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SOME APPLICATIONS OF FEJER’S INEQUALITY FOR
CONVEX FUNCTIONS (II)

S.S. DRAGOMIRY2AND I. GOMM!

ABSTRACT. Some applications of Fejér’s inequality for convex functions are
explored. Upper and lower bounds for the weighted integral

/Eb (m—a;—b)Qf(x)da:

under various assumptions for f with applications to the trapezoidal quadra-
ture rule are given. Some inequalities for special means are derived.

1. INTRODUCTION

The Hermite-Hadamard integral inequality for convex functions f : [a,b] — R

() P < [ s was < L0

is well known in the literature and has many apphcatlons for special means.

For related results, see for instance the research papers [1], [11], [12], [13], [15],
[14], [16], [17], [18], the monograph online [10] and the references therein.

In 1906, Fejér, while studying trigonometric polynomials, obtained inequalities
which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral f; h(z) w (z) dz, where h is a convex function
in the interval (a,b) and w is a positive function in the same interval such that

w(a+t)=wb—1), 0§t§%(a+b),

e, y =w(x) is a symmetric curve with respect to the straight line which contains
the point (5 (a+b),0) and is normal to the x—awis. Under those conditions the
following inequalities are valid:

b
(1.1) h(a;b>/ dx</ h(x dx<w/ w (z) da.
If h is concave on (a,b), then the inequalities reverse in .

Clearly, for w (z) =1 on [a, b] we get
We observe that, if we take w (z) = (z — aT'H’)Z , « € [a,b], then w satisfies the
conditions in Theorem

b 2
a+b o 1 3
/a <x— 5 > dm——m(b a)
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and by (1.1) we have the following inequality

(1.2) 12h<a;b)(b—a)?’g/ab(x—a;b)zh(x)dm

h(a) + h (b) 3

S 24 (b a’) J

that holds for any convex function A : [a,b] — R. If the function h is concave the
inequalities in (1.2) reverse.

In this paper we establish amongst other results some better bounds for the

weighted integral
b 2
/ <x—a+b) h(x)dz
a 2

in the case of convex functions h : [a,b] — R. We also investigate the connection
with the trapezoid rule and apply some of the obtained results for special means.
For some recent inequalities concerning the weighted integral

b
/ (b—z)(x—a)h(z)dx

under various assumptions for the function & : [a,b] — R, see the paper [§].

2. THE RESULTS

We start with the following equality that is of interest in itself.

Lemma 1. Let f : [a,b] — C be such that the derivative f’ is of bounded variation
on [a,b]. Then we have the equality

b
e S b-aP 0 - f @) - [f”‘;f“’) o-a- [ 1@ dx]

:;/ab(x a+b> o (2.

where the last integral is taken in the Riemann-Stieltjes sense.

2
Proof. Since f’(-) is of bounded variation and (- — 22)” is continuous on [a,b]

then the Riemann-Stieltjes integral from the right hand side of the equality (2.1)
exists and utilizing the integration by parts rule we have

(2.2) /ab <x— a;b)Qdf’ ()
S ] o f () e

-t o-r@-2 [ (s ) F @

By the integration by parts rule for the Riemann integral we also have

(2.3) /ab<xa;b)f'(x)dx f();f /f

Utilising the equality (2.2) divided by 2 and the equality (2.3), we get the desired

result . O
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Remark 1. If f’ is absolutely continuous on [a,b], then the equality (2.1) becomes

04 L@ f (@) - V(’+f o[ 1@ ]

2
1 [ b\
:§/a (ma;_ > " (z) dz,

where the second integral is taken in the Lebesgue sense. This equality was obtained
in a different way in [2].

Corollary 1. If f is a convex function on [a,b], then we have the inequality

1 fla)+ f(b
@5 ro-? o @)= L0 [
Proof. If f is convex, then the derivative exists except at a countable number of
points in [a,b] and is increasing. The lateral derivatives f’ (b) and f! (a) exist. If
one is infinite then the inequality (2.5) holds trivially. If both of them are finite,
then the function

i@, w=a
g(x):=4q fi(x) z¢€(ab)
f-)  x=b
is monotonic nondecreasing on [a, b] and

1

b
(2.6 8w—w%ﬂww¢HM—[“®+“ww—@— um4

:;/ab (x—a;b>2dg(x).
/ab (ar— a;b)ng(x)ZO,

then ([2.6) produces the desired result (2.5]). O
Remark 2. The inequality has been obtained in a different way in [6)].

Since

Theorem 2. With the assumptions of Lemma[1] we have

(2.7 ;w—afuww—f%ww—V“)+f o[ 1@ ]

2

-V ().

a

OO\H

Moreover, if [’ is Lipschitzian with the constant L > 0, then

(2.8 ;wafu%wf%m1V“)+f - [ 1@ ]

2

1 2
< —L(b— .
< hLb-0)
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Proof. Tt is known that if p : [¢,d] — C is a continuous function and v : [¢,d] — C is

of bounded variation, then the Riemann-Stieltjes integral fcd p(t)dv (t) exists and
the following inequality holds

d
/ p(t) dv (1)

< max |p(t)|\/ (v)

t€le,d]

d
where \/ (v) denotes the total variation of v on [e, d].

(&3
Utilising this property we have

b 2
[ ool
a z€[a,b]

IA
)]
o
o]
VRS
8
|
S
vo| +
o
N———
[V
<=
—~
kﬁ
\_>

and by the equality (2.1]) we get (2.7).
It is well known that if p : [a,b0] — C is a Riemann integrable function and
v : [a,b] — C is Lipschitzian with the constant M > 0, i.e.,

lv(s) —v(t)] < M|s—t| for any t, s € [a,]],

then the Riemann-Stieltjes integral f;) p(t) dv (t) exists and the following inequality
holds

b b
/p(t)dv(t) SM/ p (t)] dt.

Utilizing this property we have

[t we] < o (=552) o
= %L(b—a)g

and by the equality (2.1) we get (2.8). O

Now, when some convexity property is assumed for the second derivative, then
following result holds.

Theorem 3. Let f : [a,b] — R be a twice differentiable function on (a,b) and such
that the second derivative f" is convex on (a,b). Then

29 g (“50) 6o

b
<;<b—a>2[f'<b>—f;<a>]—[f@‘;“b)(b—a)—/a f(x)dm]

f"(a) + 7 (b)
S 4—8 (b - a)3 .
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Proof. We know from (2.4) that

b
(210) Lo aPl®) - f (@) - [””“”’ o-a- [ 1@ dx]

2
b B\ 2
:%/a <wa; ) 1 (z) dz.

Since f” is convex on (a,b), then by (|1.2) we have

(2.11) éf”(“;b) (b—a)3</ab (m—a;b>2f”(m)dx
(

f"(a) + " (b) 3
< T(b*a) .

Utilising ([2.10) and (2.11)) we deduce the desired result ([2.9)).

Theorem 4. Let f : [a,b] — R be a twice differentiable function on (a,b).
If there exists a real number m such that f” () > m for any x € (a,b), then

2 180

s/ab(z“jbff(m)dx

fla) +f(b) 7
ST(b—a)g—@m(b—a)f’.

(2.12) 1—12f <a+b) (b-a)’ + —m(b-a)

If there exists a real number M such that f" (z) < M for any x € (a,b), then

f(a)+ f(b) 7
—r (b—a)g—@M(b—a)E’

g/: (:c—a;b>2f(a?)dm

1 b 1
<o/ (“; )(b—a)3+180M(b—a)5.

(2.13)

Proof. Define the function h,, : [a,b] — R by

o () :zf(x)—ém(x—a—;b>2.

This function is twice differentiable and the second derivative is

h (z) = f"(z) —m >0, z € (a,b)

showing that h,, is convex on [a,b].
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If we apply the inequality (1.2]) for A,,, then we have

(2.14) —f (”b) (b —a)®

[ () st -

_ @) —tm- );lf()—gm( AT

We also have

Then becomes
a+b 1
f( )(b ) Jr@m(bfa)
b 2
§/ (:c—a;_b> f(z)dx
f(a)+f(b) 3 1 5, 1 5
< LN VI N oy _ _ _ _
< 51 (b—a) 96m(b a) +180m(b a)
_ f(a)+f(b) 3 T 5
=T oA gpm-a)
which is equivalent with .
Now define the function hyy : [a,b] — R by

hos (2) = ;M@—“;Z’f—f@).

This function is twice differentiable and

Wy (z) :=M = f"(z) > 0, z € (a,b)
showing that hjs is convex on [a, ]
If we apply the inequality ([1.2]) for Ay, then we have

|- (5] oo
g/ab (x—“;rbf [;M (m—a;b)Q—f(x)] dx

- a%M(ba)ZJ"(CL)2+4§M(Z)0‘)2f(b) (b—a)®,
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which, by multiplication with —1, produces

—f <a+b> (b—a)®

b a 2
z/ (x— ;b> () de — M (b~ a)°
_f@)+f ) =M (b —a)

3
> . (b~ a)
_f@+f@) 1 5
= o — %M (b—a)
that is equivalent with
fla+f@) 1 5, 1
5 e M 0+ M-y

g/ab<x—a—2|_b>2f(x)dm
<5 (550) 0=+ M 0o

and the inequality (2.13]) is proved. (]

Corollary 2. Let f : [a,b] — R be a twice differentiable function on (a,b). If there
exists a K > 0 such that |f" (z)| < K for any x € (a,b), then

(2.15) /: (:p— a;b)2f(x)dx_214 [f (a;b) +f(a);rf(b)} (b—a)°
_ﬁf((b—a)"’.

Proof. If we write the inequality (2.12)) for m = —K and the inequality (2.13)) for
M = K , then we have

(2.16) 112f (“ : b) (b—a)* — %K (b—a)’
b a 2
S/a (m— ;—b> f(z)dzx
@O T
and
(2.17) W(b— )3—ﬁK(b—a)5

g/ab<x—“;b)2f(x)dx
12f<“+b> (b—a)® +@K(b a)’ .

If we add the inequality (2.16) with (2.16)) and divide the sum by 2 we get the
desired result (2.15)). O
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Remark 3. We observe that the case m > 0 in the inequality produces a

better result than .

For twice differentiable functions we can provide the following perturbed trapezoid
quadrature rule

b
e [ r@ars O 60 Lo- o 0) - s @)
b0 [ (452) SO0

24 2
Denote Epr (f;a,b) the error in approximating the integral as in , namely
b
Bra (frah)i= [ f@ar- T 004 Lol ir ) - 1 o)
1 3., (a+b " (a) + f" ()
- Lb-a) [f( ! >+ ! }

The following result that provides an a priory error bound for functions whose
fourth derivatives are bounded, holds.

Proposition 1. Let f : [a,b] — R be a four time differentiable function on (a,b).
If there exists a K > 0 such that |f(4) (x)| < K for any x € (a,b), then

. 1 5
(2.19) Bra (fiab)| < 5K (b= a)’.

Proof. Writing the inequality (2.15) for the second derivative f” we have

[t rrou 4l (52) 25

1 5
<—K(b- .
S it
Dividing this inequality by 2 and utilizing the representation (2.10) we have
1 fla)+f(b
L@l )~ f (@) - [ HO IO 0 [ ]
1 s[pn (0t f'(a)+ [ (b)
59 [f ( 2 )" 2
1 5
< —K(b-
S ggff-a
and the inequality (2.19)) is proved. O

3. APPLICATIONS FOR SPECIAL MEANS
Let us recall the following means for two positive numbers.
(1) The Arithmetic mean

A= A(a,b) = 210

, a,b>0;

(2) The Geometric mean

G =G (a,b):= Vab, a,b > 0;
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(3) The Harmonic mean

H = H (a,b) := %, a,b>0;
(4) The Logarithmic mean
a if a=b
L=1L(a,b):= , a,b >0,
et i a# b
(5) The Identric mean
a it a=b
I=1(a,b):= ) , a,b>0;

L(&)7 ot azb
(6) The p-Logarithmic mean

a if a=b
L,=L,(a,b):= 1 , a,b>0.
(o]t aze
The following inequality is well known in the literature:
(3.1) H<G<L<I<A.

It is also known that L, is monotonically increasing over p € R, denoting Ly = I
and L_1 = L.
Consider the function f : [a,b] C (0,00) — (0,00), f(x) = «P for p > 3. We
have the fourth derivative of the function given by
fP @) =plp-1)(p-2)(p-3)a"",
which shows that the second derivative f” is convex on [a, b] . Applying the inequal-

ity (2.9) we have

p (p - ]‘) p—

(3.2) oA 2 (a,b) (b—a)?
< 2P (= 1)(b— ) 173 (a,0) — A1) + L2 (a, D)
< gp (0= 1) A@%07) (- 0)?

that holds for any a,b > 0 and p > 3.

Consider the function f : [a,b] C (0,00) — (0,00), f (x) = 2. Then f” (z) = %
and f® (z) = 2 showing that the second derivative is convex on [a,b] . Applying
the inequality (2.9) we have

112<a_2|_b>_3(b—a)3

1,1
g%(b—a)f3 (‘;j{;) - [;b (b—a)— (Inb—Ina)
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Dividing by b —a > 0 we have

(3.3) A$Afﬂmbﬂb—af
<100 G H )+ 1 )

i —1(,3 13 A2
<12H (a,b)(b a)”,

that holds for any a,b > 0.

Counsider the function f : [a,b] C (0,00) — (0,00), f (z) = —lnz. Then [ (z) =
Z and f ) (x) = 5 showing that the second derivative is convex on [a, b] . Applying
the inequality we have

1 a+b -2 3

1 2 (b—a Ina+1Inb b

< - (b— —a)— 1
_8(b a)(ab)—i— 5 (b—a) /anzdsc
b b
48
Dividing by b —a > 0 we have

() oo

< (b—a)’.

1 51 Ina+Inb 1 b
<-(b-a)?— - 1
sglb-a g+ (b—a)/a nde

1 1

oz t a2 2
<t 0-a

Observe that

1 b 1 b
b—a/a lnxdx—m[mlnaﬂa—(b—a)]—

bb 1/(b—a)
In () - 11 =In/(a,d),

a(l
and
W:IHG(a,b).
Then we get
1
A — A2 —a)’
(3.4) AT (@) (b a)
1
§g(b—a)2G_2(a,b)+lnG(a,b)—lnI(a,b)
1
< 2 H (22 (h— )2
< o (a b )(b a)

that holds for any a,b > 0.
The interested reader may apply the inequality (2.19) to obtain other similar
results. However, the details are omitted here.
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