SOME APPLICATIONS OF FEJÉR'S INEQUALITY FOR CONVEX FUNCTIONS (I)

S.S. DRAGOMIR ${ }^{1,2}$ AND I. GOMM ${ }^{1}$

Abstract. Some applications of Fejér's inequality for convex functions are explored. Upper and lower bounds for the weighted integral

$$
\int_{a}^{b}(b-x)(x-a) f(x) d x
$$

under various assumptions for f with applications to the trapezoidal quadrature rule are given. Some inequalities for special means are also provided.

1. Introduction

The Hermite-Hadamard integral inequality for convex functions $f:[a, b] \rightarrow \mathbb{R}$

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{HH}
\end{equation*}
$$

is well known in the literature and has many applications for special means.
For related results, see for instance the research papers [1], [8], [9], [10], [12], 11], [13], 14], [15], the monograph online [7] and the references therein.

In 1906, Fejér, while studying trigonometric polynomials, obtained inequalities which generalize that of Hermite \& Hadamard:
Theorem 1. Consider the integral $\int_{a}^{b} h(x) w(x) d x$, where h is a convex function in the interval (a, b) and w is a positive function in the same interval such that

$$
w(a+t)=w(b-t), \quad 0 \leq t \leq \frac{1}{2}(a+b)
$$

i.e., $y=w(x)$ is a symmetric curve with respect to the straight line which contains the point $\left(\frac{1}{2}(a+b), 0\right)$ and is normal to the x-axis. Under those conditions the following inequalities are valid:

$$
\begin{equation*}
h\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x) d x \leq \int_{a}^{b} h(x) w(x) d x \leq \frac{h(a)+h(b)}{2} \int_{a}^{b} w(x) d x \tag{1.1}
\end{equation*}
$$

If h is concave on (a, b), then the inequalities reverse in (1.1).
Clearly, for $w(x) \equiv 1$ on $[a, b]$ we get HH .
We observe that, if we take $w(x)=(b-x)(x-a), x \in[a, b]$, then w satisfies the conditions in Theorem 1 .

$$
\int_{a}^{b}(b-x)(x-a) d x=\frac{1}{6}(b-a)^{3}
$$

[^0]and by 1.1 we have the following inequality
\[

$$
\begin{align*}
\frac{1}{6} h\left(\frac{a+b}{2}\right)(b-a)^{3} & \leq \int_{a}^{b}(b-x)(x-a) h(x) d x \tag{1.2}\\
& \leq \frac{h(a)+h(b)}{12}(b-a)^{3}
\end{align*}
$$
\]

for any convex function $h:[a, b] \rightarrow \mathbb{R}$. If the function h is concave the inequalities in 1.2 reverse.

In this paper we establish amongst other some better bounds for the weighted integral

$$
\int_{a}^{b}(b-x)(x-a) h(x) d x
$$

in the case of convex functions $h:[a, b] \rightarrow \mathbb{R}$. We also investigate the connection with the trapezoid rule and apply some of the obtained results for special means.

2. The Results

The following result holds.
Theorem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b) and such that the second derivative $f^{\prime \prime}$ is convex on (a, b). Then

$$
\begin{align*}
\frac{1}{12} f^{\prime \prime}\left(\frac{a+b}{2}\right)(b-a)^{2} & \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{2.1}\\
& \leq \frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{24}(b-a)^{2}
\end{align*}
$$

Proof. We know, see for instance [7, Lemma 4, p. 38], that

$$
\begin{equation*}
\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{2(b-a)} \int_{a}^{b}(x-a)(b-x) f^{\prime \prime}(x) d x \tag{2.2}
\end{equation*}
$$

Since $f^{\prime \prime}$ is convex on (a, b), then by 1.2 we have

$$
\begin{align*}
\frac{1}{6} f^{\prime \prime}\left(\frac{a+b}{2}\right)(b-a)^{3} & \leq \int_{a}^{b}(b-x)(x-a) f^{\prime \prime}(x) d x \tag{2.3}\\
& \leq \frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{12}(b-a)^{3}
\end{align*}
$$

Utilising (2.2) and 2.3 we deduce the desired result 2.1).
Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b).
If there exists a real number m such that $f^{\prime \prime}(x) \geq m$ for any $x \in(a, b)$, then

$$
\begin{align*}
& \frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{240} m(b-a)^{5} \tag{2.4}\\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& \leq \frac{f(a)+f(b)}{12}(b-a)^{3}-\frac{1}{60} m(b-a)^{5}
\end{align*}
$$

If there exists a real number M such that $f^{\prime \prime}(x) \leq M$ for any $x \in(a, b)$, then

$$
\begin{align*}
& \frac{f(a)+f(b)}{12}(b-a)^{3}-\frac{1}{60} M(b-a)^{5} \tag{2.5}\\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& \leq \frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{240} M(b-a)^{5} .
\end{align*}
$$

Proof. Define the function $h_{m}:[a, b] \rightarrow \mathbb{R}$ by

$$
h_{m}(x):=f(x)+\frac{1}{2} m(x-a)(b-x) .
$$

This function is twice differentiable and the second derivative is

$$
h_{m}^{\prime \prime}(x)=f^{\prime \prime}(x)-m \geq 0, x \in(a, b)
$$

showing that h_{m} is convex on $[a, b]$.
If we apply the inequality $\sqrt{1.2}$ for h_{m}, then we have

$$
\begin{align*}
& \frac{1}{6}\left[f\left(\frac{a+b}{2}\right)+\frac{1}{8} m(b-a)^{2}\right](b-a)^{3} \tag{2.6}\\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x+\frac{1}{2} m \int_{a}^{b}(b-x)^{2}(x-a)^{2} d x \\
& \leq \frac{f(a)+f(b)}{12}(b-a)^{3}
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \frac{1}{6}\left[f\left(\frac{a+b}{2}\right)+\frac{1}{8} m(b-a)^{2}\right](b-a)^{3} \\
& =\frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{48} m(b-a)^{5} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\int_{a}^{b}(b-x)^{2}(x-a)^{2} d x & =\left.\frac{1}{3}(x-a)^{3}(b-x)^{2}\right|_{a} ^{b}+\frac{2}{3} \int_{a}^{b}(b-x)(x-a)^{3} d x \\
& =\frac{2}{3}\left[\left.\frac{1}{4}(b-x)(x-a)^{4}\right|_{a} ^{b}+\frac{1}{4} \int_{a}^{b}(x-a)^{4} d x\right] \\
& =\frac{1}{30}(b-a)^{5}
\end{aligned}
$$

Then (2.6) becomes

$$
\begin{aligned}
& \frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{48} m(b-a)^{5} \\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x+\frac{1}{60} m(b-a)^{5} \\
& \leq \frac{f(a)+f(b)}{12}(b-a)^{3}
\end{aligned}
$$

which is equivalent with 2.4 .

Now define the function $h_{M}:[a, b] \rightarrow \mathbb{R}$ by

$$
h_{M}(x):=-f(x)-\frac{1}{2} M(x-a)(b-x) .
$$

This function is twice differentiable and

$$
h_{M}^{\prime \prime}(x):=M-f^{\prime \prime}(x) \geq 0, x \in(a, b)
$$

showing that h_{M} is convex on $[a, b]$.
If we apply the inequality 1.2 for h_{M}, then we have

$$
\begin{aligned}
& \frac{1}{6}\left[-f\left(\frac{a+b}{2}\right)-\frac{1}{8} M(b-a)^{2}\right](b-a)^{3} \\
& \leq \int_{a}^{b}(b-x)(x-a)\left[-f(x)-\frac{1}{2} M(x-a)(b-x)\right] d x \\
& \leq \frac{-f(a)-f(b)}{12}(b-a)^{3}
\end{aligned}
$$

which, by multiplication with -1 , produces

$$
\begin{aligned}
& \frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{48} M(b-a)^{5} \\
& \geq \int_{a}^{b}(b-x)(x-a) f(x) d x+\frac{1}{2} M \int_{a}^{b}(x-a)^{2}(b-x)^{2} d x \\
& \geq \frac{f(a)+f(b)}{12}(b-a)^{3}
\end{aligned}
$$

that is equivalent with

$$
\begin{aligned}
& \frac{f(a)+f(b)}{12}(b-a)^{3}-\frac{1}{60} M(b-a)^{5} \\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& \leq \frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{240} M(b-a)^{5}
\end{aligned}
$$

and the inequality 2.5 is proved.

Corollary 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b). If there exists a $K>0$ such that $\left|f^{\prime \prime}(x)\right| \leq K$ for any $x \in(a, b)$, then

$$
\begin{align*}
& \left|\int_{a}^{b}(b-x)(x-a) f(x) d x-\frac{1}{12}(b-a)^{3}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right]\right| \tag{2.7}\\
& \leq \frac{1}{96} K(b-a)^{5} .
\end{align*}
$$

Proof. If we write the inequality (2.4) for $m=-K$ and the inequality (2.5) for $M=K$ we have

$$
\begin{align*}
& \frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}-\frac{1}{240} K(b-a)^{5} \tag{2.8}\\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& \leq \frac{f(a)+f(b)}{12}(b-a)^{3}+\frac{1}{60} K(b-a)^{5}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{f(a)+f(b)}{12}(b-a)^{3}-\frac{1}{60} K(b-a)^{5} \tag{2.9}\\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& \leq \frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{240} K(b-a)^{5} .
\end{align*}
$$

If we add the inequality 2.8 with 2.8 and divide the sum by 2 we get

$$
\begin{aligned}
& \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{f(a)+f(b)}{24}(b-a)^{3}-\frac{1}{96} K(b-a)^{5} \\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& \leq \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{f(a)+f(b)}{24}(b-a)^{3}+\frac{1}{96} K(b-a)^{5},
\end{aligned}
$$

which is equivalent with the desired result 2.7.
Remark 1. We observe that the case $m>0$ in the inequality 2.4) produces a better result than (1.2).

For twice differentiable functions we can provide the following perturbed trapezoid quadrature rule

$$
\begin{align*}
\int_{a}^{b} f(x) d x & \simeq \frac{f(a)+f(b)}{2}(b-a) \tag{2.10}\\
& -\frac{1}{24}(b-a)^{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right]
\end{align*}
$$

Denote $R_{P, T}(f ; a, b)$ the error in approximating the integral as in 2.10, namely

$$
\begin{aligned}
R_{P, T}(f ; a, b) & :=\int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}(b-a) \\
& +\frac{1}{24}(b-a)^{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right] .
\end{aligned}
$$

The following result that provides an a priory error bound for functions whose forth derivatives are bounded, holds.

Proposition 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a four time differentiable function on (a, b). If there exists a $K>0$ such that $\left|f^{(4)}(x)\right| \leq K$ for any $x \in(a, b)$, then

$$
\begin{equation*}
\left|R_{P, T}(f ; a, b)\right| \leq \frac{1}{192} K(b-a)^{5} \tag{2.11}
\end{equation*}
$$

Proof. Writing the inequality 2.7 for the second derivative $f^{\prime \prime}$ we have

$$
\begin{aligned}
& \mid \int_{a}^{b}(b-x)(x-a) f^{\prime \prime}(x) d x \\
& \left.-\frac{1}{12}(b-a)^{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right] \right\rvert\, \\
& \leq \frac{1}{96} K(b-a)^{5}
\end{aligned}
$$

Dividing this inequality by 2 and utilizing the representation 2.2 we have

$$
\begin{aligned}
& \left\lvert\, \frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right. \\
& \left.-\frac{1}{24}(b-a)^{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right] \right\rvert\, \\
& \leq \frac{1}{192} K(b-a)^{5}
\end{aligned}
$$

and the inequality 2.11 is proved.
The following result that improves the inequality 1.2 also holds.
Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function. Then

$$
\begin{align*}
\frac{1}{6} f\left(\frac{a+b}{2}\right)(b-a)^{3} & \leq 2 \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f\left(\frac{x+\frac{a+b}{2}}{2}\right) d x \tag{2.12}\\
& \leq \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x+\frac{(b-a)^{3}}{12} f\left(\frac{a+b}{2}\right) \\
& \leq \frac{(b-a)^{3}}{12}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] \\
& \leq \frac{f(a)+f(b)}{12}(b-a)^{3}
\end{align*}
$$

Proof. Denote, as usual, $F(x):=\int_{a}^{x} f(t) d t, x \in[a, b]$. By the Hermite-Hadamard inequality we have for any $x \in[a, b], x \neq \frac{a+b}{2}$ that

$$
f\left(\frac{x+\frac{a+b}{2}}{2}\right) \leq \frac{F(x)-F\left(\frac{a+b}{2}\right)}{x-\frac{a+b}{2}} \leq \frac{1}{2}\left[f(x)+f\left(\frac{a+b}{2}\right)\right]
$$

which, by multiplication with $\left(x-\frac{a+b}{2}\right)^{2} \geq 0$ implies

$$
\begin{align*}
& f\left(\frac{x+\frac{a+b}{2}}{2}\right)\left(x-\frac{a+b}{2}\right)^{2} \tag{2.13}\\
& \leq\left[F(x)-F\left(\frac{a+b}{2}\right)\right]\left(x-\frac{a+b}{2}\right) \\
& \leq \frac{1}{2}\left[f(x)+f\left(\frac{a+b}{2}\right)\right]\left(x-\frac{a+b}{2}\right)^{2}
\end{align*}
$$

that holds for any $x \in[a, b]$.
Integrating the inequality 2.13 on the interval $[a, b]$ we get

$$
\begin{align*}
& \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f\left(\frac{x+\frac{a+b}{2}}{2}\right) d x \tag{2.14}\\
& \leq \int_{a}^{b}\left[F(x)-F\left(\frac{a+b}{2}\right)\right]\left(x-\frac{a+b}{2}\right) d x \\
& \leq \frac{1}{2} \int_{a}^{b}\left[f(x)+f\left(\frac{a+b}{2}\right)\right]\left(x-\frac{a+b}{2}\right)^{2} d x \\
& =\frac{1}{2}\left[\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x+f\left(\frac{a+b}{2}\right) \frac{(b-a)^{3}}{12}\right]
\end{align*}
$$

Now, observe that

$$
\begin{aligned}
& \int_{a}^{b}\left[F(x)-F\left(\frac{a+b}{2}\right)\right]\left(x-\frac{a+b}{2}\right) d x \\
& =\int_{a}^{b} F(x)\left(x-\frac{a+b}{2}\right) d x=\frac{1}{2} \int_{a}^{b} F(x) d\left(x-\frac{a+b}{2}\right)^{2} \\
& =\frac{1}{2}\left[\left.F(x)\left(x-\frac{a+b}{2}\right)^{2}\right|_{a} ^{b}-\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x\right] \\
& =\frac{1}{2}\left[\left(\frac{b-a}{2}\right)^{2} \int_{a}^{b} f(x)-\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x\right] \\
& =\frac{1}{2} \int_{a}^{b}\left[\left(\frac{b-a}{2}\right)^{2}-\left(x-\frac{a+b}{2}\right)^{2}\right] f(x) d x \\
& =\frac{1}{2} \int_{a}^{b}(b-x)(x-a) f(x) d x
\end{aligned}
$$

and by 2.14 we have

$$
\begin{aligned}
& \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f\left(\frac{x+\frac{a+b}{2}}{2}\right) d x \\
& \leq \frac{1}{2} \int_{a}^{b}(b-x)(x-a) f(x) d x \\
& =\frac{1}{2}\left[\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x+f\left(\frac{a+b}{2}\right) \frac{(b-a)^{3}}{12}\right]
\end{aligned}
$$

which proves the second and the third inequality in 2.12 .
The function $g(x):=f\left(\frac{x+\frac{a+b}{2}}{2}\right)$ is convex on $[a, b]$ and $w(x):=\left(x-\frac{a+b}{2}\right)^{2}$ is nonnegative and symmetric on $[a, b]$. Applying Fejér's first inequality we have

$$
f\left(\frac{\frac{a+b}{2}+\frac{a+b}{2}}{2}\right) \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d x \leq \int_{a}^{b} f\left(\frac{x+\frac{a+b}{2}}{2}\right)\left(x-\frac{a+b}{2}\right)^{2} d x
$$

i.e.

$$
\frac{(b-a)^{3}}{12} f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f\left(\frac{x+\frac{a+b}{2}}{2}\right) d x
$$

which proves the first inequality in 2.12 .
From the Fejér's second inequality for the convex function f function and the weight $w(x):=\left(x-\frac{a+b}{2}\right)^{2}$ we also have

$$
\begin{aligned}
\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x & \leq \frac{f(a)+f(b)}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d x \\
& =\frac{f(a)+f(b)}{24}(b-a)^{3}
\end{aligned}
$$

which proves the fourth inequality in 2.12 .
The last inequality is obvious.
Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b) and such that the second derivative $f^{\prime \prime}$ is convex on (a, b). Then

$$
\begin{align*}
\frac{1}{12} f^{\prime \prime}\left(\frac{a+b}{2}\right)(b-a)^{2} & \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f^{\prime \prime}\left(\frac{x+\frac{a+b}{2}}{2}\right) d x \tag{2.15}\\
& \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \frac{1}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f^{\prime \prime}(x) d x+\frac{(b-a)^{3}}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right) \\
& \leq \frac{(b-a)^{3}}{24}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right] \\
& \leq \frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{24}(b-a)^{3} .
\end{align*}
$$

We observe that the inequality 2.15 is a better result than 2.1 .

3. Applications for Special Means

Let us recall the following means for two positive numbers.
(1) The Arithmetic mean

$$
A=A(a, b):=\frac{a+b}{2}, a, b>0
$$

(2) The Geometric mean

$$
G=G(a, b):=\sqrt{a b}, a, b>0
$$

(3) The Harmonic mean

$$
H=H(a, b):=\frac{2 a b}{a+b}, a, b>0
$$

(4) The Logarithmic mean

$$
L=L(a, b):=\left\{\begin{array}{ll}
a & \text { if } \quad a=b \\
\frac{b-a}{\ln b-\ln a} & \text { if } \quad a \neq b ;
\end{array}, a, b>0\right.
$$

(5) The Identric mean

$$
I=I(a, b):=\left\{\begin{array}{ll}
a & \text { if } \quad a=b \\
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} & \text { if } a \neq b
\end{array} \quad, a, b>0 ;\right.
$$

(6) The p-Logarithmic mean

$$
L_{p}=L_{p}(a, b):=\left\{\begin{array}{ll}
a & \text { if } a=b \\
{\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{\frac{1}{p}}} & \text { if } a \neq b
\end{array}, a, b>0\right.
$$

The following inequality is well known in the literature:

$$
\begin{equation*}
H \leq G \leq L \leq I \leq A \tag{3.1}
\end{equation*}
$$

It is also known that L_{p} is monotonically increasing over $p \in \mathbb{R}$, denoting $L_{0}=I$ and $L_{-1}=L$.

Consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(x)=x^{p}$ for $p \geq 3$. We have the fourth derivative of the function given by

$$
f^{(4)}(x)=p(p-1)(p-2)(p-3) x^{p-4}
$$

which shows that the second derivative $f^{\prime \prime}$ is convex on $[a, b]$. Applying the inequality (2.1) we have

$$
\begin{aligned}
\frac{1}{12} p(p-1)\left(\frac{a+b}{2}\right)^{p-2}(b-a)^{2} & \leq \frac{a^{p}+b^{p}}{2}-\frac{1}{b-a} \int_{a}^{b} x^{p} d x \\
& \leq p(p-1) \frac{a^{p-2}+b^{p-2}}{24}(b-a)^{2}
\end{aligned}
$$

which in terms of the special means define above can be written as

$$
\begin{align*}
\frac{1}{12} p(p-1) A^{p-2}(a, b)(b-a)^{2} & \leq A\left(a^{p}, b^{p}\right)-L_{p}^{p}(a, b) \tag{3.2}\\
& \leq \frac{1}{12} p(p-1) A\left(a^{p-2}, b^{p-2}\right)(b-a)^{2}
\end{align*}
$$

that holds for any $a, b>0$ and $p \geq 3$.
Consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(x)=\frac{1}{x}$. Then $f^{\prime \prime}(x)=\frac{2}{x^{3}}$ and $f^{(4)}(x)=\frac{24}{x^{5}}$ showing that the second derivative is convex on $[a, b]$. Applying the inequality 2.1 we have

$$
\begin{aligned}
\frac{1}{6} \frac{(b-a)^{2}}{A^{3}(a, b)} & \leq \frac{\frac{1}{a}+\frac{1}{b}}{2}-\frac{\ln b-\ln a}{b-a} \\
& \leq \frac{\frac{2}{a^{3}}+\frac{2}{b^{3}}}{24}(b-a)^{2}
\end{aligned}
$$

which is equivalent with

$$
\begin{equation*}
\frac{1}{6} \frac{(b-a)^{2}}{A^{3}(a, b)} \leq \frac{L(a, b)-H(a, b)}{L(a, b) H(a, b)} \leq \frac{1}{6} \frac{(b-a)^{2}}{H\left(a^{3}, b^{3}\right)} \tag{3.3}
\end{equation*}
$$

that holds for any $a, b>0$.

Consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(x)=-\ln x$. Then $f^{\prime \prime}(x)=$ $\frac{1}{x^{2}}$ and $f^{(4)}(x)=\frac{6}{x^{4}}$ showing that the second derivative is convex on $[a, b]$. Applying the inequality (2.1) we have

$$
\begin{aligned}
\frac{1}{12} \frac{(b-a)^{2}}{A^{2}(a, b)} & \leq \frac{-\ln a-\ln b}{2}+\frac{1}{b-a} \int_{a}^{b} \ln x d x \\
& \leq \frac{\frac{1}{a^{2}}+\frac{1}{b^{2}}}{24}(b-a)^{2}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} \ln x d x & =\frac{1}{b-a}\left[\left.x \ln x\right|_{a} ^{b}-(b-a)\right]= \\
& =\left[\ln \left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}-1\right]=\ln I(a, b)
\end{aligned}
$$

and

$$
\frac{-\ln a-\ln b}{2}=\ln \frac{1}{G(a, b)}
$$

Then we get

$$
\begin{equation*}
\frac{1}{12} \frac{(b-a)^{2}}{A^{2}(a, b)} \leq \ln \left(\frac{I(a, b)}{G(a, b)}\right) \leq \frac{1}{12} \frac{(b-a)^{2}}{H\left(a^{2}, b^{2}\right)} \tag{3.4}
\end{equation*}
$$

that holds for any $a, b>0$.
The interested reader may apply the inequality (2.11) or (2.15) to obtain other similar results. However, the details are omitted here.

References

[1] A.G. AZPEITIA, Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28 (1994), no. 1, 7-12.
[2] S.S. DRAGOMIR, A mapping in connection to Hadamard's inequalities, An. Öster. Akad. Wiss. Math.-Natur., (Wien), 128(1991), 17-20. MR 934:26032. ZBL No. 747:26015.
[3] S.S. DRAGOMIR, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992), 49-56. MR:934:26038, ZBL No. 758:26014.
[4] S.S. DRAGOMIR, On Hadamard's inequalities for convex functions, Mat. Balkanica, 6(1992), 215-222. MR: 934: 26033.
[5] S.S. DRAGOMIR, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. $74(3)(2006), 471-476$.
[6] S.S. DRAGOMIR, D.S. MILOŚEVIĆ and J. SÁNDOR, On some refinements of Hadamard's inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math., 4(1993), 21-24.
[7] S.S. DRAGOMIR and C.E.M. PEARCE, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
[8] A. GUESSAB and G. SCHMEISSER, Sharp integral inequalities of the Hermite-Hadamard type. J. Approx. Theory 115 (2002), no. 2, 260-288.
[9] E. KILIANTY and S.S. DRAGOMIR, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space. Math. Inequal. Appl. 13 (2010), no. 1, 1-32.
[10] M. MERKLE, Remarks on Ostrowski's and Hadamard's inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113-117.
[11] C. E. M. PEARCE and A. M. RUBINOV, P-functions, quasi-convex functions, and Hadamard type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[12] J. PEČARIĆ and A. VUKELIĆ, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions. Functional equations, inequalities and applications, 105-137, Kluwer Acad. Publ., Dordrecht, 2003.
[13] G. TOADER, Superadditivity and Hermite-Hadamard's inequalities. Studia Univ. BabeşBolyai Math. 39 (1994), no. 2, 27-32.
[14] G.-S. YANG and M.-C. HONG, A note on Hadamard's inequality. Tamkang J. Math. 28 (1997), no. 1, 33-37.
[15] G.-S. YANG and K.-L. TSENG, On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl. 239 (1999), no. 1, 180-187.
${ }^{1}$ Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.

[^0]: 1991 Mathematics Subject Classification. 26D15; 25D10.
 Key words and phrases. Convex functions, Hermite-Hadamard inequality, Fejér's Inequality, Special means.

