
SOME APPLICATIONS OF FEJÉR�S INEQUALITY FOR
CONVEX FUNCTIONS (II)

S.S. DRAGOMIR1;2AND I. GOMM1

Abstract. Some applications of Fejér�s inequality for convex functions are
explored. Upper and lower bounds for the weighted integralZ b

a

�
x� a+ b

2

�2
f (x) dx

under various assumptions for f with applications to the trapezoidal quadra-
ture rule are given. Some inequalities for special means are derived.

1. Introduction

The Hermite-Hadamard integral inequality for convex functions f : [a; b]! R

(HH) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

2

is well known in the literature and has many applications for special means.
For related results, see for instance the research papers [1], [11], [12], [13], [15],

[14], [16], [17], [18], the monograph online [10] and the references therein.
In 1906, Fejér, while studying trigonometric polynomials, obtained inequalities

which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral
R b
a
h (x)w (x) dx, where h is a convex function

in the interval (a; b) and w is a positive function in the same interval such that

w (a+ t) = w (b� t) ; 0 � t � 1

2
(a+ b) ;

i.e., y = w (x) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the x�axis. Under those conditions the

following inequalities are valid:

(1.1) h

�
a+ b

2

�Z b

a

w (x) dx �
Z b

a

h (x)w (x) dx � h (a) + h (b)

2

Z b

a

w (x) dx:

If h is concave on (a; b), then the inequalities reverse in (1.1).

Clearly, for w (x) � 1 on [a; b] we get HH.
We observe that, if we take w (x) =

�
x� a+b

2

�2
; x 2 [a; b] ; then w satis�es the

conditions in Theorem 1,Z b

a

�
x� a+ b

2

�2
dx =

1

12
(b� a)3
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2 DRAGOMIR & GOMM

and by (1.1) we have the following inequality

1

12
h

�
a+ b

2

�
(b� a)3 �

Z b

a

�
x� a+ b

2

�2
h (x) dx(1.2)

� h (a) + h (b)

24
(b� a)3 ;

that holds for any convex function h : [a; b] ! R: If the function h is concave the
inequalities in (1.2) reverse.
In this paper we establish amongst other results some better bounds for the

weighted integral Z b

a

�
x� a+ b

2

�2
h (x) dx

in the case of convex functions h : [a; b] ! R: We also investigate the connection
with the trapezoid rule and apply some of the obtained results for special means.
For some recent inequalities concerning the weighted integralZ b

a

(b� x) (x� a)h (x) dx

under various assumptions for the function h : [a; b]! R, see the paper [8].

2. The Results

We start with the following equality that is of interest in itself.

Lemma 1. Let f : [a; b]! C be such that the derivative f 0 is of bounded variation
on [a; b] : Then we have the equality

1

8
(b� a)2 [f 0 (b)� f 0 (a)]�

"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#
(2.1)

=
1

2

Z b

a

�
x� a+ b

2

�2
df 0 (x) ;

where the last integral is taken in the Riemann-Stieltjes sense.

Proof. Since f 0 (�) is of bounded variation and
�
� � a+b

2

�2
is continuous on [a; b]

then the Riemann-Stieltjes integral from the right hand side of the equality (2.1)
exists and utilizing the integration by parts rule we haveZ b

a

�
x� a+ b

2

�2
df 0 (x)(2.2)

=

�
x� a+ b

2

�2
f 0 (x)

�����
b

a

� 2
Z b

a

�
x� a+ b

2

�
f 0 (x) dx

=
1

8
(b� a)2 [f 0 (b)� f 0 (a)]� 2

Z b

a

�
x� a+ b

2

�
f 0 (x) dx:

By the integration by parts rule for the Riemann integral we also have

(2.3)
Z b

a

�
x� a+ b

2

�
f 0 (x) dx =

f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx:

Utilising the equality (2.2) divided by 2 and the equality (2.3), we get the desired
result (2.1). �



SOME APPLICATIONS OF FEJÉR�S INEQUALITY 3

Remark 1. If f 0 is absolutely continuous on [a; b] ; then the equality (2.1) becomes

1

8
(b� a)2 [f 0 (b)� f 0 (a)]�

"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#
(2.4)

=
1

2

Z b

a

�
x� a+ b

2

�2
f 00 (x) dx;

where the second integral is taken in the Lebesgue sense. This equality was obtained
in a di¤erent way in [2].

Corollary 1. If f is a convex function on [a; b] ; then we have the inequality

(2.5)
1

8
(b� a)2

�
f 0� (b)� f 0+ (a)

�
� f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx:

Proof. If f is convex, then the derivative exists except at a countable number of
points in [a; b] and is increasing. The lateral derivatives f 0� (b) and f

0
+ (a) exist. If

one is in�nite then the inequality (2.5) holds trivially. If both of them are �nite,
then the function

g (x) :=

8>>>><>>>>:
f 0+ (a) ; x = a

f 0+ (x) x 2 (a; b)

f� (b) x = b

is monotonic nondecreasing on [a; b] and

1

8
(b� a)2

�
f 0� (b)� f 0+ (a)

�
�
"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#
(2.6)

=
1

2

Z b

a

�
x� a+ b

2

�2
dg (x) :

Since Z b

a

�
x� a+ b

2

�2
dg (x) � 0;

then (2.6) produces the desired result (2.5). �
Remark 2. The inequality (2.5) has been obtained in a di¤erent way in [6].

Theorem 2. With the assumptions of Lemma 1 we have�����18 (b� a)2 [f 0 (b)� f 0 (a)]�
"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#�����(2.7)

� 1

8
(b� a)2

b_
a

(f 0) :

Moreover, if f 0 is Lipschitzian with the constant L > 0; then�����18 (b� a)2 [f 0 (b)� f 0 (a)]�
"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#�����(2.8)

� 1

48
L (b� a)2 :
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Proof. It is known that if p : [c; d]! C is a continuous function and v : [c; d]! C is
of bounded variation, then the Riemann-Stieltjes integral

R d
c
p (t) dv (t) exists and

the following inequality holds�����
Z d

c

p (t) dv (t)

����� � max
t2[c;d]

jp (t)j
d_
c

(v)

where
d_
c

(v) denotes the total variation of v on [c; d] :

Utilising this property we have�����
Z b

a

�
x� a+ b

2

�2
df 0 (x)

����� � sup
x2[a;b]

�
x� a+ b

2

�2 b_
a

(f 0)

=
1

4
(b� a)2

b_
a

(f 0)

and by the equality (2.1) we get (2.7).
It is well known that if p : [a; b] ! C is a Riemann integrable function and

v : [a; b]! C is Lipschitzian with the constant M > 0, i.e.,

jv (s)� v (t)j �M js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following inequality

holds �����
Z b

a

p (t) dv (t)

����� �M
Z b

a

jp (t)j dt:

Utilizing this property we have�����
Z b

a

�
x� a+ b

2

�2
df 0 (x)

����� � L

Z b

a

�
x� a+ b

2

�2
d (x)

=
1

12
L (b� a)3

and by the equality (2.1) we get (2.8). �

Now, when some convexity property is assumed for the second derivative, then
following result holds.

Theorem 3. Let f : [a; b]! R be a twice di¤erentiable function on (a; b) and such
that the second derivative f 00 is convex on (a; b) : Then

1

24
f 00
�
a+ b

2

�
(b� a)3(2.9)

� 1

8
(b� a)2

�
f 0� (b)� f 0+ (a)

�
�
"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#

� f 00 (a) + f 00 (b)

48
(b� a)3 :
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Proof. We know from (2.4) that

1

8
(b� a)2 [f 0 (b)� f 0 (a)]�

"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#
(2.10)

=
1

2

Z b

a

�
x� a+ b

2

�2
f 00 (x) dx:

Since f 00 is convex on (a; b) ; then by (1.2) we have

1

12
f 00
�
a+ b

2

�
(b� a)3 �

Z b

a

�
x� a+ b

2

�2
f 00 (x) dx(2.11)

� f 00 (a) + f 00 (b)

24
(b� a)3 :

Utilising (2.10) and (2.11) we deduce the desired result (2.9). �

Theorem 4. Let f : [a; b]! R be a twice di¤erentiable function on (a; b).
If there exists a real number m such that f 00 (x) � m for any x 2 (a; b) ; then

1

12
f

�
a+ b

2

�
(b� a)3 + 1

180
m (b� a)5(2.12)

�
Z b

a

�
x� a+ b

2

�2
f (x) dx

� f (a) + f (b)

24
(b� a)3 � 7

1440
m (b� a)5 :

If there exists a real number M such that f 00 (x) �M for any x 2 (a; b) ; then

f (a) + f (b)

24
(b� a)3 � 7

1440
M (b� a)5(2.13)

�
Z b

a

�
x� a+ b

2

�2
f (x) dx

� 1

12
f

�
a+ b

2

�
(b� a)3 + 1

180
M (b� a)5 :

Proof. De�ne the function hm : [a; b]! R by

hm (x) := f (x)�
1

2
m

�
x� a+ b

2

�2
:

This function is twice di¤erentiable and the second derivative is

h00m (x) = f
00 (x)�m � 0; x 2 (a; b)

showing that hm is convex on [a; b] :
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If we apply the inequality (1.2) for hm; then we have

1

12
f

�
a+ b

2

�
(b� a)3(2.14)

�
Z b

a

�
x� a+ b

2

�2
f (x) dx� 1

2
m

Z b

a

�
x� a+ b

2

�4
dx

�
f (a)� 1

8m (b� a)
2
+ f (b)� 1

8m (b� a)
2

24
(b� a)3

=
f (a) + f (b)

24
(b� a)3 � 1

96
m (b� a)5 :

We also have Z b

a

�
x� a+ b

2

�4
dx =

1

90
(b� a)5 :

Then (2.14) becomes

1

12
f

�
a+ b

2

�
(b� a)3 + 1

180
m (b� a)5

�
Z b

a

�
x� a+ b

2

�2
f (x) dx

� f (a) + f (b)

24
(b� a)3 � 1

96
m (b� a)5 + 1

180
m (b� a)5

=
f (a) + f (b)

24
(b� a)3 � 7

1440
m (b� a)5

which is equivalent with (2.12).
Now de�ne the function hM : [a; b]! R by

hM (x) :=
1

2
M

�
x� a+ b

2

�2
� f (x) :

This function is twice di¤erentiable and

h00M (x) :=M � f 00 (x) � 0; x 2 (a; b)

showing that hM is convex on [a; b] :
If we apply the inequality (1.2) for hM ; then we have

1

12

�
�f

�
a+ b

2

��
(b� a)3

�
Z b

a

�
x� a+ b

2

�2 "
1

2
M

�
x� a+ b

2

�2
� f (x)

#
dx

�
1
8M (b� a)2 � f (a) + 1

8M (b� a)2 � f (b)
24

(b� a)3 ;
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which, by multiplication with �1; produces
1

12
f

�
a+ b

2

�
(b� a)3

�
Z b

a

�
x� a+ b

2

�2
f (x) dx� 1

180
M (b� a)5

�
f (a) + f (b)� 1

4M (b� a)2

24
(b� a)3

=
f (a) + f (b)

24
� 1

96
M (b� a)5

that is equivalent with

f (a) + f (b)

24
� 1

96
M (b� a)5 + 1

180
M (b� a)5

�
Z b

a

�
x� a+ b

2

�2
f (x) dx

� 1

12
f

�
a+ b

2

�
(b� a)3 + 1

180
M (b� a)5

and the inequality (2.13) is proved. �

Corollary 2. Let f : [a; b]! R be a twice di¤erentiable function on (a; b). If there
exists a K > 0 such that jf 00 (x)j � K for any x 2 (a; b) ; then�����

Z b

a

�
x� a+ b

2

�2
f (x) dx� 1

24

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

�
(b� a)3

�����(2.15)

� 1

192
K (b� a)5 :

Proof. If we write the inequality (2.12) for m = �K and the inequality (2.13) for
M = K , then we have

1

12
f

�
a+ b

2

�
(b� a)3 � 1

180
K (b� a)5(2.16)

�
Z b

a

�
x� a+ b

2

�2
f (x) dx

� f (a) + f (b)

24
(b� a)3 + 7

1440
K (b� a)5 ;

and
f (a) + f (b)

24
(b� a)3 � 7

1440
K (b� a)5(2.17)

�
Z b

a

�
x� a+ b

2

�2
f (x) dx

� 1

12
f

�
a+ b

2

�
(b� a)3 + 1

180
K (b� a)5 :

If we add the inequality (2.16) with (2.16) and divide the sum by 2 we get the
desired result (2.15). �
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Remark 3. We observe that the case m > 0 in the inequality (2.12) produces a
better result than (1.2).

For twice di¤erentiable functions we can provide the following perturbed trapezoid
quadrature ruleZ b

a

f (x) dx ' f (a) + f (b)

2
(b� a)� 1

8
(b� a)2 [f 0 (b)� f 0 (a)](2.18)

+
1

24
(b� a)3

�
f 00
�
a+ b

2

�
+
f 00 (a) + f 00 (b)

2

�
:

Denote EP;T (f ; a; b) the error in approximating the integral as in (2.18), namely

EP;T (f ; a; b) :=

Z b

a

f (x) dx� f (a) + f (b)
2

(b� a) + 1
8
(b� a)2 [f 0 (b)� f 0 (a)]

� 1

24
(b� a)3

�
f 00
�
a+ b

2

�
+
f 00 (a) + f 00 (b)

2

�
:

The following result that provides an a priory error bound for functions whose
fourth derivatives are bounded, holds.

Proposition 1. Let f : [a; b] ! R be a four time di¤erentiable function on (a; b).
If there exists a K > 0 such that

��f (4) (x)�� � K for any x 2 (a; b) ; then

(2.19) jEP;T (f ; a; b)j �
1

384
K (b� a)5 :

Proof. Writing the inequality (2.15) for the second derivative f 00 we have�����
Z b

a

�
x� a+ b

2

�2
f 00 (x) dx� 1

24

�
f 00
�
a+ b

2

�
+
f 00 (a) + f 00 (b)

2

�
(b� a)3

�����
� 1

192
K (b� a)5 :

Dividing this inequality by 2 and utilizing the representation (2.10) we have�����18 (b� a)2 [f 0 (b)� f 0 (a)]�
"
f (a) + f (b)

2
(b� a)�

Z b

a

f (x) dx

#

� 1

48
(b� a)3

�
f 00
�
a+ b

2

�
+
f 00 (a) + f 00 (b)

2

�����
� 1

384
K (b� a)5 ;

and the inequality (2.19) is proved. �

3. Applications for Special Means

Let us recall the following means for two positive numbers.

(1) The Arithmetic mean

A = A (a; b) :=
a+ b

2
; a; b > 0;

(2) The Geometric mean

G = G (a; b) :=
p
ab; a; b > 0;
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(3) The Harmonic mean

H = H (a; b) :=
2ab

a+ b
; a; b > 0;

(4) The Logarithmic mean

L = L (a; b) :=

8<:
a if a = b

b�a
ln b�ln a if a 6= b;

; a; b > 0;

(5) The Identric mean

I = I (a; b) :=

8><>:
a if a = b

1
e

�
bb

aa

� 1
b�a

if a 6= b
; a; b > 0;

(6) The p-Logarithmic mean

Lp = Lp (a; b) :=

8><>:
a if a = b

h
bp+1�ap+1
(p+1)(b�a)

i 1
p

if a 6= b
; a; b > 0:

The following inequality is well known in the literature:

(3.1) H � G � L � I � A:
It is also known that Lp is monotonically increasing over p 2 R, denoting L0 = I
and L�1 = L.
Consider the function f : [a; b] � (0;1) ! (0;1) ; f (x) = xp for p � 3: We

have the fourth derivative of the function given by

f (4) (x) = p (p� 1) (p� 2) (p� 3)xp�4;
which shows that the second derivative f 00 is convex on [a; b] : Applying the inequal-
ity (2.9) we have

p (p� 1)
24

Ap�2 (a; b) (b� a)2(3.2)

� 1

8
p (p� 1) (b� a)2 Lp�2p�2 (a; b)�A (ap; bp) + Lpp (a; b)

� 1

24
p (p� 1)A

�
ap�2; bp�2

�
(b� a)2

that holds for any a; b > 0 and p � 3:
Consider the function f : [a; b] � (0;1)! (0;1) ; f (x) = 1

x . Then f
00 (x) = 2

x3

and f (4) (x) = 24
x5 showing that the second derivative is convex on [a; b] : Applying

the inequality (2.9) we have

1

12

�
a+ b

2

��3
(b� a)3

� 1

8
(b� a)3

�
a+ b

a2b2

�
�
� 1
a +

1
b

2
(b� a)� (ln b� ln a)

�
�

1
a3 +

1
b3

24
(b� a)3 :
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Dividing by b� a > 0 we have
1

12
A�3 (a; b) (b� a)2(3.3)

� 1

4
(b� a)2 A (a; b)

G4 (a; b)
�H�1 (a; b) + L�1 (a; b)

� 1

12
H�1 �a3; b3� (b� a)2 ;

that holds for any a; b > 0.
Consider the function f : [a; b] � (0;1)! (0;1) ; f (x) = � lnx. Then f 00 (x) =

1
x2 and f

(4) (x) = 6
x4 showing that the second derivative is convex on [a; b] : Applying

the inequality (2.9) we have

1

24

�
a+ b

2

��2
(b� a)3

� 1

8
(b� a)2

�
b� a
ab

�
+
ln a+ ln b

2
(b� a)�

Z b

a

lnxdx

�
1
a2 +

1
b2

48
(b� a)3 :

Dividing by b� a > 0 we have

1

24

�
a+ b

2

��2
(b� a)2

� 1

8
(b� a)2 1

ab
+
ln a+ ln b

2
� 1

(b� a)

Z b

a

lnxdx

�
1
a2 +

1
b2

48
(b� a)2 :

Observe that

1

b� a

Z b

a

lnxdx =
1

b� a

h
x lnxjba � (b� a)

i
=

=

"
ln

�
bb

aa

�1=(b�a)
� 1
#
= ln I (a; b) ;

and
ln a+ ln b

2
= lnG (a; b) :

Then we get

1

24
A�2 (a; b) (b� a)2(3.4)

� 1

8
(b� a)2G�2 (a; b) + lnG (a; b)� ln I (a; b)

� 1

24
H�1 �a2; b2� (b� a)2

that holds for any a; b > 0.
The interested reader may apply the inequality (2.19) to obtain other similar

results. However, the details are omitted here.
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