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Abstract. In this paper, three point quadrature rules for the Riemann–

Stieltjes integral are introduced. Applications to numerical integration are
provided as well.

1. Introduction

In 2000, Dragomir [17] introduced the following quadrature rule:∫ b

a

f (t) du (t) ∼= f (x) [u (b)− u (a)] ,∀x ∈ [a, b]

For several error bounds for this quadrature under various assumptions to the func-
tion involved the reader may refer to [7, 8], [10]–[17], [24, 25], [27]–[29], and the
references therein, as well as the recent work [3].

From a different point of view, the authors of [18] considered the problem of ap-
proximating the Riemann–Stieltjes integral

∫ b

a
f (t) du (t) via the generalized trape-

zoid rule [u (x)− u (a)] f (a) + [u (b)− u (x)] f (b), i.e.,∫ b

a

f (t) du (t) ∼= [u (x)− u (a)] f (a) + [u (b)− u (x)] f (b) ,∀x ∈ [a, b].

For various bounds of the above generalized trapezoid rule the reader may refer to
[18]–[22] and the references therein. For new quadrature rules regarding Riemann–
Stieltjes integral see [1], [2] and [4].

In order to approximate the Riemann–Stieltjes integral
∫ b

a
f (x) du (x) by the

Riemann integral
∫ b

a
f (t) dt, Dragomir and Fedotov [23], introduced the following

functional:

D (f ;u) :=
∫ b

a

f (x) du (x)− u (b)− u (a)
b− a

∫ b

a

f (t) dt,(1.1)

provided that the Riemann–Stieltjes integral
∫ b

a
f (x) du (x) and the Riemann inte-

gral
∫ b

a
f (t) dt exist.

In the same paper [23], the authors have proved the following inequality:
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Theorem 1. Let f, u : [a, b] → R be such that u is of bounded variation on [a, b]
and f is Lipschitzian with the constant K > 0. Then we have

|D (f ;u)| ≤ 1
2
K (b− a)

b∨
a

(u) .(1.2)

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.

In [21], Dragomir has obtained the following inequality as well:

Theorem 2. Let f, u : [a, b] → R be such that u is Lipschitzian on [a, b], i.e.,

|u (y)− u (x)| ≤ L |x− y| ,∀x, y ∈ [a, b], (L > 0)

and f is Riemann integrable on [a, b].
If m,M ∈ R, are such that m ≤ f(x) ≤ M , for any x ∈ [a, b], then

|D (f ;u)| ≤ 1
2
L (M −m) (b− a) .(1.3)

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.

In [26], Mercer has introduced new midpoint and trapezoid type rules for the
Riemann–Stieltjes integral which engender a natural generalization of Hadamard’s
integral inequality, as follows:

Theorem 3. Let g be continuous and increasing on [a, b], let c ∈ [a, b] which
satisfies ∫ b

a

g (t) dt = (c− a) g (a) + (b− c) g (b) .

If f ′′ ≥ 0, then we have

f (c) [g (b)− g (a)] ≤
∫ b

a

fdg ≤ [G− g (a)] f (a) + [g (b)−G] f (b)(1.4)

where, G := 1
b−a

∫ b

a
g (t) dt.

However, it seems that Mercer didn’t notice that the following relation between
the right-hand side of (1.4) and D (g; f), exists

(1.5)
∫ b

a

f (t) dg (t)− [G− g (a)] f (a)− [g (b)−G] f (b)

=
f (b)− f (a)

b− a

∫ b

a

g (t) dt−
∫ b

a

g (t) df (t) := −D (g; f) .

This follows by integration by parts formula∫ b

a

f (t) dg (t) = f (b) g (b)− f (a) g (a)−
∫ b

a

g (t) df (t).

Motivated by [26], in this paper several new inequalities of Hermite–Hadamard
type and new approximations for the Riemann–Stieltjes integral via three point
quadrature rules are established. The idea of the results and the analysis of the
proofs follows in a similar manner to that one used in [26]. However, the obtained
results in this work, are completely different and independent from those established
in [26].
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2. Introducing quadrature rules for Riemann–Stieltjes integral

To establish a three-point quadrature rule for the Riemann–Stieltjes integral, let
us seek numbers A,B,C and D such that∫ b

a

f (t) dg (t) =
∫ x

a

f (t) dg (t) +
∫ b

x

f (t) dg (t)(2.1)

with ∫ x

a

f (t) dg (t) ∼= Af (a) + Bf (x)(2.2)

and ∫ b

x

f (t) dg (t) ∼= Cf (x) + Df (b)(2.3)

for all x ∈ (a, b).
To find the scalars A,B,C and D, let f(t) = 1 and then f(t) = t in (2.2) and

(2.3); respectively. By simple calculations we get

A =
1

x− a

∫ x

a

g (t) dt− g (a) , B = g (x)− 1
x− a

∫ x

a

g (t) dt

C =
1

b− x

∫ b

x

g (t) dt− g (x) , D = g (b)− 1
b− x

∫ b

x

g (t) dt

and therefore we have∫ b

a

f (t) dg (t) ∼=

[
1

b− x

∫ b

x

g (t) dt− 1
x− a

∫ x

a

g (t) dt

]
f (x)

+
[

1
x− a

∫ x

a

g (t) dt− g (a)
]

f (a)

+

[
g (b)− 1

b− x

∫ b

x

g (t) dt

]
f (b) .(2.4)

for all a < x < b.

Theorem 4. Fix x ∈ (a, b). Let g be continuous on [a, b] and monotonic nonde-
creasing on [a, x] and [x, b] (it may not be monotonic nondecreasing on the whole
of [a, b]). Let c1 ∈ [a, x] and c2 ∈ [x, b], be such that

c1 =
xg (x)− ag (a)−

∫ x

a
g (t) dt

g (x)− g (a)
and c2 =

bg (b)− xg (x)−
∫ b

x
g (t) dt

g (b)− g (x)
.

If f ′′ ≥ 0, then we have

[g (x)− g (a)] f (c1) + [g (b)− g (x)] f (c2)

≤
∫ b

a

f (t) dg (t)(2.5)

≤ [G (a, x)− g (a)] f (a) + [G (x, b)−G (a, x)] f (x)

+ [g (b)−G (x, b)] f (b) ,

for all a < x < b, where G (α, β) := 1
β−α

∫ β

α
g (t) dt.
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Proof. The argument of the proof is similar to the proof of Theorem 3. We first
prove the right-hand inequality. Fix x ∈ (a, b), so that∫ b

a

f (t) dg (t) =
∫ x

a

f (t) dg (t) +
∫ b

x

f (t) dg (t).

Let h1 (t) = g (t) − G (a, x) and H1 (t) :=
∫ t

a
h (u) du, t ∈ [a, x]. Using integration

by parts twice, and the fact that H1 (a) = H1 (x) = 0, we get that∫ x

a

f (t) dg (t)− f (t) [g (t)−G (a, x)]|xa

=
∫ x

a

f (t) d [g (t)−G (a, x)]− f (t) [g (t)−G (a, x)]|xa

= −
∫ x

a

[g (t)−G (a, x)] df (t)

= −
∫ x

a

f ′ (t) dH1 (t)

=
∫ x

a

H1 (t) df ′ (t)− H1 (t) f ′ (t)|xa

=
∫ x

a

H1 (t) f ′′ (t) dt.

Now, since f ′′ ≥ 0, its enough to show that H1 ≤ 0, so that the right-hand inequality
is proved, i.e., ∫ x

a

f (t) dg (t)− f (t) [g (t)−G (a, x)]|xa ≤ 0.(2.6)

To do this, since g is increasing on [a, x] then by the First Mean Value Theorem for
integrals there exists a unique τ ∈ (a, x) such that g (τ) = G (a, x). For s ∈ [a, τ ],
we have H1 (s) =

∫ s

a
[g (t)−G (a, x)] dt ≤ 0 and for s ∈ [τ, x], we also have

H1 (s) =
∫ τ

a

[g (t)−G (a, x)] dt +
∫ s

τ

[g (t)−G (a, x)] dt

= −
∫ x

τ

[g (t)−G (a, x)] dt +
∫ s

τ

[g (t)−G (a, x)] dt

= −
∫ x

s

[g (t)−G (a, x)] dt

= −
∫ x

s

g (t) dt + (x− s) G (a, x)

= − (x− s) g (s) + (x− s) G (a, x) ≤ 0,

which proves that H1 ≤ 0.
Now, for the integral

∫ b

x
f (t) dg (t), we may define h2 (t) = g (t) − G (x, b) and

H2 (t) :=
∫ t

x
h (u) du, t ∈ [x, b]. By repeating the above argument we get that∫ b

x

f (t) dg (t)− f (t) [g (t)−G (x, b)]|bx ≤ 0(2.7)

and thus by adding (2.6) and (2.7), the right-hand side of (2.5) is proved.
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To prove the left-hand side of (2.5), fix x ∈ (a, b) and define the mapping

h1 (t) =

 g (t)− g (a) , t ∈ [a, c1]

g (t)− g (x) , t ∈ (c1, x]

and therefore we observe that for H1(t) =
∫ t

a
h(u)du, where t ∈ [a, x], we have

H1(a) = 0 and since

H1 (x) =
∫ x

a

h (u) du =
∫ c1

a

(g (u)− g (a)) du +
∫ x

c1

(g (u)− g (x)) du

=
∫ x

a

g (u) du− (c1 − a) g (a)− (x− c1) g (x) = 0

by our choice of c1.
Now, using integration by parts (twice) we may write∫ x

a

f (t) dg (t)−f (c1) [g (x)− g (a)] =
∫ x

a

H1 (t) f ′′ (t) dt.(2.8)

Claiming that H1 ≥ 0, then by given hypothesis f ′′ ≥ 0 and so∫ x

a

f (t) dg (t)−f (c1) [g (x)− g (a)] ≥ 0(2.9)

which therefore, prove the left-hand inequality.
To prove our claim, let y ∈ [a, c1], since g is monotonic nondecreasing on [a, x],

then we have

H1 (y) =
∫ y

a

(g (u)− g (a)) du.

Also, for y ∈ (c1, x], we have

H1 (y) =
∫ c1

a

(g (u)− g (a)) du +
∫ y

c1

(g (u)− g (x)) du

=
∫ y

a

g (u) du− (c1 − a) g (a)− (y − c1) g (x)

=
∫ x

a

g (u) du− (c1 − a) g (a)−
∫ x

y

g (u) du− (y − c1) g (y)

=
∫ x

a

g (u) du− (c1 − a) g (a)−
∫ x

y

g (u) du− (y − c1) g (y)

= g (x) (x− c1)−
∫ x

y

g (u) du− (y − c1) g (y)

= g (x) (x− y)−
∫ x

y

g (u) du ≥ 0,

again since g is increasing. So that the claim is proved.
In a similar way, define the mapping

h2 (t) =

 g (t)− g (x) , t ∈ [x, c2]

g (t)− g (b) , t ∈ (c2, b]
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and therefore we observe that for H2(t) =
∫ b

t
h2(u)du, where t ∈ [x, b], H2(x) = 0

and H2(b) = 0. Similarly as above we have∫ b

x

f (t) dg (t)−f (c2) [g (b)− g (x)] =
∫ b

x

H2 (t) f ′′ (t) dt.(2.10)

Claiming that H2 ≥ 0, then by given hypothesis f ′′ ≥ 0,∫ b

x

f (t) dg (t)−f (c2) [g (b)− g (x)] ≥ 0.(2.11)

By repeating the above argument we can prove last claim. So that adding (2.9)
and (2.12), we get∫ b

a

f (t) dg (t)− {[g (x)− g (a)] f (c1) + [g (b)− g (x)] f (c2)} ≥ 0,(2.12)

which therefore, prove the left-hand side of (2.5). �

Corollary 1. In Theorem 4, choose g (t) = t, t ∈ [a, b], then we have the inequality:

1
b− a

[
(x− a) f

(
a + x

2

)
+ (b− x) f

(
x + b

2

)]
≤ 1

b− a

∫ b

a

f (t) dt(2.13)

≤ 1
2

[
f (x) +

(x− a) f (a) + (b− x) f (b)
b− a

]
for all a < x < b. Moreover, if we choose x = a+b

2 , then we get

1
2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
≤ 1

b− a

∫ b

a

f (t) dt

≤ 1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
.(2.14)

3. Representation of the Error for Differentiable g

3.1. A. Consider the quadrature rule

R (f, g;x) :=
∫ b

a

f (t) g′ (t) dt− [G (a, x)− g (a)] f (a)(3.1)

− [G (x, b)−G (a, x)] f (x)− [g (b)−G (x, b)] f (b) ,

where, G (α, β) := 1
β−α

∫ β

α
g (t) dt.

Theorem 5. Suppose that f ′′ and g′ are continuous on [a, b] and that g is mono-
tonic on [a, x] and [x, b]. Then there exist ξ1, η1 ∈ (a, x) and ξ2, η2 ∈ (x, b) such
that ∫ b

a

f (t) g′ (t) dt− [G (a, x)− g (a)] f (a)− [G (x, b)−G (a, x)] f (x)

− [g (b)−G (x, b)] f (b)

= − 1
12

[
f ′′ (ξ1) g′ (η1) (x− a)3 + f ′′ (ξ2) g′ (η2) (b− x)3

]
,(3.2)

for all a < x < b, where G (α, β) := 1
β−α

∫ β

α
g (t) dt.
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Proof. Fix x ∈ (a, b), so that∫ b

a

f (t) g′ (t) dt =
∫ x

a

f (t) g′ (t) dt +
∫ b

x

f (t) g′ (t) dt.(3.3)

For the first integral on the right hand side of (3.3), consider the functions h1 (t) =
g (t)−G (a, x) and H1 (t) :=

∫ t

a
h (u) du, t ∈ [a, x]. As we pointed out previously,∫ x

a

f (t) g′ (t) dt− f (t) [g (t)−G (a, x)]|xa =
∫ x

a

H1 (t) f ′′ (t) dt

and since g is monotonic on [a, x] then H1 does not change sign on [a, x]. So by the
First Mean Value Theorem for integrals, there is ξ1 ∈ (a, x) such that∫ x

a

f (t) g′ (t) dt− f (t) [g (t)−G (a, x)]|xa = f ′′ (ξ1)
∫ x

a

H1 (t) dt.

Applying the classical Trapezoid Rule to
∫ x

a
H1(t)dt, on the right side above we

have ∫ x

a

f (t) g′ (t) dt− f (t) [g (t)−G (a, x)]|xa

= f ′′ (ξ1)
∫ x

a

H1 (t) dt

= f ′′ (ξ)

[
H (a) + H (x)

2
(x− a)−H ′′ (η1)

(x− a)3

12

]
for some η1 ∈ (a, x). Since H ′′

1 = g′ and H1(a) = H1(x) = 0, then∫ x

a

f (t) g′ (t) dt− f (t) [g (t)−G (a, x)]|xa = −f ′′ (ξ1) g′ (η1)
(x− a)3

12
.(3.4)

Now, for the second integral on the right hand side of (3.3), consider the functions
h2 (t) = g (t)−G (x, b) and H2 (t) :=

∫ t

x
h (u) du, t ∈ [x, b]. By repeating the above

argument we get that∫ b

x

f (t) g′ (t) dt− f (t) [g (t)−G (x, b)]|bx = −f ′′ (ξ2) g′ (η2)
(b− x)3

12
,(3.5)

and thus by adding (3.4) and (3.5), the right-hand side of (3.8) is proved. �

Corollary 2. Suppose that f ′′ and g′ are continuous on [a, b] and that g is mono-
tonic on

[
a, a+b

2

]
and

[
a+b
2 , b

]
. Then there exist ξ1, η1 ∈

(
a, a+b

2

)
and ξ2, η2 ∈(

a+b
2 , b

)
such that

(3.6)
∫ b

a

f (t) g′ (t) dt−
[
G

(
a + b

2
, b

)
−G

(
a,

a + b

2

)]
f

(
a + b

2

)
−

[
G

(
a,

a + b

2

)
− g (a)

]
f (a)−

[
g (b)−G

(
a + b

2
, b

)]
f (b)

= − (b− a)3

96
[f ′′ (ξ1) g′ (η1) + f ′′ (ξ2) g′ (η2)] ,

where G (α, β) := 1
β−α

∫ β

α
g (t) dt.



8 ALOMARI AND DRAGOMIR

Corollary 3. In Corollary 2, let g(t) = t, for all t ∈ [a, b], then we have:

(3.7)
∫ b

a

f (t) dt− (b− a)
4

[
f (a) + 2f

(
a + b

2

)
+ f (b)

]
= − (b− a)3

96
[f ′′ (ξ1) + f ′′ (ξ2)] .

Theorem 6. Suppose that f ′′ and g′′ are continuous on [a, b] and that g is mono-
tonic on [a, x] and [x, b]. Then there exist ξ1, η1, τ1, σ1 ∈ (a, x) and ξ2, η2, τ2, σ2 ∈
(x, b) such that∫ b

a

f (t) g′ (t) dt(3.8)

−
[
g (x)− g (a)

2
f (a) +

g (b)− g (a)
2

f (x) +
g (b)− g (x)

2
f (b)

]
= f ′ (τ1) g′′ (σ1)

(x− a)2

12
+ f ′ (τ2) g′′ (σ2)

(b− x)2

12

− 1
12

[
f ′′ (ξ1) g′ (η1) (x− a)3 + f ′′ (ξ2) g′ (η2) (b− x)3

]
.

Proof. Apply the classical Trapezoid rule to get

G (a, x) =
1

x− a

∫ x

a

g (t) dt =
g (a) + g (x)

2
− g′′ (σ1)

(x− a)2

12

for some σ1 ∈ (a, x), and

G (x, b) =
1

b− x

∫ b

x

g (t) dt =
g (x) + g (b)

2
− g′′ (σ2)

(b− x)2

12

for some σ2 ∈ (x, b). Therefore, by Theorem 5 we have

∫ b

a

f (t) g′ (t) dt

= [G (a, x)− g (a)] f (a) + [G (x, b)−G (a, x)] f (x) + [g (b)−G (x, b)] f (b)

− 1
12

[
f ′′ (ξ1) g′ (η1) (x− a)3 + f ′′ (ξ2) g′ (η2) (b− x)3

]
=

[
g (a) + g (x)

2
− g′′ (σ1)

(x− a)2

12
− g (a)

]
f (a)

+

[
g (x) + g (b)

2
− g′′ (σ2)

(b− x)2

12
− g (a) + g (x)

2
+ g′′ (σ1)

(x− a)2

12

]
f (x)

+

[
g (b)− g (x) + g (b)

2
+ g′′ (σ2)

(b− x)2

12

]
f (b)

− 1
12

[
f ′′ (ξ1) g′ (η1) (x− a)3 + f ′′ (ξ2) g′ (η2) (b− x)3

]
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=
g (x)− g (a)

2
f (a) +

g (b)− g (a)
2

f (x) +
g (b)− g (x)

2
f (b)

+ g′′ (σ1)
(x− a)2

12
[f (x)− f (a)] + g′′ (σ2)

(b− x)2

12
[f (b)− f (x)]

− 1
12

[
f ′′ (ξ1) g′ (η1) (x− a)3 + f ′′ (ξ2) g′ (η2) (b− x)3

]
=

g (x)− g (a)
2

f (a) +
g (b)− g (a)

2
f (x) +

g (b)− g (x)
2

f (b)

+ f ′ (τ1) g′′ (σ1)
(x− a)2

12
+ f ′ (τ2) g′′ (σ2)

(b− x)2

12

− 1
12

[
f ′′ (ξ1) g′ (η1) (x− a)3 + f ′′ (ξ2) g′ (η2) (b− x)3

]
which follows by the Mean Value Theorem, for some τ1 ∈ (a, x) and τ2 ∈ (x, b). �

Corollary 4. In Theorem 6, choose g(t) = t, to get

(3.9)
∫ b

a

f (t) dt− (b− a)
2

[
f (x) +

(x− a) f (a) + (b− x) f (b)
b− a

]
= − 1

12

[
f ′′ (ξ1) (x− a)3 + f ′′ (ξ2) (b− x)3

]
,

for all x ∈ (a, b).

3.2. B. Consider the quadrature rule

(3.10) L (f, g;x) :=
∫ b

a

f (t) g′ (t) dt− [g (x)− g (a)] f (c1)− [g (b)− g (x)] f (c2)

where, c1 ∈ [a, x] and c2 ∈ [x, b], are given by

c1 =
xg (x)− ag (a)−

∫ x

a
g (t) dt

g (x)− g (a)
and c2 =

bg (b)− xg (x)−
∫ b

x
g (t) dt

g (b)− g (x)
,

for all a < x < b.

Theorem 7. Suppose that f ′′ and g′ are continuous on [a, b] and that g is mono-
tonic on [a, x] and [x, b]. Then there exist ξ1, η1 ∈ (a, x) and ξ2, η2 ∈ (x, b) such
that

L (f, g;x) = − 1
12

[
f ′′ (ξ1) g′ (η1) (x− a)3 + f ′′ (ξ2) g′ (η2) (b− x)3

]
,(3.11)

for all a < x < b.

Proof. Fix x ∈ (a, b), so that∫ b

a

f (t) g′ (t) dt =
∫ x

a

f (t) g′ (t) dt +
∫ b

x

f (t) g′ (t) dt.(3.12)

For the first integral on the right hand side of (3.12), consider the functions

h1 (t) =

 g (t)− g (a) , t ∈ [a, c1]

g (t)− g (x) , t ∈ (c1, x]
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and therefore we observe that for H1(t) =
∫ t

a
h(u)du, where t ∈ [a, x], we have

H1 (a) = H1 (x) = 0; as we pointed out previously.∫ x

a

f (t) g′ (t) dt− f (c1) [g (x)− g (a)] =
∫ x

a

H1 (t) f ′′ (t) dt

and since g is monotonic on [a, x] then H1 does not change sign on [a, x]. So by the
First Mean Value Theorem for integrals, there is ξ1 ∈ (a, x) such that∫ x

a

f (t) g′ (t) dt− f (c1) [g (x)− g (a)] = f ′′ (ξ1)
∫ x

a

H1 (t) dt.

Applying the classical Trapezoid Rule to
∫ x

a
H1(t)dt, on the right side above∫ x

a

f (t) g′ (t) dt− f (c1) [g (x)− g (a)]

= f ′′ (ξ1)
∫ x

a

H1 (t) dt

= f ′′ (ξ1)

[
H1 (a) + H1 (x)

2
(x− a)−H ′′

1 (η1)
(x− a)3

12

]
for some η1 ∈ (a, x). Since H ′′

1 = g′ and H1(a) = H1(x) = 0, then∫ x

a

f (t) g′ (t) dt− f (c1) [g (x)− g (a)] = −f ′′ (ξ1) g′ (η1)
(x− a)3

12
.(3.13)

Now, for the second integral on the right hand side of (3.12), consider the functions

h2 (t) =

 g (t)− g (x) , t ∈ [x, c2]

g (t)− g (b) , t ∈ (c2, b]

and therefore we observe that for H2(t) =
∫ t

a
h2(u)du, where t ∈ [x, b], we have

H2 (x) = H2 (b) = 0. By repeating the above argument we get that∫ b

x

f (t) g′ (t) dt− f (c2) [g (b)− g (x)] = −f ′′ (ξ2) g′ (η2)
(b− x)3

12
,(3.14)

and thus by adding (3.13) and (3.14), the right-hand side of (3.11) is proved. �

In particular, for

L
(

f, g;
a + b

2

)
:=

∫ b

a

f (t) g′ (t) dt

−
[
g

(
a + b

2

)
− g (a)

]
f (c1)−

[
g (b)− g

(
a + b

2

)]
f (c2) ,

so that, we have the following bound:

L
(

f, g;
a + b

2

)
= − (b− a)3

96
[f ′′ (ξ1) g′ (η1) + f ′′ (ξ2) g′ (η2)] .(3.15)

where, c1, ξ1, η1 ∈
[
a, a+b

2

]
and c2, ξ2, η2 ∈

[
a+b
2 , b

]
.
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Corollary 5. In Theorem 7, let g(t) = t, for all t ∈ [a, b], then we have:

(3.16)
∫ b

a

f (t) dt− (b− a)
2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
= − (b− a)3

96
[f ′′ (ξ1) + f ′′ (ξ2)] .
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a f (t) du (t), where f is of r-H-Hölder type and u is of bounded variation and applications,

submitted. Avalibale at: http://ajmaa.org/RGMIA/papers/v14/v14a59.pdf.

[5] M.W. Alomari, New sharp inequalities of Ostrowski and generalized trapezoid type for the

Riemann–Stieltjes integrals and applications, submitted. Avaliable at:
http://ajmaa.org/RGMIA/papers/v15/v15a42.pdf

[6] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink, Comparing two integral means for
absolutely continuous mappings whose derivatives are in L∞[a, b] and applications, Comp.
and Math. Appl., 44 (l/2) (2002), 241–251.

[7] N.S. Barnett, S.S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalised
trapezoid inequalities, Math. and Comp. Mode., 50 (2009), 179–187.

[8] N.S. Barnett, W.-S. Cheung, S.S. Dragomir, A. Sofo, Ostrowski and trapezoid type inequalities

for the Stieltjes integral with Lipschitzian integrands or integrators, Comp. Math. Appl. , 57

(2009), 195–201.

[9] P. Cerone and S.S. Dragomir, Differences between means with bounds from a Riemann–

Stieltjes integral, Comp. Math. Appl., 46 (2003) 445–453.

[10] P. Cerone, W.S. Cheung, S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals

with absolutely continuous integrands and integrators of bounded variation, Comp. Math.
Appl., 54 (2007), 183–191.

[11] P. Cerone, S.S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes

integrals, in: C. Gulati, et al. (Eds.), Advances in Statistics Combinatorics and Related Areas,

World Science Publishing, 2002, pp. 53–62.

[12] P. Cerone, S.S. Dragomir, Approximating the Riemann–Stieltjes integral via some moments
of the integrand, Mathematical and Computer Modelling, 49 (2009), 242–248.

[13] P. Cerone, S.S. Dragomir and C.E.M. Pearce, A generalized trapezoid inequality for functions

of bounded variation, Turk. J. Math., 24 (2000), 147–163.

[14] W.-S. Cheung and S.S. Dragomir, Two Ostrowski type inequalities for the Stieltjes integral
of monotonic functions, Bull. Austral. Math. Soc., 75 (2007), 299–311.

[15] S.S. Dragomir, Ostrowski integral inequality for mappings of bounded variation, Bull. Austral.

Math. Soc., 60 (1999) 495–508.

http://ajmaa.org/RGMIA/papers/v14/v14a59.pdf
http://ajmaa.org/RGMIA/papers/v15/v15a42.pdf


12 ALOMARI AND DRAGOMIR

[16] S.S. Dragomir, On the Ostrowski inequality for Riemann–Stieltjes integral
∫ b

a f(t)du(t) where
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