
LOWER AND UPPER BOUNDS FOR POSITIVE LINEAR

FUNCTIONALS

ALLAL GUESSAB

Abstract. This paper deals with the problem of finding lower and upper-

bounds in a set of convex functions to a given positive linear functional; that
is, bounds which estimate always below (or above) a functional over a family of

convex functions. A new set of upper and lower bounds are provided and their

extremal properties are established. Moreover, we show how such bounds can
be combined to produce better error estimates. In addition, we also extends

many results from [7], which hold true for simplices, to results for any convex

polytopes. Particularly, we use our result to obtain multivariate versions of
some inequalities first given, respectively, by Favard in [3] and Hammer in

[14], over any convex polytope. For smooth (nonconvex) twice continuously

differentiable functions, we will also show how both the lower and upper bounds
could be improved. Finally, we establish a general result concerning error

estimates. This seems to suggest a more unified and effective approach for
problems of this sort.

1. Introduction, notations and preliminary results

Let Ω be a convex polytope in Rd with (finite) set of (n + 1) distinct vertices
Vn = {v0, . . . ,vn}. Throughout this paper d and n denote positive integers such
that n ≥ d. Let C(Ω) denote the class of all real-valued continuous functions on Ω.
The set of all continuous convex functions defined on Ω will be denoted by K(Ω).
A linear functional T which is defined on C(Ω) is called positive, if it takes non-
negative values when applied to each nonnegative function in the set C(Ω). We say
that T is a normalized linear functional if T [1] = 1. We next denote by N∗(Ω) the
set of all normalized positive linear functionals on C(Ω). We shall always assume
that the elements of N∗(Ω) are strictly positive on C(Ω), i.e. if T ∈ N∗(Ω) then
T [f ] > 0 whenever f(x) ≥ 0, and f is non-identically null continuous function on
Ω.
Throughout the paper, the symbol T will be reserved to denote a fixed normalized
positive linear functional belonging to N∗(Ω).

The problem of lower and upper bounds of functionals in its most general form
can be described in the following way: Given T ∈ N∗(Ω), a common problem in
numerical analysis is that of estimating T [f ] for some f in C(Ω). One popular
numerical approach is to replace T [f ] by an other simple approximating functional
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A[f ], which can relatively easy to evaluate numerically. The key idea, to quantify
the quality of the numerical approximation A[f ] is to use two different functionals
belonging to N∗(Ω), say L and R, to estimate the absolute value of the error
|T [f ]−A[f ]| by |R[f ]− L[f ]| . If no other information is available, we are forced to
accept this (or some scaling of it) as the error estimate of |T [f ]−A[f ]|. However,
to get a better estimate of T [f ], we need some a priori information about T in a
given subset G of C(Ω) (not necessarily containing f). A natural approach is to
construct lower and upper bounding functionals L and R, such that

(1.1) L[g] ≤ T [g] ≤ R[g]

for any g ∈ G. We will sometimes use the terminology that T dominates L and T
is dominated by R on G.
Hence, the following problem arises: We must select the functionals A,L,R, and
also decide how the deviation of A[f ] from T [f ] should measured. Obviously, if we
know that f belongs to the set G, we can sometimes better evaluate and estimate
T [f ]. Indeed, if that is the case, we may take the approximation functional A :=
(1 − λ)L + λR, any convex combination of L and R then, since inequalities (1.1)
are satisfied by f , the error estimate can always be controlled as follows:

(1.2) |T [f ]−A[f ]| ≤ R[f ]− L[f ].

Equation (1.2), clearly, shows that when R[f ]−L[f ] is small, we are confident that
|T [f ]−A[f ]| is also small. So we can know how closer our approximation is to the
exact value. This procedure can still be used even if we do not know the exact
value of T [f ].
Therefore, we are interested in solving the following lower and upper bounds prob-
lem:

• For a given subset G of C(Ω), a linear functional T and a function f ∈ C(Ω)
determine two functionals L,R, in such a way that L ≤ T ≤ R on G.

The above problem is obviously too general to be dealt with under a unifying
aspect. From now on, we restrict ourselves to the case where the set G = K(Ω).
Formally, the problem to be solved can be formulated as follows: Given a linear
functional T in N∗(Ω).

• How to obtain upper and lower bounds L,R ∈ N∗(Ω) for T on K(Ω),
namely,

(1.3) L[g] ≤ T [g] ≤ R[f ],∀g ∈ K(Ω)?

• Assume given lower and upper bounds. How to properly derive a procedure
to be able to generate tighter lower and upper bounds?

The problem of finding lower and upper-bounds in a set of convex functions to a
given positive linear functional is a classical topic, there was a flourishing activity
on this field even in the last ten years. For instance, it played a crucial role in our
research on the determination of the ‘best’ (or ‘optimal’) cubature formulae, see
[7, 9, 10, 11, 13], where the latter problem has been extensively reviewed both from
the theoretical study as well as the numerical point of view. Our aim in this paper
is to merge and generalize the recent results from [7], which hold true for simplices,



LOWER AND UPPER BOUNDS FOR POSITIVE LINEAR FUNCTIONALS 3

to results for any convex polytopes.

A brief outline of the paper is : After establishing some preliminary definitions
and results about generalized barycentric coordinates and Jensen type inequalities,
Section 2 provides lower and upper bounds in a set of convex functions to a given
positive linear functional. In Section 3 we will discuss some extremal properties of
our upper and lower bounds. We will also obtain tighter lower and upper bounds
by just using a simple averaging technique and combining those that are derived in
Section 2. We will also extends many results from [7], which hold true for simplices,
to results for any convex polytopes. Some of the arguments originate in [7], while
others are our own. Consequently, we find an extension of a quadrature formula
over a finite interval first given by Hammer in [14], over any convex polytope. As
an application, in Section 4, we prove refinements, extensions and counterparts of
the well-known Favard inequality. We also justify why we have limited our analysis
to the case of polytopes. For smooth (nonconvex) twice continuously differentiable
functions, Section 5 shows how both the lower and upper bounds given in Section
2 could be improved. This section also establishes a general result concerning error
estimates.

The starting-point of this paper is the use of a Delaunay triangulation and there-
fore do not resemble the proofs in [7], where the early techniques used were math-
ematically rather simple. Furthermore, it is the power of Delaunay triangulation
that allows us to extend our results to all convex polytopes.

2. Lower and upper bounds of positive linear functionals

After establishing some notational conventions which will be used throughout
the rest of the paper, this section focuses on the theoretical framework requisite for
generating a new class of modified lower and upper bounds of a given normalized
positive linear functional on K(Ω). We first recall some well known results on
generalized barycentric coordinates and Jensen type inequalities. For a given T ∈
N∗(Ω), let cgT (Ω) := (T [e1] , . . . , T [ed]), which we will call the center of gravity
with respect to the functional T in the polytope Ω. Here, we let e1, . . . , ed denote
the projections ei : x = (x1, . . . , xd) → xi. The so-called Jensen’s inequality for
the expectation of a convex real-valued function [17, p. 288] can be stated in the
following way: Let I ⊆ R be a (real) interval, and let f : I → R be a continuous
convex function on I. Let (Ω,A, µ) be a probability space, and let g : Ω→ I be a
µ-integrable function over Ω. Then Eµ [g] ∈ I, Eµ [f(g)] exists, and it holds that

(2.1) f(Eµ [g]) ≤ Eµ [f(g)] ,

where Eµ denotes mathematical expectation with respect to the probability measure
µ on Ω.
The above inequality (2.1) was later generalized by McShane, see [16], as follows:
Let f : Ω ⊆ Rd → R be a continuous convex function on the polytope Ω. Let
gi ∈ C(Ω), i = 1, . . . , d, such that g(z) := (g1(z), . . . , gd(z)) ∈ Ω, for all z ∈ Ω, and
f(g) ∈ L. Let us denote by T [g] := (T [g1], . . . , T [gd]). Then T [g] is in Ω, f(T [g]) is
defined and

(2.2) f (T [g]) ≤ T [f(g)].
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Thus, if g is chosen to be the identity function on Ω, in the sense that Id(x) = x,
then it follows from the above considerations that for any T ∈ N∗(Ω), we have
always cgT (Ω) ∈ int(Ω), and for any convex function f ∈ K(Ω) we have

(2.3) f (cgT (Ω)) ≤ T [f ].

Before we present our lower and upper bounds, we first prove some Lemmas of
general usefulness. We begin by defining barycentric coordinates for an arbitrary
simplex.
Given any linearly independent set Vn = {v0, . . . ,vn} of n+1 points in Rd, (d ≥ n),
the simplex with the set of vertices Vn is the convex hull of Vn. If Ω is a simplex,
and n = d, (e.g., a triangle in 2D or a tetrahedron in 3D), with vertices v0, . . . ,vd
∈ Rd, then each point x of their convex hull Ω has a (unique) representation,
that is there exist unique nonnegative real numbers {λi(x), i = 0, . . . , d} so that∑d
i= 0 λi(x) = 1, and x =

∑d
i= 0 λi(x)vi. The barycentric coordinates λ0, . . . , λd

are nonnegative affine functions on Ω, see [4, p. 288]. Note that a simplex is a
special polytope given as the convex hull of n + 1 vertices, each pair of which is
joined by an edge.
Barycentric coordinates also exist for more general types of polytopes, see Kalman
[15, Theorem 2].

The next lemma without the property of affine independence is due essentially
to Kalman [15]. Our statements are stronger than the ones provided in [15], but
the proof proceeds along the same lines as the proof in [15, Theorem 2], so we omit
it. The most important fact of our extension is that one prescribed coordinate can
be chosen convex (or concave) on Ω. We claim no novelty for this result in the
convex case, which is proved in [15]. In fact, we have the following:

Lemma 2.1. Let Ω be a polytope in Rd, {v0,v1, . . . ,vn} its vertices. Then there
are affinely independent real continuous functions on Ω, {ψ0, . . . , ψn}, such that

(2.4)

n∑
i=0

ψi(x) = 1, ψi(x) ≥ 0,

and

(2.5) x =

n∑
i=0

ψi(x)vi.

Moreover, we can choose the barycentric coordinates {ψ0, . . . , ψn} in such a way
that one of them is convex or concave.

Warren [19] showed that {ψ0, . . . , ψn} can be chosen as rational functions, which
are uniquely determined if we require that each ψi have minimal degree. Later, we
will characterize the polytopes that have unique barycentric coordinates.

The next result gives lower and upper bounds for any functional T belonging to
N∗(Ω).

Lemma 2.2. Let ψi, i = 0, . . . , n be defined as in Lemma 2.1. Let T ∈ N∗(Ω) and
let L,R ∈ N∗(Ω) such that

(2.6) L[f ] ≤ T [f ] ≤ R[f ],∀f ∈ K(Ω),
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then for any f ∈ K(Ω) we have

(2.7) f(cgT (Ω)) ≤ L[f ] ≤ T [f ].

Moreover, if Ω is a simplex, then for any f ∈ K(Ω) we have

(2.8) T [f ] ≤ R[f ] ≤
n∑

i= 0

ψi(cgT (Ω))f(vi).

Proof. Since the projection functions ei and −ei are both convex, then it follows
from inequalities (2.6) that the centers of gravity cgL(Ω), cgT (Ω), cgR(Ω) coincide.
Thus, we get from McShane inequality (2.3) that for all f ∈ K(Ω)

(2.9) f(cgT (Ω)) = f(cgL(Ω)) ≤ L[f ].

This shows the left-hand-side of the inequality in (2.7). Next we apply f on both
sides of linear precision (2.5) and make use of the convexity, we arrive at:

f(x) ≤
n∑
i=0

ψi(x)f(vi),

and so apply R of both sides gives for all convex function f ∈ K(Ω)

(2.10) R[f ] ≤
n∑
i=0

R [ψi] f(vi),

where in the last inequality, we have used linearity and positivity of R. The above
inequality implies, once again, in view of the fact that ei and −ei are both convex:

(2.11) cgR(Ω) =

n∑
i=0

R [ψi]vi.

Let us observe that cgT (Ω) has also the following two representations

cgT (Ω) =

n∑
i=0

T [ψi]vi(2.12)

=

n∑
i= 0

ψi(cgT (Ω))vi,(2.13)

where in the last equality we have used the identity (2.5) and the fact that cgT (Ω)
is an interior point of Ω. But, the centers of gravity cgT (Ω) and cgR(Ω) coincide,
then the uniqueness of barycentric coordinates for simplices guarantees that we can
write

(2.14) R [ψi] = T [ψi] = ψi(cgT (Ω)),∀i = 0, . . . , n.

This, combined with (2.10) shows the left-hand inequality in (2.8) and completes
the proof Lemma 2.2. �

Let us note that trivial upper and lower worst-case bounds are easiest to find if
the functions is continuous only, since for any T ∈ N∗(Ω) and f ∈ C(Ω), we have

(2.15) inf
x∈Ω

f(x) ≤ T [f ] ≤ max
x∈Ω

f(x).

In order to generate ‘good’ lower and upper bounds, than those given by Lemma 2.2
and in inequalities above, we need to subdivide the polytope Ω. From a numerical
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Figure 1. The left figure is a Voronoi diagram with Ci is the
Voronoi region associated to vertex vi. C(y) is the Voronoi
region associated to y. The right figure shows the associated
Delaunay triangulation. Ti, 1, . . . , 4, are the simplices of the
triangulation.

point of view, the precise effective lower and upper bounds in which we shall be
chiefly interested here are those in which we chose ai, bi and xi so that:

m∑
i= 0

aif(xi) ≤ T [f ] ≤
m∑
i= 0

bif(xi),∀f ∈ K(Ω),

where ai, bi are positive numbers and xi are some points in the polytope Ω.

Let y be an arbitrary but fixed point in int(Ω). With a slight abuse of notation,
we will sometimes denote by vn+1 the point y. We shall then define, when Vn is
the set of all vertices of the polytope Ω,

Y := V ∪ {y} = {v0, . . . ,vn,vn+1} .

For any z ∈ Y , we denote by VY (z) the (Euclidean) Voronoi region of z with
respect to the point set Y , that is the region consisting of all points of Ω that are
closer to z than to any other point in Y \ z,

VY (z) = {x ∈ Ω : ‖x− z‖ ≤ ‖x− p‖ for all p ∈ Y \ z} ,

where ‖.‖ is the (usual) Euclidean norm in Rd. The set of all Voronoi regions for all
VY (z), z ∈ Y forms the Dirichlet-Voronoi diagram of Y. Dirichlet-Voronoi diagrams
are also called Voronoi diagrams, Voronoi tessellations, or Thiessen polytopes. Fol-
lowing common usage, we will use the terminology Voronoi diagrams. It is easy to
see that all of the Voronoi regions VY (z), z ∈ Y are (non-empty) convex polytopes,
and their union is Ω. Furthermore, the interiors of VY (z), z ∈ Y are disjoint convex
sets. A triangulation of Ω with respect to Y is a partition of Ω into a finite number
of d-dimensional simplices such that the vertices of which are points of Y and any
two of them are either disjoint or meet in a common lower dimensional simplex.
There is a very natural triangulation DT (Ω) of Ω, that uses only the points of Y as
triangulation vertices and such that any simplex in DT (Ω) has y as a vertex. Such
a triangulation exists and it is called a Delaunay triangulation of Ω with respect to
Y and it can be obtained as the geometric dual of the Voronoi diagram of Y, see, e.
g., [6]. It is a triangulation of Ω with respect to Y such that no point of Y is inside
the hyper circumsphere of any simplex of the triangulation, see Figure 1 in the
case when the domain Ω is a rhombus. Alternatively, such a triangulation can also
be characterized by an approximation problem; see [2, Theorem 2.3]. Uniqueness
of Delaunay triangulations is guaranteed if no d + 1 points of Y lie on a common
hyperplane in Rd and no d+ 2 points lie on a common hypersphere.

Let y ∈ int(Ω) and let Sy1 , . . .S
y
m be the simplices of DT (Ω) with respect the

set of points Y and let Ni be the set of all integers j such that vi is a vertex of Syj .

If x ∈ Syj and j ∈ Ni, then we denote by λ
y
ij(x) the barycentric co-ordinate of x
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with respect to vi for the simplex Syj . It is easily verified that if x ∈ Syj ∩S
y
k , then

λ
y
ij(x) = λ

y
ik(x) if j, k ∈ Ni and λij(x) = 0 if j ∈ Ni, k 6∈ Ni. Therefore, setting

φ
y
i (x) :=

{
λ
y
ij(x) if x ∈ Syj and j ∈ Ni
0 otherwise,

for i = 0, . . . , n+ 1, we trivially obtain a set of well-defined functions, which are a
generalization of barycentric coordinates when Ω is a simplex. We list some basic

properties of the functions φ
y
0 , . . . , φ

y
n+1, of which the following are particularly

relevant to us:

(1) They are well-defined, piecewise linear and nonnegative real-valued contin-
uous functions.

(2) They send Ω to the unit interval [0, 1].

(3) They form a partition of unity, so
∑n+1
i=0 φ

y
i ≡ 1.

(4) The function φ
y
i has to equal 1 at vi and 0 at all other points in Y \ vi,

i.e., φ
y
i (vj) = δij ( δ is the Kronecker delta).

(5) They satisfy the linear precision property, that is,

(2.16) x =

n+1∑
i=0

φ
y
i (x)vi.

Since any simplex in DT (Ω) contains y as a vertex, to simplify notation from here

forward, we shall write φ
y
n+1 simply as

φ
y
n+1(x) :=

{
λ
y
j (x) if x ∈ Syj and j ∈ {1, . . .m}

0 otherwise,
(2.17)

here m is the number of simplices in DT (Ω) and λ
y
j (x) is the barycentric co-

ordinate of x with respect to y for the simplex Syj , (see Figure 1).

Kalman showed in [15, Theorem 2] that, for any given finite set {x1, . . . ,xl} of
points of Rd we can assign barycentric coordinates {λ1, λ2, . . . , λl} to their convex
hull X in such a way that each coordinate is continuous on X and that one pre-
scribed coordinate is convex on X. He does not identified exactly which barycentric
coordinate function has this property. Kalman also asked if whether it is always
possible to make all the coordinates convex simultaneously (see [15, Example 3]).
Fuglede [5] answered this question by showing that if all the barycentric coordinates
are convex (or if they are all concave), then they are all affine, and consequently,
X must be a simplex.

With these important general facts in mind, we now complement the Kalman
result. The next Lemma shows that in our situation, for any fixed y ∈ int (Ω), the

function 1−φyn+1 (assigned to the point y) is convex: This convexity property will
be an important key to establish some extremal properties of our lower and upper
bounds. Thus, the first main point of this paper is the following result, which we
will have several occasions to use.
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Lemma 2.3. For any y ∈ int(Ω), the function 1 − φyn+1 is a convex continuous
piecewise-linear function on Ω and for i = 1, . . . ,m satisfies the identity:

(2.18)
1

vol(S
y
i )

∫
S
y
i

φ
y
n+1(x) dx =

1

d+ 1
=

1

vol(Ω)

∫
Ω

φ
y
n+1(x)dx.

Proof. First we show that −φyn+1 can be expressed as the maximum of a finite set

of affine functions. To this end let Syj be any fixed simplex in DT (Ω). We begin

by observing that for any i = 1, . . . ,m, λ
y
i is nonnegative (affine function) on Ω.

To see that, it suffices to note that, for any fixed i, λ
y
i (y) = 1 and λ

y
i (x) = 0 is a

supporting hyperplane for Ω. Recall that an affine function is uniquely determined
by its values at the vertices of the simplex. For any fixed i = 1, . . . ,m, define the

functions dj , j = 1, . . .m, by dj = λ
y
i − λ

y
j , then a simple inspection shows that dj

is nonnegative on Syj . Hence h(x) := max
{
−λy1 (x), . . . ,−λym(x)

}
= −λyi (x) for

all x ∈ Syi . Thus, it follows that for all i the restriction of h to S
y
i coincides with

the function −φyn+1. But now, h and −φyd+1 are identically equal in Ω, we then

get that −φyn+1 is convex, because affine functions are convex and the maximum of

convex functions is a convex function. This means that, 1 − φyn+1 is convex, since
it is the sum of two convex functions.
To show the left-hand inequality in (2.18), we use the identity (2.17), for the simplex

S
y
i , to find that

(2.19)

∫
S
y
i

φ
y
n+1(x) dx =

∫
S
y
i

λ
y
i (x) dx =

vol(S
y
i )

d+ 1

∑
v
λ
y
i (v),

where the sum is taken over all vertices of the simplex S
y
i . The last identity can

be deduced using [13, Theorem 2.2] applied to the simplex S
y
i . Therefore, the

Kronecker delta property implies the desired result. Finally, a simple computation
now shows that adding inequalities (2.19) for i = 1, . . . ,m, and dividing by vol(S),
yields the second desired equality in (2.18). �

It should be noted a remarkable fact that integral identities (2.18) are indepen-
dent of y and i. This property will be used later in some proofs.

Now we can state and prove our improved lower and upper bounds. We continue
to denote vn+1 the point y. The next result is a main result in this section.

Theorem 2.4. Let y ∈ int(Ω) be fixed. Then, for any T ∈ N∗(Ω) and f ∈ K(Ω)
the following inequalities hold

(2.20) f (cgT (Ω)) ≤ Ly [f ] :=

n+1∑
i=0

A
y
i f
(
x
(
φ
y
i

))
≤ T [f ] ≤ Ry [f ] :=

n+1∑
i=0

A
y
i f(vi),

with for any i = 0, . . . , n+ 1, A
y
i = T

[
φ
y
i

]
and

(2.21) x
(
φ
y
i

)
=

T
[
φ
y
i e1

]
T
[
φ
y
i

] , . . . ,
T
[
φ
y
i ed

]
T
[
φ
y
i

]
 , (i = 0, . . . , n).
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Moreover, if Ω is a simplex, then for any i = 0, . . . , n,

(2.22) A
y
i =

(
1− ψi(y)

ψi(cgT (Ω))
A
y
n+1

)
ψi(cgT (Ω)).

Proof. In order to obtain the estimation from below (2.20), let us first observe that
the center of gravity cgT (Ω) can be expressed as a convex combination of the points

x
(
φ
y
i

)
. Indeed, it follows from the definition of cgT (Ω) and the partition of unity

functions φ
y
i , i = 0, . . . , n+ 1 that cgT (Ω) =

∑n+1
i=0 T

[
φ
y
i

]
x
(
φ
y
i

)
. Let f ∈ K(Ω),

then, the convexity of f implies that

f (cgT (Ω)) ≤
n+1∑
i=0

T
[
φ
y
i

]
f
(
x
(
φ
y
i

))
.

This shows the left-hand inequality of (2.20).
We now prove the second inequality in (2.20). Let us define first the functionals on
C(Ω) by

(2.23) Ti[g] =
T
[
φ
y
i g
]

T
[
φ
y
i

] , (i = 0, . . . , n+ 1).

Now it is easily seen that for all i, the functional Ti belongs to N∗(Ω), and its

center of gravity is x
(
φ
y
i

)
. Thus, according to Jensen’s inequality (2.7) applied

to the functional Ti instead of T , it follows from the definition of cgTi
(Ω) that

cgTi
(Ω) := x

(
φ
y
i

)
. Moreover, we have for all f ∈ K(Ω)

(2.24) T
[
φ
y
i

]
f
(
x
(
φ
y
i

))
≤ T

[
φ
y
i f
]
.

Summing up for i = 0, 1, . . . , n + 1, and taking into account that the functions

φ
y
i , i = 0, . . . , n + 1, form a partition of unity, we get the desired result. Let us

mention that the left-hand inequality of (2.20) can also be proved by using Lemma
2.2 and the inequality we just proved.
To obtain the estimate from above, we first observe that equation (2.16) tells us
that any point x ∈ Ω can be written as convex combination of the extreme points
of Ω and the point y ∈ Ω, then if we apply f on both sides of (2.16) and make use
of the convexity, we get

f(x) ≤
n∑
i=0

φ
y
i (x)f(vi) + φ

y
n+1(x)f(y).

So by applying T of both sides of the above equation and using the linearity and
positivity properties of T , we get the desired result. Again, linear precision (2.16)
implies that the center of gravity cgT (Ω) can also be expressed as follows:

cgT (Ω) =

n∑
i=0

T
[
φ
y
i

]
vi + T

[
φ
y
d+1

]
y.

But also by Lemma 2.1 we may write y =
∑n
i=0 ψi(y)vi, then we have immediately

cgT (Ω) =

n∑
i=0

(
T
[
φ
y
i

]
+ T

[
φ
y
d+1

]
ψi(y)

)
vi.
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Thus, using the uniqueness of barycentric coordinates for a simplex, we conclude
that

(2.25) ψi(cgT (Ω)) = T
[
φ
y
i

]
+ T

[
φ
y
n+1

]
ψi(y), (i = 0, . . . , n).

This prepares us for the final part of the proof of the theorem. Indeed, the above
equation immediately yields

(2.26) T
[
φ
y
i

]
=

(
1− ψi(y))

ψi(cgT (Ω))
A
y
n+1

)
ψi(cgT (Ω)), (i = 0, . . . , n).

This shows identities (2.22), and the proof is complete. �

Remark 2.5. It should be noted that for any point y in the interior of Ω, Lemma
2.2 tells us that if Ω is a simplex, then the upper bound given in Theorem 2.4 must
be better on K(Ω) than that those given by (2.8) of Lemma 2.2. This can also be
easily verified directly.

Before we proceed further, we would like to remark that under uniqueness of
barycentric coordinates, the reader should note that inequality (2.8) and the right
inequality (2.20) with coefficients as given in (2.22) remain valid. This result moti-
vates a question about polytopes with a related property. Let us raise the following:

Problem 2.6. For which polytopes Ω in Rd, the barycentric coordinates given in
lemma 2.1 are uniquely defined?

The following Lemma shows that unfortunately the only polytopes with this
property are the simplices. More precisely, we have the following characterization:

Lemma 2.7. Let Ω be a polytope in Rd, with n+ 1 vertices {v0, . . . ,vn} , (n ≥ 1).
Then, the following properties of Ω are equivalent

(1) Ω is a simplex;
(2) The barycentric coordinates with respect to the vertices of Ω are unique.

Proof. The proof sketch is as follows: Given a simplex Ω with vertices {v0, . . . ,vn} .
By Lemma 2.1, there must exist at least one barycentric coordinate system on Ω,
{ψ0, . . . , ψn}, such that for all x ∈ Ω we have

(2.27)

n∑
i=0

ψi(x) = 1, ψi(x) ≥ 0,

and

(2.28) x =

n∑
i=0

ψi(x)vi.

For any x ∈ Ω, we can calculate ψi(x) by defining M to be the d × n matrix
{v1 − v0, . . . ,vn − v0}, and solving the equation

x− v0 = M (ψ1(x), . . . , ψn(x))
T
,

where (ψ1(x), . . . , ψn(x))
T

is the transpose of the row vector (ψ1(x), . . . , ψn(x)) .
Recall that our definition of a simplex stated that its vertices are linearly inde-
pendent points, then the matrix M is assumed to have full column rank, and
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Figure 2. This figure gives an example of a triangulation using
only the vertices of the polytope.

consequently the following system of linear equations has a unique solution given
by

(ψ1(x), . . . , ψn(x))T = (MTM)−1M(x− v0),

with ψ0(x) = 1 −
∑n
i=1 ψi(x). This shows that the barycentric coordinates of a

point are uniquely determined by the vertices of the simplex in question. In order
to prove the converse assume the contrary, namely that Ω is not a simplex. We first
observe that, if n is less than or equal to 2 then we have nothing to prove, since
Ω is already a simplex. Here we used the fact that Ω is assumed to be described
by n+ 1 vertices. Thus without loss of generality we may assume that n is greater
than or equal to 3. The polytope Ω admits at least one triangulation T in which
every vertex is an extreme point of Ω, see [5, Theorem 2]. Note that since Ω is not
a simplex, and n is greater than 3, then T has at least two adjacent simplices, say
S and S′. Denote by F the common facet of S and S′, and v (respectively v′) the
vertex of S (respectively S′), lying in opposite the facet F , see Figure 2. Since,
T does not use any interior points, then S ∪ S′ is a convex polytope with vertices
necessarily among those of Ω. Consequently the line segment joining the two points
v and v′ meets F in at least one point, say y. Thus, there is a common point y in
the interiors of the two different simplices F and [v,v′], and then y must have two
different sets of barycentric coordinates. This contradicts the uniqueness property
for the barycentric coordinates and shows that Ω must be a simplex. �

In order to simplify the notation, in what follows we denote byAcgn+1 = T
[
φ
cgT (Ω)
n+1

]
,

and for any i = 0, . . . , n, φcgi = φ
cgT (Ω)
i . By using these notations, if the domain is

a simplex Theorem 2.4 tells us the following:

Corollary 2.8. Let Ω be a simplex and let

Lcg [f ] := (1−Acgn+1)

n∑
i=0

ψi(cgT (Ω))f (x (φcgi )) +Acgn+1f
(
x
(
φcgn+1

))
Rcg [f ] := (1−Acgn+1)

n∑
i=0

ψi(cgT (Ω))f(vi) +Acgn+1f(cgT (Ω)).

Then the following inequality is valid for any f ∈ K(Ω)

LcgT (Ω)[f ] ≤ T [f ] ≤ RcgT (Ω)[f ].

Remark 2.9. Let us denote by K+(Ω) the set of nonnegative convex functions
belonging to K(Ω). It should be noted that under the hypotheses of Corollary 2.8,
the functional T is bounded from below on K+(Ω) by

(2.29) L̃cg [f ] := (1−Acgn+1)

n∑
i=0

ψi(cgT (Ω))f (x (φcgi )) .

Indeed, recalling inequalities (2.24), we can see that, for all i = 0, . . . n,

(1−Acgn+1)ψi(cgT (Ω))f (x (φcgi )) ≤ T [φcgi f ],
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and then summing up the above inequalities, we have immediately for all function
from K+(Ω)

L̃cg [f ] ≤ T [(1− φcgn+1)f ]

= T [f ]− T [φcgn+1f ],

and consequently it follows that L̃cgT [f ] ≤ T [f ]. But obviously we have L̃cg[f ] ≤
Lcg[f ], for all f ∈ K+(Ω), then the functional Lcg is an improvement of the lower

bound L̃cg on K+(Ω).
By analogy, we can write the expression for Rcg as follows:

Rcg [f ] = R̃cg −Acgn+1

(
n∑
i=0

ψi(cgT (Ω))f(vi)− f(cgT (Ω))

)
,

where R̃cg [f ] :=
∑n
i=0 ψi(cgT (Ω))f(vi). Then, Lemma 2.2 informs us that the

functional R̃cg is an upper bound for T on K(Ω). Since we have subtracted a
nonnegative term, then Rcg appears here as an improvement for the upper bound
R̃cg. But this time, the improvement is valid for any continuous convex function.

In particular, if T is the functional-integral over a simplex, Corollary 2.8 allows
us to extend a quadrature formula over an interval, first given by Hammer in [14], to
a multivariate setting. This result was first proved in [7]. Indeed, as a consequence
of the above result combined with Lemma 2.3, we immediately obtain the following:

Corollary 2.10. Let Ω ⊂ Rd be a simplex with vertices {v0, . . . ,vd} and center of
gravity v∗ = v0+...+vd

d+1 . Set

Lcg [f ] :=
1

d+ 1

(
d

d+ 1

d∑
i=0

f

((
v∗ − vi
d+ 1

)
+ v∗

)
+ f(v∗)

)

Rcg[f ] :=
1

d+ 1

(
d

d+ 1

d∑
i=0

f(vi) + f(v∗)

)
.

Then for every convex function from K(Ω), we have

(2.30) Lcg [f ] ≤ 1

vol(Ω)

∫
Ω

f(x) dx ≤ Rcg[f ].

Proof. Just apply the integral identity (2.18) proved in Lemma 2.3. �

3. Refinement and comparison of our upper and lower bounds

The aim of this section is to establish some extremal properties of the upper
and lower bounds given by Theorem 2.4. We will also get ‘better’ lower and upper
bounds by just combining those that are derived in Section 2.

The next Theorem describes relevant properties of the upper bound derived in
Theorem 2.4. In what follows Ry denotes the upper bound derived in Theorem 2.4.
This extends to arbitrary polytopes in Rd, a result in [7] in the case of a simplex.

Theorem 3.1. Let T ∈ N∗(Ω),y ∈ int(Ω), A
y
n+1 = T [φ

y
n+1]. Suppose that there

are positive real numbers B0, . . . , Bn+1 such that their sum is 1, and for every
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f ∈ K(Ω), we have

(3.1) T [f ] ≤ R[f ] :=

n∑
i=0

Bif(vi) +Bn+1f(y).

Then,

(3.2) Bn+1 ≤ A
y
n+1.

Moreover, if Ω is a simplex, then equality in (3.2) is attained if and only if the

two functionals R and Ry are identically equal. If Bn+1 > A
y
n+1 then T cannot

bounded by R on K(Ω).

Proof. Fix y ∈ int(Ω), then by Lemma 2.3, we already know that the function

1 − φyn+1 ∈ K(Ω). Recall that φ
y
n+1 takes the value 1 at y and vanishes on all

vertices of Ω. Consequently, taking into account that the two functionals T and R
coincide over the set of constant functions, we get from dominant property (3.1) on
K(Ω)

−Ayn+1 = T [−φyn+1] ≤ R[−φyn+1] = −Bn+1φ
y
n+1(y) = −Bn+1.

Hence, for every y ∈ int(Ω) we have Bn+1 ≤ A
y
n+1. If, moreover, Ω is a simplex,

the sufficiency condition is obvious. For this, it suffices to consider the equality

condition for the the function φ
y
n+1. It remains to show that if Bn+1 = A

y
n+1 then

R = Ry . To this end, since, T is dominated by R and Ry on K(Ω) and affine
functions and their opposites belong to K(Ω), then the functionals R and Ry have
the same center of gravity. Therefore, we have

cgT (Ω) =

n∑
i=0

Ry [ψi]vi(3.3)

=

n∑
i=0

R [ψi]vi,(3.4)

here {ψi, i = 0, . . . , n} are the barycentric coordinates defined in Lemma 2.1. Be-
cause of the uniqueness of barycentric coordinates we get

R[ψi] = Ry [ψi],

then clearly Bi + Bn+1ψi(y) = A
y
i + A

y
n+1ψi(y). Finally, since Bn+1 = A

y
n+1, we

get Bi = A
y
i . Thus, we see that R = Ry .

In order to complete the proof we have to find a function h ∈ K(Ω) for which

inequality (3.1) is not true. To this end, assume that Bn+1 > A
y
n+1, then since

Bn+1 = R[φ
y
n+1],(3.5)

A
y
n+1 = T [φ

y
n+1],(3.6)

it follows that inequality (3.1) does not hold for the convex function −φyn+1 ∈ K(Ω).

This contradiction shows that Bn+1 cannot strictly bigger than A
y
n+1 and completes

the proof of the theorem. �

The arguments in Theorem 3.1 generalize easily to yield the following more
general result:
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Remark 3.2. Assume that R[f ] :=
∑n
i=0Bif(vi)+Bn+1f(y) dominates T on K(Ω),

then the equality R = Ry holds true if and only if there exists an index i belonging

to {0, . . . , n+ 1} such that A
y
i = Bi (here, Ry is the functional defined in (2.20)).

This extends Theorem 3.1.

Before we go on to our next result, we need yet some more preparation. We
recall that a partition of unity {pi}ni=0 consists of a finite collection of continuous
functions from Ω to the unit interval [0, 1] and whose values sum the unity for all
x ∈ Ω. For a partition of unity {pi, i = 0, . . . , n}, we simply write p and say that
it is a pu-system. The collection of all pu-systems will be denoted by P n+1. If
y0, . . . ,yn denote (n + 1)-points in Ω and B0, . . . , Bn be (n + 1)-nonnegative real
numbers such that their sum is 1, let us define

(3.7) R[f ] :=

n∑
i=0

Bif(yi).

Let T ∈ N∗(Ω), we will assume throughout that for any p := {pi, i = 0, . . . , n} ∈
P n+1, we have T [pi] > 0, i = 0, . . . , n. For a given functional R of the form (3.7),
we will say that R is generated by a pu-system with respect to T if there exists a
pu-system p = {pi,= 0, . . . , n}, such that

Bi = T [pi] and yi = cgTi
(Ω) :=

(
T [pie1]

T [pi]
, . . . ,

T [pied]

T [pi]

)
, (i = 0, . . . , n),

where Ti is the functional defined on C(Ω) by Ti[f ] = T [pif ]
T [pi]

.

The next result gives a necessary and sufficient condition under which any func-
tional of the form (3.7) is bounded from above by T on K(Ω).

Theorem 3.3. Let B0, . . . , Bn be (n+ 1)-nonnegative real numbers such that their
sum is 1. For any y0, . . . ,yn, (n+ 1)-points in Ω, define

R[f ] :=

n∑
i=0

Bif(yi).

Then R is generated by a pu-system with respect to T if and only if R is bounded
above by T on K(Ω).

Proof. Main idea of the proof. Similar arguments show that Theorem 2.4 also holds

when replacing the barycentric coordinates system
{
φ
y
0 , . . . , φ

y
n

}
by any pu-system.

Hence, if R is generated by a pu-system then R is bounded from above by T on
K(Ω). The difficulty is contained in the converse implication, but it can be proved
by an easy adaptation of [8, Theorem 3.8] to the more general setting of positive
linear functionals. We leave the details to the reader. �

As a corollary we obtain the following result:

Corollary 3.4. Let Ω be a polytope in Rd and {v0,v1, . . . ,vn} its vertices. For
any y ∈ Ω, define

R[f ] :=

n∑
i=0

Bif(vi) +Bn+1f(y).

Then the functional T is bounded above by R on K(Ω) if and only if B0 = . . . =
Bn = 0, Bn+1 = 1, and y = cgT (Ω).
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Proof. The proof of this corollary is a standard consequence of Theorem 3.3. The
details are as follow. Assume that T is dominated by R on K(Ω), then, by Theorem
3.3, R is generated by a pu-system p := {pi, i = 0, . . . , n} , with

vi =

(
T [pie1]

T [pi]
, . . . ,

T [pied]

T [pi]

)
, (i = 0, . . . , n).

As the centers of gravity
(
T [pie1]
T [pi]

, . . . , T [pied]
T [pi]

)
, (i = 0, . . . , n), are interior points,

this is possible only if B0 = . . . = Bn+1 = 0, Bn+2 = 1, and y = cgT (Ω).
The converse implication can be proved by using Lemma 2.2. �

In order to compute better lower and upper bounds, as suggested early in the
Introduction, we take a convex combination of nonnegative coefficients of lower
and upper bounds, given by Theorem 2.4. The next result gives all admissible

convex combinations. For simplicity we continue to denote Acgi = T
[
φ
cgT (Ω)
i

]
, i =

0, . . . , n+ 1.

Theorem 3.5. Let us define the two linear functionals Lcg and Rcg by

Lcg [f ] := f(cgT (Ω))

Rcg [f ] :=

n+1∑
i=0

Acgi f(vi).

For any α ∈ [0, 1] , let us set

Tα[f ] := (1− α)Lcg [f ] + αRcg [f ] .(3.8)

Then,

(1) Tα is dominated by T on K(Ω) if and only if α = 0;
(2) T is dominated by Tα on K(Ω) if and only if α = 1.

Proof. (1) is an immediate consequence of Corollary 3.4. To prove (2), let us assume
that T is dominated by Tα on K(Ω). Then, since −φcgn+1 belongs to K(Ω), it takes
the value −1 at cgT (Ω) and vanishes on all vertices of Ω, we have

−Acgn+1 = T [−φcgn+1] ≤ Tα[−φcgn+1] = −(1− α)− αAcgn+1,

here, for simplicity in notation, we have denoted φ
cgT (Ω)
n+1 by φcgn+1. This shows that

(1− α)(1−Acgn+1) ≤ 0.

According to the fact, that Acgn+1 is strictly less than or equal to 1 and α ∈ [0, 1], it
follows that the above inequality is satisfied only if α = 1. The converse implication
is obvious, since for α = 1, T1 := Rcg and by Theorem 2.4, T is dominated by Rcg

on K(Ω). �

Now consider the case when the domain Ω is a simplex. In this case, Lemma 2.2
implies that for all α ∈ [0, 1]

Lcg [f ] ≤ Tα[f ] := (1− α)Lcg [f ] + αRcg [f ] ≤ Rcg [f ] ,∀f ∈ K(Ω),

where Lcg and Rcg are defined by

Lcg [f ] := f(cgT (Ω))

Rcg [f ] :=

n∑
i=0

ψi(cgT (Ω))f(vi).
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The problem we wish to consider is: For which values of α ∈ [0, 1], is T bounded
from below or above by Tα on K(Ω)?

The following Theorem gives all admissible values of α for which Tα is bounded
below by T on K(Ω).

Theorem 3.6. If Ω is a simplex then the following inequalities hold for every
α ∈

[
Acgn+1, 1

]
:

(3.9) T [f ] ≤ Tα[f ],∀f ∈ K(Ω).

Moreover, as a function of α, Tα is non-decreasing on
[
Acgn+1, 1

]
. In addition, if

α > Acgn+1, then Tα cannot dominate T on K(Ω).

Proof. A simple inspection of Theorem 2.4 shows that (3.9) holds for α = Acgn+1.
Since, by Lemma 2.2, we know already that Lcg is dominated by Rcg, (note that
this inequality is also a very easy consequence of the classical Jensen’s discrete
inequality for convex functions), it follows that Tα is a non-decreasing function of
α and that (3.9) holds for each α ∈

[
Acgn+1, 1

]
. The rest of proof can be carried out

similarly as in Theorem 3.1. �

We can show similarly as in the proof of Theorem 3.6 that Tα is dominated by
T on K(Ω) if and only if α = 0.

We naturally asked if a similar result of Theorem 3.6 holds for convex com-
binations of lower bounds given in Theorem 2.4. To this end, it is also worth
emphasizing the following result:

Theorem 3.7. Let us define the functional Uα on C(Ω) by

Uα [f ] = (1− α)f
(
x
(
φcgn+1

))
+ α

n∑
i=0

ψi(cgT (Ω))f (x (φcgi )) .

Then if Ω is a simplex the following inequalities hold for every α ∈
[
0, Acgn+1

]
:

(3.10) Uα[f ] ≤ T [f ],∀f ∈ K(Ω).

Moreover, as a function of α, Uα is non-decreasing on
[
0, Acgn+1

]
. In addition, if

α > Acgn+1, then Uα cannot dominated by T on K(Ω).

Proof. The proof is similar to the proof of Theorem 3.6, and it is only necessary to
use the second inequality obtained in Theorem 2.4. �

4. A generalization of J. Favard’s inequality

Let us now turn to some applications of the previous results. Our intention in
this section is to provide a natural generalization of Favard’s inequality [3, p. 58].
To this end, we start with recalling the well known Hadamard’s inequality in its
usual form: which states that for every convex function f : [a, b]→ R, it holds

(4.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Inequalities (4.1) and many of their variants have been extensively studied in the
literature, see, e. g., [9, 10, 11, 12]. To prepare for our generalization, we first derive
a refinement to the right-hand side of Hadamard’s inequality in the following way:
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Proposition 4.1. If f ∈ K([a, b], then the following refinement of Hadamard’s
inequality holds.

(4.2)
1

b− a

∫ b

a

f(x)dx ≤ 1

2
inf

x∈[a,b]
f(x) +

1

2
sup
x∈[a,b]

f(x).

Proof. Since we have not been able to find an existing proof for the following result,
we include one here. Let us first assume that f is a nonnegative function belonging
to K([a, b]. We begin the proof of Proposition 4.1 by noting that since f is convex,
then, there exists an tf in [a, b] such that f is non-increasing on [a, tf ] and non-
decreasing on [tf , b]. We can assume without loss of generality that tf belongs to
]a, b[, since if tf = a or tf = b the result is an immediate consequence of Hadamard’s
inequality. By applying twice Hadamard’s inequality, we immediately get∫ b

a

f(x)dx =

∫ tf

a

f(x)dx+

∫ b

tf

f(x)dx

≤ tf − a
2

(f(a) + f(tf )) +
b− tf

2
(f(tf ) + f(b))

=
b− a

2
f(tf ) +

tf − a
2

f(a) +
b− tf

2
f(b)

≤ b− a
2

f(tf ) +
b− a

2
max {f(a), f(b)} .

The convexity of f now implies the simple fact that the maximum supx∈[a,b] f(x)
is achieved in one of the endpoints, either in a or in b, then after dividing by b− a
we get the desired inequality (4.2) immediately.
In general, when f is an arbitrary function fron K[a, b] then, applying the above
inequality to the nonnegative convex function

f − inf
x∈[a,b]

f(x),

we obtain the required result, and this completes the proof of the proposition. �

If f is a continuous concave function, then a similar argument shows that the
inequality (4.2) is reversed. This inequality is known as Favard’s inequality [3, p.
58]. Thus, inequality (4.2) complements the famous Favard’s inequality. Recall
that Favard has shown the more general result

(4.3)

(
1

b− a

∫ b

a

fp(x)dx

)1/p

≤ 2

(p+ 1)1/p

(
1

b− a

∫ b

a

f(x)dx

)
for all nonnegative continuous concave functions and all parameters p > 1. Let us
note that the proof of the Favard’s inequality, given in [3], is obtained by letting p
tend to infinity in (4.3). Thus we have at hand a very simple proof of the so-called
Favard’s inequality. We may also observe that inequalities (4.2) are a refinement of
inequalities (2.15) established when the function is continuous only.

The next result extends the inequality given in Proposition 4.1 to any polytope
Ω and any positive linear functional T from N∗(Ω).
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Theorem 4.2. Let f ∈ K(Ω) such that f attains its minimum over Ω at xmin.
Then the following inequalities are valid:

(4.4) f (cgT (Ω)) ≤ T [f ] ≤ T [φxmin
n+1 ] inf

x∈Ω
f(x) +

(
1− T [φxmin

n+1 ]
)

sup
x∈Ω

f(x).

Proof. Since f is continuous on Ω, there exist points xmin,xmax ∈ Ω such that
fmin := f(xmin) = infx∈Ω f(x) and fmax := f(xmax) = supx∈Ω f(x). It can easily
be shown that given a convex function over the polytope Ω, then this function
achieves its maximum value at some point among the vertices of Ω. We assume
first that xmin is an interior point of Ω. Next we apply Theorem 2.4 by choosing
y = xmin then the following inequality holds

T [h] ≤
n∑
i=0

T [φxmin
i ]h(vi) + T [φxmin

n+1 ]h(xmin),

where h = f − fmin. Then it is clear that, in order to get an upper bounds for
T , we need to maximize h(vi) for all vertices of Ω. Thus, since h is a nonnegative
function on Ω an additional calculation similar to that done above shows that

T [h] ≤ (1− T [φxmin
n+1 ])h(xmax) + T [φxmin

n+1 ]h(xmin).

Therefore, it follows from the fact that the above inequality becomes an equality
for constants, we deduce the right-hand side in (4.4) for any continuous convex
function. Finally, a simple continuity argument shows that equality (4.4) is also
valid when xmin is a border point of Ω. �

Our next result extends the above theorem to any point y that belongs to the
interior of Ω. Indeed, by similar arguments the following more general result can
be proved. For convenience, we reformulate the statement of this result here.

Theorem 4.3. Let y be an arbitrary fixed point in int(Ω). Then, the following
inequalities are valid for any f ∈ K(Ω):

(4.5) f (cgT (Ω)) ≤ T [f ] ≤ T [φ
y
n+1]f(y) +

(
1− T [φ

y
n+1]

)
sup
x∈Ω

f(x).

The reader may observe that the bounds derived in Theorem 4.2 and 4.3 are al-
ways better than those given in (2.15), where we have assumed only the continuity
of the functions involved.

Multidimensional integral version: our general upper bound for the integral func-
tional setting is not different from that in the one dimension. Indeed, we have the
following multivariate version of Favard’s inequality as a corollary to the above
theorem:

Corollary 4.4. For every convex function belonging to K(Ω) the following inequal-
ities are valid:

(4.6) f

(∫
Ω
xdx

vol(Ω)

)
≤
∫

Ω
f(x)dx

vol(Ω)
≤ 1

d+ 1
inf
x∈Ω

f(x) +
d

d+ 1
sup
x∈Ω

f(x).

Proof. Just apply the integral identity (2.18) proved in Lemma 2.3. �

An interesting aspect of this form is that, in the integral situation, the coefficient
T [φxmin

n+1 ] is independent of the point xmin and it is a function of d only.
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Remark 4.5. Note that if the function f in Theorems 4.2, 4.3 and Corollary 4.4
is concave, then inequalities (4.4), (4.5) and (4.6) hold true, except in these cases
each of these inequalities is reversed (with the order of the sup and inf reversed).

We end this section with a question which is concerned with a possible extension
of Theorem 4.2 and its Corollary 4.4. We may naturally ask whether inequalities
in (4.4) and (4.6) hold for any compact convex set Ω ⊂ Rd with positive measure.

The answer is no. Indeed, this result can be immediately derived from the
following general statement:

Theorem 4.6. Let T ∈ N∗(Ω), where Ω is a compact convex subset of Rd with
positive measure. Assume that there are (m + 1) points x0, . . . ,xm ∈ Ω, and real
numbers a0, . . . , am, such such that, for every f ∈ K(Ω), we have

(4.7) T [f ] ≤ R[f ] :=

m∑
i= 0

aif(xi).

Then Ω must be a polytope.

Proof. Let Ω∗ be the convex hull of x0, . . . ,xm. Let us assume to the contrary
that there exists a point, say x∗, which is an element of Ω, but does not belong
to Ω∗. We will exhibit a function from K(Ω) for which inequality (4.7) does not
hold. Indeed, due to the separation Theorem for closed convex sets (see, e.g., [20,
p. 65, Theorem 2.4.1]), there exists an affine function h such that h(x∗) = 1 and h
is strictly negative on Ω∗. Set

h̃(x) = max {h(x), 0} ,∀x ∈ Ω.

Note that h̃ is a nonnegative function belonging to K(Ω), since it is the maximum
of two convex functions. It also vanishes on Ω∗ and takes the value 1 at x∗. We can
therefore conclude, in view of the continuity of h̃, that there exists a neighbor U
of x∗ such that h̃ is positive. Because T is assumed strictly positive, we then have
T [h̃] > 0. But, R[h̃] = 0, this contradicts (4.7) and so Ω must be equal the convex
hull of the points x0, . . . ,xm. Thus we can conclude that Ω is a polytope. �

This justifies why we have limited our analysis to the case of polytope domains.
Finally, we should remark that if Ω is a polytope, then Theorem 2.4 tells us that,
every T ∈ N∗(Ω) is dominated in K(Ω) by some functional of the form given
in (4.7). Thus, domination property (4.7) characterizes the polytopes among the
compact convex subsets of Rd.

5. An improvement of the lower and upper bounds and error
estimates

Assume given lower and upper bounds in K(Ω) to a given positive linear func-
tional. In the case when f is smooth, this section answers the following question:

• How to properly derive a procedure to be able to generate ‘much better’ lower
and upper bounds than those derived in Section 2 ?

In this situation, this section also establishes a general result concerning error
estimates. More precisely, for smooth (nonconvex) twice continuously differentiable
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functions, the first part of this section improves both the lower and upper bounds
given in Theorem 2.4 for any T ∈ N∗(Ω). Our inequalities can be seen as an exten-
sion of Hadamard-Favard inequalities for nonconvex functions.
In order to present the essentials of the technique, we need some additional neces-
sary background and notation.
By Sd we denote the set of all d × d symmetric matrices in R. Let A ∈ Sd, and
βi[A], i = 1, . . . , d, the (real) eigenvalues of A, we define

βmin[A] := min
1≤i≤d

βi[A] = min
‖y‖=1

〈Ay,y〉 .

We say A ∈ Sd is positive semidefinite if 〈Ay,y〉 ≥ 0, for every y ∈ Rd. The set of
positive semidefinite symmetric matrices (all eigenvalues ≥ 0) is denoted by S+

d .
By D2f(x), we mean the d × d matrix whose entries are the second-order partial
derivatives of f at x. It is well known that when f is a C2(Ω)-function, its convexity
is characterized by the fact that for all x ∈ Ω, D2f(x) ∈ S+

d (see e.g. [18]). For
every x ∈ Ω, the Hessian matrix D2f(x), as real-valued and symmetric matrix, has
real-valued eigenvalues. Therefore, for every function f in C2(Ω), we may define

λmin[f ] := inf
x∈Ω

βmin[D2f(x)].

Now, let f be any C2(Ω)−function and set

(5.1) g := f − λmin[f ]

2
‖.‖2 ,

(‖.‖2 denotes the Euclidean norm on Rd.) The Hessian matrix of g is

D2g(x) = D2f(x)− λmin[f ]Id,

where Id denotes the d×d identity matrix. Therefore, for y ∈ Rd such that ‖y‖ = 1,
we have 〈

y, D2g(x)(y)
〉

=
〈
y, D2f(x)(y)

〉
− λmin[f ].

It is clear from the definition of λmin[f ] that, for every x ∈ Ω, the right-hand term
in the above equation is nonnegative. This means that the Hessian matrix of g is
positive semidefinite for all x of the set Ω, and consequently g is convex.
Hence, an arbitrary nonconvex twice continuously differentiable function is made

convex after adding to it the quadratic −λmin[f ]
2 ‖.‖2 .

Note that λmin[f ] is not necessarily zero if f is convex over Ω. On the other hand,
if λmin[f ] ≥ then f is convex over Ω.
Let R ( resp. L) be a lower bound (resp. an upper bound) of T on K(Ω), in the
sense

(5.2) L[g] ≤ T [g] ≤ R[g],

for all convex functions g ∈ C(Ω). Define

R+[‖.‖2] = R[‖.‖2]− T [‖.‖2],

and

L−[‖.‖2] = T [‖.‖2]− L[‖.‖2].

Note that R+[‖.‖2] and L−[‖.‖2] are nonnegative.
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With this notation, the next result shows that, under some regularity assump-
tions about the function f , there exist better bounds than those defined in (5.2).
More precisely we have:

Theorem 5.1. Let R and L be an upper bound (resp. a lower bound) of T on
K(Ω). Then the following bounds hold for every function from C2(Ω):

(5.3) L[f ] +
λmin[f ]

2
L−[‖.‖2] ≤ T [f ] ≤ R[f ]− λmin[f ]

2
R+[‖.‖2].

Proof. In fact, under the present assumption about the function f, it is evident
that the auxiliary function

g := f − λmin[f ]

2
‖.‖2

is convex. Hence we can apply the inequality (5.2) to g and rearranging terms leads
to the required inequality. �

We now turn to the error estimates for the approximation of a functional T ∈
N∗(Ω) by any lower or upper bounds on K(Ω). The following result characterizes
the error estimates in approximation by functionals of this type.

Proposition 5.2. Let A : Ck(Ω) → R, where k ∈ {0, 1}, be a normalized linear
functional and let σ ∈ {−1, 1}. The following statements are equivalent:

(i) For every f ∈ C2(Ω), we have

|T [f ]−A[f ]| ≤ σ
(
T [‖.‖2]−A[‖.‖2]

) ∣∣D2f
∣∣

2
.

Equality is attained for all functions of the form f(x) := a(x) + c, where
c ∈ R and a is any affine function.

(ii) For every convex function f ∈ C2(Ω), we have

σ (T [f ]−A[f ]) ≥ 0.

Proof. The proof is an immediate consequence of [8, Proposition 2.1]. �
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