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SOME APPLICATIONS OF FEJER’S INEQUALITY FOR
CONVEX FUNCTIONS (I)

S.S. DRAGOMIRY2AND I. GOMM!

ABSTRACT. Some applications of Fejér’s inequality for convex functions are
explored. Upper and lower bounds for the weighted integral

b
/ (b—z)(x—a)f(z)dz

under various assumptions for f with applications to the trapezoidal quadra-
ture rule are given. Some inequalities for special means are also provided.

1. INTRODUCTION

The Hermite-Hadamard integral inequality for convex functions f : [a,b] — R

(HH) f<a—2kb>§b_1a/abf(z)dx§f(a);f(b)

is well known in the literature and has many applications for special means.

For related results, see for instance the research papers [1], [8], [9], [10], [12], [11],
[13], [14], [15], the monograph online [7] and the references therein.

In 1906, Fejér, while studying trigonometric polynomials, obtained inequalities
which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral f: h(z) w (z) dz, where h is a convex function
in the interval (a,b) and w is a positive function in the same interval such that

wlatt)=wb—t), 0§t§%(a+b),

i.e., y =w(x) is a symmetric curve with respect to the straight line which contains
the point (% (a+ b),O) and s normal to the x—axis. Under those conditions the
following inequalities are valid:

(1.1) h(“f’) /abw(m)dx</abh(ac)w(x)dx<h(a);h(b)/abw(gc)dx.

If h is concave on (a,b), then the inequalities reverse in .

Clearly, for w (xz) =1 on [a, b] we get
We observe that, if we take w (z) = (b —z) (z — a),z € [a,b], then w satisfies
the conditions in Theorem [1]
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and by [I.1] we have the following inequality

(1.2) éh(a;—b)(b—a)g§/ab(b—x)(x—a)h(x)dx

h(a) + I (b)
SO - a)”,

for any convex function h : [a,b] — R. If the function h is concave the inequalities

in reverse.

In this paper we establish amongst other some better bounds for the weighted
integral

<

/ (b—2)(x — a) b (z) dz

in the case of convex functions h : [a,b] — R. We also investigate the connection
with the trapezoid rule and apply some of the obtained results for special means.

2. THE RESULTS

The following result holds.

Theorem 2. Let f : [a,b] — R be a twice differentiable function on (a,b) and such
that the second derivative f" is convex on (a,b) . Then

< M(b_a) ,

24
Proof. We know, see for instance |7, Lemma 4, p. 38], that

(2.2) f(“);f@_bia/ f(x)dx:ﬁ/ (@—a)(b—2) f" () da.

Since f is convex on (a,b), then by (1.2) we have

(2.3) = (;b) (b—a)’ < / b 2) (- a) £ (o) d

< @)+ ")
= 12

Utilising (2.2)) and (2.3) we deduce the desired result (2.1). O

(b—a)’.

Theorem 3. Let f: [a,b] — R be a twice differentiable function on (a,b).
If there exists a real number m such that f” () > m for any x € (a,b), then

(2.4) f(““’) (b—a)® +ﬁm(b—a)5

b
<[ 0-0E-af @i
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If there exists a real number M such that f" (z) < M for any x € (a,b), then

25) f(a)+ 1 ()

5 (b—a)?’—iM(b—a)5

60
b
<[ t-ve-af@i

1 b 1 5
<6f(“; )(b—a)3+24OM(b—a) .

Proof. Define the function hy, : [a,b] — R by
1
B () ::f(x)+§m(w—a)(b—m).
This function is twice differentiable and the second derivative is

hi (z) = f" (x) —m >0, z € (a,b)

showing that h,, is convex on [a, b].
If we apply the inequality (1.2)) for A,,, then we have

(2.6) é[f (“;b) +;m(b—a)1 (b— a)®

b b
g/ (b—x)(x—a)f(x)da:—l—%m/ (b—2)° (x —a)’da

f(a)+ f(b)
e el N

i1 (50 g o] ooy

_1 a+b 3 1 5
=5/ () -0+ ggmiv—ar.

<

Observe that

We also have

/ (b—2)° (@ —a)lde= = (x—a)(b—a)

Then ([2.6)) becomes

1 a+b 3 1 5
6f< 5 >(b—a) —&-@m(b—a)

b
<[ o-0@-af@ds+ gmb-ay
/

60
(a) + f (b)
< 1 (b— a)’

which is equivalent with (2.4)).
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Now define the function hy : [a,b] — R by

1
hyr (z) := —=f (z) — iM(x—a)(b—m).
This function is twice differentiable and

Wi () =M — f"(x) >0, z € (a,b)

showing that hjs is convex on [a,b].
If we apply the inequality (1.2)) for hps, then we have

ARIG S R )

b
g/ (b—2) (@ — a) [—f(x)—;M(m—a)(b—x) do

_—f@ =1

3
12 (b—a)”,

which, by multiplication with —1, produces

éf(‘”b) (b—a) + =M (b—a)

2 48

b b
2/ (b—z)(z—a)f(x)dx—F%M/ (z—a)>(b—2)*dax

f(a) + f(b) :
ZT(b_a)S

that is equivalent with

f(a) + f(b) 1
T(bfa)Bf@M(bfa)‘r’

s/ (b— ) (x —a) f () da

1 b 1
<51 (57) 00+ gigM o

and the inequality (2.5)) is proved. O

Corollary 1. Let f : [a,b] — R be a twice differentiable function on (a,b). If there
exists a K > 0 such that |f" ()] < K for any x € (a,b), then

(2.7) /ab(bx)(:ca)f(:c)d:rllz(ba)?a [f<a42rb> +f(a);f(b)H
S%K(b—aﬁ.

Proof. If we write the inequality (2.4) for m = —K and the inequality (2.5)) for
M = K we have
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(2.8) %f (a;b) (bfa)?’fﬁf((bfaf

g/ (b—2) (x—a) f (2) do

<TOTO 0y Lk ap,
and

f(a)+ f(b) 5 1 5
(2.9) (- a)® — sl (b—a)

b
s/a (b—2) (@ - a) f (x) da
<1f<a+b>(b 0+ K (b—a)’.

-6 2 240
If we add the inequality ([2.8]) with ) and divide the sum by 2 we get

f<a+b) (b_a)3+M(b_a)s_iK<b_a>5

24
b
g/ (b—2)(z—a)f(z)dx
a+b 5 fla)+ f(b) 3 L 5
_12f< )(b a)” + 7 (b—a)"+ =K ((b—a)’,
which is equivalent with the desired result (2.7]). (Il

Remark 1. We observe that the case m > 0 in the inequality produces a
better result than .

For twice differentiable functions we can provide the following perturbed trapezoid
quadrature rule

b
(2.10) / f(2)da ~ M (b—a)

1 3., (a+b " (a) + f" ()
4 (b—a) [f ( 5 )T 5 .
Denote Rpr (f;a,b) the error in approximating the integral as in ([2.10)), namely

b
Re (fiah)i= [ f@yar- T g g

e [ () 4 L 0],

The following result that provides an a priory error bound for functions whose forth
derivatives are bounded, holds.

Proposition 1. Let f : [a,b] — R be a four time differentiable function on (a,b).
If there exists a K > 0 such that | f) (z)| < K for any x € (a,b), then

(2.11) \Rpr (f;0,b)] < %K(b— Q).
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Proof. Writing the inequality (2.7)) for the second derivative f” we have

b
/ (b—2) (@ —a) f (z) da

Lo () L)

1
< 96K(b—a) .

Dividing this inequality by 2 and utilizing the representation (2.2)) we have

f()-QFf /f

Loy {f,, <a;b> LI (a);rf” o)

1 5
< —K —
— 192 (b=a),

and the inequality (2.11)) is proved. O
The following result that improves the inequality ([1.2]) also holds.

Theorem 4. Let f : [a,b] — R be a convex function. Then

2 a+b
(2.12) éf(a;b)(b—a)?’gz/b(x—a;b) f<“2%L>dm

b
<[ t-0e-af@d

S/ab (x_a;—b>2f(x)dx+ (b;;)?’f(a;-b)

(b—a)’ [ (atd) fla)+f(D)
St ()1
f(a) + f(b) 3
< o (b—a).
Proof. Denote, as usual, F' (z f f (@) dt, x € [a,b]. By the Hermite-Hadamard

+b
inequality we have for any x 6 [a b, x # %32 that

f<x+a2+b> . F(x)_i(:;b) 1 [f( )+f<a+b>}7

2 T — 212 -2

which, by multiplication with (:r — ‘%b)z > 0 implies

213 ; <a: +2“2+”> <x a;rb>2
ro-r(557)] (- 5)
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that holds for any = € [a,b] .
Integrating the inequality (2.13)) on the interval [a, b] we get

(2.14) /b (g;— a;b>2f <$+2a?+b> dx
[ro-r(5)] (-5 o
{ e ()] (-

I A

N—
[\v]
QU
8

1\9\)—* w\»—

Now, observe that

a+b> f(x)dx+f<a—2|—b> (b;;)?’].

A5 - 552 e

ST (GO CESIEEE
:1Lb<b—x>(x—a)f<z>dw

2
and by (2.14) we have

b 2 atb
[2(ee)

b
/ (b—2)(z—a)f(z)dx

which proves the second and the third inequality in (2.12).

The function g (z) := f ( T > is convex on [a,b] and w (z

Vab (x_“;bff( ) da +f(a+b) (b 12“)3],

)= (a:faTer)2 is

nonnegative and symmetric on [a, b] . Applying Fejér’s first inequality we have

() LG o () (-

b 2
a;—)dx
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)3 b 2 atb
(b a)f a+b < z7a—|—b f T+ 45 dz,
12 2 . 2 2
which proves the first inequality in (2.12)).
From the Fejér’s second inequality for the convex function f function and the

i.e.

weight w (z) == (z — “TH’)2 we also have

Ny

_fla)+f () 3
Y (b—a)”,
which proves the fourth inequality in (2.12]).
The last inequality is obvious. ([

Corollary 2. Let f : [a,b] — R be a twice differentiable function on (a,b) and such
that the second derivative " is convex on (a,b). Then

(2.15)
112f/,<a2+b> (b_a)2§/ab(x_a—2|—b)2fu <x+2(12+b>d$
Sf( )2 b—a/ @
/b<$ a‘;”f (x)da:+(b;4a)3f"<a;b)

(b a)[ (a;b) f”(a);f”(b)]

f"(a) + /" (b) 3
< —"—~(b— .
< OETO )
We observe that the inequality (2.15)) is a better result than (2.1)).

| /\

| /\

3. APPLICATIONS FOR SPECIAL MEANS

Let us recall the following means for two positive numbers.
(1) The Arithmetic mean
a+b

A= A(a,b) = , a,b>0;

(2) The Geometric mean
G =G (a,b):= Vab, a,b > 0;

(3) The Harmonic mean

H =H (a,b) := L‘Lb, a,b>0;
a+b
(4) The Logarithmic mean
a if a=b
L=L(a,b):= , a,b >0,
lng:?na if a 7& b’
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(5) The Identric mean
a if a=b
I=1I(a,b):= e , a,b>0;
i (2—2) TN a#b
(6) The p-Logarithmic mean
a if a=b

L,=1L,(a,b):= , a,b>0.

1
pptl_grtli e .
(i) i e

The following inequality is well known in the literature:
(3.1) H<G<L<I<A.

It is also known that L, is monotonically increasing over p € R, denoting Ly = I
and L_y = L.
Consider the function f : [a,b] C (0,00) — (0,00), f(x) = 2P for p > 3. We
have the fourth derivative of the function given by
fP @) =pp-1)(p—-2)(p—3)a""

which shows that the second derivative f” is convex on [a, b] . Applying the inequal-

ity (2.1) we have
1 a+b\""? 9 _al 4P 1 b
il _ _ < - p
Y 1)<2> (b-a)' < —5 e
aP~2 4 pp—2
SP(P—1>T(5_G)27

which in terms of the special means define above can be written as

(32)  pp— 1) AT (0,0) (b— ) < A1) ~ I} (a,0)

< P =A@ ) (0 -a),
that holds for any a,b > 0 and p > 3.

Consider the function f : [a,b] C (0,00) — (0,00), f (z) = . Then f” (z) = %
and f® (z) = 2 showing that the second derivative is convex on [a,b] . Applying
the inequality (2.1) we have

1(b—a) _at3 mb-Ina
2

6 A (a,b) ~ b—a
2 2
st N2
S o (b—a)
which is equivalent with
2 2
(3.3) 1b-0 _L(ab)-H@b 1 (b-a)
6 A3 (a,b) L(a,b) H (a,b) 6 H (a3, b%)

that holds for any a,b > 0.
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Consider the function f : [a,b] C (0,00) — (0,00), f (z) = —Inz. Then f’ (z) =
?12 and f® (z) = & showing that the second derivative is convex on [a, b] . Applying

the

inequality (2.1)) we have

1 (bfa)2<flnaflnbJr 1 /blnmd:p

12 A2 (a,b) — 2 b—a
1 1
=+
< a2 b2 _ 2
SRR
Observe that
1 b 1 b
b—a/a Inzder = m[mlnﬂa—(b—a)]—
bb 1/(b—a)
= ln< ) —1| =InI(a,b),
aa
and
flnaflnbi1 1
2 - Ga,b)’
Then we get
1 (b—a)’ I (a,b) 1 (b—a)’
4 —— <1 < —
(34) 12 42 (a,b) = n<G(a,b) =12 H (a2, b2)

that holds for any a,b > 0.
The interested reader may apply the inequality (2.11]) or (2.15]) to obtain other
similar results. However, the details are omitted here.

(1]
2]

(3]
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