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NEW INEQUALITIES OF HERMITE-HADAMARD AND FEJER
TYPE INEQUALITIES VIA PREINVEXITY

M. A. LATIF

ABSTRACT. Several new weighted inequalities connected with Hermite-Hadamard
and Fejér type inequalities are established for functions whose derivatives in
absolute value are preinvex. The results presented in this paper provide ex-
tensions of those given in earlier works.

1. INTRODUCTION

Many inequalities have been established for convex functions but the most fa-
mous is the Hermite-Hadamard inequality, due to its rich geometrical significance
and applications, which is stated as (see [23]):

Let f: I CR — R be a convex mapping and a,b € I with a < b. Then

(1.1) f(“;rb> < bia/abf(x)dx< M

Both the inequalities hold in reversed direction if f is concave.
In [7], Fejér gave a weighted generalization of (1.1) as follows:

(1.2) f(“;b> /abw(x)dxg/abf(m)w(x)d:zzgM/abw(:c)dx,

2

where f : [a,b] — R be a convex function and f : [a,b] — R is nonnegative,
integrable and symmetric about x = %*b.

For several results which generalize, improve and extend the inequalities (1.1)
and (1.2) we refer the interested reader [5, 6, 8], [10]-[13], [23, 24], [26]-[31].

In recent years, lot of efforts have been made by many mathematicians to gen-
eralize the classical convexity. These studies include among others the work of
Hanson in [9], Ben-Israel and Mond [4], Pini [21], M.A.Noor [18, 19], Yang and Li
[33] and Weir [32]. Mond [5], Weir [32] and Noor [18, 19], have studied the basic
properties of the preinvex functions and their role in optimization, variational in-
equalities and equilibrium problems. Hanson in [9], introduced invex functions as
a significant generalization of convex functions. Ben-Israel and Mond [4], gave the
concept of preinvex function which is special case of invexity. Pini [21], introduced
the concept of prequasiinvex functions as a generalization of invex functions.

Let us recall some known results concerning invexity and preinvexity
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Let K be a closed set in R™ and let f : K — R and n : K x K — R be continuous
functions. Let € K, then the set K is said to be invex at = with respect to n (-, -),
if

z+tn(y,z) € K,Vz,y € K,t €0, 1].

K is said to be an invex set with respect to n if K is invex at each z € K. The

invex set K is also called a 7-connected set.

Definition 1. [32]The function f on the inver set K is said to be preinvexr with
respect to n, if

flu+tn(v,u)) < (1 —1) f(u) +tf(v),Vu,v € K,t € [0,1].
The function f is said to be preconcave if and only if —f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map
n(z,y) =z —y but the converse is not true see for instance [32].

In the recent paper, Noor [16] has obtained the following Hermite-Hadamard
inequalities for the preinvex functions:

Theorem 1. [16]Let f : [a,a+n(b,a)] — (0,00) be a preinvex function on the
interval of the real numbers K° (the interior of K) and a, b € Ko with a <
a+n(b,a). Then the following inequality holds:

2a + (b, a) 1 atn(b.a) f(a)+ f(b)
(1.3) f( ! ) <o f@a< L

For several new results on inequalities for preinvex functions we refer the inter-
ested reader to [3, 15, 20, 25] and the references therein.

In the present paper we give new inequalities of Hermite-Hadamard and Fejér
for functions whose derivatives are preinvex. Our results generalize those results
presented in a very recent paper of M. Z. Sarikaya [25, 28].

2. MAIN RESULTS

The following Lemma is essential in establishing our main results in this section:

Lemma 1. Let K C R be an open invexr subset with respect ton: K x K — R and
a, b € K with a < a+n(b,a) Suppose f : K — R is a differentiable mapping on K
such that f € L([a,a+n(b,a)]). If w: [a,a+n(ba)] — [0,00) is an integrable
mapping, then for every a,b € K with n(b,a) # 0 the following equality holds:

1 a+n(b,a) 1 1 a+n(b,a)
(2.1) W/a [ (z)w(z)ds — mf (a +3m (b, a)) /a w(z)dz

— 1 (b,a) / k(S (a+ tn (b,a)) dt,

where
fotw(a—ksn (b,a))ds, tel0,3)
k() =

fftlw(a+s77(b,a))d5, te s 1].

N[
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Proof. We observe that

(2.2) I:/Ol k(@) f (a+ty(ba))dt
:/0; </Otw(a+s77(b,a))d8> f (a+tn(b,a)dt
+/11 (—/tlw(aJrsn(b,a))ds) fattn(b,a))dt =T + I.

2

By integration by parts, we get

1
2

/tw(a+sn(b,a))ds

0

2.3) I = ( ) flatin(ba))

1(b,a)
_ n(; y /02w(a+t77(baa))f(a+tn(b,a))dt

_ f (a + %77 (b, a))
n(b,a)

— /05w(a+tn(b,a))f(a—i—tn(b,a))dt.

0

/Ew(a—ktn(b,a))dt
0

Similarly, we also have

fla+tnba)l

(24) I, = ( /tlw(aJrSW (b,a))ds> 70, )

1
2

1
- n(;a)/ w(a+tn(b,a)) f(a+in(ba))dt

_Slaran®a) 1 b
- 1 (b, a) /é (a+tn(b,a))dt

1
_ n(bl a)/l w (a+tn(b,a)) f (a+tn(b,a))dt.

From (2.3) and (2.4), we get

Flatinba) 1o
o (b.a) /0 (a+tn(b,a))dt

1

1
- o [ s b f @t b)) i

I =

Using the change of variable 2 = a + t7 (b,a) for ¢t € [0,1] and multiplying both
sides by 7 (b, a), we get (2.1). This completes the proof of the lemma. O
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Remark 1. If we take w(x) = 1, x € [a,a+tn(b,a)] in Lemma 1, then (2.1)
reduces to

25 - (;’ 5 / T e f <a + %n (b, a)>

1

=n(.a) | k() f (a+tn(ba))dt,

where

Which is one of the results from [25].

Remark 2. Ifn(b,a) = b—a in Lemma 1, then (2.1) becomes Lemma 2.1 from
[28, page 379].

Now using Lemma 1, we prove our results:

Theorem 2. Let K C R be an open invex subset with respect ton : K x K — R and
a, b e K with a < a+n(b,a) Suppose f : K — R is a differentiable mapping on K
such that f € L([a,a+7(b,a)]) and w : [a,a + 7 (b,a)] — [0,00) is an integrable
mapping and symmetric to a + %n (b,a). If f/‘ is preinvex on K, then for every
a,b € K with n(b,a) # 0 we have the following inequality:

(2.6)

a+n(b,a) atn(b,a)
o) T@uede G (C‘ gl “)> [ v

1 a+3n(b,a) f (a))+ f (b)‘
Y )

Proof. From Lemma 1 and the preinvexity of ) f/} on K, we have

(2.7)

@ / Ty wlayn - ﬁf (a + g, a)> / T ey

gn(b,a)/j </0tw(a+s77(b,a))ds) (=07 @|+t|s @) a
+n(b,a)/11 </t1w(a+sn(b,a))ds> (=7 @|+t]s o) a

2
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By the change of the order of integration, we have

(28) /Oé/otw<a+sn<b,a>> [a=0|f @] +e|f @] asar
=/:/fw<a+sn<b,a>> (=0 |7 @] +t]s @) deas
=/:w<a+sn<b,a>> [(“ L ;) F+(3-5) ) <b>\] ds.
Using the change of variable = = a + s7 (b, a) for s € [0, 1], we have from (2.8) that
(2.9) /j/otw<a+sn<b,a>> [ =0)]f @] +t|7 @] dsar
La+;n<b,a> <; <1 ) ;(b_::))z ) ;> o
/aawb’a) (é -3(7m Z>>2> we) de-

Similarly by change of order of integration and using the fact that w is symmetric
to a + %n (b, a), we obtain

f ()

(2.10) // atsn(b,0) [(1—0) |1 @] + ] ©)]] dsa
=/%/%w(a+(1—8)n(b7a)) [a=0|f @)|+t|f @] dras
a)]/; (5-30-9)wlera-9nmayas
1 b)\/;(f—;)w<a+<l—s>n<b,a>>ds

By the change of variable z = a + (1 — s) 5 (b,a), we get form (2.10) that

(2.11) // a+ sn (b, a) [(l—t)‘f/(a)‘—&-t‘f/(b)Hdsdt

S AT (R Gy DI
- 77(()1, a) f/ (b) /;Hén(bﬂ) (; <1 - ;(;Z))z — ;) w (z) dx.

Substituting (2.9) and (2.11) in (2.7) and simplifying, we get the inequality (2.6).
This completes the proof of the theorem. O
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Corollary 1. If we take w(x) =1, for x € [a,a + 1 (b,a)] in Theorem 2, we get

(2.12)
| Y @yde— g (a4 5100

n (b, a)
7 (b a) =

- 8

£ @]+ |7 @]

Which is Theorem 5 from [25].

Remark 3. If ’ f

is convex on [a,b], then n(b,a) =b— a. Hence from Theorem

2, cﬁnd using the symmetricity of w about “T'H’, we get Theorem 2.3 from [28, page
380].

Theorem 3. Let K C R be an open tnvex subset with respect ton : K x K — R

and a, b € K with a < a+n(b,a). Suppose f: K — R is a differentiable mapping

on K such that f € L([a,a+n(b,a)]) and w : [a,a+n(b,a)] — [0,00) is an
/4

integrable mapping and symmetric to a + %77 (b,a). If ‘f ‘ , ¢ > 1, is preinver on

K, then for every a,b € K with 1 (b,a) # 0 we have the following inequality:
(2.13)

n(bl, . /aa+77(b,a) f(x)w(zr)dr — ; (bl, a)f (a n %77 0 a)) /aa+n(b,a) (o)

) (2 £ @[ +]f <b>q>;+ ( £ @[ +2|f <b>)q)3
24 24 ’

1,1 _
where s+t,=1
Proof. From Lemma 1 and change of order of integration, we get

(2.14)
a+n(b,a) atn(ba)
77(; a) / f (@) w(z)dr — 77(; a)f <a+ %n(b, a)> / w(z)dz

<ot [ ([ warsm.n)is)]s @rmo.w)

eaa) [ ([ ot mm)as) |7 o)

:77(b,a)/0é /jw(a—ksn(b,a))‘f/ (a—i—tn(b,a))’dtds

+77(b,a)[1/18w(a+317(b,a))‘f' (a+t77(b,a))’dtds.
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By the Holder’s inequality, we have

(2.15) n(b,a)/;/éw(aJrsn(b,a))’f' (a+tn(b,a))’dtds

ba(/ [ v s onth.0) dtds) (//

. 2k
Since ‘ f

1
q

a+ tn (b, a))’thds>

, ¢ > 1, is preinvex on K, for every a,b € K and t € [0,1] we have

Fatmba)| -0 @ +t|r o

7

hence by solving elementary integrals and using the substitution = = a + sn (b, a),

s € [0,1], we have from (2.15) that

(2.16) n(b,a)/oé/jw(a-i—sn(b,a))’f/ (a+ tn (b,0))| dids

<n(b,a) </0% /jwp(avLsn(b,a))dtds);
([ -0l @f il o)
=n(b,a) <W/:+2’l(bu) { (l;’a) - (:c—a)} w” (x)dm>

’ ‘ q

f(a)

3 =

2

_|_
24

F oy

Analogously, using the symmetricity of w about a + %n (b, a), we also have

(2.17) n(zw)ﬁ /:w(a—i—sn(b,a))’f/ (a-+ tn (b,a))| deds

<n(b,a) (m(;a))g /a‘”é"(b’a) {77 (l; a) _ (z— a)} w” () da:)

’

q
S @ +2
24

=

AN TN
/)

Using (2.16) and (2.17) in (2.14), we get the required inequality. This completes
the proof of the theorem. O
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Corollary 2. If the conditions of Theorem 3 are satisfied and if w(z) = 1, x €
[a,a + 1 (b,a)], then the following inequality holds:

(2.18) @ /aa+77(b7a) fx)de+ f <a + %77(1)7 a)) <n(b,a) (;)i
(@l ef % (@ 42 of %
24 24 ’

1,1
where;—{—g—l.

Corollary 3. [28, Theorem 2.5, page 381]Suppose f : I C R — R is a differentiable
mapping on I°, a, b € I witha <b. Letw : [a,b] — [0,00) is an integrable mapping

! ’ q
and symmetric to “T'H’ and f € L([a,b]). If ‘f ‘ , ¢ > 1, is convezx on [a,b], then
we have the following inequality:

b_la/abfu)w(x)dx—b_laf(“;b) /abw@:)dz

< (b—a) <(b_1a)2/b+b (m_a;b)wp(x)dx>é

2

(2.19)

’q %

1 @] +2|f ®)
24 24 ’

1,1
where;+5f1,

Proof. Tt follows from Theorem 3 by taking 1 (b, a) = b—a and using the symmetry
of w about ‘%rb. |

For our next results we need the following Lemma:

Lemma 2. Let K C R be an open invexr subset with respect ton : K x K — R and
a, b € K with a < a+n(b,a) Suppose f : K — R is a differentiable mapping on K
such that f* € L([a,a+7(b,a)]). If w : [a,a+n(b,a)] — [0,00) is an integrable
mapping, then for every a,b € K with n(b,a) # 0 the following equality holds:

fa) + flatn(ba) o7 Y A
(2.20) — 57 (b.a) /a w(x)dr + ) /a f(x)w(x)dz

=289 [ oo @+

where

1 t
p(t):/t w(aJrsn(b,a))dsf/U w(a+ sn(bya))ds, t€[0,1].
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Proof. 1t suffices to note that
1 ’
(2:21) J:/ p(t)f (a+tn (b,a))dt
0
= —/ (/ w(a+877(b,a))ds) f’ (a+t77(b,a))dt
0 0
+/0 (/t w(a+577(b,a))ds)f’(a+tn(b,a))dt:J1+J2

By integration by parts, we get

(i watsn(b.a))ds) f (at tn (b.a))|

(2.22) Jy = — e |
1 1
+nwﬂ)A w(a+tn (b, a)) f(a+tn (b a))dt
St oo
= LD [k 0
1 1
+77(b,a)/0 w(a+tn(b,a)) f (a+tn(b,a))dt.
Similarly. we also have
(2.23)
- AL lw a a # 1w a a a a

Jo = MM@A (+m@)”“ﬁmwl (a+1tn(ba)) f (a+tn(b,a))dt.

Using (2.22) and (2.23) in (2.21), we obtain

fla) + f (a+n(b,a))

(2.24) J=— )

1
/ w(a+tn(bya))dt
0
2
1 (b, a)
By the change of variable z = a + ¢n (b,a) for ¢ € [0,1] and by multiplying both

sides if (2.6) by @, we get (2.20). This completes the proof of the lemma. O

1
s [wlas (b)) f @k (b)) d
0

Remark 4. If we take w(z) =1, x € [a,a+ n (b, a)], then we get

fl@)+ f(a+n(ba) 1 a+n(b,a)
(225) - 2 -|- n (b7 a) /a f (.Z‘) d$
- 77(1;7 a) /0 (1= 20)f (a4 tn(ba)) dt,

which is Lemma 2.1 from [3, Page 3|.

Theorem 4. Let K C R be an open invex subset with respect ton : K x K — R
and a, b € K with a < a+n(b,a) Suppose f : K — R is a differentiable mapping
on K such that f € L([a,a+7(b,a)]) and w : [a,a+n(b,a)] — [0,00) is an
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q
integrable mapping and symmetric to a + %77 (bya). If |f | , g > 1, is preinvezr on

K, then for every a,b € K with n(b,a) # 0 we have the following inequality:

fla)+ fla+n(ba) (=70 IR S G
(2.26) ‘ 57 (b.a) /a w(x)dx n(b,a)/a f(x)w(x)dz

’

£ @[ |7 ®['

(f gP(t)dt)’l’ : ,

DN | =

<

where

a+(1—t)n(b,a) 1 1
/ w(z)dz|,t €[0,1] and — + - = 1.
a P q

+tn(b,a)

g(t) =

Proof. From Lemma 2, we get

f(a’) + f(a +n (b, a) atn(b,a) 1 a+n(b,a)
i @ g [ @

/tlw(a+sn(b’“))ds_/Otw(aJrSn(b,a))ds

(2.27)

_ n(b.a) /1
=75/
Since w is symmetric to a + 7 (b, a), we can write
1 t
(2.28) / w(a+ sn(b,a))ds — / w(a+ sn(b,a))ds
t 0
1 t
:/ w(a+sn(b,a))ds—/ w(a+ (1—=38)n(ba))ds
t 0

1 a+n(b,a) 1 at+(1=t)n(b,a)
/ w(z)dr + ——— / w(z)dx

‘f’ (a+tn (b,a))(dt.

B n (ba a) +tn(b,a) (b a’) +n(b,a)
a+(1—t)n(b,a)
n(bl,a) fa—i—tn(b,a) w (SL') dz, te [07 %]

fa+m (b-a) w(x) de, te3,1].

b (b,a) Ja+(1—t)n(b,a)

Using (2.28) in (2.27) we obtain

f(@)+ fla+n(ba) [0 L et
(2.29) | 57 (b.a) /a w(z)dr — (o) /a f(x)w(z)de

;/01 g9(x) ‘f/ (a+tn (b, a))‘ dt,

<

where
,t€[0,1].

a+(1—t)n(b,a)
g(t) = / w(x) dz
a

+tn(b,a)
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By Hslder’s inequality, it follows from (2.29) that

f(a) + flatn(ba) [*r70 Y
(2.30) ‘ TR / w(a)ds — s / F (@) w(z)de

<1 (/Olg%t)dtf (/ £ (s <b,a>>\th)é

’ q
Since ‘f (a+ tn (b, a))‘ is preinvex on K, for every a, b € K and ¢ € [0, 1], we have

/ q RN
Fa+t®a)| <a-n|f @[ +1
and hence from (2.30), we get that

2t fa Q) patn(.e) artn(b.0)
(2.31) |f( )+ flatn( )/ w(z)da:f;/ £ (@) w(z)dz

o

2n (b’ a’) n (b7 a’)

! (/Olg%)dt); (/ [a-n|f @[ +¢]7 o) dt)é
([ eom)” (\f' @+ <b>\q)“

which completes the proof of the theorem. ([

<

Corollary 4. If we take n (b,a) = b—a in Theorem 4, then we have the inequality:

(2.32) ‘ ;“()bagb)/a d:c—bia/ fla

N (/Olgp(t)dt>; ( f (a)\q—; f (b)\q) q,

w(x)dx|, t €

where
ta+(1—t)b

g(t) =

1 1
[0,1] and — 4+ - = 1.
th+(1—t)a P q

Which is Theorem 2.8 from [28, page 383].

Corollary 5. [3, Theorem 2.2, page 4] Under the assumptions of Theorem 4, if we
take w (z) =1, z € [a,a + 1 (b,a)]. Then

a a a atn(b,a)
(233 ‘f()ﬂ“( +n(ba) 1 / f (@) de

2 1 (b, a)

1,1
where = + = = 1.
-
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Proof. 1t follows from the fact that

[gw)dt:f(

a+(1—t)n(b,a)
/ dx
a+tn(b,a)

P
>dt

1 P
b,a))
— (n (b, P/ | oy = 1)
(b)) [ -2 e = T
[l
Corollary 6. [5] If the conditions of Theorem 4 are fulfilled and if w(z) = 1,
x € [a,b] and n(b,a) =b— a, then we have the inequality:
b @+ o\
H o1 b o +1 o)
(231) LW SO /f(a:)dx < ¢ :
2 b—a J, 2(p+1)» 2
1,1 _
where st = 1.
Proof. 1t follows from Corollary 5. ]

3. APPLICATIONS TO SPECIAL MEANS

In what follows we give certain generalizations of some notions for a positive
valued function of a positive variable.

Definition 2. [31]A4 function M : R — Ry, is called a Mean function if it has
the following properties:
(1) Homogeneity: M (az,ay) = aM(x,y), for all a > 0,
2) Symmetry : M(x,y) = M(y,x),
Reflexivity : M(xz,z) = x,
Monotonicity: If t <z andy <4y, then M(z,y) < M(x/,y/),
Internality: min{z,y} < M(z,y) < max{z,y}.

T —

(

(3
(4
(5
We consider some means for arbitrary positive real numbers a, 8 (see for instance

[31]).

(1) The arithmetic mean:

(2) The geometric mean:

(3) The harmonic mean:
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(5) The identric mean:

Bﬂ
I:I(a,ﬂ){ ;<a) ng
(6) The logarithmic mean:
._ __a-p
L:=L(a,B)= ma || # (B

(7) The generalized log-mean:
pr+l — qptl

P+1)(B—-a)

It is well known that L, is monotonic nondecreasing over p € R, with L_; := L
and Lo := I. In particular, we have the following inequality H < G < L < I < A.

Now, let a and b be positive real numbers such that a < b. Consider the function
M = M(a,b) : [a,a + n(b,a)] X [a,a + n(b,a)] — RT, which is one of the above
mentioned means, therefore one can obtain variant inequalities for these means as
follows:

Setting n(b,a) = M(b,a) in (2.12), (2.18) and (2.33), one can obtain the following
interesting inequalities involving means:

L,,;:Lp(a,ﬁ)z[ ],a#ﬂ,peR\{—LO}-

6 g [ f@de g (a+ 20.0)
< MO @)+ |5 w)].
(32) 'M(},) / T @y (a4 330.0) )| < 21000 (;)
) 2)f’(a)q2i ;o) Z f'(a)‘q;? ISURY
and
(33) if Wt M) s [T
e (|F @ +]7 "\’
T2(p+1) 2

Letting M = A, G, H, P, I, L, L, in (3.1), (3.2) and (3.3), we can get the required
inequalities, and the details are left to the interested reader.
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