
NEW INEQUALITIES OF HERMITE-HADAMARD AND FEJÉR
TYPE INEQUALITIES VIA PREINVEXITY

M. A. LATIF

Abstract. Several new weighted inequalities connected with Hermite-Hadamard
and Fejér type inequalities are established for functions whose derivatives in
absolute value are preinvex. The results presented in this paper provide ex-
tensions of those given in earlier works.

1. Introduction

Many inequalities have been established for convex functions but the most fa-
mous is the Hermite-Hadamard inequality, due to its rich geometrical signi�cance
and applications, which is stated as (see [23]):
Let f : I � R! R be a convex mapping and a; b 2 I with a < b. Then

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx � f(a) + f(b)

2
:

Both the inequalities hold in reversed direction if f is concave.
In [7], Fejér gave a weighted generalization of (1.1) as follows:

(1.2) f

�
a+ b

2

�Z b

a

w(x)dx �
Z b

a

f(x)w(x)dx � f(a) + f(b)

2

Z b

a

w(x)dx;

where f : [a; b] ! R be a convex function and f : [a; b] ! R is nonnegative,
integrable and symmetric about x = a+b

2 .
For several results which generalize, improve and extend the inequalities (1.1)

and (1.2) we refer the interested reader [5, 6, 8], [10]-[13], [23, 24], [26]-[31].
In recent years, lot of e¤orts have been made by many mathematicians to gen-

eralize the classical convexity. These studies include among others the work of
Hanson in [9], Ben-Israel and Mond [4], Pini [21], M.A.Noor [18, 19], Yang and Li
[33] and Weir [32]. Mond [5], Weir [32] and Noor [18, 19], have studied the basic
properties of the preinvex functions and their role in optimization, variational in-
equalities and equilibrium problems. Hanson in [9], introduced invex functions as
a signi�cant generalization of convex functions. Ben-Israel and Mond [4], gave the
concept of preinvex function which is special case of invexity. Pini [21], introduced
the concept of prequasiinvex functions as a generalization of invex functions.
Let us recall some known results concerning invexity and preinvexity
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Let K be a closed set in Rn and let f : K ! R and � : K�K ! R be continuous
functions. Let x 2 K, then the set K is said to be invex at x with respect to � (�; �),
if

x+ t�(y; x) 2 K;8x; y 2 K; t 2 [0; 1]:
K is said to be an invex set with respect to � if K is invex at each x 2 K. The

invex set K is also called a �-connected set.

De�nition 1. [32]The function f on the invex set K is said to be preinvex with
respect to �, if

f(u+ t�(v; u)) � (1� t) f(u) + tf(v);8u; v 2 K; t 2 [0; 1]:

The function f is said to be preconcave if and only if �f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map
� (x; y) = x� y but the converse is not true see for instance [32].
In the recent paper, Noor [16] has obtained the following Hermite-Hadamard

inequalities for the preinvex functions:

Theorem 1. [16]Let f : [a; a+ �(b; a)] ! (0;1) be a preinvex function on the
interval of the real numbers K� (the interior of K) and a, b 2 K� with a <
a+ �(b; a). Then the following inequality holds:

(1.3) f

�
2a+ �(b; a)

2

�
� 1

�(b; a)

Z a+�(b;a)

a

f (x) dx � f (a) + f (b)

2
:

For several new results on inequalities for preinvex functions we refer the inter-
ested reader to [3, 15, 20, 25] and the references therein.
In the present paper we give new inequalities of Hermite-Hadamard and Fejér

for functions whose derivatives are preinvex. Our results generalize those results
presented in a very recent paper of M. Z. Sarikaya [25, 28].

2. Main Results

The following Lemma is essential in establishing our main results in this section:

Lemma 1. Let K � R be an open invex subset with respect to � : K �K ! R and
a, b 2 K with a < a+ � (b; a) Suppose f : K ! R is a di¤erentiable mapping on K
such that f

0 2 L ([a; a+ � (b; a)]). If w : [a; a+ � (b; a)] ! [0;1) is an integrable
mapping, then for every a; b 2 K with � (b; a) 6= 0 the following equality holds:

(2.1)
1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx� 1

� (b; a)
f

�
a+

1

2
� (b; a)

�Z a+�(b;a)

a

w(x)dx

= � (b; a)

Z 1

0

k(t)f
0
(a+ t� (b; a)) dt;

where

k(t) =

8<:
R t
0
w (a+ s� (b; a)) ds; t 2

�
0; 12
�

�
R 1
t
w (a+ s� (b; a)) ds; t 2

�
1
2 ; 1
�
:
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Proof. We observe that

(2.2) I =

Z 1

0

k(t)f
0
(a+ t� (b; a)) dt

=

Z 1
2

0

�Z t

0

w (a+ s� (b; a)) ds

�
f
0
(a+ t� (b; a)) dt

+

Z 1

1
2

�
�
Z 1

t

w (a+ s� (b; a)) ds

�
f
0
(a+ t� (b; a)) dt = I1 + I2:

By integration by parts, we get

(2.3) I1 =

�Z t

0

w (a+ s� (b; a)) ds

�
f (a+ t� (b; a))

� (b; a)

����
1
2

0

� 1

� (b; a)

Z 1
2

0

w (a+ t� (b; a)) f (a+ t� (b; a)) dt

=
f
�
a+ 1

2� (b; a)
�

� (b; a)

Z 1
2

0

w (a+ t� (b; a)) dt

� 1

� (b; a)

Z 1
2

0

w (a+ t� (b; a)) f (a+ t� (b; a)) dt:

Similarly, we also have

(2.4) I2 =

�
�
Z 1

t

w (a+ s� (b; a)) ds

�
f (a+ t� (b; a))

� (b; a)

����1
1
2

� 1

� (b; a)

Z 1

1
2

w (a+ t� (b; a)) f (a+ t� (b; a)) dt

=
f
�
a+ 1

2� (b; a)
�

� (b; a)

Z 1

1
2

w (a+ t� (b; a)) dt

� 1

� (b; a)

Z 1

1
2

w (a+ t� (b; a)) f (a+ t� (b; a)) dt:

From (2.3) and (2.4), we get

I =
f
�
a+ 1

2� (b; a)
�

� (b; a)

Z 1

0

w (a+ t� (b; a)) dt

� 1

� (b; a)

Z 1

0

w (a+ t� (b; a)) f (a+ t� (b; a)) dt:

Using the change of variable x = a + t� (b; a) for t 2 [0; 1] and multiplying both
sides by � (b; a), we get (2.1). This completes the proof of the lemma. �
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Remark 1. If we take w(x) = 1, x 2 [a; a+ t� (b; a)] in Lemma 1, then (2.1)
reduces to

(2.5)
1

� (b; a)

Z a+�(b;a)

a

f (x) dx+ f

�
a+

1

2
� (b; a)

�
= � (b; a)

Z 1

0

k(t)f
0
(a+ t� (b; a)) dt;

where

k(t) =

8<: t; t 2
�
0; 12
�

t� 1; t 2
�
1
2 ; 1
�
:

Which is one of the results from [25].

Remark 2. If � (b; a) = b � a in Lemma 1, then (2.1) becomes Lemma 2.1 from
[28, page 379].

Now using Lemma 1, we prove our results:

Theorem 2. Let K � R be an open invex subset with respect to � : K�K ! R and
a, b 2 K with a < a+ � (b; a) Suppose f : K ! R is a di¤erentiable mapping on K
such that f

0 2 L ([a; a+ � (b; a)]) and w : [a; a+ � (b; a)] ! [0;1) is an integrable
mapping and symmetric to a + 1

2� (b; a). If
���f 0 ��� is preinvex on K, then for every

a; b 2 K with � (b; a) 6= 0 we have the following inequality:

(2.6)����� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx� 1

� (b; a)
f

�
a+

1

2
� (b; a)

�Z a+�(b;a)

a

w(x)dx

�����
�
 

1

� (b; a)

Z a+ 1
2�(b;a)

a

[� (b; a)� 2 (x� a)]w(x)dx
!0@

���f 0 (a)���+ ���f 0 (b)���
2

1A :
Proof. From Lemma 1 and the preinvexity of

���f 0 ��� on K, we have
(2.7)����� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx� 1

� (b; a)
f

�
a+

1

2
� (b; a)

�Z a+�(b;a)

a

w(x)dx

�����
� � (b; a)

Z 1
2

0

�Z t

0

w (a+ s� (b; a)) ds

�h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dt
+ � (b; a)

Z 1

1
2

�Z 1

t

w (a+ s� (b; a)) ds

�h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dt
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By the change of the order of integration, we have

(2.8)
Z 1

2

0

Z t

0

w (a+ s� (b; a))
h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dsdt
=

Z 1
2

0

Z 1
2

s

w (a+ s� (b; a))
h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dtds
=

Z 1
2

0

w (a+ s� (b; a))

" 
(1� s)2

2
� 1
8

!���f 0 (a)���+ �1
8
� s

2

2

� ���f 0 (b)���# ds:
Using the change of variable x = a+ s� (b; a) for s 2 [0; 1], we have from (2.8) that

(2.9)
Z 1

2

0

Z t

0

w (a+ s� (b; a))
h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dsdt
=

1

� (b; a)

���f 0 (a)��� Z a+ 1
2�(b;a)

a

 
1

2

�
1� x� a

� (b; a)

�2
� 1
8

!
w (x) dx

+
1

� (b; a)

���f 0 (b)��� Z a+ 1
2�(b;a)

a

 
1

8
� 1
2

�
x� a
� (b; a)

�2!
w (x) dx:

Similarly by change of order of integration and using the fact that w is symmetric
to a+ 1

2� (b; a), we obtain

(2.10)
Z 1

1
2

Z 1

t

w (a+ s� (b; a))
h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dsdt
=

Z 1

1
2

Z s

1
2

w (a+ (1� s) � (b; a))
h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dtds
=

1

� (b; a)

���f 0 (a)��� Z 1

1
2

�
1

8
� 1
2
(1� s)2

�
w (a+ (1� s) � (b; a)) ds

+
1

� (b; a)

���f 0 (b)��� Z 1

1
2

�
s2

2
� 1
8

�
w (a+ (1� s) � (b; a)) ds

By the change of variable x = a+ (1� s) � (b; a), we get form (2.10) that

(2.11)
Z 1

1
2

Z 1

t

w (a+ s� (b; a))
h
(1� t)

���f 0 (a)���+ t ���f 0 (b)���i dsdt
=

1

� (b; a)

���f 0 (a)��� Z a+ 1
2�(b;a)

a

 
1

8
� 1
2

�
x� a
� (b; a)

�2!
w (x) dx

+
1

� (b; a)

���f 0 (b)��� Z a+ 1
2�(b;a)

a

 
1

2

�
1� x� a

� (b; a)

�2
� 1
8

!
w (x) dx:

Substituting (2.9) and (2.11) in (2.7) and simplifying, we get the inequality (2.6).
This completes the proof of the theorem. �
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Corollary 1. If we take w(x) = 1, for x 2 [a; a+ � (b; a)] in Theorem 2, we get
(2.12)����� 1

� (b; a)

Z a+�(b;a)

a

f (x) dx� f
�
a+

1

2
� (b; a)

������ � � (b; a)

8

h���f 0 (a)���+ ���f 0 (b)���i :
Which is Theorem 5 from [25].

Remark 3. If
���f 0 ��� is convex on [a; b], then � (b; a) = b � a. Hence from Theorem

2, and using the symmetricity of w about a+b2 , we get Theorem 2.3 from [28, page
380].

Theorem 3. Let K � R be an open invex subset with respect to � : K �K ! R
and a, b 2 K with a < a+ � (b; a). Suppose f : K ! R is a di¤erentiable mapping
on K such that f

0 2 L ([a; a+ � (b; a)]) and w : [a; a+ � (b; a)] ! [0;1) is an
integrable mapping and symmetric to a + 1

2� (b; a). If
���f 0 ���q, q > 1, is preinvex on

K, then for every a; b 2 K with � (b; a) 6= 0 we have the following inequality:

(2.13)����� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx� 1

� (b; a)
f

�
a+

1

2
� (b; a)

�Z a+�(b;a)

a

w(x)dx

�����
� � (b; a)

 
1

(� (b; a))
2

Z a+ 1
2�(b;a)

a

�
� (b; a)

2
� (x� a)

�
wp (x) dx

! 1
p

�

2664
0@2

���f 0 (a)���q + ���f 0 (b)���q
24

1A
1
q

+

0@
���f 0 (a)���q + 2 ���f 0 (b)���q

24

1A
1
q

3775 ;
where 1

p +
1
q = 1.

Proof. From Lemma 1 and change of order of integration, we get

(2.14)����� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx� 1

� (b; a)
f

�
a+

1

2
� (b; a)

�Z a+�(b;a)

a

w(x)dx

�����
� � (b; a)

Z 1
2

0

�Z t

0

w (a+ s� (b; a)) ds

� ���f 0 (a+ t� (b; a))��� dt
+ � (b; a)

Z 1

1
2

�Z 1

t

w (a+ s� (b; a)) ds

� ���f 0 (a+ t� (b; a))��� dt
= � (b; a)

Z 1
2

0

Z 1
2

s

w (a+ s� (b; a))
���f 0 (a+ t� (b; a))��� dtds

+ � (b; a)

Z 1

1
2

Z s

1
2

w (a+ s� (b; a))
���f 0 (a+ t� (b; a))��� dtds:
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By the Hölder�s inequality, we have

(2.15) � (b; a)

Z 1
2

0

Z 1
2

s

w (a+ s� (b; a))
���f 0 (a+ t� (b; a))��� dtds

� � (b; a)
 Z 1

2

0

Z 1
2

s

wp (a+ s� (b; a)) dtds

! 1
p
 Z 1

2

0

Z 1
2

s

���f 0 (a+ t� (b; a))���q dtds! 1
q

:

Since
���f 0 ���q, q > 1, is preinvex on K, for every a; b 2 K and t 2 [0; 1] we have

���f 0 (a+ t� (b; a))���q � (1� t) ���f 0 (a)���q + t ���f 0 (b)���q
hence by solving elementary integrals and using the substitution x = a+ s� (b; a),
s 2 [0; 1], we have from (2.15) that

(2.16) � (b; a)

Z 1
2

0

Z 1
2

s

w (a+ s� (b; a))
���f 0 (a+ t� (b; a))��� dtds

� � (b; a)
 Z 1

2

0

Z 1
2

s

wp (a+ s� (b; a)) dtds

! 1
p

�
 Z 1

2

0

Z 1
2

s

h
(1� t)

���f 0 (a)���q + t ���f 0 (b)���qi dtds! 1
q

= � (b; a)

 
1

(� (b; a))
2

Z a+ 1
2�(b;a)

a

�
� (b; a)

2
� (x� a)

�
wp (x) dx

! 1
p

�

0@2
���f 0 (a)���q + ���f 0 (b)���q

24

1A
1
q

:

Analogously, using the symmetricity of w about a+ 1
2� (b; a), we also have

(2.17) � (b; a)

Z 1

1
2

Z s

1
2

w (a+ s� (b; a))
���f 0 (a+ t� (b; a))��� dtds

� � (b; a)
 

1

(� (b; a))
2

Z a+ 1
2�(b;a)

a

�
� (b; a)

2
� (x� a)

�
wp (x) dx

! 1
p

�

0@
���f 0 (a)���q + 2 ���f 0 (b)���q

24

1A
1
q

Using (2.16) and (2.17) in (2.14), we get the required inequality. This completes
the proof of the theorem. �
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Corollary 2. If the conditions of Theorem 3 are satis�ed and if w(x) = 1, x 2
[a; a+ � (b; a)], then the following inequality holds:

(2.18)

����� 1

� (b; a)

Z a+�(b;a)

a

f (x) dx+ f

�
a+

1

2
� (b; a)

������ � � (b; a)
�
1

8

� 1
p

�

2664
0@2

���f 0 (a)���q + ���f 0 (b)���q
24

1A
1
q

+

0@
���f 0 (a)���q + 2 ���f 0 (b)���q

24

1A
1
q

3775 ;
where 1

p +
1
q = 1.

Corollary 3. [28, Theorem 2.5, page 381]Suppose f : I � R! R is a di¤erentiable
mapping on I�, a, b 2 I with a < b. Let w : [a; b]! [0;1) is an integrable mapping
and symmetric to a+b

2 and f
0 2 L ([a; b]). If

���f 0 ���q, q > 1, is convex on [a; b], then
we have the following inequality:

(2.19)

����� 1

b� a

Z b

a

f (x)w(x)dx� 1

b� af
�
a+ b

2

�Z b

a

w(x)dx

�����
� (b� a)

 
1

(b� a)2
Z b

a+b
2

�
x� a+ b

2

�
wp (x) dx

! 1
p

�

2664
0@2

���f 0 (a)���q + ���f 0 (b)���q
24

1A
1
q

+

0@
���f 0 (a)���q + 2 ���f 0 (b)���q

24

1A
1
q

3775 ;
where 1

p +
1
q = 1.

Proof. It follows from Theorem 3 by taking � (b; a) = b�a and using the symmetry
of w about a+b2 . �

For our next results we need the following Lemma:

Lemma 2. Let K � R be an open invex subset with respect to � : K �K ! R and
a, b 2 K with a < a+ � (b; a) Suppose f : K ! R is a di¤erentiable mapping on K
such that f

0 2 L ([a; a+ � (b; a)]). If w : [a; a+ � (b; a)] ! [0;1) is an integrable
mapping, then for every a; b 2 K with � (b; a) 6= 0 the following equality holds:

(2.20) � f(a) + f(a+ � (b; a)
2� (b; a)

Z a+�(b;a)

a

w(x)dx+
1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx

=
� (b; a)

2

Z 1

0

p(t)f
0
(a+ t� (b; a)) dt;

where

p(t) =

Z 1

t

w (a+ s� (b; a)) ds�
Z t

0

w (a+ s� (b; a)) ds; t 2 [0; 1] .
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Proof. It su¢ ces to note that

(2.21) J =

Z 1

0

p(t)f
0
(a+ t� (b; a)) dt

= �
Z 1

0

�Z t

0

w (a+ s� (b; a)) ds

�
f
0
(a+ t� (b; a)) dt

+

Z 1

0

�Z 1

t

w (a+ s� (b; a)) ds

�
f
0
(a+ t� (b; a)) dt = J1 + J2

By integration by parts, we get

(2.22) J1 = �

�R t
0
w (a+ s� (b; a)) ds

�
f (a+ t� (b; a))

� (b; a)

������
1

0

+
1

� (b; a)

Z 1

0

w (a+ t� (b; a)) f (a+ t� (b; a)) dt

= �f (a+ � (b; a))
� (b; a)

Z 1

0

w (a+ t� (b; a)) dt

+
1

� (b; a)

Z 1

0

w (a+ t� (b; a)) f (a+ t� (b; a)) dt:

Similarly. we also have
(2.23)

J2 = �
f (a)

� (b; a)

Z 1

0

w (a+ t� (b; a)) dt+
1

� (b; a)

Z 1

0

w (a+ t� (b; a)) f (a+ t� (b; a)) dt:

Using (2.22) and (2.23) in (2.21), we obtain

(2.24) J = �f(a) + f (a+ � (b; a))
� (b; a)

Z 1

0

w (a+ t� (b; a)) dt

+
2

� (b; a)

Z 1

0

w (a+ t� (b; a)) f (a+ t� (b; a)) dt

By the change of variable x = a + t� (b; a) for t 2 [0; 1] and by multiplying both
sides if (2.6) by �(b;a)

2 , we get (2.20). This completes the proof of the lemma. �

Remark 4. If we take w(x) = 1, x 2 [a; a+ � (b; a)], then we get

(2.25) � f(a) + f(a+ � (b; a)
2

+
1

� (b; a)

Z a+�(b;a)

a

f (x) dx

=
� (b; a)

2

Z 1

0

(1� 2t) f
0
(a+ t� (b; a)) dt;

which is Lemma 2.1 from [3, Page 3].

Theorem 4. Let K � R be an open invex subset with respect to � : K �K ! R
and a, b 2 K with a < a + � (b; a) Suppose f : K ! R is a di¤erentiable mapping
on K such that f

0 2 L ([a; a+ � (b; a)]) and w : [a; a+ � (b; a)] ! [0;1) is an
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integrable mapping and symmetric to a + 1
2� (b; a). If

���f 0 ���q, q > 1, is preinvex on
K, then for every a; b 2 K with � (b; a) 6= 0 we have the following inequality:

(2.26)

�����f(a) + f(a+ � (b; a)2� (b; a)

Z a+�(b;a)

a

w(x)dx� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx

�����
� 1

2

�Z 1

0

gp(t)dt

� 1
p

0@
���f 0 (a)���q + ���f 0 (b)���q

2

1A
1
q

;

where

g(t) =

�����
Z a+(1�t)�(b;a)

a+t�(b;a)

w (x) dx

����� ; t 2 [0; 1] and 1p + 1q = 1:
Proof. From Lemma 2, we get

(2.27)

�����f(a) + f(a+ � (b; a)2� (b; a)

Z a+�(b;a)

a

w(x)dx� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx

�����
� � (b; a)

2

Z 1

0

����Z 1

t

w (a+ s� (b; a)) ds�
Z t

0

w (a+ s� (b; a)) ds

���� ���f 0 (a+ t� (b; a))��� dt:
Since w is symmetric to a+ 1

2� (b; a), we can write

(2.28)
Z 1

t

w (a+ s� (b; a)) ds�
Z t

0

w (a+ s� (b; a)) ds

=

Z 1

t

w (a+ s� (b; a)) ds�
Z t

0

w (a+ (1� s) � (b; a)) ds

=
1

� (b; a)

Z a+�(b;a)

a+t�(b;a)

w (x) dx+
1

� (b; a)

Z a+(1�t)�(b;a)

a+�(b;a)

w (x) dx

=

8><>:
1

�(b;a)

R a+(1�t)�(b;a)
a+t�(b;a)

w (x) dx; t 2
�
0; 12
�

� 1
�(b;a)

R a+t�(b;a)
a+(1�t)�(b;a) w (x) dx; t 2

�
1
2 ; 1
�
:

Using (2.28) in (2.27) we obtain

(2.29)

�����f(a) + f(a+ � (b; a)2� (b; a)

Z a+�(b;a)

a

w(x)dx� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx

�����
� 1

2

Z 1

0

g(x)
���f 0 (a+ t� (b; a))��� dt;

where

g(t) =

�����
Z a+(1�t)�(b;a)

a+t�(b;a)

w (x) dx

����� ; t 2 [0; 1] :
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By Hölder�s inequality, it follows from (2.29) that

(2.30)

�����f(a) + f(a+ � (b; a)2� (b; a)

Z a+�(b;a)

a

w(x)dx� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx

�����
� 1

2

�Z 1

0

gp(t)dt

� 1
p
�Z 1

0

���f 0 (a+ t� (b; a))���q dt� 1
q

:

Since
���f 0 (a+ t� (b; a))���q is preinvex on K, for every a, b 2 K and t 2 [0; 1], we have���f 0 (a+ t� (b; a))���q � (1� t) ���f 0 (a)���q + t ���f 0 (b)���q

and hence from (2.30), we get that

(2.31)

�����f(a) + f(a+ � (b; a)2� (b; a)

Z a+�(b;a)

a

w(x)dx� 1

� (b; a)

Z a+�(b;a)

a

f (x)w(x)dx

�����
� 1

2

�Z 1

0

gp(t)dt

� 1
p
�Z 1

0

h
(1� t)

���f 0 (a)���q + t ���f 0 (b)���qi dt� 1
q

=
1

2

�Z 1

0

gp(t)dt

� 1
p

0@
���f 0 (a)���q + ���f 0 (b)���q

2

1A
1
q

;

which completes the proof of the theorem. �

Corollary 4. If we take � (b; a) = b�a in Theorem 4, then we have the inequality:

(2.32)

�����f(a) + f(b)2 (b� a)

Z b

a

w(x)dx� 1

b� a

Z b

a

f (x)w(x)dx

�����
� 1

2

�Z 1

0

gp(t)dt

� 1
p

0@
���f 0 (a)���q + ���f 0 (b)���q

2

1A
1
q

;

where

g(t) =

�����
Z ta+(1�t)b

tb+(1�t)a
w (x) dx

����� ; t 2 [0; 1] and 1p + 1q = 1:
Which is Theorem 2.8 from [28, page 383].

Corollary 5. [3, Theorem 2.2, page 4] Under the assumptions of Theorem 4, if we
take w (x) = 1, x 2 [a; a+ � (b; a)]. Then

(2.33)

�����f(a) + f(a+ � (b; a))2
� 1

� (b; a)

Z a+�(b;a)

a

f (x) dx

�����
� � (b; a)

2 (p+ 1)
1
p

0@
���f 0 (a)���q + ���f 0 (b)���q

2

1A
1
q

;

where 1
p +

1
q = 1:
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Proof. It follows from the fact thatZ 1

0

gp(t)dt =

Z 1

0

 �����
Z a+(1�t)�(b;a)

a+t�(b;a)

dx

�����
p!
dt

= (� (b; a))
p
Z 1

0

j1� 2tjp dt = (� (b; a))
p

p+ 1
:

�

Corollary 6. [5] If the conditions of Theorem 4 are ful�lled and if w (x) = 1,
x 2 [a; b] and � (b; a) = b� a, then we have the inequality:

(2.34)

�����f(a) + f(b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
2 (p+ 1)

1
p

0@
���f 0 (a)���q + ���f 0 (b)���q

2

1A
1
q

;

where 1
p +

1
q = 1.

Proof. It follows from Corollary 5. �

3. Applications to Special Means

In what follows we give certain generalizations of some notions for a positive
valued function of a positive variable.

De�nition 2. [31]A function M : R2+ ! R+, is called a Mean function if it has
the following properties:

(1) Homogeneity: M(ax; ay) = aM(x; y); for all a > 0,
(2) Symmetry : M(x; y) =M(y; x),
(3) Re�exivity : M(x; x) = x,
(4) Monotonicity: If x � x0 and y � y0 , then M(x; y) �M(x0 ; y0),
(5) Internality: minfx; yg �M(x; y) � maxfx; yg.

We consider some means for arbitrary positive real numbers �, � (see for instance
[31]).

(1) The arithmetic mean:

A := A (�; �) =
�+ �

2

(2) The geometric mean:

G := G (�; �) =
p
��

(3) The harmonic mean:

H := H (�; �) =
2

1
� +

1
�

(4) The power mean:

Pr := Pr (�; �) =

�
�r + �r

2

� 1
r

, r � 1
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(5) The identric mean:

I := I (�; �) =

(
1
e

�
��

��

�
; � 6= �

�; � = �

(6) The logarithmic mean:

L := L (�; �) =
�� �

ln j�j � ln j�j ; j�j 6= j�j

(7) The generalized log-mean:

Lp := Lp (�; �) =

�
�p+1 � �p+1
(p+ 1) (� � �)

�
; � 6= �, p 2 Rn f�1; 0g .

It is well known that Lp is monotonic nondecreasing over p 2 R, with L�1 := L
and L0 := I. In particular, we have the following inequality H � G � L � I � A.
Now, let a and b be positive real numbers such that a < b. Consider the function

M := M(a; b) : [a; a + �(b; a)] � [a; a + �(b; a)] ! R+, which is one of the above
mentioned means, therefore one can obtain variant inequalities for these means as
follows:
Setting �(b; a) =M(b; a) in (2.12), (2.18) and (2.33), one can obtain the following

interesting inequalities involving means:

(3.1)

����� 1

M(b; a)

Z a+M(b;a)

a

f (x) dx� f
�
a+

1

2
M(b; a)

������
� M(b; a)

8

h���f 0 (a)���+ ���f 0 (b)���i ;
(3.2)

����� 1

M(b; a)

Z a+M(b;a)

a

f (x) dx+ f

�
a+

1

2
M(b; a)

������ �M(b; a)
�
1

8

� 1
p

�

2664
0@2

���f 0 (a)���q + ���f 0 (b)���q
24

1A
1
q

+

0@
���f 0 (a)���q + 2 ���f 0 (b)���q

24

1A
1
q

3775
and

(3.3)

�����f(a) + f(a+M(b; a))2
� 1

M(b; a)

Z a+M(b;a)

a

f (x) dx

�����
� M(b; a)

2 (p+ 1)
1
p

0@
���f 0 (a)���q + ���f 0 (b)���q

2

1A
1
q

:

LettingM = A, G, H, Pr, I, L, Lp in (3.1), (3.2) and (3.3), we can get the required
inequalities, and the details are left to the interested reader.
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Bolyai Math. 57(2012), No. 3, 377-386.

[29] A. Saglam, M. Z. Sarikaya and H. Y¬ld¬r¬m and, Some new inequalities of Hermite-Hadamard�s
type, Kyungpook Mathematical Journal, 50(2010), 399-410.

[30] C. -L. Wang and X. -H. Wang, On an extension of Hadamard inequality for convex functions,
Chin. Ann. Math., 3(1982), 567�570.



HERMITE-HADAMARD AND FEJÉR TYPE INEQUALITIES VIA PREINVEXITY 15

[31] S. -H. Wu , On the weighted generalization of the Hermite-Hadamard inequality and its
applications, The Rocky Mountain J. of Math., 39(2009), no. 5, 1741�1749.

[32] T. Weir, and B. Mond, Preinvex functions in multiple bjective optimization, Journal of
Mathematical Analysis and Applications, 136 (1998) 29-38.

[33] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001),
229-241.

College of Science, Department of Mathematics,, University of Hail, Hail 2440,
Saudi Arabia

E-mail address : m_amer_latif@hotmail.com


