SOME APPLICATIONS OF FEJÉR'S INEQUALITY FOR CONVEX FUNCTIONS (II)

S.S. DRAGOMIR ${ }^{1,2}$ AND I. GOMM ${ }^{1}$

Abstract

Some applications of Fejér's inequality for convex functions are explored. Upper and lower bounds for the weighted integral $$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x
$$ under various assumptions for f with applications to the trapezoidal quadrature rule are given. Some inequalities for special means are derived.

1. Introduction

The Hermite-Hadamard integral inequality for convex functions $f:[a, b] \rightarrow \mathbb{R}$

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{HH}
\end{equation*}
$$

is well known in the literature and has many applications for special means.
For related results, see for instance the research papers [1], [11, [12, [13, [15], [14], 16], 17, [18], the monograph online [10 and the references therein.

In 1906, Fejér, while studying trigonometric polynomials, obtained inequalities which generalize that of Hermite \& Hadamard:

Theorem 1. Consider the integral $\int_{a}^{b} h(x) w(x) d x$, where h is a convex function in the interval (a, b) and w is a positive function in the same interval such that

$$
w(a+t)=w(b-t), \quad 0 \leq t \leq \frac{1}{2}(a+b),
$$

i.e., $y=w(x)$ is a symmetric curve with respect to the straight line which contains the point $\left(\frac{1}{2}(a+b), 0\right)$ and is normal to the x-axis. Under those conditions the following inequalities are valid:

$$
\begin{equation*}
h\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x) d x \leq \int_{a}^{b} h(x) w(x) d x \leq \frac{h(a)+h(b)}{2} \int_{a}^{b} w(x) d x . \tag{1.1}
\end{equation*}
$$

If h is concave on (a, b), then the inequalities reverse in 1.1.
Clearly, for $w(x) \equiv 1$ on $[a, b]$ we get HH.
We observe that, if we take $w(x)=\left(x-\frac{a+b}{2}\right)^{2}, x \in[a, b]$, then w satisfies the conditions in Theorem 1,

$$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d x=\frac{1}{12}(b-a)^{3}
$$

[^0]and by 1.1 we have the following inequality
\[

$$
\begin{align*}
\frac{1}{12} h\left(\frac{a+b}{2}\right)(b-a)^{3} & \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} h(x) d x \tag{1.2}\\
& \leq \frac{h(a)+h(b)}{24}(b-a)^{3}
\end{align*}
$$
\]

that holds for any convex function $h:[a, b] \rightarrow \mathbb{R}$. If the function h is concave the inequalities in 1.2 reverse.

In this paper we establish amongst other results some better bounds for the weighted integral

$$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} h(x) d x
$$

in the case of convex functions $h:[a, b] \rightarrow \mathbb{R}$. We also investigate the connection with the trapezoid rule and apply some of the obtained results for special means.

For some recent inequalities concerning the weighted integral

$$
\int_{a}^{b}(b-x)(x-a) h(x) d x
$$

under various assumptions for the function $h:[a, b] \rightarrow \mathbb{R}$, see the paper [8].

2. The Results

We start with the following equality that is of interest in itself.
Lemma 1. Let $f:[a, b] \rightarrow \mathbb{C}$ be such that the derivative f^{\prime} is of bounded variation on $[a, b]$. Then we have the equality

$$
\begin{align*}
& \frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right] \tag{2.1}\\
& =\frac{1}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d f^{\prime}(x)
\end{align*}
$$

where the last integral is taken in the Riemann-Stieltjes sense.
Proof. Since $f^{\prime}(\cdot)$ is of bounded variation and $\left(\cdot-\frac{a+b}{2}\right)^{2}$ is continuous on $[a, b]$ then the Riemann-Stieltjes integral from the right hand side of the equality (2.1) exists and utilizing the integration by parts rule we have

$$
\begin{align*}
& \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d f^{\prime}(x) \tag{2.2}\\
& =\left.\left(x-\frac{a+b}{2}\right)^{2} f^{\prime}(x)\right|_{a} ^{b}-2 \int_{a}^{b}\left(x-\frac{a+b}{2}\right) f^{\prime}(x) d x \\
& =\frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]-2 \int_{a}^{b}\left(x-\frac{a+b}{2}\right) f^{\prime}(x) d x
\end{align*}
$$

By the integration by parts rule for the Riemann integral we also have

$$
\begin{equation*}
\int_{a}^{b}\left(x-\frac{a+b}{2}\right) f^{\prime}(x) d x=\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x . \tag{2.3}
\end{equation*}
$$

Utilising the equality (2.2) divided by 2 and the equality 2.3$)$, we get the desired result 2.1).

Remark 1. If f^{\prime} is absolutely continuous on $[a, b]$, then the equality (2.1) becomes

$$
\begin{align*}
& \frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right] \tag{2.4}\\
& =\frac{1}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f^{\prime \prime}(x) d x
\end{align*}
$$

where the second integral is taken in the Lebesgue sense. This equality was obtained in a different way in [2].
Corollary 1. If f is a convex function on $[a, b]$, then we have the inequality

$$
\begin{equation*}
\frac{1}{8}(b-a)^{2}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right] \geq \frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x \tag{2.5}
\end{equation*}
$$

Proof. If f is convex, then the derivative exists except at a countable number of points in $[a, b]$ and is increasing. The lateral derivatives $f_{-}^{\prime}(b)$ and $f_{+}^{\prime}(a)$ exist. If one is infinite then the inequality 2.5 holds trivially. If both of them are finite, then the function

$$
g(x):=\left\{\begin{array}{cc}
f_{+}^{\prime}(a), & x=a \\
f_{+}^{\prime}(x) & x \in(a, b) \\
f_{-}(b) & x=b
\end{array}\right.
$$

is monotonic nondecreasing on $[a, b]$ and

$$
\begin{align*}
& \frac{1}{8}(b-a)^{2}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right] \tag{2.6}\\
& =\frac{1}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d g(x)
\end{align*}
$$

Since

$$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d g(x) \geq 0
$$

then (2.6) produces the desired result 2.5).
Remark 2. The inequality (2.5) has been obtained in a different way in (6.
Theorem 2. With the assumptions of Lemma 1 we have

$$
\begin{align*}
& \left|\frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right]\right| \tag{2.7}\\
& \leq \frac{1}{8}(b-a)^{2} \bigvee_{a}^{b}\left(f^{\prime}\right) .
\end{align*}
$$

Moreover, if f^{\prime} is Lipschitzian with the constant $L>0$, then

$$
\begin{align*}
& \left|\frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right]\right| \tag{2.8}\\
& \leq \frac{1}{48} L(b-a)^{2} .
\end{align*}
$$

Proof. It is known that if $p:[c, d] \rightarrow \mathbb{C}$ is a continuous function and $v:[c, d] \rightarrow \mathbb{C}$ is of bounded variation, then the Riemann-Stieltjes integral $\int_{c}^{d} p(t) d v(t)$ exists and the following inequality holds

$$
\left|\int_{c}^{d} p(t) d v(t)\right| \leq \max _{t \in[c, d]}|p(t)| \bigvee_{c}^{d}(v)
$$

where $\bigvee_{c}^{d}(v)$ denotes the total variation of v on $[c, d]$.
Utilising this property we have

$$
\begin{aligned}
\left|\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d f^{\prime}(x)\right| & \leq \sup _{x \in[a, b]}\left(x-\frac{a+b}{2}\right)^{2} \bigvee_{a}^{b}\left(f^{\prime}\right) \\
& =\frac{1}{4}(b-a)^{2} \bigvee_{a}^{b}\left(f^{\prime}\right)
\end{aligned}
$$

and by the equality (2.1) we get 2.7 .
It is well known that if $p:[a, b] \rightarrow \mathbb{C}$ is a Riemann integrable function and $v:[a, b] \rightarrow \mathbb{C}$ is Lipschitzian with the constant $M>0$, i.e.,

$$
|v(s)-v(t)| \leq M|s-t| \text { for any } t, s \in[a, b]
$$

then the Riemann-Stieltjes integral $\int_{a}^{b} p(t) d v(t)$ exists and the following inequality holds

$$
\left|\int_{a}^{b} p(t) d v(t)\right| \leq M \int_{a}^{b}|p(t)| d t
$$

Utilizing this property we have

$$
\begin{aligned}
\left|\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d f^{\prime}(x)\right| & \leq L \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d(x) \\
& =\frac{1}{12} L(b-a)^{3}
\end{aligned}
$$

and by the equality (2.1) we get 2.8 .
Now, when some convexity property is assumed for the second derivative, then following result holds.

Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b) and such that the second derivative $f^{\prime \prime}$ is convex on (a, b). Then

$$
\begin{align*}
& \frac{1}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right)(b-a)^{3} \tag{2.9}\\
& \leq \frac{1}{8}(b-a)^{2}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right] \\
& \leq \frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{48}(b-a)^{3}
\end{align*}
$$

Proof. We know from (2.4) that

$$
\begin{align*}
& \frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right] \tag{2.10}\\
& =\frac{1}{2} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f^{\prime \prime}(x) d x
\end{align*}
$$

Since $f^{\prime \prime}$ is convex on (a, b), then by (1.2) we have

$$
\begin{align*}
\frac{1}{12} f^{\prime \prime}\left(\frac{a+b}{2}\right)(b-a)^{3} & \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f^{\prime \prime}(x) d x \tag{2.11}\\
& \leq \frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{24}(b-a)^{3}
\end{align*}
$$

Utilising 2.10 and 2.11 we deduce the desired result 2.9 .

Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b).
If there exists a real number m such that $f^{\prime \prime}(x) \geq m$ for any $x \in(a, b)$, then

$$
\begin{align*}
& \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{180} m(b-a)^{5} \tag{2.12}\\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x \\
& \leq \frac{f(a)+f(b)}{24}(b-a)^{3}-\frac{7}{1440} m(b-a)^{5} .
\end{align*}
$$

If there exists a real number M such that $f^{\prime \prime}(x) \leq M$ for any $x \in(a, b)$, then

$$
\begin{align*}
& \frac{f(a)+f(b)}{24}(b-a)^{3}-\frac{7}{1440} M(b-a)^{5} \tag{2.13}\\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x \\
& \leq \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{180} M(b-a)^{5} .
\end{align*}
$$

Proof. Define the function $h_{m}:[a, b] \rightarrow \mathbb{R}$ by

$$
h_{m}(x):=f(x)-\frac{1}{2} m\left(x-\frac{a+b}{2}\right)^{2} .
$$

This function is twice differentiable and the second derivative is

$$
h_{m}^{\prime \prime}(x)=f^{\prime \prime}(x)-m \geq 0, x \in(a, b)
$$

showing that h_{m} is convex on $[a, b]$.

If we apply the inequality $\sqrt{1.2}$ for h_{m}, then we have

$$
\begin{align*}
& \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3} \tag{2.14}\\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x-\frac{1}{2} m \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{4} d x \\
& \leq \frac{f(a)-\frac{1}{8} m(b-a)^{2}+f(b)-\frac{1}{8} m(b-a)^{2}}{24}(b-a)^{3} \\
& =\frac{f(a)+f(b)}{24}(b-a)^{3}-\frac{1}{96} m(b-a)^{5}
\end{align*}
$$

We also have

$$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{4} d x=\frac{1}{90}(b-a)^{5}
$$

Then (2.14) becomes

$$
\begin{aligned}
& \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{180} m(b-a)^{5} \\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x \\
& \leq \frac{f(a)+f(b)}{24}(b-a)^{3}-\frac{1}{96} m(b-a)^{5}+\frac{1}{180} m(b-a)^{5} \\
& =\frac{f(a)+f(b)}{24}(b-a)^{3}-\frac{7}{1440} m(b-a)^{5}
\end{aligned}
$$

which is equivalent with 2.12 .
Now define the function $h_{M}:[a, b] \rightarrow \mathbb{R}$ by

$$
h_{M}(x):=\frac{1}{2} M\left(x-\frac{a+b}{2}\right)^{2}-f(x) .
$$

This function is twice differentiable and

$$
h_{M}^{\prime \prime}(x):=M-f^{\prime \prime}(x) \geq 0, x \in(a, b)
$$

showing that h_{M} is convex on $[a, b]$.
If we apply the inequality 1.2 for h_{M}, then we have

$$
\begin{aligned}
& \frac{1}{12}\left[-f\left(\frac{a+b}{2}\right)\right](b-a)^{3} \\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2}\left[\frac{1}{2} M\left(x-\frac{a+b}{2}\right)^{2}-f(x)\right] d x \\
& \leq \frac{\frac{1}{8} M(b-a)^{2}-f(a)+\frac{1}{8} M(b-a)^{2}-f(b)}{24}(b-a)^{3},
\end{aligned}
$$

which, by multiplication with -1 , produces

$$
\begin{aligned}
& \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3} \\
& \geq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x-\frac{1}{180} M(b-a)^{5} \\
& \geq \frac{f(a)+f(b)-\frac{1}{4} M(b-a)^{2}}{24}(b-a)^{3} \\
& =\frac{f(a)+f(b)}{24}-\frac{1}{96} M(b-a)^{5}
\end{aligned}
$$

that is equivalent with

$$
\begin{aligned}
& \frac{f(a)+f(b)}{24}-\frac{1}{96} M(b-a)^{5}+\frac{1}{180} M(b-a)^{5} \\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x \\
& \leq \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{180} M(b-a)^{5}
\end{aligned}
$$

and the inequality 2.13 is proved.
Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b). If there exists a $K>0$ such that $\left|f^{\prime \prime}(x)\right| \leq K$ for any $x \in(a, b)$, then

$$
\begin{align*}
& \left|\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x-\frac{1}{24}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right](b-a)^{3}\right| \tag{2.15}\\
& \leq \frac{1}{192} K(b-a)^{5}
\end{align*}
$$

Proof. If we write the inequality 2.12 for $m=-K$ and the inequality 2.13 for $M=K$, then we have

$$
\begin{align*}
& \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}-\frac{1}{180} K(b-a)^{5} \tag{2.16}\\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x \\
& \leq \frac{f(a)+f(b)}{24}(b-a)^{3}+\frac{7}{1440} K(b-a)^{5}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{f(a)+f(b)}{24}(b-a)^{3}-\frac{7}{1440} K(b-a)^{5} \tag{2.17}\\
& \leq \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f(x) d x \\
& \leq \frac{1}{12} f\left(\frac{a+b}{2}\right)(b-a)^{3}+\frac{1}{180} K(b-a)^{5} .
\end{align*}
$$

If we add the inequality 2.16 with 2.16 and divide the sum by 2 we get the desired result 2.15 .

Remark 3. We observe that the case $m>0$ in the inequality 2.12 produces a better result than (1.2).

For twice differentiable functions we can provide the following perturbed trapezoid quadrature rule

$$
\begin{align*}
\int_{a}^{b} f(x) d x & \simeq \frac{f(a)+f(b)}{2}(b-a)-\frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right] \tag{2.18}\\
& +\frac{1}{24}(b-a)^{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right]
\end{align*}
$$

Denote $E_{P, T}(f ; a, b)$ the error in approximating the integral as in 2.18, namely

$$
\begin{aligned}
E_{P, T}(f ; a, b) & :=\int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}(b-a)+\frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right] \\
& -\frac{1}{24}(b-a)^{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right]
\end{aligned}
$$

The following result that provides an a priory error bound for functions whose fourth derivatives are bounded, holds.

Proposition 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a four time differentiable function on (a, b). If there exists a $K>0$ such that $\left|f^{(4)}(x)\right| \leq K$ for any $x \in(a, b)$, then

$$
\begin{equation*}
\left|E_{P, T}(f ; a, b)\right| \leq \frac{1}{384} K(b-a)^{5} \tag{2.19}
\end{equation*}
$$

Proof. Writing the inequality 2.15 for the second derivative $f^{\prime \prime}$ we have

$$
\begin{aligned}
& \left|\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} f^{\prime \prime}(x) d x-\frac{1}{24}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right](b-a)^{3}\right| \\
& \leq \frac{1}{192} K(b-a)^{5} .
\end{aligned}
$$

Dividing this inequality by 2 and utilizing the representation 2.10 we have

$$
\begin{aligned}
& \left\lvert\, \frac{1}{8}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]-\left[\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b} f(x) d x\right]\right. \\
& \left.-\frac{1}{48}(b-a)^{3}\left[f^{\prime \prime}\left(\frac{a+b}{2}\right)+\frac{f^{\prime \prime}(a)+f^{\prime \prime}(b)}{2}\right] \right\rvert\, \\
& \leq \frac{1}{384} K(b-a)^{5}
\end{aligned}
$$

and the inequality 2.19 is proved.

3. Applications for Special Means

Let us recall the following means for two positive numbers.
(1) The Arithmetic mean

$$
A=A(a, b):=\frac{a+b}{2}, a, b>0
$$

(2) The Geometric mean

$$
G=G(a, b):=\sqrt{a b}, a, b>0
$$

(3) The Harmonic mean

$$
H=H(a, b):=\frac{2 a b}{a+b}, a, b>0
$$

(4) The Logarithmic mean

$$
L=L(a, b):=\left\{\begin{array}{ll}
a & \text { if } \\
a=b \\
\frac{b-a}{\ln b-\ln a} & \text { if }
\end{array} \quad a \neq b ; \quad a, b>0\right.
$$

(5) The Identric mean

$$
I=I(a, b):=\left\{\begin{array}{ll}
a & \text { if } a=b \\
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} & \text { if } a \neq b
\end{array}, a, b>0 ;\right.
$$

(6) The p-Logarithmic mean

$$
L_{p}=L_{p}(a, b):=\left\{\begin{array}{ll}
a & \text { if } a=b \\
{\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{\frac{1}{p}}} & \text { if } a \neq b
\end{array}, a, b>0 .\right.
$$

The following inequality is well known in the literature:

$$
\begin{equation*}
H \leq G \leq L \leq I \leq A \tag{3.1}
\end{equation*}
$$

It is also known that L_{p} is monotonically increasing over $p \in \mathbb{R}$, denoting $L_{0}=I$ and $L_{-1}=L$.

Consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(x)=x^{p}$ for $p \geq 3$. We have the fourth derivative of the function given by

$$
f^{(4)}(x)=p(p-1)(p-2)(p-3) x^{p-4}
$$

which shows that the second derivative $f^{\prime \prime}$ is convex on $[a, b]$. Applying the inequality $\sqrt{2.9}$ we have

$$
\begin{align*}
& \frac{p(p-1)}{24} A^{p-2}(a, b)(b-a)^{2} \tag{3.2}\\
& \leq \frac{1}{8} p(p-1)(b-a)^{2} L_{p-2}^{p-2}(a, b)-A\left(a^{p}, b^{p}\right)+L_{p}^{p}(a, b) \\
& \leq \frac{1}{24} p(p-1) A\left(a^{p-2}, b^{p-2}\right)(b-a)^{2}
\end{align*}
$$

that holds for any $a, b>0$ and $p \geq 3$.
Consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(x)=\frac{1}{x}$. Then $f^{\prime \prime}(x)=\frac{2}{x^{3}}$ and $f^{(4)}(x)=\frac{24}{x^{5}}$ showing that the second derivative is convex on $[a, b]$. Applying the inequality 2.9 we have

$$
\begin{aligned}
& \frac{1}{12}\left(\frac{a+b}{2}\right)^{-3}(b-a)^{3} \\
& \leq \frac{1}{8}(b-a)^{3}\left(\frac{a+b}{a^{2} b^{2}}\right)-\left[\frac{\frac{1}{a}+\frac{1}{b}}{2}(b-a)-(\ln b-\ln a)\right] \\
& \leq \frac{\frac{1}{a^{3}}+\frac{1}{b^{3}}}{24}(b-a)^{3}
\end{aligned}
$$

Dividing by $b-a>0$ we have

$$
\begin{align*}
& \frac{1}{12} A^{-3}(a, b)(b-a)^{2} \tag{3.3}\\
& \leq \frac{1}{4}(b-a)^{2} \frac{A(a, b)}{G^{4}(a, b)}-H^{-1}(a, b)+L^{-1}(a, b) \\
& \leq \frac{1}{12} H^{-1}\left(a^{3}, b^{3}\right)(b-a)^{2}
\end{align*}
$$

that holds for any $a, b>0$.
Consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(x)=-\ln x$. Then $f^{\prime \prime}(x)=$ $\frac{1}{x^{2}}$ and $f^{(4)}(x)=\frac{6}{x^{4}}$ showing that the second derivative is convex on $[a, b]$. Applying the inequality 2.9 we have

$$
\begin{aligned}
& \frac{1}{24}\left(\frac{a+b}{2}\right)^{-2}(b-a)^{3} \\
& \leq \frac{1}{8}(b-a)^{2}\left(\frac{b-a}{a b}\right)+\frac{\ln a+\ln b}{2}(b-a)-\int_{a}^{b} \ln x d x \\
& \leq \frac{\frac{1}{a^{2}}+\frac{1}{b^{2}}}{48}(b-a)^{3}
\end{aligned}
$$

Dividing by $b-a>0$ we have

$$
\begin{aligned}
& \frac{1}{24}\left(\frac{a+b}{2}\right)^{-2}(b-a)^{2} \\
& \leq \frac{1}{8}(b-a)^{2} \frac{1}{a b}+\frac{\ln a+\ln b}{2}-\frac{1}{(b-a)} \int_{a}^{b} \ln x d x \\
& \leq \frac{\frac{1}{a^{2}}+\frac{1}{b^{2}}}{48}(b-a)^{2}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} \ln x d x & =\frac{1}{b-a}\left[\left.x \ln x\right|_{a} ^{b}-(b-a)\right]= \\
& =\left[\ln \left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}-1\right]=\ln I(a, b),
\end{aligned}
$$

and

$$
\frac{\ln a+\ln b}{2}=\ln G(a, b)
$$

Then we get

$$
\begin{align*}
& \frac{1}{24} A^{-2}(a, b)(b-a)^{2} \tag{3.4}\\
& \leq \frac{1}{8}(b-a)^{2} G^{-2}(a, b)+\ln G(a, b)-\ln I(a, b) \\
& \leq \frac{1}{24} H^{-1}\left(a^{2}, b^{2}\right)(b-a)^{2}
\end{align*}
$$

that holds for any $a, b>0$.
The interested reader may apply the inequality 2.19 to obtain other similar results. However, the details are omitted here.

References

[1] A.G. AZPEITIA, Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28 (1994), no. 1, 7-12.
[2] P. CERONE, S. S. DRAGOMIR, J. ROUMELIOTIS and J. ŠUNDE, A new generalization of the trapezoid formula for n-time differentiable mappings and applications. Demonstratio Math. 33 (2000), no. 4, 719-736.
[3] S. S. DRAGOMIR, A mapping in connection to Hadamard's inequalities, An. Öster. Akad. Wiss. Math.-Natur., (Wien), 128(1991), 17-20. MR 934:26032. ZBL No. 747:26015.
[4] S. S. DRAGOMIR, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992), 49-56. MR:934:26038, ZBL No. 758:26014.
[5] S. S. DRAGOMIR, On Hadamard's inequalities for convex functions, Mat. Balkanica, 6(1992), 215-222. MR: 934: 26033.
[6] S. S. DRAGOMIR, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 35, 8 pp.
[7] S. S. DRAGOMIR, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 471-476.
[8] S. S. DRAGOMIR and I. GOMM, Some applications of Fejér's inequality for convex functions (I), Preprint, RGMIA Res. Rep. Coll. 16(2013), to appear.
[9] S. S. DRAGOMIR, D. S. MILOŚEVIĆ and J. SÁNDOR, On some refinements of Hadamard's inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math., 4(1993), 21-24.
[10] S. S. DRAGOMIR and C. E. M. PEARCE, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
[11] A. GUESSAB and G. SCHMEISSER, $\overline{\text { Sh }}$ harp integral inequalities of the Hermite-Hadamard type. J. Approx. Theory 115 (2002), no. 2, 260-288.
[12] E. KIKIANTY and S. S. DRAGOMIR, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space. Math. Inequal. Appl. 13 (2010), no. 1, 1-32.
[13] M. MERKLE, Remarks on Ostrowski's and Hadamard's inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113-117.
[14] C. E. M. PEARCE and A. M. RUBINOV, P-functions, quasi-convex functions, and Hadamard type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[15] J. PEČARIĆ and A. VUKELIĆ, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions. Functional equations, inequalities and applications, 105-137, Kluwer Acad. Publ., Dordrecht, 2003.
[16] G. TOADER, Superadditivity and Hermite-Hadamard's inequalities. Studia Univ. BabeşBolyai Math. 39 (1994), no. 2, 27-32.
[17] G.-S. YANG and M.-C. HONG, A note on Hadamard's inequality. Tamkang J. Math. 28 (1997), no. 1, 33-37.
[18] G.-S. YANG and K.-L. TSENG, On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl. 239 (1999), no. 1, 180-187.
${ }^{1}$ Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.

[^0]: 1991 Mathematics Subject Classification. 26D15; 25D10.
 Key words and phrases. Convex functions, Hermite-Hadamard inequality, Fejér's Inequality, Special means.

