A THREE-POINT QUADRATURE RULE FOR THE RIEMANN-STIELTJES INTEGRAL WITH APPLICATIONS

M.W. ALOMARI ${ }^{1}$ AND S.S. DRAGOMIR ${ }^{2,3}$

Abstract

In this paper, three point quadrature rules for the RiemannStieltjes integral are introduced. Applications to numerical integration are provided as well.

1. Introduction

In 2000, Dragomir [17] introduced the following quadrature rule:

$$
\int_{a}^{b} f(t) d u(t) \cong f(x)[u(b)-u(a)], \forall x \in[a, b]
$$

For several error bounds for this quadrature under various assumptions to the function involved the reader may refer to [7, 8], [10]-[17], [24, 25], [27]-[29], and the references therein, as well as the recent work [3].

From a different point of view, the authors of 18 considered the problem of approximating the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ via the generalized trapezoid rule $[u(x)-u(a)] f(a)+[u(b)-u(x)] f(b)$, i.e.,

$$
\int_{a}^{b} f(t) d u(t) \cong[u(x)-u(a)] f(a)+[u(b)-u(x)] f(b), \forall x \in[a, b]
$$

For various bounds of the above generalized trapezoid rule the reader may refer to [18]-[22] and the references therein. For new quadrature rules regarding RiemannStieltjes integral see [1, [2] and 4].

In order to approximate the Riemann-Stieltjes integral $\int_{a}^{b} f(x) d u(x)$ by the Riemann integral $\int_{a}^{b} f(t) d t$, Dragomir and Fedotov [23], introduced the following functional:

$$
\begin{equation*}
\mathcal{D}(f ; u):=\int_{a}^{b} f(x) d u(x)-\frac{u(b)-u(a)}{b-a} \int_{a}^{b} f(t) d t \tag{1.1}
\end{equation*}
$$

provided that the Riemann-Stieltjes integral $\int_{a}^{b} f(x) d u(x)$ and the Riemann integral $\int_{a}^{b} f(t) d t$ exist.

In the same paper [23], the authors have proved the following inequality:

[^0]Theorem 1. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is of bounded variation on $[a, b]$ and f is Lipschitzian with the constant $K>0$. Then we have

$$
\begin{equation*}
|\mathcal{D}(f ; u)| \leq \frac{1}{2} K(b-a) \bigvee_{a}^{b}(u) \tag{1.2}
\end{equation*}
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.
In [21, Dragomir has obtained the following inequality as well:
Theorem 2. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is Lipschitzian on $[a, b]$, i.e.,

$$
|u(y)-u(x)| \leq L|x-y|, \forall x, y \in[a, b], \quad(L>0)
$$

and f is Riemann integrable on $[a, b]$.
If $m, M \in \mathbb{R}$, are such that $m \leq f(x) \leq M$, for any $x \in[a, b]$, then

$$
\begin{equation*}
|\mathcal{D}(f ; u)| \leq \frac{1}{2} L(M-m)(b-a) \tag{1.3}
\end{equation*}
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.
In [26], Mercer has introduced new midpoint and trapezoid type rules for the Riemann-Stieltjes integral which engender a natural generalization of Hadamard's integral inequality, as follows:

Theorem 3. Let g be continuous and increasing on $[a, b]$, let $c \in[a, b]$ which satisfies

$$
\int_{a}^{b} g(t) d t=(c-a) g(a)+(b-c) g(b) .
$$

If $f^{\prime \prime} \geq 0$, then we have

$$
\begin{equation*}
f(c)[g(b)-g(a)] \leq \int_{a}^{b} f d g \leq[G-g(a)] f(a)+[g(b)-G] f(b) \tag{1.4}
\end{equation*}
$$

where, $G:=\frac{1}{b-a} \int_{a}^{b} g(t) d t$.
However, it seems that Mercer didn't notice that the following relation between the right-hand side of 1.4$)$ and $\mathcal{D}(g ; f)$, exists

$$
\begin{align*}
\int_{a}^{b} f(t) d g(t)- & {[G-g(a)] f(a)-[g(b)-G] f(b) } \tag{1.5}\\
& =\frac{f(b)-f(a)}{b-a} \int_{a}^{b} g(t) d t-\int_{a}^{b} g(t) d f(t):=-\mathcal{D}(g ; f)
\end{align*}
$$

This follows by integration by parts formula

$$
\int_{a}^{b} f(t) d g(t)=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g(t) d f(t)
$$

Motivated by [26, in this paper several new inequalities of Hermite-Hadamard type and new approximations for the Riemann-Stieltjes integral via three point quadrature rules are established. The idea of the results and the analysis of the proofs follows in a similar manner to that one used in [26]. However, the obtained results in this work, are completely different and independent from those established in [26].

2. Introducing quadrature rules for Riemann-Stieltjes integral

To establish a three-point quadrature rule for the Riemann-Stieltjes integral, let us seek numbers A, B, C and D such that

$$
\begin{equation*}
\int_{a}^{b} f(t) d g(t)=\int_{a}^{x} f(t) d g(t)+\int_{x}^{b} f(t) d g(t) \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\int_{a}^{x} f(t) d g(t) \cong A f(a)+B f(x) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x}^{b} f(t) d g(t) \cong C f(x)+D f(b) \tag{2.3}
\end{equation*}
$$

for all $x \in(a, b)$.
To find the scalars A, B, C and D, let $f(t)=1$ and then $f(t)=t$ in (2.2) and (2.3); respectively. By simple calculations we get

$$
\begin{array}{ll}
A=\frac{1}{x-a} \int_{a}^{x} g(t) d t-g(a), & B=g(x)-\frac{1}{x-a} \int_{a}^{x} g(t) d t \\
C=\frac{1}{b-x} \int_{x}^{b} g(t) d t-g(x), & D=g(b)-\frac{1}{b-x} \int_{x}^{b} g(t) d t
\end{array}
$$

and therefore we have

$$
\begin{align*}
\int_{a}^{b} f(t) d g(t) \cong & {\left[\frac{1}{b-x} \int_{x}^{b} g(t) d t-\frac{1}{x-a} \int_{a}^{x} g(t) d t\right] f(x) } \\
& +\left[\frac{1}{x-a} \int_{a}^{x} g(t) d t-g(a)\right] f(a) \\
& +\left[g(b)-\frac{1}{b-x} \int_{x}^{b} g(t) d t\right] f(b) \tag{2.4}
\end{align*}
$$

for all $a<x<b$.
Theorem 4. Fix $x \in(a, b)$. Let g be continuous on $[a, b]$ and monotonic nondecreasing on $[a, x]$ and $[x, b]$ (it may not be monotonic nondecreasing on the whole of $[a, b])$. Let $c_{1} \in[a, x]$ and $c_{2} \in[x, b]$, be such that

$$
c_{1}=\frac{x g(x)-a g(a)-\int_{a}^{x} g(t) d t}{g(x)-g(a)} \quad \text { and } \quad c_{2}=\frac{b g(b)-x g(x)-\int_{x}^{b} g(t) d t}{g(b)-g(x)}
$$

If $f^{\prime \prime} \geq 0$, then we have

$$
\begin{align*}
& {[g(x)-g(a)] f\left(c_{1}\right)+[g(b)-g(x)] f\left(c_{2}\right)} \\
& \leq \int_{a}^{b} f(t) d g(t) \tag{2.5}\\
& \leq[G(a, x)-g(a)] f(a)+[G(x, b)-G(a, x)] f(x) \\
& +[g(b)-G(x, b)] f(b)
\end{align*}
$$

for all $a<x<b$, where $G(\alpha, \beta):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t$.

Proof. The argument of the proof is similar to the proof of Theorem 3 We first prove the right-hand inequality. Fix $x \in(a, b)$, so that

$$
\int_{a}^{b} f(t) d g(t)=\int_{a}^{x} f(t) d g(t)+\int_{x}^{b} f(t) d g(t)
$$

Let $h_{1}(t)=g(t)-G(a, x)$ and $H_{1}(t):=\int_{a}^{t} h(u) d u, t \in[a, x]$. Using integration by parts twice, and the fact that $H_{1}(a)=H_{1}(x)=0$, we get that

$$
\begin{aligned}
& \int_{a}^{x} f(t) d g(t)-\left.f(t)[g(t)-G(a, x)]\right|_{a} ^{x} \\
& =\int_{a}^{x} f(t) d[g(t)-G(a, x)]-\left.f(t)[g(t)-G(a, x)]\right|_{a} ^{x} \\
& =-\int_{a}^{x}[g(t)-G(a, x)] d f(t) \\
& =-\int_{a}^{x} f^{\prime}(t) d H_{1}(t) \\
& =\int_{a}^{x} H_{1}(t) d f^{\prime}(t)-\left.H_{1}(t) f^{\prime}(t)\right|_{a} ^{x} \\
& =\int_{a}^{x} H_{1}(t) f^{\prime \prime}(t) d t
\end{aligned}
$$

Now, since $f^{\prime \prime} \geq 0$, its enough to show that $H_{1} \leq 0$, so that the right-hand inequality is proved, i.e.,

$$
\begin{equation*}
\int_{a}^{x} f(t) d g(t)-\left.f(t)[g(t)-G(a, x)]\right|_{a} ^{x} \leq 0 \tag{2.6}
\end{equation*}
$$

To do this, since g is increasing on $[a, x]$ then by the First Mean Value Theorem for integrals there exists a unique $\tau \in(a, x)$ such that $g(\tau)=G(a, x)$. For $s \in[a, \tau]$, we have $H_{1}(s)=\int_{a}^{s}[g(t)-G(a, x)] d t \leq 0$ and for $s \in[\tau, x]$, we also have

$$
\begin{aligned}
H_{1}(s) & =\int_{a}^{\tau}[g(t)-G(a, x)] d t+\int_{\tau}^{s}[g(t)-G(a, x)] d t \\
& =-\int_{\tau}^{x}[g(t)-G(a, x)] d t+\int_{\tau}^{s}[g(t)-G(a, x)] d t \\
& =-\int_{s}^{x}[g(t)-G(a, x)] d t \\
& =-\int_{s}^{x} g(t) d t+(x-s) G(a, x) \\
& =-(x-s) g(s)+(x-s) G(a, x) \leq 0
\end{aligned}
$$

which proves that $H_{1} \leq 0$.
Now, for the integral $\int_{x}^{b} f(t) d g(t)$, we may define $h_{2}(t)=g(t)-G(x, b)$ and $H_{2}(t):=\int_{x}^{t} h(u) d u, t \in[x, b]$. By repeating the above argument we get that

$$
\begin{equation*}
\int_{x}^{b} f(t) d g(t)-\left.f(t)[g(t)-G(x, b)]\right|_{x} ^{b} \leq 0 \tag{2.7}
\end{equation*}
$$

and thus by adding 2.6 and 2.7 , the right-hand side of 2.5 is proved.

To prove the left-hand side of 2.5 , fix $x \in(a, b)$ and define the mapping

$$
h_{1}(t)= \begin{cases}g(t)-g(a), & t \in\left[a, c_{1}\right] \\ g(t)-g(x), & t \in\left(c_{1}, x\right]\end{cases}
$$

and therefore we observe that for $H_{1}(t)=\int_{a}^{t} h(u) d u$, where $t \in[a, x]$, we have $H_{1}(a)=0$ and since

$$
\begin{aligned}
H_{1}(x)=\int_{a}^{x} h(u) d u & =\int_{a}^{c_{1}}(g(u)-g(a)) d u+\int_{c_{1}}^{x}(g(u)-g(x)) d u \\
& =\int_{a}^{x} g(u) d u-\left(c_{1}-a\right) g(a)-\left(x-c_{1}\right) g(x)=0
\end{aligned}
$$

by our choice of c_{1}.
Now, using integration by parts (twice) we may write

$$
\begin{equation*}
\int_{a}^{x} f(t) d g(t)-f\left(c_{1}\right)[g(x)-g(a)]=\int_{a}^{x} H_{1}(t) f^{\prime \prime}(t) d t . \tag{2.8}
\end{equation*}
$$

Claiming that $H_{1} \geq 0$, then by given hypothesis $f^{\prime \prime} \geq 0$ and so

$$
\begin{equation*}
\int_{a}^{x} f(t) d g(t)-f\left(c_{1}\right)[g(x)-g(a)] \geq 0 \tag{2.9}
\end{equation*}
$$

which therefore, prove the left-hand inequality.
To prove our claim, let $y \in\left[a, c_{1}\right]$, since g is monotonic nondecreasing on $[a, x]$, then we have

$$
H_{1}(y)=\int_{a}^{y}(g(u)-g(a)) d u
$$

Also, for $y \in\left(c_{1}, x\right]$, we have

$$
\begin{aligned}
H_{1}(y) & =\int_{a}^{c_{1}}(g(u)-g(a)) d u+\int_{c_{1}}^{y}(g(u)-g(x)) d u \\
& =\int_{a}^{y} g(u) d u-\left(c_{1}-a\right) g(a)-\left(y-c_{1}\right) g(x) \\
& =\int_{a}^{x} g(u) d u-\left(c_{1}-a\right) g(a)-\int_{y}^{x} g(u) d u-\left(y-c_{1}\right) g(y) \\
& =\int_{a}^{x} g(u) d u-\left(c_{1}-a\right) g(a)-\int_{y}^{x} g(u) d u-\left(y-c_{1}\right) g(y) \\
& =g(x)\left(x-c_{1}\right)-\int_{y}^{x} g(u) d u-\left(y-c_{1}\right) g(y) \\
& =g(x)(x-y)-\int_{y}^{x} g(u) d u \geq 0
\end{aligned}
$$

again since g is increasing. So that the claim is proved.
In a similar way, define the mapping

$$
h_{2}(t)= \begin{cases}g(t)-g(x), & t \in\left[x, c_{2}\right] \\ g(t)-g(b), & t \in\left(c_{2}, b\right]\end{cases}
$$

and therefore we observe that for $H_{2}(t)=\int_{t}^{b} h_{2}(u) d u$, where $t \in[x, b], H_{2}(x)=0$ and $H_{2}(b)=0$. Similarly as above we have

$$
\begin{equation*}
\int_{x}^{b} f(t) d g(t)-f\left(c_{2}\right)[g(b)-g(x)]=\int_{x}^{b} H_{2}(t) f^{\prime \prime}(t) d t \tag{2.10}
\end{equation*}
$$

Claiming that $H_{2} \geq 0$, then by given hypothesis $f^{\prime \prime} \geq 0$,

$$
\begin{equation*}
\int_{x}^{b} f(t) d g(t)-f\left(c_{2}\right)[g(b)-g(x)] \geq 0 \tag{2.11}
\end{equation*}
$$

By repeating the above argument we can prove last claim. So that adding 2.9 and $(2.12$, we get

$$
\begin{equation*}
\int_{a}^{b} f(t) d g(t)-\left\{[g(x)-g(a)] f\left(c_{1}\right)+[g(b)-g(x)] f\left(c_{2}\right)\right\} \geq 0 \tag{2.12}
\end{equation*}
$$

which therefore, prove the left-hand side of (2.5).
Corollary 1. In Theorem 4, choose $g(t)=t, t \in[a, b]$, then we have the inequality:

$$
\begin{align*}
& \frac{1}{b-a}\left[(x-a) f\left(\frac{a+x}{2}\right)+(b-x) f\left(\frac{x+b}{2}\right)\right] \\
& \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \tag{2.13}\\
& \leq \frac{1}{2}\left[f(x)+\frac{(x-a) f(a)+(b-x) f(b)}{b-a}\right]
\end{align*}
$$

for all $a<x<b$. Moreover, if we choose $x=\frac{a+b}{2}$, then we get

$$
\begin{align*}
\frac{1}{2}\left[f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right] & \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] \tag{2.14}
\end{align*}
$$

3. Representation of the Error for Differentiable g

3.1. A. Consider the quadrature rule

$$
\begin{align*}
\mathcal{R}(f, g ; x) & :=\int_{a}^{b} f(t) g^{\prime}(t) d t-[G(a, x)-g(a)] f(a) \tag{3.1}\\
& -[G(x, b)-G(a, x)] f(x)-[g(b)-G(x, b)] f(b),
\end{align*}
$$

where, $G(\alpha, \beta):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t$.
Theorem 5. Suppose that $f^{\prime \prime}$ and g^{\prime} are continuous on $[a, b]$ and that g is monotonic on $[a, x]$ and $[x, b]$. Then there exist $\xi_{1}, \eta_{1} \in(a, x)$ and $\xi_{2}, \eta_{2} \in(x, b)$ such that

$$
\begin{align*}
\int_{a}^{b} f(t) g^{\prime}(t) d t & -[G(a, x)-g(a)] f(a)-[G(x, b)-G(a, x)] f(x) \\
& -[g(b)-G(x, b)] f(b) \\
& =-\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right] \tag{3.2}
\end{align*}
$$

for all $a<x<b$, where $G(\alpha, \beta):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t$.

Proof. Fix $x \in(a, b)$, so that

$$
\begin{equation*}
\int_{a}^{b} f(t) g^{\prime}(t) d t=\int_{a}^{x} f(t) g^{\prime}(t) d t+\int_{x}^{b} f(t) g^{\prime}(t) d t \tag{3.3}
\end{equation*}
$$

For the first integral on the right hand side of (3.3), consider the functions $h_{1}(t)=$ $g(t)-G(a, x)$ and $H_{1}(t):=\int_{a}^{t} h(u) d u, t \in[a, x]$. As we pointed out previously,

$$
\int_{a}^{x} f(t) g^{\prime}(t) d t-\left.f(t)[g(t)-G(a, x)]\right|_{a} ^{x}=\int_{a}^{x} H_{1}(t) f^{\prime \prime}(t) d t
$$

and since g is monotonic on $[a, x]$ then H_{1} does not change sign on $[a, x]$. So by the First Mean Value Theorem for integrals, there is $\xi_{1} \in(a, x)$ such that

$$
\int_{a}^{x} f(t) g^{\prime}(t) d t-\left.f(t)[g(t)-G(a, x)]\right|_{a} ^{x}=f^{\prime \prime}\left(\xi_{1}\right) \int_{a}^{x} H_{1}(t) d t
$$

Applying the classical Trapezoid Rule to $\int_{a}^{x} H_{1}(t) d t$, on the right side above we have

$$
\begin{aligned}
& \int_{a}^{x} f(t) g^{\prime}(t) d t-\left.f(t)[g(t)-G(a, x)]\right|_{a} ^{x} \\
& =f^{\prime \prime}\left(\xi_{1}\right) \int_{a}^{x} H_{1}(t) d t \\
& =f^{\prime \prime}(\xi)\left[\frac{H(a)+H(x)}{2}(x-a)-H^{\prime \prime}\left(\eta_{1}\right) \frac{(x-a)^{3}}{12}\right]
\end{aligned}
$$

for some $\eta_{1} \in(a, x)$. Since $H_{1}^{\prime \prime}=g^{\prime}$ and $H_{1}(a)=H_{1}(x)=0$, then

$$
\begin{equation*}
\int_{a}^{x} f(t) g^{\prime}(t) d t-\left.f(t)[g(t)-G(a, x)]\right|_{a} ^{x}=-f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right) \frac{(x-a)^{3}}{12} \tag{3.4}
\end{equation*}
$$

Now, for the second integral on the right hand side of (3.3), consider the functions $h_{2}(t)=g(t)-G(x, b)$ and $H_{2}(t):=\int_{x}^{t} h(u) d u, t \in[x, b]$. By repeating the above argument we get that

$$
\begin{equation*}
\int_{x}^{b} f(t) g^{\prime}(t) d t-\left.f(t)[g(t)-G(x, b)]\right|_{x} ^{b}=-f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right) \frac{(b-x)^{3}}{12} \tag{3.5}
\end{equation*}
$$

and thus by adding (3.4) and (3.5), the right-hand side of (3.8) is proved.
Corollary 2. Suppose that $f^{\prime \prime}$ and g^{\prime} are continuous on $[a, b]$ and that g is monotonic on $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$. Then there exist $\xi_{1}, \eta_{1} \in\left(a, \frac{a+b}{2}\right)$ and $\xi_{2}, \eta_{2} \in$ $\left(\frac{a+b}{2}, b\right)$ such that

$$
\begin{align*}
& \int_{a}^{b} f(t) g^{\prime}(t) d t-\left[G\left(\frac{a+b}{2}, b\right)-G\left(a, \frac{a+b}{2}\right)\right] f\left(\frac{a+b}{2}\right) \tag{3.6}\\
&-\left[G\left(a, \frac{a+b}{2}\right)-g(a)\right] f(a)-\left[g(b)-G\left(\frac{a+b}{2}, b\right)\right] f(b) \\
&=-\frac{(b-a)^{3}}{96}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)\right]
\end{align*}
$$

where $G(\alpha, \beta):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t$.

Corollary 3. In Corollary 2, let $g(t)=t$, for all $t \in[a, b]$, then we have:

$$
\begin{align*}
\int_{a}^{b} f(t) d t-\frac{(b-a)}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)\right. & +f(b)] \tag{3.7}\\
& =-\frac{(b-a)^{3}}{96}\left[f^{\prime \prime}\left(\xi_{1}\right)+f^{\prime \prime}\left(\xi_{2}\right)\right]
\end{align*}
$$

Theorem 6. Suppose that $f^{\prime \prime}$ and $g^{\prime \prime}$ are continuous on $[a, b]$ and that g is monotonic on $[a, x]$ and $[x, b]$. Then there exist $\xi_{1}, \eta_{1}, \tau_{1}, \sigma_{1} \in(a, x)$ and $\xi_{2}, \eta_{2}, \tau_{2}, \sigma_{2} \in$ (x, b) such that

$$
\begin{align*}
& \int_{a}^{b} f(t) g^{\prime}(t) d t \tag{3.8}\\
&-\left[\frac{g(x)-g(a)}{2} f(a)+\frac{g(b)-g(a)}{2} f(x)+\frac{g(b)-g(x)}{2} f(b)\right] \\
&=f^{\prime}\left(\tau_{1}\right) g^{\prime \prime}\left(\sigma_{1}\right) \frac{(x-a)^{2}}{12}+f^{\prime}\left(\tau_{2}\right) g^{\prime \prime}\left(\sigma_{2}\right) \frac{(b-x)^{2}}{12} \\
&-\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right]
\end{align*}
$$

Proof. Apply the classical Trapezoid rule to get

$$
G(a, x)=\frac{1}{x-a} \int_{a}^{x} g(t) d t=\frac{g(a)+g(x)}{2}-g^{\prime \prime}\left(\sigma_{1}\right) \frac{(x-a)^{2}}{12}
$$

for some $\sigma_{1} \in(a, x)$, and

$$
G(x, b)=\frac{1}{b-x} \int_{x}^{b} g(t) d t=\frac{g(x)+g(b)}{2}-g^{\prime \prime}\left(\sigma_{2}\right) \frac{(b-x)^{2}}{12}
$$

for some $\sigma_{2} \in(x, b)$. Therefore, by Theorem 5 we have

$$
\begin{aligned}
& \int_{a}^{b} f(t) g^{\prime}(t) d t \\
& =[G(a, x)-g(a)] f(a)+[G(x, b)-G(a, x)] f(x)+[g(b)-G(x, b)] f(b) \\
& \quad-\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right] \\
& = \\
& {\left[\frac{g(a)+g(x)}{2}-g^{\prime \prime}\left(\sigma_{1}\right) \frac{(x-a)^{2}}{12}-g(a)\right] f(a)} \\
& \\
& \quad+\left[\frac{g(x)+g(b)}{2}-g^{\prime \prime}\left(\sigma_{2}\right) \frac{(b-x)^{2}}{12}-\frac{g(a)+g(x)}{2}+g^{\prime \prime}\left(\sigma_{1}\right) \frac{(x-a)^{2}}{12}\right] f(x) \\
& \quad+\left[g(b)-\frac{g(x)+g(b)}{2}+g^{\prime \prime}\left(\sigma_{2}\right) \frac{(b-x)^{2}}{12}\right] f(b) \\
& \\
& \quad-\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{g(x)-g(a)}{2} f(a)+\frac{g(b)-g(a)}{2} f(x)+\frac{g(b)-g(x)}{2} f(b) \\
& +g^{\prime \prime}\left(\sigma_{1}\right) \frac{(x-a)^{2}}{12}[f(x)-f(a)]+g^{\prime \prime}\left(\sigma_{2}\right) \frac{(b-x)^{2}}{12}[f(b)-f(x)] \\
& -\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right] \\
= & \frac{g(x)-g(a)}{2} f(a)+\frac{g(b)-g(a)}{2} f(x)+\frac{g(b)-g(x)}{2} f(b) \\
& +f^{\prime}\left(\tau_{1}\right) g^{\prime \prime}\left(\sigma_{1}\right) \frac{(x-a)^{2}}{12}+f^{\prime}\left(\tau_{2}\right) g^{\prime \prime}\left(\sigma_{2}\right) \frac{(b-x)^{2}}{12} \\
& -\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right]
\end{aligned}
$$

which follows by the Mean Value Theorem, for some $\tau_{1} \in(a, x)$ and $\tau_{2} \in(x, b)$.
Corollary 4. In Theorem 6, choose $g(t)=t$, to get

$$
\begin{align*}
\int_{a}^{b} f(t) d t-\frac{(b-a)}{2}[f(x)+ & \left.\frac{(x-a) f(a)+(b-x) f(b)}{b-a}\right] \tag{3.9}\\
& =-\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right)(b-x)^{3}\right]
\end{align*}
$$

for all $x \in(a, b)$.
3.2. B. Consider the quadrature rule

$$
\begin{equation*}
\mathcal{L}(f, g ; x):=\int_{a}^{b} f(t) g^{\prime}(t) d t-[g(x)-g(a)] f\left(c_{1}\right)-[g(b)-g(x)] f\left(c_{2}\right) \tag{3.10}
\end{equation*}
$$

where, $c_{1} \in[a, x]$ and $c_{2} \in[x, b]$, are given by

$$
c_{1}=\frac{x g(x)-a g(a)-\int_{a}^{x} g(t) d t}{g(x)-g(a)} \quad \text { and } \quad c_{2}=\frac{b g(b)-x g(x)-\int_{x}^{b} g(t) d t}{g(b)-g(x)}
$$

for all $a<x<b$.
Theorem 7. Suppose that $f^{\prime \prime}$ and g^{\prime} are continuous on $[a, b]$ and that g is monotonic on $[a, x]$ and $[x, b]$. Then there exist $\xi_{1}, \eta_{1} \in(a, x)$ and $\xi_{2}, \eta_{2} \in(x, b)$ such that

$$
\begin{equation*}
\mathcal{L}(f, g ; x)=-\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right] \tag{3.11}
\end{equation*}
$$

for all $a<x<b$.
Proof. Fix $x \in(a, b)$, so that

$$
\begin{equation*}
\int_{a}^{b} f(t) g^{\prime}(t) d t=\int_{a}^{x} f(t) g^{\prime}(t) d t+\int_{x}^{b} f(t) g^{\prime}(t) d t \tag{3.12}
\end{equation*}
$$

For the first integral on the right hand side of 3.12 , consider the functions

$$
h_{1}(t)= \begin{cases}g(t)-g(a), & t \in\left[a, c_{1}\right] \\ g(t)-g(x), & t \in\left(c_{1}, x\right]\end{cases}
$$

and therefore we observe that for $H_{1}(t)=\int_{a}^{t} h(u) d u$, where $t \in[a, x]$, we have $H_{1}(a)=H_{1}(x)=0$; as we pointed out previously.

$$
\int_{a}^{x} f(t) g^{\prime}(t) d t-f\left(c_{1}\right)[g(x)-g(a)]=\int_{a}^{x} H_{1}(t) f^{\prime \prime}(t) d t
$$

and since g is monotonic on $[a, x]$ then H_{1} does not change sign on $[a, x]$. So by the First Mean Value Theorem for integrals, there is $\xi_{1} \in(a, x)$ such that

$$
\int_{a}^{x} f(t) g^{\prime}(t) d t-f\left(c_{1}\right)[g(x)-g(a)]=f^{\prime \prime}\left(\xi_{1}\right) \int_{a}^{x} H_{1}(t) d t
$$

Applying the classical Trapezoid Rule to $\int_{a}^{x} H_{1}(t) d t$, on the right side above

$$
\begin{aligned}
& \int_{a}^{x} f(t) g^{\prime}(t) d t-f\left(c_{1}\right)[g(x)-g(a)] \\
& =f^{\prime \prime}\left(\xi_{1}\right) \int_{a}^{x} H_{1}(t) d t \\
& =f^{\prime \prime}\left(\xi_{1}\right)\left[\frac{H_{1}(a)+H_{1}(x)}{2}(x-a)-H_{1}^{\prime \prime}\left(\eta_{1}\right) \frac{(x-a)^{3}}{12}\right]
\end{aligned}
$$

for some $\eta_{1} \in(a, x)$. Since $H_{1}^{\prime \prime}=g^{\prime}$ and $H_{1}(a)=H_{1}(x)=0$, then

$$
\begin{equation*}
\int_{a}^{x} f(t) g^{\prime}(t) d t-f\left(c_{1}\right)[g(x)-g(a)]=-f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right) \frac{(x-a)^{3}}{12} \tag{3.13}
\end{equation*}
$$

Now, for the second integral on the right hand side of (3.12), consider the functions

$$
h_{2}(t)= \begin{cases}g(t)-g(x), & t \in\left[x, c_{2}\right] \\ g(t)-g(b), & t \in\left(c_{2}, b\right]\end{cases}
$$

and therefore we observe that for $H_{2}(t)=\int_{a}^{t} h_{2}(u) d u$, where $t \in[x, b]$, we have $H_{2}(x)=H_{2}(b)=0$. By repeating the above argument we get that

$$
\begin{equation*}
\int_{x}^{b} f(t) g^{\prime}(t) d t-f\left(c_{2}\right)[g(b)-g(x)]=-f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right) \frac{(b-x)^{3}}{12} \tag{3.14}
\end{equation*}
$$

and thus by adding (3.13) and (3.14), the right-hand side of 3.11 is proved.
In particular, for

$$
\begin{aligned}
\mathcal{L}\left(f, g ; \frac{a+b}{2}\right):= & \int_{a}^{b} f(t) g^{\prime}(t) d t \\
& -\left[g\left(\frac{a+b}{2}\right)-g(a)\right] f\left(c_{1}\right)-\left[g(b)-g\left(\frac{a+b}{2}\right)\right] f\left(c_{2}\right),
\end{aligned}
$$

so that, we have the following bound:

$$
\begin{equation*}
\mathcal{L}\left(f, g ; \frac{a+b}{2}\right)=-\frac{(b-a)^{3}}{96}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)\right] \tag{3.15}
\end{equation*}
$$

where, $c_{1}, \xi_{1}, \eta_{1} \in\left[a, \frac{a+b}{2}\right]$ and $c_{2}, \xi_{2}, \eta_{2} \in\left[\frac{a+b}{2}, b\right]$.

Corollary 5. In Theorem 7, let $g(t)=t$, for all $t \in[a, b]$, then we have:

$$
\begin{align*}
\int_{a}^{b} f(t) d t-\frac{(b-a)}{2}\left[f\left(\frac{3 a+b}{4}\right)+f\right. & \left.\left(\frac{a+3 b}{4}\right)\right] \tag{3.16}\\
& =-\frac{(b-a)^{3}}{96}\left[f^{\prime \prime}\left(\xi_{1}\right)+f^{\prime \prime}\left(\xi_{2}\right)\right]
\end{align*}
$$

References

[1] M.W. Alomari, Some Grüss type inequalities for Riemann-Stieltjes integral and applications, Acta Mathematica Universitatis Comenianae, 81 (2) (2012), 211-220.
[2] M.W. Alomari, A companion of Dragomir's generalization of Ostrowski's inequality and applications in numerical integration, Ukrainian Math. J., 64(4) 2012, 491-510.
[3] M.W. Alomari, A companion of Ostrowski's inequality for the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$, where f is of bounded variation and u is of r - H-Hölder type and applications, Appl. Math. Comput., 219 (2013), 4792-4799.
[4] M.W. Alomari, A companion of Ostrowski's inequality for the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$, where f is of r - H-Hölder type and u is of bounded variation and applications, submitted. Avalibale at: http://ajmaa.org/RGMIA/papers/v14/v14a59.pdf.
[5] M.W. Alomari, New sharp inequalities of Ostrowski and generalized trapezoid type for the Riemann-Stieltjes integrals and applications, submitted. Avaliable at: http://ajmaa.org/RGMIA/papers/v15/v15a42.pdf
[6] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink, Comparing two integral means for absolutely continuous mappings whose derivatives are in $L_{\infty}[a, b]$ and applications, Comp. and Math. Appl., 44 (1/2) (2002), 241-251.
[7] N.S. Barnett, S.S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalised trapezoid inequalities, Math. and Comp. Mode., 50 (2009), 179-187.
[8] N.S. Barnett, W.-S. Cheung, S.S. Dragomir, A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators, Comp. Math. Appl. , 57 (2009), 195-201.
[9] P. Cerone and S.S. Dragomir, Differences between means with bounds from a RiemannStieltjes integral, Comp. Math. Appl., 46 (2003) 445-453.
[10] P. Cerone, W.S. Cheung, S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation, Comp. Math. Appl., 54 (2007), 183-191.
[11] P. Cerone, S.S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in: C. Gulati, et al. (Eds.), Advances in Statistics Combinatorics and Related Areas, World Science Publishing, 2002, pp. 53-62.
[12] P. Cerone, S.S. Dragomir, Approximating the Riemann-Stieltjes integral via some moments of the integrand, Mathematical and Computer Modelling, 49 (2009), 242-248.
[13] P. Cerone, S.S. Dragomir and C.E.M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk. J. Math., 24 (2000), 147-163.
[14] W.-S. Cheung and S.S. Dragomir, Two Ostrowski type inequalities for the Stieltjes integral of monotonic functions, Bull. Austral. Math. Soc., 75 (2007), 299-311.
[15] S.S. Dragomir, Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60 (1999) 495-508.
[16] S.S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5 (2001), 35-45.
[17] S.S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltes integral and applications, Korean J. Comput. \&s Appl. Math., 7 (2000), 611-627.
[18] S.S. Dragomir, C. Buşe, M.V. Boldea and L. Braescu, A generalisation of the trapezoid rule for the Riemann-Stieltjes integral and applications, Nonlinear Anal. Forum, 6 (2) (2001) 337-351.
[19] S.S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral, Nonlinear Anal., 47 (4) (2001), 2333-2340.
[20] S.S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation, Arch. Math., 91 (2008), 450-460
[21] S.S. Dragomir, Approximating the Riemann-Stieltjes integral in terms of generalised trapezoidal rules, Nonlinear Anal. TMA 71 (2009), e62-e72.
[22] S.S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications, Mathematical and Computer Modelling 54 (2011), 243-260.
[23] S.S. Dragomir, I. Fedotov, An inequality of Grüss type for Riemann-Stieltjes integral and applications for special means, Tamkang J. Math., 29 (4) (1998) 287-292
[24] Z. Liu, Another generalization of weighted Ostrowski type inequality for mappings of bounded variation, Appl. Math. Lett. 25 (2012) 393-397.
[25] W.-J. Liu, Some weighted integral inequalities with a parameter and applications, Acta Appl Math., 109 (2010), 389-400.
[26] R.P. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral, J. Math. Anal. Appl., (344) (2008), 921-927.
[27] K.L. Tseng, S.R. Hwang, S.S. Dragomir, Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications, Computers and Mathematics with Applications, 55 (2008) 1785-1793.
[28] K.L. Tseng, Improvements of some inequalites of Ostrowski type and their applications, Taiwanese J. Math., 12(9)(2008), 2427-2441.
[29] K.L. Tseng, S.R. Hwang, G.S. Yang and Y.M. Chou, Improvements of the Ostrowski integral inequality for mappings of bounded variation I, Appl. Math. Comp. 217 (2010) 2348-2355.
${ }^{1}$ Department of Mathematics, Faculty of Science, Jerash University, 26150 Jerash, Jordan.

E-mail address: mwomath@gmail.com
${ }^{2}$ Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.
${ }^{3}$ School of Computational \& Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

E-mail address: sever.dragomir@vu.edu.au

[^0]: Date: February 6, 2013.
 2000 Mathematics Subject Classification. 26D10, 26D15.
 Key words and phrases. Ostrowski's inequality, Hermite-Hadamard inequality, Stieltjes integral.

