
SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR
FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES

ARE CO-ORDINATED s-CONVEX

M. A. LATIF

Abstract. In this paper we point out some inequalities of Hermite-Hadamard
type for double integrals of functions whose partial derivatives of higher order
are co-ordinated s-convex in the second sense. Our established results gen-
eralize the Hermite-Hadamard type inequalities established for co-ordinated
s-convex functions and re�ne those results established for di¤erentiable func-
tions whose partial derivatives of higher order are co-ordinated convex proved
in a recent paper [24].

1. Introduction

The following de�nition is well known in literature:
A function f : I ! R, ; 6= I � R, is said to be convex on I if the inequality

f (�x+ (1� �) y) � �f (x) + (1� �) f (y) ; (1.1)

holds for all x, y 2 I and � 2 [0; 1]. The inequality (1.1) holds in reverse direction
if f is concave.
The most famous inequality concerning the class of convex functions, is the

Hermite-Hadamard�s inequality.
This double inequality is stated as:
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�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

2
(1.2)

where f : I ! R, ; 6= I � R a convex function, a, b 2 I with a < b. The inequalities
in (1.2) are in reversed order if f a concave function.
The inequalities (1.2) have become an important cornerstone in mathematical

analysis and optimization and many uses of these inequalities have been discov-
ered in a variety of settings. Moreover, many inequalities of special means can
be obtained for a particular choice of the function f: Due to the rich geometrical
signi�cance of Hermite-Hadamard�s inequality (1.2), there is growing literature pro-
viding its new proofs, extensions, re�nements and generalizations, see for example
[8, 14, 19, 29, 32, 33] and the references therein.
In the paper [15], Hudzik and Maligranda considered, among others, the class of

functions which are s-convex in the second sense. This class is de�ned follows:
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A function f : [0;1)! R is said to be s-convex in the second sense if

f (�x+ (1� �) y) � �sf (x) + (1� �)s f (y) (1.3)

holds for all x; y 2 [0;1) ; � 2 [0; 1] and for some �xed s 2 (0; 1].
It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of

functions de�ned on [0;1).
In [9], Dragomir and Fitzpatrick proved a variant of Hadamard�s inequality which

holds for s-convex functions in the second sense.

Theorem 1. [9]Suppose that f : [0;1) ! [0;1) is an s-convex function in the
second sense, where s 2 (0; 1) and a; b 2 [0;1), a < b. If f 2 L1 [a; b], then the
following inequalities hold:

2s�1f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

s+ 1
: (1.4)

The constant k = 1
s+1 is the best possible in the second inequality in (1.4).

For more about properties and Hermite-Hadamard type inequalities of s-convex
functions in the second sense we refer the interested readers to [7, 9, 12, 15, 20].

Let us consider now a bidimensional interval � =: [a; b]� [c; d] in R2 with a < b
and c < d: A mapping f : �! R is said to be convex on � if the inequality

f(�x+ (1� �)z; �y + (1� �)w) � �f(x; y) + (1� �)f(z; w)

holds for all (x; y); (z; w) 2 � and � 2 [0; 1]:
A modi�cation for convex functions on �; known as co-ordinated convex func-

tions, was introduced by S. S. Dragomir [10] as follows:
A function f : �! R is said to be convex on the co-ordinates on � if the partial

mappings fy : [a; b] ! R, fy(u) = f(u; y) and fx : [c; d] ! R, fx(v) = f(x; v) are
convex where de�ned for all x 2 [a; b]; y 2 [c; d]:
A formal de�nition for co-ordinated convex functions may be stated as follow:

De�nition 1. [21] A function f : �! R is said to be convex on the co-ordinates
on � if the inequality

f(tx+ (1� t)y; ru+ (1� r)w)
� trf(x; u) + t(1� r)f(x;w) + r(1� t)f(y; u) + (1� t)(1� r)f(y; w)

holds for all t; r 2 [0; 1] and (x; u); (y; w) 2 �:

Clearly, every convex mapping f : � ! R is convex on the co-ordinates but
converse may not be true [10].
The following Hermite-Hadamard type inequalities for co-ordinated convex func-

tions on the rectangle from the plane R2 were established in [10]:
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Theorem 2. [10] Suppose that f : �! R is co-ordinated convex on �; then
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4

"
1

b� a

Z b

a

[f (x; c) + f (x; d)] dx+
1

d� c

Z d

c

[f (a; y) + f (b; y)] dy

#

� f (a; c) + f (a; d) + f (b; c) + f (b; d)

4
: (1.5)

The above inequalities are sharp.

The concept of s-convex functions on the co-ordinates in the second sense was
introduced by Alomari and Darus in [3] as a generalization of the usual co-ordinated
convexity:

De�nition 2. [3] Consider the bidimensional interval � = [a; b]� [c; d] in [0;1)2
with a < b and c < d. The mapping f : �! R is s-convex in the second sense on
� if

f(�x+ (1� �) z; �y + (1� �)w) � �sf(x; y) + (1� �)s f(z; w);
holds for all (x; y); (z; w) 2 �, � 2 [0; 1] with some �xed s 2 (0; 1].

A function f : � � [0;1)2 ! R is called s-convex in the second sense on the
co-ordinates on � if the partial mappings fy : [a; b] ! R; fy(u) = f(u; y) and
fx : [c; d] ! R; fx(v) = f(x; v), are s-convex in the second sense for all y 2 [c; d],
x 2 [a; b] and s 2 (0; 1], i.e., the partial mappings fy and fx are s-convex in the
second sense with some �xed s 2 (0; 1].
A formal de�nition of co-ordinated s-convex function in second sense may be

stated as follows:

De�nition 3. A function f : � � [0;1)2 ! R is called s-convex in the second
sense on the co-ordinates on � if

f(tx+ (1� t)y; ru+ (1� r)w)
� tsrsf(x; u) + ts(1� r)sf(x;w) + rs(1� t)sf(y; u) + (1� t)s(1� r)sf(y; w)

(1.6)

holds for all t; r 2 [0; 1] and (x; u); (y; u); (x;w) ; (y; w) 2 �, for some �xed s 2 (0; 1].
The mapping f is concave on the co-ordinates on � if the inequality (1.6) holds in
reversed direction for all t; r 2 [0; 1] and (x; y); (u;w) 2 � with some �xed s 2 (0; 1].

Furthermore, Alomari and Darus [5] introduced a new class of s-convex functions
on the co-ordinates on the rectangle from the plane as follows:

De�nition 4. [5] Consider the bidimensional interval � =: [a; b]� [c; d] in [0;1)2
with a < b and c < d. The mapping f : �! R is s-convex in the second sense on
� if there exist s1; s2 2 (0; 1] with s = s1+s2

2 such that

f(�x+ (1� �) z; �y + (1� �)w) � �s1f(x; y) + (1� �)s2 f(z; w) (1.7)

holds for all (x; y); (z; w) 2 �, � 2 [0; 1]. This class of functions is denoted by
MWO2s1;s2 .
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A function f : � � [0;1)2 ! R is called s-convex in the second sense on the
co-ordinates on � if the partial mappings fy : [a; b] ! R; fy(u) = f(u; y) and
fx : [c; d] ! R; fx(v) = f(x; v), are s1-convex and s2-convex in the second sense
for all y 2 [c; d], x 2 [a; b] and s1; s2 2 (0; 1] with s = s1+s2

2 , respectively, i.e.,
the partial mappings fy and fx are s1-convex and s2-convex in the second sense,
s1; s2 2 (0; 1] with s = s1+s2

2 .
The de�nition 3 can be generalized as follows:

De�nition 5. A function f : � =: [a; b] � [c; d] � [0;1)2 ! R is called s-convex
in the second sense on the co-ordinates on � if

f(tx+ (1� t)y; ru+ (1� r)w)
� ts1rs2f(x; u)+ts1(1�r)s2f(x;w)+rs2(1�t)s1f(y; u)+(1�t)s1(1�r)s2f(y; w)

(1.8)

holds for all t; r 2 [0; 1] and (x; u); (y; u); (x;w) ; (y; w) 2 �, s1; s2 2 (0; 1] with s =
s1+s2
2 . The mapping f is concave on the co-ordinates on � if the inequality (1.8)

holds in reversed direction for all t; r 2 [0; 1] and (x; y); (u;w) 2 �, s1; s2 2 (0; 1]
with s = s1+s2

2 .

In [5], Alomari et al. also proved a variant of inequalities given above by (1.5)
for s-convex functions in the second sense on the co-ordinates on a rectangle from
the plane R2:

Theorem 3. [5] Suppose f : � � [0;1)2 ! [0;1) is s-convex function in the
second sense on the co-ordinates on �. Then one has the inequalities:�

4s1�1 + 4s2�1

2

�
f

�
a+ b

2
;
c+ d

2

�
� 2s1�2

b� a

Z b

a

f

�
x;
c+ d

2

�
dx+

2s2�2

d� c

Z d

c

f

�
a+ b

2
; y

�
dy

� 1

(b� a)(d� c)

Z b

a

Z d

c

f(x; y)dydx

� 1

2 (s1 + 1) (b� a)

Z b

a

[f (x; c) + f (x; d)] dx

+
1

2 (s2 + 1) (d� c)

Z d

c

[f (a; y) + f (b; y)] dy

� 1

2

 
1

(s1 + 1)
2 +

1

(s2 + 1)
2

!
[f(a; c) + f(b; c) + f(a; d) + f(b; d)] : (1.9)

In recent years, many authors have proved several inequalities for co-ordinated
convex functions. These studies include, among others, the works in [1, 3, 4, 5, 6],
[10], [13], [21]-[24], [25]-[28] and [31]. Alomari et al. [1, 3, 4, 5, 6], proved several
Hermite-Hadamard type inequalities for co-ordinated s-convex functions and co-
ordinated log-convex functions. Dragomir [10], proved the Hermite-Hadamard type
inequalities for co-ordinated convex functions. Hwang et. al [13], also proved some
Hermite-Hadamard type inequalities for co-ordinated convex function of two vari-
ables by considering some mappings directly associated to the Hermite-Hadamard
type inequality for co-ordinated convex mappings of two variables. Latif et. al
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[12]-[14], proved some inequalities of Hermite-Hadamard type for di¤erentiable
co-ordinated convex functions, di¤erentiable functions whose higher order partial
derivatives are co-ordinated convex , product of two co-ordinated convex map-
pings and for co-ordinated h-convex mappings. Özdemir et. al [25]-[28], proved
Hadamard�s type inequalities for co-ordinated convex functions, co-ordinated s-
convex functions and co-ordinated m-convex and (�;m)-convex functions.
The main aim of this paper is to establish some new Hermite-Hadamard type

inequalities for di¤erentiable functions whose partial derivatives of higher order
are co-ordinated s-convex in the second sense on the rectangle from the plane R2
which generalize the Hermite-Hadamard type inequalities proved for co-ordinated
s-convex functions in the second sense and re�ne those results established for di¤er-
entiable functions whose partial derivatives of higher order are co-ordinated convex
on the rectangle from the plane R2 (see [24]).

2. Main Results

In this section we establish new Hermite-Hadamard type inequalities for double
integrals of functions whose partial derivatives of higher order are co-ordinated
s-convex in the second sense.
To make the presentation easier and compact to understand, we make some

symbolic representations as follows:

A
0
=
1

2

"
1

b� a

Z b

a

[f (x; c) + f (x; d)] dx+
1

d� c

Z d

c

[f (a; y) + f (b; y)] dy

#

+
1

2

m�1X
l=2

(l � 1) (d� c)l

2 (l + 1)!

�
@lf (a; c)

@yl
+
@lf (b; c)

@yl

�

+
1

2

n�1X
k=2

(k � 1) (b� a)k

2 (k + 1)!

�
@kf (a; c)

@xk
+
@kf (a; d)

@xk

�

� 1

b� a

m�1X
l=2

(l � 1) (d� c)l

2 (l + 1)!

Z b

a

@lf (x; c)

@yl
dx

� 1

d� c

n�1X
k=2

(k � 1) (b� a)k

2 (k + 1)!

Z d

c

@kf (a; y)

@xk
dy

�
n�1X
k=2

m�1X
l=2

(k � 1) (l � 1) (b� a)k (d� c)l

4 (k + 1)! (l + 1)!

@k+lf (a; c)

@xkyl
;

B(n;m) =

����@n+mf (a; c)@tn@rm

���� ; C(n;m) = ����@n+mf (a; d)@tn@rm

���� ;
D(n;m) =

����@n+mf (b; c)@tn@rm

���� ; E(n;m) = ����@n+mf (b; d)@tn@rm

���� ;
F(n;m) =

�����@n+mf
�
a+b
2 ;

c+d
2

�
@tn@rm

����� ; G(n;m) =
�����@n+mf

�
a; c+d2

�
@tn@rm

����� ;
H(n;m) =

�����@n+mf
�
a+b
2 ; c

�
@tn@rm

����� ; J(n;m) =
�����@n+mf

�
a+b
2 ; d

�
@tn@rm

����� ;
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I(n;m) =

�����@n+mf
�
b; c+d2

�
@tn@rm

����� ;
where the sums above take 0, when m = n = 1 and m = n = 2 and hence

A
0
= A =

1

2

"
1

b� a

Z b

a

[f (x; c) + f (x; d)] dx+
1

d� c

Z d

c

[f (a; y) + f (b; y)] dy

#
:

.
In what follows �� is the interior of � = [a; b]� [c; d] and L (�) is the space of

integrable functions over �.
The following two results will be very useful in the sequel of the paper:

Theorem 4. [18] Let f : � ! R be a continuous mapping such that the partial

derivatives @k+lf(:;:)
@xk@yl

, k = 0; 1; : : : ; n � 1, l = 0; 1; : : : ;m � 1 exist on �� and are
continuous on �; thenZ b

a

Z d

c

f (t; r) drdt =
n�1X
k=0

m�1X
l=0

Xk (x)Yl (y)
@k+lf (x; y)

@xk@yl
+

(�1)m
n�1X
k=0

Xk (x)

Z d

c

Sm (y; r)
@k+mf (x; r)

@xk@rm
dr

+ (�1)n
m�1X
l=0

Yl (y)

Z b

a

Kn (x; t)
@n+lf (t; y)

@tn@yl
dt

+ (�1)m+n
Z b

a

Z d

c

Kn (x; t)Sm (y; r)
@n+mf (t; r)

@tn@rm
drdt;

where8>>>>>><>>>>>>:
Kn (x; t) :=

(
(t�a)n
n! ; t 2 [a; x]

(t�b)n
n! ; t 2 (x; b]

Sm (y; r) :=

(
(r�c)m
m! ; r 2 [c; y]

(r�d)m
m! ; r 2 (y; d]

and

8><>:
Xk (x) :=

(b�x)k+1+(�1)k(x�a)k+1
(k+1)!

Yl (y) :=
(d�y)l+1+(�1)l(y�c)l+1

(l+1)!

;

for (x; y) 2 �:

Lemma 1. [24] Let f : � ! R, be a continuous mapping such that @m+nf
@xn@ym exists

on �� and @m+nf
@xn@ym 2 L (�) for m;n � 1; then

(b� a)n (d� c)m

4n!m!

Z 1

0

Z 1

0

tn�1rm�1 (n� 2t) (m� 2r)

� @
n+mf (ta+ (1� t) b; cr + (1� r) d)

@tn@rm
dtdr +A

0

=
f (a; c) + f (a; d) + f (b; c) + f (b; d)

4

+
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx: (2.1)

Now we prove our main results.
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Theorem 5. Let f : � � [0;1)2 ! [0;1), a < b; c < d, be a continuous mapping
such that @m+nf

@tn@rm exists on �� and @m+nf
@tn@rm 2 L (�). If

��� @n+mf@tn@rm

��� is s-convex on the
co-ordinates on � in the second sense; for m, n 2 N, m, n � 2, then we have the
following inequality:

����f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx�A
0

�����
� (b� a)n (d� c)m

4n!m!

�
LB(n;m) +MC(n;m) +ND(n;m) +RE(n;m)

�
; (2.2)

where

L =

�
n (n� 1) + s1 (n� 2)
(n+ s1) (n+ s1 + 1)

� �
m (m� 1) + s2 (m� 2)
(m+ s2) (m+ s2 + 1)

�
;

M =

�
n (n� 1) + s1 (n� 2)
(n+ s1) (n+ s1 + 1)

�
[mB (m; s2 + 1)� 2B (m+ 1; s2 + 1)] ;

N =

�
m (m� 1) + s2 (m� 2)
(m+ s2) (m+ s2 + 1)

�
[nB (n; s1 + 1)� 2B (n+ 1; s1 + 1)] ;

R = [nB (n; s1 + 1)� 2B (n+ 1; s1 + 1)] [mB (m; s2 + 1)� 2B (m+ 1; s2 + 1)] ;

s1; s2 2 (0; 1] with s = s1+s2
2 and

B(x; y) =

Z 1

0

tx�1 (1� t)y�1 dt

is the Euler Beta function.

Proof. Suppose m;n � 2. By Lemma 1, we have

����f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx�A
0

�����
� (b� a)n (d� c)m

4n!m!

Z 1

0

Z 1

0

tn�1rm�1 (n� 2t) (m� 2r)

�
����@n+mf (ta+ (1� t) b; cr + (1� r) d)@tn@rm

���� dtdr: (2.3)
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By s-convexity of
��� @m+nf
@tn@sm

��� on the co-ordinates on �, we get thatZ 1

0

Z 1

0

tn�1rm�1 (n� 2t) (m� 2r)

�
����@n+mf (ta+ (1� t) b; cr + (1� r) d)@tn@rm

���� dtdr
� B(n;m)

Z 1

0

Z 1

0

tn+s1�1rm+s2�1 (n� 2t) (m� 2r) drdt

+ C(n;m)

Z 1

0

Z 1

0

tn+s1�1rm�1 (1� r)s2 (n� 2t) (m� 2r) drdt

+ E(n;m)

Z 1

0

Z 1

0

tn�1 (1� t)s1 (n� 2t) rm�1 (1� r)s2 (m� 2r) drdt

+D(n;m)

Z 1

0

Z 1

0

tn�1rm+s2�1 (1� t)s1 (n� 2t) (m� 2r) drdt
�
: (2.4)

SinceZ 1

0

Z 1

0

tn+s1�1rm+s2�1 (n� 2t) (m� 2r) drdt

=

Z 1

0

tn+s1�1 (n� 2t) dt
Z 1

0

rm+s2�1 (m� 2r) dr

=

�
n (n� 1) + s1 (n� 2)
(n+ s1) (n+ s1 + 1)

� �
m (m� 1) + s2 (m� 2)
(m+ s2) (m+ s2 + 1)

�
: (2.5)

Analogously,Z 1

0

Z 1

0

tn+s1�1rm�1 (1� r)s2 (n� 2t) (m� 2r) drdt

=

�
n (n� 1) + s1 (n� 2)
(n+ s1) (n+ s1 + 1)

�
[mB (m; s2 + 1)� 2B (m+ 1; s2 + 1)] ; (2.6)

Z 1

0

Z 1

0

tn�1rm+s2�1 (1� t)s1 (n� 2t) (m� 2r) drdt

=

�
m (m� 1) + s2 (m� 2)
(m+ s2) (m+ s2 + 1)

�
[nB (n; s1 + 1)� 2B (n+ 1; s1 + 1)] (2.7)

andZ 1

0

Z 1

0

tn�1 (1� t)s1 (n� 2t) rm�1 (1� r)s2 (m� 2r) drdt

= [nB (n; s1 + 1)� 2B (n+ 1; s1 + 1)] [mB (m; s2 + 1)� 2B (m+ 1; s2 + 1)] :
(2.8)

From (2.4)-(2.8) in (2.3), we get the required inequality. This completes the proof
of the theorem. �

Theorem 6. Let f : � � [0;1) � [0;1) ! [0;1), a < b; c < d, be a continuous
mapping such that @m+nf

@tn@rm exists on �� and @m+nf
@tn@rm 2 L (�) : If

��� @n+mf@tn@rm

���q ; q � 1,
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is s-convex on the co-ordinates on �, m;n 2 N, m;n � 2, then

����f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx�A
0

�����
� (b� a)n (d� c)m

4n!m!

�
(n� 1) (m� 1)
(n+ 1) (m+ 1)

�1�1=q
� q

q
LBq(n;m) +MD

q
(n;m) +NC

q
(n;m) +RE

q
(n;m); (2.9)

where s1; s2 2 (0; 1] with s = s1+s2
2 and L, M , N , R and B(x; y) are as de�ned in

Theorem 5.

Proof. The case q = 1 is the Theorem 5. Suppose q > 1, then by Lemma 1 and the
power mean inequality, we have

����f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx�A
0

�����
� (b� a)n (d� c)m

4n!m!

�Z 1

0

Z 1

0

tn�1rm�1 (n� 2t) (m� 2r) drdt
�1�1=q

�
�Z 1

0

Z 1

0

tn�1rm�1 (n� 2t) (m� 2r)

�
����@n+mf (ta+ (1� t) b; cr + (1� r) d)@tn@rm

����q dtdr�1=q : (2.10)

By the similar arguments used to obtain (2.2) and the fact

Z 1

0

Z 1

0

tn�1rm�1 (n� 2t) (m� 2r) drdt = (n� 1) (m� 1)
(n+ 1) (m+ 1)

;

we get (2.9). This completes the proof of the theorem. �

Theorem 7. Let f : � � [0;1) � [0;1) ! [0;1), a < b, c < d, be a continuous
mapping such that @m+nf

@tn@rm exist on �� and @m+nf
@tn@rm 2 L (�). If

��� @n+mf@tn@sm

���q ; q � 1;

is s-convex on the co-ordinates on �, s1; s2 2 (0; 1] with s = s1+s2
2 , m, n 2 N,
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m;n � 1. Then����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� 1

4n!m!

�
4

(n+ 1) (m+ 1)

�1� 1
q
�
b� a
2

�n�
d� c
2

�m
�
h�
Bq(n;m) + C

q
(n;m) +D

q
(n;m) + E

q
(n;m)

�
B (n+ 1; s1 + 1)B (m+ 1; s2 + 1)

+
2
�
Gq(n;m) + I

q
(n;m)

�
B (n+ 1; s1 + 1)

m+ s2 + 1

+
2
�
Hq
(n;m) + J

q
(n;m)

�
B (m+ 1; s2 + 1)

n+ s1 + 1
+

4F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)

35
1
q

; (2.11)

where

P (t) :=

�
(t� a)n ; t 2

�
a; a+b2

�
(t� b)n ; t 2

�
a+b
2 ; b

� and Q(r) :=

�
(r � c)m ; r 2

�
c; c+d2

�
(r � d)m ; r 2

�
c+d
2 ; d

� :

Proof. By letting x 7! a+b
2 and y 7! c+d

2 in Theorem 4 and using the properties of
the absolute value, we obtain����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� 1

(b� a) (d� c)m!n!

Z b

a

Z d

c

jP (t)j jQ(r)j
����@n+mf (t; r)@tn@rm

���� drdt: (2.12)
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By the power mean inequality for double integrals, we have

Z b

a

Z d

c

jP (t)j jQ(r)j
����@n+mf (t; r)@tn@rm

���� drdt
�
 Z b

a

Z d

c

jP (t)j jQ(r)j drdt
!1� 1

q
 Z b

a

Z d

c

jP (t)j jQ(r)j
����@n+mf (t; r)@tn@rm

����q drdt
! 1

q

=

 Z b

a

Z d

c

jP (t)j jQ(r)j drdt
!1� 1

q
"Z a+b

2

a

Z c+d
2

c

(t� a)n(r � c)m
����@n+mf (t; r)@tn@rm

����q drdt
+

Z b

a+b
2

Z c+d
2

c

(b� t)n(r � c)m
����@n+mf (t; r)@tn@rm

����q drdt
+

Z a+b
2

a

Z d

c+d
2

(t� a)n(d� r)m
����@n+mf (t; r)@tn@rm

����q drdt
+

Z b

a+b
2

Z d

c+d
2

(b� t)n(d� r)m
����@n+mf (t; r)@tn@rm

����q drdt
# 1
q

: (2.13)

Now we calculate each integral in (2.13). Since

t =

 
a+b
2 � t

a+b
2 � a

!
a+

 
t� a
a+b
2 � a

!
a+ b

2

and

r =

 
c+d
2 � r
c+d
2 � c

!
c+

 
r � c
c+d
2 � c

!
c+ d

2
:

By the co-ordinated s-convexity of
��� @n+mf@tn@sm

���q, we have
Z a+b

2

a

Z c+d
2

c

(t� a)n(r � c)m
����@n+mf (t; r)@tn@rm

����q drdt � � 2

b� a

�s1 � 2

d� c

�s2
�
"
Bq(n;m)

Z a+b
2

a

Z c+d
2

c

(t� a)n(r � c)m
�
a+ b

2
� t
�s1 �c+ d

2
� r
�s2

drdt

+Gq(n;m)

Z a+b
2

a

Z c+d
2

c

(t� a)n
�
a+ b

2
� t
�s1

(r � c)s2+m drdt

+Hq
(n;m)

Z a+b
2

a

Z c+d
2

c

(t� a)s1+n
�
c+ d

2
� r
�s2

(r � c)mdrdt

+F q(n;m)

Z a+b
2

a

Z c+d
2

c

(t� a)s1+n (r � c)s2+m drdt
#
: (2.14)
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Now by the change of variables u = t � a, v = r � c and then by the change of
variables x = 2u

b�a , y =
2v
d�c , we get that�

2

b� a

�s1 � 2

d� c

�s2
�
Z a+b

2

a

Z c+d
2

c

(t� a)n(r � c)m
�
a+ b

2
� t
�s1 �c+ d

2
� r
�s2

drdt

=

�
2

b� a

�s1 � 2

d� c

�s2 Z b�a
2

0

un
�
b� a
2

� u
�s1

du

Z d�c
2

0

vm
�
d� c
2

� v
�s2

dv

=

Z b�a
2

0

un
�
1� 2u

b� a

�s1
du

Z d�c
2

0

vm
�
1� 2v

d� c

�s2
dv

=

�
b� a
2

�n+1�
d� c
2

�m+1 Z 1

0

xn (1� x)s1 dx
Z 1

0

ym (1� y)s2 dy

=

�
b� a
2

�n+1�
d� c
2

�m+1
B (n+ 1; s1 + 1)B (m+ 1; s2 + 1) : (2.15)

Similarly,�
2

b� a

�s1 � 2

d� c

�s2 Z a+b
2

a

Z c+d
2

c

(t� a)n
�
a+ b

2
� t
�s1

(r � c)s2+m drdt

=

�
b�a
2

�n+1 �d�c
2

�m+1
B (n+ 1; s1 + 1)

m+ s2 + 1
; (2.16)

�
2

b� a

�s1 � 2

d� c

�s2 Z a+b
2

a

Z c+d
2

c

(t� a)s1+n
�
c+ d

2
� r
�s2

(r � c)mdrdt

=

�
b�a
2

�n+1 �d�c
2

�m+1
B (m+ 1; s2 + 1)

n+ s1 + 1
(2.17)

and�
2

b� a

�s1 � 2

d� c

�s2 Z a+b
2

a

Z c+d
2

c

(t� a)s1+n (r � c)s2+m drdt

=

�
b�a
2

�n+1 �d�c
2

�m+1
(n+ s1 + 1) (m+ s2 + 1)

: (2.18)

Using (2.15)-(2.18) in (2.14), we obtainZ a+b
2

a

Z c+d
2

c

(t� a)n(r � c)m
����@n+mf (t; r)@tn@rm

����q drdt � �b� a2
�n+1�

d� c
2

�m+1
�
"
Bq(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1) +

Gq(n;m)B (n+ 1; s1 + 1)

m+ s2 + 1

+
Hq
(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1
+

F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)

#
: (2.19)
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Analogously,

Z b

a+b
2

Z c+d
2

c

(b� t)n(r � c)m
����@n+mf (t; r)@tn@rm

����q drdt
�
�
b� a
2

�n+1�
d� c
2

�m+1 "Hq
(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1

+Dq
(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1)

+
F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)
+
Iq(n;m)B (n+ 1; s1 + 1)

m+ s2 + 1

#
; (2.20)

Z a+b
2

a

Z d

c+d
2

(t� a)n(d� r)m
����@n+mf (t; r)@tn@rm

����q drdt
�
�
b� a
2

�n+1�
d� c
2

�m+1 "Gq(n;m)B (n+ 1; s1 + 1)
m+ s2 + 1

+ Cq(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1)

+
Jq(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1
+

F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)

#
(2.21)

andZ b

a+b
2

Z d

c+d
2

(b� t)n(d� r)m
����@n+mf (t; r)@tn@rm

����q drdt
�
�
b� a
2

�n+1�
d� c
2

�m+1 " F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)

+
Iq(n;m)B (n+ 1; s1 + 1)

m+ s2 + 1
+
Jq(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1

+Eq(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1)
i
: (2.22)

It is not di¢ cult to observe thatZ b

a

Z d

c

jP (t)j jQ(r)j drdt = 4

(n+ 1) (m+ 1)

�
b� a
2

�n+1�
d� c
2

�m+1
: (2.23)

From (2.12)-(2.23), we get the desired inequality. The proof of the Theorem for
q = 1 is the same. This completes the proof. �

Some results can be deduced from the inequalities (2.9) and (2.12) as follows:
Letting s1 = s2 = 1 in Theorem 6 gives the following corollary:

Corollary 1. Let f : � � [0;1)� [0;1)! [0;1), a < b; c < d, be a continuous
mapping such that @m+nf

@tn@rm exists on �� and @m+nf
@tn@rm 2 L (�) : If

��� @n+mf@tn@rm

���q ; q � 1,
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is convex on the co-ordinates on �, m;n 2 N, m;n � 2, then�����f (a; c) + f (a; d) + f (b; c) + f (b; d)4
+

1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx�A
0

�����
� (b� a)n (d� c)m (n� 1)1�1=q (m� 1)1�1=q

4 (n+ 1)! (m+ 1)! (n+ 2)
1=q
(m+ 2)

1=q

h�
m2 � 2

� �
n2 � 2

�
Bq(n;m)

+m
�
n2 � 2

�
Cq(n;m) + n

�
m2 � 2

�
Dq
(n;m) + nmE

q
(n;m)

i 1
q

: (2.24)

Corollary 2. Under the assumptions of Corollary 1 with m = n = 2, we have�����f (a; c) + f (a; d) + f (b; c) + f (b; d)4
+

1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx�A
0

�����
� (b� a)2 (d� c)2

9 � 2
2
q+4

q

s����@4f (a; c)@t2@r2

����q + ����@4f (b; c)@t2@r2

����q + ����@4f (a; d)@t2@r2

����q + ����@4f (b; d)@t2@r2

����q:
(2.25)

The following corollary is a special case of Theorem 7 for s1 = s2 = 1:

Corollary 3. Let f : � � [0;1)� [0;1)! [0;1), a < b, c < d, be a continuous
mapping such that @m+nf

@tn@rm exist on �� and @m+nf
@tn@rm 2 L (�). If

��� @n+mf@tn@sm

���q ; q � 1; is
convex on the co-ordinates on �, m, n 2 N, m;n � 1. Then����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� (b� a)n (d� c)m

2m+n+
2
q (n+ 1)! (m+ 1)!

"
Bq(n;m) + C

q
(n;m) +D

q
(n;m) + E

q
(n;m)

(n+ 2) (m+ 2)

+
2 (m+ 1)

�
Gq(n;m) + I

q
(n;m)

�
(n+ 2) (m+ 2)

+
2 (n+ 1)

�
Hq
(n;m) + J

q
(n;m)

�
(n+ 2) (m+ 2)

+
4 (n+ 1) (m+ 1)F q(n;m)

(n+ 2) (m+ 2)

# 1
q

; (2.26)

where P (t) and Q(r) are as de�ned in Theorem 7.

The following Corollary is a special case of Theorem 7 for s1 = s2 = 1 and
m = n = 1, which gives tighter estimate than those from [23, Theorem 4, page 8]:
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Corollary 4. Under the assumptions of corollary 3 with m = n = 1, we have����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt+ f

�
a+ b

2
;
c+ d

2

�

� 1

2 (d� c)

Z d

c

f

�
a+ b

2
; r

�
dr � 1

2 (b� a)

Z b

a

f

�
t;
c+ d

2

�
dt

�����
� (b� a) (d� c)

24+
2
q

"
Bq(1;1) + C

q
(1;1) +D

q
(1;1) + E

q
(1;1)

9

+
4
�
Gq(1;1) + I

q
(1;1)

�
9

+
4
�
Hq
(1;1) + J

q
(1;1)

�
9

+
8F q(1;1)

9

35
1
q

; (2.27)

where P (t) and Q(r) are as de�ned in Theorem 7.

It is easy to see that, when
��� @n+mf@tn@sm

���q ; q � 1; is convex on the co-ordinates on
�, m, n 2 N, m;n � 1, then

2
�
Gq(n;m) + I

q
(n;m)

�
� Bq(n;m) + C

q
(n;m) +D

q
(n;m) + E

q
(n;m);

2
�
Hq
(n;m) + J

q
(n;m)

�
� Bq(n;m) + C

q
(n;m) +D

q
(n;m) + E

q
(n;m)

and
4F q(n;m) � B

q
(n;m) + C

q
(n;m) +D

q
(n;m) + E

q
(n;m):

Substituting these inequalities in corollary 3, we get the following corollary which
is [24, Theorem 2.3, page12]:

Corollary 5. Let f : � � [0;1)� [0;1)! [0;1), a < b, c < d, be a continuous
mapping such that @m+nf

@tn@rm exist on �� and @m+nf
@tn@rm 2 L (�). If

��� @n+mf@tn@sm

���q ; q � 1; is
convex on the co-ordinates on �, m, n 2 N, m;n � 1. Then����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� (b� a)n (d� c)m

2m+n+
2
q (n+ 1)! (m+ 1)!

q

q
Bq(n;m) + C

q
(n;m) +D

q
(n;m) + E

q
(n;m); (2.28)

where P (t) and Q(r) are as de�ned in Theorem 7.

A di¤erent approach leads us to the following result:
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Theorem 8. Let f : � � [0;1) � [0;1) ! [0;1), a < b, c < d, be a continuous
mapping such that @m+nf

@tn@rm exist on �� and @m+nf
@tn@rm 2 L (�). If

��� @n+mf@tn@sm

���q ; q � 1;

is s-convex on the co-ordinates on �, s1; s2 2 (0; 1] with s = s1+s2
2 , m, n 2 N,

m;n � 1. Then

����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� 1

4n!m!

�
1

(n+ 1) (m+ 1)

�1� 1
q
�
b� a
2

�n�
d� c
2

�m
�
("
Bq(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1) +

Gq(n;m)B (n+ 1; s1 + 1)

m+ s2 + 1

+
Hq
(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1
+

F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)

# 1
q

+

"
Hq
(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1
+Dq

(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1)

+
F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)
+
Iq(n;m)B (n+ 1; s1 + 1)

m+ s2 + 1

# 1
q

+

"
Gq(n;m)B (n+ 1; s1 + 1)

m+ s2 + 1
+ Cq(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1)

+
Jq(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1
+

F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)

# 1
q

+

"
F q(n;m)

(n+ s1 + 1) (m+ s2 + 1)
+
Iq(n;m)B (n+ 1; s1 + 1)

m+ s2 + 1
+
Jq(n;m)B (m+ 1; s2 + 1)

n+ s1 + 1

+Eq(n;m)B (n+ 1; s1 + 1)B (m+ 1; s2 + 1)
i 1
q

�
; (2.29)

where P (t) and Q(r) are as de�ned in Theorem 7.
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Proof. By letting x 7! a+b
2 and y 7! c+d

2 in Theorem 4, using the properties of the
absolute value, we obtain����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� 1

(b� a) (d� c)m!n!

"Z a+b
2

a

Z c+d
2

c

(t� a)n (r � c)m
����@n+mf (t; r)@tn@rm

���� drdt
+

Z b

a+b
2

Z c+d
2

c

(b� t)n (r � c)m
����@n+mf (t; r)@tn@rm

���� drdt
+

Z a+b
2

a

Z d

c+d
2

(t� a)n (d� r)m
����@n+mf (t; r)@tn@rm

���� drdt
+

Z b

a+b
2

Z d

c+d
2

(b� t)n (d� r)m
����@n+mf (t; r)@tn@rm

���� drdt
#
: (2.30)

Using the power-mean inequality for each integral on the right-side of (2.30) and
by the similar arguments as in proving Theorem 7, we get (2.29). �

Corollary 6. If the conditions of Theorem 8 are satis�ed and if m = n = 1 and
s1 = s2 = 1, then we have the inequality����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt+

�
a+ b

2
;
c+ d

2

�

� 1

2 (d� c)

Z d

c

f

�
a+ b

2
; r

�
dr � 1

2 (b� a)

Z b

a

f

�
t;
c+ d

2

�
dt

�����
�
�
1

4

�2� 1
q
�
b� a
2

��
d� c
2

�(�
1

36
Bq(1;1) +

1

18
Gq(1;1) +

1

18
Hq
(1;1) +

1

9
F q(1;1)

� 1
q

+

�
1

18
Hq
(1;1) +

1

36
Dq
(1;1) +

1

9
F q(1;1) +

1

18
Iq(1;1)

� 1
q

+

�
1

18
Gq(1;1) +

1

36
Cq(1;1) +

1

18
Jq(1;1) +

1

9
F q(1;1)

� 1
q

+

�
1

9
F q(1;1) +

1

18
Iq(1;1) +

1

18
Jq(1;1) +

1

36
Eq(1;1)

� 1
q

)
: (2.31)
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If we use the Hölder�s inequality instead of the power-mean inequality we get
the following result:

Theorem 9. Let f : � � [0;1) � [0;1) ! [0;1), a < b, c < d, be a continuous
mapping such that @m+nf

@tn@rm exist on �� and @m+nf
@tn@rm 2 L (�). If

��� @n+mf@tn@sm

���p, p > 1,

is s-convex on the co-ordinates on �, s1; s2 2 (0; 1] with s = s1+s2
2 , m, n 2 N,

m;n � 1. Then����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� (b� a)n (d� c)m

2n+mn!m! [(np+ 1) (mp+ 1)]
1
p

"
1

2

 
1

(s1 + 1)
2 +

1

(s2 + 1)
2

!# 1
q

�
h
Bq(n;m) + C

q
(n;m) +D

q
(n;m) + E

q
(n;m)

i 1
q

; (2.32)

where P (t) and Q(r) are as de�ned in Theorem 7 and 1
p +

1
q = 1.

Proof. The inequality (2.32) follows using the Hölder�s inequality and the inequality
(1.9). �

Corollary 7. Under the assumptions of Theorem 9, if m = n = 1 and s1 = s2 = 1,
then we have the inequality����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt+ f

�
a+ b

2
;
c+ d

2

�

� 1

2 (d� c)

Z d

c

f

�
a+ b

2
; r

�
dr � 1

2 (b� a)

Z b

a

f

�
t;
c+ d

2

�
dt

�����
� (b� a) (d� c)
22+

2
q (p+ 1)

2
p

q

s����@2f (a; c)@t@r

����q + ����@2f (b; c)@t@r

����q + ����@2f (a; d)@t@r

����q + ����@2f (b; d)@t@r

����q;
(2.33)

where 1
p +

1
q = 1.

Our last result is for the s-concave functions can be stated as follows:

Theorem 10. Let f : � � [0;1)� [0;1)! [0;1), a < b, c < d, be a continuous
mapping such that @m+nf

@tn@rm exist on �� and @m+nf
@tn@rm 2 L (�). If

��� @n+mf@tn@sm

���p, p > 1,
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is s-concave on the co-ordinates on �, s1; s2 2 (0; 1] with s = s1+s2
2 , m, n 2 N,

m;n � 1. Then����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt

�
n�1X
k=0

m�1X
l=0

h
1 + (�1)k

i h
1 + (�1)l

i
2k+l+2

(b� a)k (d� c)l

(k + 1)! (l + 1)!

@k+lf
�
a+b
2 ;

c+d
2

�
@xk@yl

+
(�1)m+1

(d� c)m!

n�1X
k=0

h
1 + (�1)k

i
(b� a)k

2k+1 (k + 1)!

Z d

c

Q(r)
@k+mf

�
a+b
2 ; r

�
@xk@rm

dr

+
(�1)n+1

(b� a)n!

m�1X
l=0

h
1 + (�1)l

i
(d� c)l

2l+1 (l + 1)!

Z b

a

P (t)
@n+lf

�
t; c+d2

�
@tn@yl

dt

������
� (b� a)n (d� c)m

2n+mn!m! [(np+ 1) (mp+ 1)]
1
p

�
4s1+1 + 4s2+1

2

� 1
q

�����@n+mf
�
a+b
2 ;

c+d
2

�
@tn@rm

����� ; (2.34)

where P (t) and Q(r) are as de�ned in Theorem 7 and 1
p +

1
q = 1.

Proof. The inequality (2.34) follows using the Hölder�s inequality and the inequality
(1.9) with inequalities in reversed direction. �

Corollary 8. If the conditions of Theorem 10 are satis�ed and if m = n = 1 and
s1 = s2 = 1, then we have the inequality����� 1

(b� a) (d� c)

Z b

a

Z d

c

f (t; r) drdt+ f

�
a+ b

2
;
c+ d

2

�

� 1

2 (d� c)

Z d

c

f

�
a+ b

2
; r

�
dr � 1

2 (b� a)

Z b

a

f

�
t;
c+ d

2

�
dt

�����
� (b� a) (d� c)
22�

4
q (p+ 1)

2
p

�����@2f
�
a+b
2 ;

c+d
2

�
@t@r

����� ; (2.35)

where 1
p +

1
q = 1.
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