN |\/(Ez,y)| <2LN || y|
0

for any x,y € H.

Proof. For given x,y € H, define the function u(\) := (Ehz,y),\ € [0,27]. We
will show that w is of bounded variation and

(3.3) V@) =\ (Eoz,v) < el Iyl -

It is well known that, if P is a nonnegative selfadjoint operator on H, i.e., (Pz,z) >
0 for any « € H, then the following inequality is a gemeralization of the Schwarz
inequality in H

(3.4) [(Pz,y)* < (Pz,2) (Py,y),

for any z,y € H.

Now, if d: 0=ty <t < ..<th1 <tp =27 is an arbitrary partition of
the interval [0, 27], then we have by Schwarz’s inequality for nonnegative operators
(3.4) that

2w

335)  V{(BEyzy)

0

_ p{z (B —En>x’y>|}

=0

< st;p {”Zl [((Etiﬂ —E,) w,x>1/2 (B, — E,) y,y)l/ﬂ } =1

i=0
By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

n—1 1/2 rpq 1/2
(3.6) I'< st;p [Z <(Eti+1 o Etz‘) z, x>1 [Z <(Eti+1 - Eti) Y, y>‘|
n—1 1/2 rpq 1/2
= Sl;p Z <(Efi+1 - Etz‘) T, z>] [Z <(Etai+1 - Eti) Y, y>‘|
o 1/2 ror 1/2
= \0/<<E<->w7w>)] \0/<<E<,)y,y>)] = llz!l 1y
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for any z,y € H.
Now, from the inequality (2.12) we have

27
(3.7) \<<E2ﬂx, 0= o)) [ 1) o) alBra)

—/O%f(eit)d@tw,y) /0%9(6“)6“]3”3’@‘

27 2
<ot |\ ()
0
for any z,y € H.
The proof is complete. O

Remark 4. If U : H — H is an unitary operator on the Hilbert space H, then for
any integer m,n we have from (3.2) the power inequalities

(3.8) (2, ) (U™ 2, y) — (U™, y) (U, y) |
o 2
<2[ma| |\/(Epyz,y)| < 2[mnl|z]* |y|
0
for any x,y € H.
In particular, we have
o 2
(3.9) ’<w,y> (U22,y) — <Ux,y>2’ <2 \/<E(‘>x’y>1 < 2]zl [lyll?
0
and
o 2
(310)  |@y)? - Uy U] <2 |V <E<.)z,y>] <2 y)*
0

for any x,y € H.
For a # 41,0 real numbers, consider the function f : C(0,1) — C, f, (2) = =

l—az"

This function is Lipschitzian with the constant L, = ﬁ on the circle C (0,1) .

Now, if we take a,b# +1,0 and use the inequality (3.2) then we have
(3.11) (<x,y> <(1H —al) (g —bU) y>

— <(1H —aU)flx,y> <(1H — bU)flx,y>‘

2lal 5 \/ Eyx r
= (1—al)® (1 — |b])? [\/< ()T Y)

0

2]al [b]
T (@~ al)* (-1

2 2
5 =™ Iyl

for any x,y € H.
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In particular, we have

(3.12) (x,y) <(1H —al)™? x,y> - <(1H —aU)™! x,y>2

2o [\ C 20 ey
<Gy |V Eomw)| < gl
0

for any x,y € H.

Theorem 6. If f and g are Lipschitzian with the constants L and N and U : H —
H is an unitary operator on the Hilbert space H, then

(3.13) 2l ¢ (U) 9 () . 2) = ( (U) 2,2) (g (U) 2, )
< LN [qu“ — (Re (U)z,z)* — <1m(U)x,x>2}
= LN [le]* - [{Uz, 2)/°]

for any x € H, where

U+U* U-U*
=—3 and Im (U) := 5

Proof. From the inequality (2.27) we have

Re(U) :

2 ) )
(3.14) ‘((Egﬂx,@ - (Eosc,:c>)/0 f(e") g (") d(Ez,z)
27 ) 2 )
[ s B [ () d o)
0 0
< LN {((Egﬂx,x) — (Boz,z))°

-(/ " cost Eao) - ([ " sintd Es.a)

for any z,y € H.
Since

2 2

Re (eit) = cost and Im (eit) =sint,
then we have from the representation theorem (1.7)
2

2
(/ costd(Ewc,a:)) = (Re (U) z,z)”
0
2 2
</ sin td <Et;v,x>> = (Im (U) z, z)”
0
and due to the fact that
(Uz,2)]* = [([Re (U) + i Tm (U)] 2, 2)|* = [(Re (U) @, 2) + i (Im (U) z, z)|*
= (Re (U) z,z)° + (Im (U) z, z)°
we deduce from (3.14) the desired inequality (3.13). O
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Remark 5. If U : H — H is an unitary operator on the Hilbert space H, then for
any integer m,n we have from (8.13) the power inequalities

(3.15) el U — (U 2) (U, 2)| < mal (2] - (U2, )

for any x € H.
In particular, we have form=m =1

(3.16) [lall* (U%2,0) = (Uz,2)?| < |lal]* - |(Uz, 2)|?

for any x € H.
If we take n =1 and m = —n and take into account that

(U "z, z) = ((U") z,z) = (z,U"z) = (Urz,z)
for any x € H, then we get from (3.15) that

(3.17) 0< Jlall* ~ |(U"2,2)* < 02 [llo]* = |(Uz, 2)/°]
for any x € H.
Now, if we take a,b # +1,0 and use the inequality (3.13), then we get
(3.18) (||x|\2 <(1 —a) M1 —bU)_lx,x>
- <(1 —al)™! ac,x> <(1 —bU)"! m,x>‘
2]al [b|

= U= [a)2 (1= o) {Hx||4 - ‘<U$,$>|2}

for any x € H.
In particular, we have

] <(1 - aU)_Qx,a:> - <(1 —aU)™! m,x>2

72|a|2 z||* = |({Uz, z)]?
ol (R LT

(3.19)

for any x € H.
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