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SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR
FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES
ARE CO-ORDINATED s-CONVEX

M. A. LATIF

ABSTRACT. In this paper we point out some inequalities of Hermite-Hadamard
type for double integrals of functions whose partial derivatives of higher order
are co-ordinated s-convex in the second sense. Our established results gen-
eralize the Hermite-Hadamard type inequalities established for co-ordinated
s-convex functions and refine those results established for differentiable func-
tions whose partial derivatives of higher order are co-ordinated convex proved
in a recent paper [24].

1. INTRODUCTION

The following definition is well known in literature:
A function f: I — R, () # I C R, is said to be convex on I if the inequality

FQz+1=Ny) <Af(z)+ 1 —=X)f(y), (1.1)

holds for all z, y € T and X € [0,1]. The inequality (1.1) holds in reverse direction
if f is concave.

The most famous inequality concerning the class of convex functions, is the
Hermite-Hadamard’s inequality.

This double inequality is stated as:

where f: I — R, ) # I C R a convex function, a, b € I with a < b. The inequalities
in (1.2) are in reversed order if f a concave function.

The inequalities (1.2) have become an important cornerstone in mathematical
analysis and optimization and many uses of these inequalities have been discov-
ered in a variety of settings. Moreover, many inequalities of special means can
be obtained for a particular choice of the function f. Due to the rich geometrical
significance of Hermite-Hadamard’s inequality (1.2), there is growing literature pro-
viding its new proofs, extensions, refinements and generalizations, see for example
[8, 14, 19, 29, 32, 33] and the references therein.

In the paper [15], Hudzik and Maligranda considered, among others, the class of
functions which are s-convex in the second sense. This class is defined follows:
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2 M. A. LATIF

A function f : [0,00) — R is said to be s-convex in the second sense if
fOz+ A =Ny) <Xf(2)+1-N)°f(y) (1.3)

holds for all z,y € [0,00), A € [0,1] and for some fixed s € (0, 1].

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of
functions defined on [0, 00).

In [9], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which
holds for s-convex functions in the second sense.

Theorem 1. [9]Suppose that f : [0,00) — [0,00) is an s-convex function in the
second sense, where s € (0,1) and a,b € [0,00), a < b. If f € L'[a,b], then the
following inequalities hold:

b
28-1f(“‘2“b) <ot [ s < KOO (1.4)

The constant k = is the best possible in the second inequality in (1.4).

1

s+1
For more about properties and Hermite-Hadamard type inequalities of s-convex

functions in the second sense we refer the interested readers to [7, 9, 12, 15, 20].

Let us consider now a bidimensional interval A =: [a,b] X [c,d] in R? with a < b
and ¢ < d. A mapping f: A — R is said to be convex on A if the inequality

FOz+ (1 =Nz, Ay + (1= Nw) < Af(z,9) + (1= N f(z,w)

holds for all (z,vy), (z,w) € A and A € [0, 1].

A modification for convex functions on A, known as co-ordinated convex func-
tions, was introduced by S. S. Dragomir [10] as follows:

A function f : A — R is said to be convex on the co-ordinates on A if the partial
mappings f, : [a,6] — R, f,(u) = f(u,y) and f, : [c,d] — R, fo(v) = f(z,v) are
convex where defined for all z € [a,b],y € [c,d].

A formal definition for co-ordinated convex functions may be stated as follow:

Definition 1. [21] A function f: A — R is said to be convex on the co-ordinates
on A if the inequality

fltz+ (1 -y, ru+ (1 —r)w)
<trf(z,u) +t(1—r)f(z,w) +r(1 =) f(y,u) + (1= t)(1 =) f(y,w)

holds for all t,r € [0,1] and (z,u), (y,w) € A.

Clearly, every convex mapping f : A — R is convex on the co-ordinates but
converse may not be true [10].

The following Hermite-Hadamard type inequalities for co-ordinated convex func-
tions on the rectangle from the plane R? were established in [10]:
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Theorem 2. [10] Suppose that f : A — R is co-ordinated convex on A, then

b d
Pty g [ (e g () o
b pd
SGaaal, | e

b d

cfld+flad+fbe+fbd
- 4

(1.5)
The above inequalities are sharp.

The concept of s-convex functions on the co-ordinates in the second sense was
introduced by Alomari and Darus in [3] as a generalization of the usual co-ordinated
convexity:

Definition 2. [3] Consider the bidimensional interval A = [a,b] X [c,d] in [0, 00)?
with a < b and ¢ < d. The mapping f : A — R is s-convex in the second sense on
A if

fOz+ 1 =N 2z y+ (1= Nw) <X f(z,y)+ (1 =) f(zw0),
holds for all (z,y), (z,w) € A, X € [0, 1] with some fized s € (0,1].

A function f : A C [0,00)> — R is called s-convex in the second sense on the
co-ordinates on A if the partial mappings f, : [a,b] — R, fy(u) = f(u,y) and
fo i le,d] = R, fo(v) = f(x,v), are s-convex in the second sense for all y € [c,d],
x € [a,b] and s € (0,1], i.e., the partial mappings f, and f, are s-convex in the
second sense with some fixed s € (0, 1].

A formal definition of co-ordinated s-convex function in second sense may be
stated as follows:

Definition 3. A function f : A C [0,00)?> — R is called s-convex in the second
sense on the co-ordinates on A if

Ft+ (1= by, ru+ (1 - r)w)

<t f(zu) + (1= r)* flz,w) +r°(1 = 8)°f(y,u) + (1 = £)°(1 = 7)° f (y, w)

(1.6)

holds for allt,r € [0,1] and (z,u), (y,u), (z,w), (y,w) € A, for some fived s € (0, 1].
The mapping f is concave on the co-ordinates on A if the inequality (1.6) holds in
reversed direction for all t,r € [0,1] and (x,y), (u,w) € A with some fized s € (0, 1].

Furthermore, Alomari and Darus [5] introduced a new class of s-convex functions
on the co-ordinates on the rectangle from the plane as follows:

Definition 4. [5] Consider the bidimensional interval A =: [a, b] X [c,d] in [0, 00)?
with a < b and ¢ < d. The mapping f : A — R is s-convex in the second sense on
A if there exist s1,s2 € (0,1] with s = % such that

fOz+ 1=z y+ 1= Nw) <X f(z,y) + (1= 1) f(z,w) (1.7)
holds for all (x,y),(z,w) € A, A € [0,1]. This class of functions is denoted by
MWO?

51,82 °
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A function f: A C [0,00)? — R is called s-convex in the second sense on the
co-ordinates on A if the partial mappings f, : [a,b] — R, f,(u) = f(u,y) and
fo i le,d] = R, fo(v) = f(z,v), are s;-convex and sg-convex in the second sense
for all y € [¢,d], € [a,b] and s1,s2 € (0,1] with s = %, respectively, i.e.,
the partial mappings f, and f, are si;-convex and ss-convex in the second sense,
51,82 € (0,1] with s = 21552,

The definition 3 can be generalized as follows:

Definition 5. A function f : A =: [a,b] X [c,d] C [0,00)? — R is called s-convex
in the second sense on the co-ordinates on A if
Pl + (1= by, ru+ (1= r)w)
< f(mu) 17 (L=r)* f (2, w) +r72 (1=1)" f(y,u)+ (1-1)* (1—7)* f(y, w)
(1.8)

holds for all t,r € [0,1] and (z,u), (y,u), (z,w), (y,w) € A, s1,s2 € (0,1] with s =
%. The mapping f is concave on the co-ordinates on A if the inequality (1.8)
holds in reversed direction for all t,r € [0,1] and (z,y), (u,w) € A, s1,82 € (0,1]
with s = —s”z's? .

In [5], Alomari et al. also proved a variant of inequalities given above by (1.5)
for s-convex functions in the second sense on the co-ordinates on a rectangle from
the plane R?:

Theorem 3. [5] Suppose f : A C [0,00)? — [0,00) is s-convex function in the
second sense on the co-ordinates on A. Then one has the inequalities:

4s1=1 4 4521 a+b c+d
=) ()
51—2 b s0—2 d
S?)fa/a f(x’c—gd)dx—i_?ic/c f<a—2|—b’y>dy
1 b d
< (b__co(d<_(3/£ /[ f(@,y)dyda
b

1
< o= | U @o+ @)

1 d
* 2(so +1) (d_c)/c [f (a,y) + f (b,y)] dy

1 1
<(sl 1) + (52t 1)2> [f(a,¢) + f(b,c) + fla,d) + f(b,d)]. (1.9)

IA
DO =

In recent years, many authors have proved several inequalities for co-ordinated
convex functions. These studies include, among others, the works in [1, 3, 4, 5, 6],
[10], [13], [21]-[24], [25]-[28] and [31]. Alomari et al. [1, 3, 4, 5, 6], proved several
Hermite-Hadamard type inequalities for co-ordinated s-convex functions and co-
ordinated log-convex functions. Dragomir [10], proved the Hermite-Hadamard type
inequalities for co-ordinated convex functions. Hwang et. al [13], also proved some
Hermite-Hadamard type inequalities for co-ordinated convex function of two vari-
ables by considering some mappings directly associated to the Hermite-Hadamard
type inequality for co-ordinated convex mappings of two variables. Latif et. al
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[12]-[14], proved some inequalities of Hermite-Hadamard type for differentiable
co-ordinated convex functions, differentiable functions whose higher order partial
derivatives are co-ordinated convex , product of two co-ordinated convex map-
pings and for co-ordinated h-convex mappings. Ozdemir et. al [25]-[28], proved
Hadamard’s type inequalities for co-ordinated convex functions, co-ordinated s-
convex functions and co-ordinated m-convex and («, m)-convex functions.

The main aim of this paper is to establish some new Hermite-Hadamard type
inequalities for differentiable functions whose partial derivatives of higher order
are co-ordinated s-convex in the second sense on the rectangle from the plane R?
which generalize the Hermite-Hadamard type inequalities proved for co-ordinated
s-convex functions in the second sense and refine those results established for differ-
entiable functions whose partial derivatives of higher order are co-ordinated convex
on the rectangle from the plane R? (see [24]).

2. MAIN RESULTS

In this section we establish new Hermite-Hadamard type inequalities for double
integrals of functions whose partial derivatives of higher order are co-ordinated
s-convex in the second sense.

To make the presentation easier and compact to understand, we make some
symbolic representations as follows:

A':% [bla/a [f(x,c)+f(w7d)]dm+ﬁ/0 [f(a7y)+f(b>y)]dy]

1 (1 — o) [0'f (a,c) D' (b,c)
+§§:: z+1 [ oy oy ]
1

LA =) 0—a) [0 (a,0) | 0Mf (a,d)
205 20k+1) 5$k ot
m—1
5_1 d ) f (x,¢)
b alz /a oy’ “
n—1 d gk
1 (k-fl)(bfa) / af(aay)
_ nilmf (k=1 (=1 (b-a)(@d-c) o] (a0
k=2 1=2 Ak +DHI+1)! uty'
o™t f (a,c) _ 0" f(a,d)
B(mmv‘atnarm’ C<"’m>“8t”6rm’
_|amtms(b,e) _ ot f ()
Dy = | =gggem—|» Eom) = |~ gmgm— |-
an+mf(a+b <’+d) anJr’mf (a‘?#)
Fln.m) = atrorm CGlnm) = | ™ gpmggm |
grtm g (QT—H)’ c) gntm f (GT-H), d)
Honm) =\ = gnggm | Tom) = | = ggagpm—— |
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+ c+d
o mf (b, (‘T)
otnor™

where the sums above take 0, when m =n = 1 and m = n = 2 and hence

)

Tnm) =

d

b
A'—A—;[b_la/a f (2.0) + f (a, d)]cmd% [f (a.y) + f (b.y)] dy

In what follows A° is the interior of A = [a,b] X [¢,d] and L (A) is the space of
integrable functions over A.
The following two results will be very useful in the sequel of the paper:

Theorem 4. [18] Let f : A — R be a continuous mapping such that the partial
k41

derivatives 88:,6]‘;(2;;'), k=0,1,...,.n—1,1=0,1,...,m — 1 exist on A° and are

continuous on A, then

b d n—1m-—1 8k+l -
/a / ftrydrdt =3 ;Xk(m)lﬁ(y)(M+

k=0 1=0
n—1 d k+m
- ovtmf (z,r)
1) ZXk (93)/ Sm (y,7) “oakgrm o
0”“f (t,y)
y S [ s 0
1=0
m " 8n+m t
* / / Ky (2,) S (y,7) atng(mT)d dt,
where
t=a)” ¢ € [a, 2]
K, (z,t) := il ’ )k SV (p—a)F
n( ) { (t nl')) te ({,L‘7b] Xp (.CE) = (b—2z) +1_|(_](€+i))!(u Y+t
and )
(r—g™ (A=) (=D (y—e)'**
S e m! s T € [67 y} }/l (y) = (l+1)!
m (y,7) = (r—d)™
proy (y,d]
for (z,y) € A.

Lemma 1. [24] Let f : A — R, be a continuous mapping such that % exrists

on A° and angy € L(A) form,n > 1, then

(b— 4n'm' //tnlmlnfﬂ)( —2r)

(‘3”+mf (ta+ (1 —t)byer+ (1 —1)d) /
T dtdr + A

_ f@0+ (@ d)+ (o) + f (b d)
4

b rd
+(b—a)1m/ / f(z,y) dydz.  (2.1)

Now we prove our main results.
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Theorem 5. Let f: A C [0,00)> — [0,00), a < b c<d, be a continuous mapping
such that tnar’J; exists on A° and Ot"é)ri e L(A). If ‘ Fp ) 18 s-convex on the

co-ordinates on A in the second sense, for m, n € N m, n > 2, then we have the
following inequality:

fla,c) + f(a,d) + f(b,c) + f (b, d)
4

b d
B ErCET [ ] ¢ dyis - 4

-0 d-o"

Anlm) [LB(TL,m) + MC(TL,m) + ND('rL,'rn) =+ RE(n,m):I ’ (22)

where

il D) min =Y 2D

Mo [n(n—l)—i—sl(n—Q)

- (n+51)(”+81+1)] [mB (m, s2 +1) = 2B (m + 1,52 +1)],

m(m — 1)+ sy (m — 2)
|

(m + s2) (m + 52 +1) } B (n,s14+1) =2B(n+ 1,51+ 1)],

R=[nB(n,s1+1)—2B(n+1,s1+1)][mB(m,s2+1) — 2B (m+1,s2 + 1)],

s1,82 € (0,1] with s = 252 and

1
B(x,y):/ A=Y ae
0

is the Fuler Beta function.

Proof. Suppose m,n > 2. By Lemma 1, we have

fla,0)+ fla,d)+ f(bc)+ f(bd)
4

b pd
+m//f(%y)dydx—z4

< (b- 4n'm' / / t"lpm=l(n — 2t) (m — 2r)

" ot f (ta+ (1 —t)ber + (1 —
otnorm

r)d) ‘ dtdr. (2.3)
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T 857{1 on the co-ordinates on A, we get that

/01 /01 t" et (n — 2t) (m — 2r)

" ot f (ta+ (1—t)byer+ (1 —r
otnor™

By s-convexity of ‘

)d) dtdr

1 1
B(n,m) / / grtsimlpmtsa =l (n _ot) (m — 2r) drdt
0 0
1 1
Cinm) / / gntsi—lpm—1 (1 —7)"(n—2t) (m — 2r) drdt
0 0
1 1
+ E(n,m) / / "L (1 =) (n—2t)r™ (1 —7)°% (m — 2r) drdt
0 0

1,1
D (,m) / / trtpmasa =l ) (g — 2t) (m — 2r) drdt| . (2.4)
o Jo

Since

1 1
/ / grbsi—lmsy—1 (n —2t) (m — 2r) drdt
0 0

1 1
= / trrsi=l(n — 2¢) dt/ rmrs2=l (m — 2r) dr
0 0

B [n(n—l)—l—sl(n—Q)} [m(m—l)—&—sQ(m—Q)
|l (nts)(ntsy+1) (m+ s9) (m+s2+1)

Analogously,

1 1
/ / grtsi—lpm—1 (1 —7)(n—2t) (m — 2r) drdt
o Jo

_ {n(n—1)+81(n—2)
(n+s1)(n+s+1)

] [mB(m,s2+1)—2B(m+ 1,52 +1)], (2.6)

1 1
/ / g Llpmtsa—1 (1 _ t)sl (n _ 2t) (m — 2’/“) drdt
0 0

_ [m(m—l)+52(m—2)
(m+s2)(m+sy+1)

] [nB(n,s1+1)—2B(n+1,s1 +1)] (2.7)

//t” YA =) (n—2t)r™ (1 — 7)™ (m — 2r) drdt
=[nB(n,s1+1)—2B(n+1,81+1)][mB(m,so+1)—2B(m+ 1,55+ 1)].

(2.8)
From (2.4)-(2.8) in (2.3), we get the required inequality. This completes the proof
of the theorem. (]

Theorem 6. Let f: A C [0,00) X [0,00) — [0,00), a < b, ¢ < d, be a continuous
an+m,

mapping such that g;g:f; exists on A° and gt”(’)rm L(A). If 8t"8rm‘ ,q>1,
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18 s-convex on the co-ordinates on A, m,n € N, m,n > 2, then

fla,c) + f(a,d) + f(b,c) + f (b, d)
4

b pd
+(b_a)1(d_c)/ / f(@,y) dydz — A

(b—a)"(d—c)™ [(n—1)(m—1)\"""4
= 4n!m) ((n +1)(m+ 1)>

X {/LBY, )+ MDY, .\ + NC{

+ RE? (2.9)

(n,m)

where s1, 82 € (0,1] with s = % and L, M, N, R and B(x,y) are as defined in
Theorem 5.

Proof. The case ¢ = 1 is the Theorem 5. Suppose ¢ > 1, then by Lemma 1 and the
power mean inequality, we have

fla,c) + f(a,d)+ f(b,c) + f (b, d)
4

+(b—a)1(d—c)/ab/cdf($7y)dydx—A/
<= ai;(i'— = {/01 /01 £t (n = 2) (m = 2r) drdt}l_l/q

{//t"lmln—Qt)( —2r)

ot f (ta+ (1 —t)byer + (1 —r)d)|*
X
otnor™

1/q
dtdr} . (2.10)

By the similar arguments used to obtain (2.2) and the fact
11
-1 -1
/ / t" et (g — 2t) (m — 2r) drdt = —(n )(m—1)
0 0 n+1

we get (2.9). This completes the proof of the theorem. O

Theorem 7. Let f : A C [0,00) X [0,00) — [0,00), a < b, ¢ < d, be a continuous

8n+7n q
v q 21

Sross
is s-convex on the co-ordinates on A, s1,sy € (0,1] with s = 222 m n € N,

mapping such that g;ig:i exist on A° and g;:;:,’: e L(A). If
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m,n > 1. Then

(b_a)l(d_c)/ab/cdf(t,r)drdt

| (R P
- kz:; ; ok-+1+2 E+1)I I+ ozkoy

+

m+1 n—1 D (- a)* m ¢ (atb
iyt it 1+ (D - a) / P (25

(d—c)m! = 2k+1 (k4 1)! dxkorm

+

(_1)n+1 m—1 {1 + (—1)1} (d— c)l b ol f (t, #)
(b—ajnl 2 271+ 1) / Pl —5may

= 4n!1m! <(n+ 1)4(m+ 1))1_é <1)2a>" <d26>m

X [(Bfn’m) +Clomy Dl Egnm)) Bn+1,s1+1)B(m+1,s2+1)

dt

2 (Gt(lnvm) + I(qn,m)) B (TL + 17 s1+ 1)

+ m—+ sy + 1
1
q q 4
+2 (H(n’m) + J(mm)) B(m+1,s5+1) . ary, o
n—+s +1 (n+s1+1)(m+sy+1)| = 7
where
[ t-a)",te [a, ‘”2'}’] [ (r=0",re [07 %d}
P() = { (t—b)" t e (2] and Q(r) := (r—d)™,re (4 d|

Proof. By letting x — “'QH’ and y +— C'gd in Theorem 4 and using the properties of
the absolute value, we obtain

(ba)l(dc)/:/cdf(t,r)drdt

et [1 O 10 ot 91y (52, 559)
a 1;) ; 2k-+H+2 (k+ 1! (1 +1)! Dk dy!
N e = 0
+((b—l):):! :1 : +2l(+11()zl}+(61l)! ! / P 8%;;(;;?1)“
<o | | P01l T 212
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By the power mean inequality for double integrals, we have

[ [ irwriaw aﬁ;gi”(ﬁﬁ
g([[ﬂmmwwWMQ (//WP|Q |2 ) d@y

- (/ / |P(t)]|Q(r |d7“dt> [/ / (t—a)"(r—c™ 87’;‘;]8‘(:5”7“) drdt
/ /CH g ‘an;;zg(ir) Y drd
/ [+d (t—a)"(d—r)™ ‘8";‘;?;(;7‘) drdt

1

dr dt] " (2.13)

/ / b-—t)"(d—r)™ ‘8”;;5(;@

Now we calculate each integral in (2.13). Since

ath _¢ t— b
t=| 5 e o
= e 2 ¢ 2
ctd _ - d
= cid c+ c:d - . .
S SG—c) 2

an+Mf
ot™ds™

and

By the co-ordinated s-convexity of

q
, we have
s o4 (1,1)

/sza_w<—w war< (2) (2
a @ otnorm " b—a d—c

S1 S2
(t—a)*(r—c)™ (a+b t) (C—’Q_dr> drdt

ath  ctd a+b 51
Gl / / ( 5~ t) (r —¢)** "™ drdt

S2
a)t (c +d r) (r —c)™drdt

(n 7n)

2

nm)

+b ctd

F(qn m) / 2 / 2 (t - a)31+77- (T - 0)52+m d’f’dt] . (214)
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Now by the change of variableb u =1t—a, v=r—cand then by the change of

variables © = ==, y = 7%, we get that

2 S1 2 S2
b—a d—c
: - S1
[ e—are—om (5 -)

2 o C2 " b;a b s1 d;c d S2
() (2 [T () o (5
d—c 0 9 o 5

_/bQG e 2 51d /dgc e % 52d
= o u b47 a U o v d‘i p v
n+1 m+1 1 1
d—c " s . .
(2> /w (1-2) dx/ y" (1—y)”dy
0 0

n+1 d_C m—+1
< 2 > <> Bn+1Lsi+1)B(m+1s+1). (215)

d 52
c _; 7“) drdt

X
T
4

Il
7 N
S
0‘[\3|
i)
S

Similarly,
c+d

(bfa> <—c) / / (t—a)" <a+b—t)51(7"—6)52+mdrdt

bT) +1( )m+1B(n+1’51+1)
m+ sg+ 1

2 s1 ) S2 atb ctd td .
: : _ \sitn [(CT O _am
(b _ a> (d _ C) /a /c (t—a) ( 5 r) (r —c)™drdt

(5" ()" B+ 1, +1) (2.17)
n+s+1 :

(2.16)

)

and
a+b ctd

N - o AT
(52" (5

(n+s1+1)(m+sy+1)

C)m+1

(2.18)

Using (2.15)-(2.18) in (2.14), we obtain

ER 5 n+1 m+1
2 2 6n+mf(t ’I") q b—a + d—
—a)"(r =" | = ma < a—c
/a /C (t—a)"(r—c) S5y drdt < < 5 > < > >
¢ aBn+1s+1)

(n,m)

q
X | B, B (n+1s1+1)B(m+1s+1)+ P
H{, o B(m+1s+1) Fe
- * e (2.19)
n+s+1 (n+31+1)(m+82+1)
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Analogously,
b 642»(1 an+mf (t T) q
/+/ (b—t)"(r—c) ‘W drdt
b—a n+1 d—c m+1 H(qnm)B(m—i-l,Sg—Fl)
< s
- ( 2 > < 2 > n+s +1
+ D?n,m)B (n+1,51+1)B(m+1,s5+1)
q q
+ Eum) LmB 1,51 +1) (2.20)
(n+s1+1)(m+sy+1) m+ se + 1 J
a+b d q
2 n m an+mf (t,?")
/a /ci;d(t_a) (d—”f’) ‘W@Tm drdt
b—a n+1 d—c m+1 G?n m)B(n—i—le +1)
< )
a ( 2 ) ( 2 ) m+ sy + 1
+an’m)B(n+ 1L,si+1)B(m+1,s5+1)
1 q
Ty Blm L5 #1) Finmy (2.21)
n+51+1 (n+51+1)(m+52+1)

q

and
an—i-’m ﬁ
AN ALY P

b d
/m /M(b_t) @=)" | = 5mgem
2 2
(n,m)

b—a\"" fd—c\™!
<
( 2 ) ( 2 ) (n+s1+1)(m+s+1)

Ign mB(n+1s1+1) J(qnm)B(m—i—l,sQ—l—l)
m—+ sy + 1 n+s+1
YEY  B(n+1,s +1)B(m+1,52+1)}. (2.22)

(n,m)

Fq

It is not difficult to observe that

/ab/ch(t)||Q(r)|drdt: (n+1)4(m+1) (b;“)w (d;C)mH. (2.23)

From (2.12)-(2.23), we get the desired inequality. The proof of the Theorem for
q = 1 is the same. This completes the proof. [l

Some results can be deduced from the inequalities (2.9) and (2.12) as follows:
Letting s1 = so = 1 in Theorem 6 gives the following corollary:

Corollary 1. Let f: A C [0,00) X [0,00) — [0,00), a < b, ¢ < d, be a continuous

m n m n n m q
mapping such that % exists on A° and % e L(A). If gﬂfo@ ,q>1,
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18 convex on the co-ordinates on A, m,n € N, m,n > 2, then

‘fm,c)+f<a,d>+f<b,c>+f<b,d)+ 1 /b/dfxy)dydm—A

4

(b—a)"(d—o)" (n—1)""Y(m—1)' "1/
<
T oA+ D! (m+ D (n+2)Y (m+2)1

[(m?=2) (n*=2) BY, ..,

1
+m (n? = 2) Cf, L+ (m?=2) DY, . +nmEf, 17 (224)

Corollary 2. Under the assumptions of Corollary 1 with m = n = 2, we have

‘f(mc)+f<a,d>+f<b,c>+f<b,d> 1 //
+ f(z,y) dyde — A

4
_(b—a’d-o’,
T 9.2i

The following corollary is a special case of Theorem 7 for s; = s5 = 1:

q

2*f (a,c)
ot20r?

O*f(b,e)|?
ot20r?

O*f (a,d)|?
ot20r?

O*f (b,d)|?
ot20r?

(2.25)

Corollary 3. Let f: A C [0,00) x [0,00) — [0,00), a < b, ¢ < d be a continuous
m n q
mapping such that gt”grg:‘ exist on A° and gt”é)ﬂ}; e L(A). ]f ,q>1,1s

convex on the co-ordinates on A, m, n € N, m,n > 1. Then

Stnasm

B ’fmz—:l [1 + (*1)’“} [1 + (*1)1} (b a)k (d— c)l GEHLf (QTH;’ C;d)
=0 10 2kt GErDI(+ 1) ockay!

—pymtt = L+ ()T (0 - a) b (b

- | / o2 (5

* (d —c)m! pors 2’““‘1 k + 1)! 3:5’“31“’”

——=Z(r

+

oyt e e -o /bP t)wﬁ

(b—aynl & 25 (I +1) ot oy

Bq

(n,m

(b—a)" (d—o)"
T2 (n 4 1) (m + 1))
2(m + 1) (G'gnm +17, m)> 2(n+1) (H(n T m))

(n+2)(m+2) (n+2)(m+2)

4(n+1)(m+1)F(nm)

(n+2)(m+2)
where P(t) and Q(r) are as defined in Theorem 7.

) + C(n m) + D(n m) + E{
(n+2)(m+2)

(n,m)

+

. (2.26)

The following Corollary is a special case of Theorem 7 for s; = so = 1 and
m = n = 1, which gives tighter estimate than those from [23, Theorem 4, page 8]:
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Corollary 4. Under the assumptions of corollary 3 with m = n =1, we have

(b—a)l(d—c)/ab/cdf(t,r)drdtJrf(a;b’cﬂgd)
g [ () g [ (5

c(b—a)(d- o) | Bliy + Cluy + Pl + EL
= 94+2 9

L

Q=

q q q
(Gu G, 1)) 4 (Hm) + J(m)) 8F( 1)
9 + 9 A" ’

(2.27)

where P(t) and Q(r) are as defined in Theorem 7.

q

antm . .
o , ¢ > 1, is convex on the co-ordinates on

It is easy to see that, when S g

A, m,n €N, m,n>1, then

2(Glyy + Lomy) < Bl

—I—C + D + E?

2 (H(n m) + J(n m)) < B(n m) + C(n m) + D(n m) + E(n m)
and
4F¢ < B

(n,m) =

(nm)+C )+D( )+E(

Substituting these inequalities in corollary 3, we get the following corollary which
is [24, Theorem 2.3, pagel2]:

(n,m n,m)"

Corollary 5. Let f: A C [0,00) X [0,00) — [0,00), a < b, ¢ < d, be a contmuous
8n+m

mapping such that g;g:i exist on A° and LL ¢ L(A). If atnasm

atnarm
convex on the co-ordinates on A, m, n € N, m,n > 1. Then

(b_a)l(d_c)/ab/cdf(t,v“)drdt

et [ 0 L 0 - o o (o5, =)

1;0 1=0 AN (k+D'I+ 1) dzk oyl

(_1)m+1 n—1 [1 + (—l)k} (b— a)k d oF+m f (a+b )
(d N C) m) P 2k+1 (k + 1)[ /C Q(T)W

(_1)n+1 m—1 {1 + (—1)? (d— c)l b ot f (t, #)
(b—aynl 2 21+ 1) / Py

,qzl,is

+ dr

+ dt

(b—a)" (d—c)™
- 2m,+n+a ( m + 1 \/ (n,m) + C(n m) (n m) + E(n m)’ (228)

where P(t) and Q(r) are as deﬁned in Theorem 7.

A different approach leads us to the following result:
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Theorem 8. Let f: A C [0,00) X [0,00) — [0,00), a < b, ¢ < d, be a continuous
mapping such that Wfi exist on A° and % e L(A). If 8;f£m‘ ,q > 1,
is s-convex on the co-ordinates on A, s1,s2 € (0,1] with s = %, m, n € N,
m,n > 1. Then

(ba)l(dc)/ab/cdf(t,r)drdt

it L G| [ ()] a0 (252, 28
22 2k HI+2 (k+ 1) +1)! Dk dy!

k=0 1=0

_qym+1 n—1 1+(—1)k (b—a,)k d k+m a+b r
(1) |: } /Q(T)8+f(27)dr

Td—gml & T k11! D drm
L™ - {1 i (_1)1] il /bP(t)anﬂf (t,5) .
(b—a)n! & 2+ (14 1)! a Ot dy!

1

= 4nlm) ((n+1)1(m+1))1_é (b;a>n <d;C>m

B(n+1l,s1+1)B(m+1,s2+1)+ :
m-+ sy + 1

Bq

(n,m)

4

HQ

(n,m) !

B(m+1,s3+1) Ff

(n,m)
+
n+s+1 (n+s1+1)(m+sg+1)
B(m+1,s5+1)
+ D
n+s +1 (n,m)

_|_

Hq

(n,m)

+ B(n+1,s14+1)B(m+1,5,+1)

Fq

(n,m)

IEJn B (n+1,5 +1)

+ +
(n+s1+1)(m+s2+1) m+ s+ 1

B(n+1,s1+1) o

m+ ss+ 1 (n,m)

q
Glnm)

_|_

Bn+1,s1+1)B(m+1,85+1)

Q=

Jq

(n,m)

B(m+1,s2+1) Ff

(n,m)

+
n+s+1 (n+s1+1)(m+s2+1)

Il B (n+1,s1+1) N Sl myB(m+1,52+1)

(n+s1+1)(m+ss+1) m-+sg+1 n+s +1

(n,m)

+E?

(n,m)

B(n—|—1,31—|—1)B(m+1,32+1)}q}, (2.29)

where P(t) and Q(r) are as defined in Theorem 7.
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Proof. By letting z +— %% and y — <5 in Theorem 4, using the properties of the
absolute value, we obtaln

(ba)l(dc)/ab/cdf(t,r)drdt

n—1m-—1 |:1 + (_1)k:| |:]_ + (_1)l:| (b B a)k (d o C)l ak+lf (aTer’ ng)
— kz:;) ; Qk+1+2 (k+ DI+ 1) dzk 0yl

+

_qym+1 n—1 1+(_1)k (b—a)k a ktm g (atb .
(=1) [ } /Q(T)Wdr

(d —c)m! pors 2k+1 (k4 1)! dxkorm

+

Tt} el LA e 20

(b—aynl & 2 (I +1) ot oyl

S h=a (dl— ¢y min! VM /M (t=a)"(r—o"

grtmf(tr)

gy drdt
C+d
m 8n+’mf (t, ’I“)
/ / T — C) ‘W drdt
2 n m 8n+mf (t, 7“)

b d
" m an-‘rmf (t, 7,,)
+/ / b=t d=r) ‘&8

Using the power-mean inequality for each integral on the right-side of (2.30) and
by the similar arguments as in proving Theorem 7, we get (2.29). ]

drdt] . (2.30)

Corollary 6. If the conditions of Theorem 8 are satisfied and if m =n =1 and
s1 = s = 1, then we have the inequality

1 bl a+b c+d
(b_a)(d_c)/a/cf(t,r)drdtJr< 53 )
1 ¢ (a+b 1 b c+d
w—@/ (5o gy [ (655
1 b— 1 1 H
§(4> < a)( ){{36 (11)+18Gq11)+ sty (11>]

1 1
{ H( )Jr D(11)+ F(11)+ — I }

Q=

18 (1,1)

1
| s
q q q
+[18G( T C 1>+18J<11>+9F<11)}

1
1 1 1 1 q
g Al q
+ {9F(171)+ 181(171)+ 13 J( )+36E(1 1)] } (2.31)
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If we use the Holder’s inequality instead of the power-mean inequality we get
the following result:

Theorem 9. Let f : A C [0,00) x [0,00) — [0,00), a < b, ¢ < d, be a contmuous
n+m
3tndévlrct ) p > 17

is s-convex on the co-ordinates on A, s1,s2 € (0,1] with s = ‘“;'7”, m, n € N,
m,n > 1. Then

amaa=g ), [ S

it L G [ (0] a0 (2, )
- Z Qk+i+2 (k+ DI+ 1) Ozkoy!

m+n
mapping such that 2 55 ,’,i exist on A° and gtnd f e L(A). If

k=0 [=0

_ymtl =l 14 (D) (b= a)* e ktm p (atb .
(=1) [ } /Q(T)Wdr

Tld—gml & (k11! Dk

dt

n+l m—1 |1 71l dfcl n ct+d
N Gl S ) ok P A (O

(b—aynl & 2F (I +1) ot oyt

1< 1 1 )
9 2+ 2
2\(s1+1)° (s2+1)° /]

+C?

Q=

. b-a"d-o"
—ontmpIm! [(np 4+ 1) (mp + 1)]%

<[Fhm

(n,m)

1
Gy D L m)} . (232)

where P(t) and Q(r) are as defined in Theorem 7 and 5+ E =1.

Proof. The inequality (2.32) follows using the Holder’s inequality and the inequality
(1.9). O

Corollary 7. Under the assumptions of Theorem 9, if m =n =1 and s; = sy =1,
then we have the inequality

(b—ald—c/b/df(t,r)drdt+f(a;b’C—;d)
2 )/ (a;b )d?”—Q(bl_a)/abf(t,C;d>dt

< 82f(b,c) a 02f (a,d)|? 02f (b,d)|?
- 22+ (p+1) % otor otor otor
1,1 _
where > + 1= 1.

9%f (a,c)
otor

)

(2.33)

Our last result is for the s-concave functions can be stated as follows:

Theorem 10. Let f : A C [0,00) X [0,00) — [0,00), a < b, ¢ < d, be a continuous

6n+m,f p

mapping such that g;:g:f@ exist on A° and gt"@rm € L(A). If |5mpar

, 0> 1,
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is s-concave on the co-ordinates on A, s1,s2 € (0,1] with s = %, m, n € N,
m,n > 1. Then

(b_a)l(d_c)/ab/cdf(t,r)drdt

s el | e el N R G oD

2
kzz:o 1=0 ok+i+2 (k+ DI+ 1) zky!

(1t A LD -0 g g (gt )
(d—c)yml &= 21 (k+ 1) /CQ(T) dzkarm

(_1)n+1 m—1 {1 + (—1)l] (d— c)l b ot f (t, #)
(b—aynl & 21+ 1) / Py

+ dr

+ dt

<
2rtmplm! [(np + 1) (mp + 1)]

where P(t) and Q(r) are as defined in Theorem 7 and 11) + % =1.

—_\" _\m s1+1 so+1 % gntm a+b c+d
(b—a)” (d—c) ; {4 +4 } [, <) (2.34)

2 otnorm ’

Proof. The inequality (2.34) follows using the Holder’s inequality and the inequality
(1.9) with inequalities in reversed direction. O

Corollary 8. If the conditions of Theorem 10 are satisfied and if m =n =1 and
$1 = s9 = 1, then we have the inequality

st [ o s (50559

1 ¢ la+b 1 b c+d
‘2<d—c>/c f( 2 ”)dr‘w—a)/af(t’ 2 )dt
+

_ a0 |0 (5,50 |
T2 i (p+1)r otor

(2.35)
1,1 _
where m + 1= 1.
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