SOME INEQUALITIES FOR DIFFERENTIABLE PREQUASIINVEX FUNCTIONS WITH APPLICATIONS

M. A. LATIF

Abstract

In this paper, we present several inequalities of Hermite-Hadamard type for differentiable prequasiinvex functions. Our results generalize those results proved in [2] and hence generalize those given in [7], [11] and [23]. Applications of the obtained results are given as well.

1. Introduction

Many inequalities have been established for convex functions but the most famous is the Hermite-Hadamard inequality, due to its rich geometrical significance and applications, which is stated as (see [25]):

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex mapping and $a, b \in I$ with $a<b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

Both the inequalities hold in reversed direction if f is concave.
For several results which generalize, improve and extend the inequalities (1.1), we refer the interested reader to [7, 8, 9], [11]-[14], [23, 24], [27]-[32].

In [7], Dragomir and Agarwal obtained the following inequalities for differentiable functions which estimate the difference between the middle and the rightmost terms in (1.1):
Theorem 1. [7] Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where a, $b \in I$ with $a<b$, and $f^{\prime} \in L(a, b)$. If $\left|f^{\prime}\right|$ is convex function on $[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{8}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right] \tag{1.2}
\end{equation*}
$$

Theorem 2. [7] Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where a, $b \in I$ with $a<b$, and $f^{\prime} \in L(a, b)$. If $\left|f^{\prime}\right|^{\frac{p}{p-1}}$ is convex function on $[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{2(p+1)^{\frac{1}{p}}}\left[\left|f^{\prime}(a)\right|^{\frac{p}{p-1}}+\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}\right] \tag{1.3}
\end{equation*}
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$.

[^0]In [23], Pearce and J. Pečarić gave an improvment and simplication of the constant in Theorem 2 and consolidated this results with Theorem 1. The following is the main result from [23]:

Theorem 3. [23] Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where a, $b \in I$ with $a<b$, and $f^{\prime} \in L(a, b)$. If $\left|f^{\prime}\right|^{q}$ is convex function on $[a, b]$, for some $q \geq 1$, then the following inequality holds:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4}\left[\frac{\left|f^{\prime}(a)\right|^{q}+\left|f^{\prime}(b)\right|^{q}}{2}\right]^{\frac{1}{q}} \tag{1.4}
\end{equation*}
$$

If $\left|f^{\prime}\right|^{q}$ is concave on $[a, b]$, for some $q \geq 1$. Then

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4}\left|f^{\prime}\left(\frac{a+b}{2}\right)\right| \tag{1.5}
\end{equation*}
$$

Now, we recall that the notion of quasi-convex functions generalizes the notion of convex functions. More exactly, a function $f:[a, b] \rightarrow \mathbb{R}$ is said quasi-convex on $[a, b]$ if

$$
f(t x+(1-t) y) \leq \max \{f(x), f(y)\}
$$

for all $x ; y \in[a ; b]$ and $t \in[0,1]$. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex
functions which are not convex, (see [11]).
Recently, Ion [11] introduced two inequalities of the right hand side of Hadamard's type for quasi-convex functions, as follows:

Theorem 4. [11] Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where $a, b \in I$ with $a<b$. If $\left|f^{\prime}\right|$ is quasi-convex function on $[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4} \sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} \tag{1.6}
\end{equation*}
$$

Theorem 5. [11] Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where a, $b \in I$ with $a<b$. If $\left|f^{\prime}\right|^{p}$ is quasi-convex function on $[a, b]$, for some $p>1$, then the following inequality holds:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x\right. & \left.-\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \right\rvert\, \tag{1.7}\\
\leq & \frac{b-a}{2(p+1)^{\frac{1}{p}}}\left(\sup \left\{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}},\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
In [2], Alomari, Darus and Kirmaci established Hermite-Hadamard-type inequalities for quasi-convex functions which give refiments of those given above in Theorem 4 and Theorem 5.

Theorem 6. [2] Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where $a, b \in I$ with $a<b$. If the mapping $\left|f^{\prime}\right|$ is quasi-convex function on $[a, b]$, then the following inequality holds:

$$
\begin{align*}
& \left.\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \tag{1.8}\\
& \leq \frac{b-a}{8}\left[\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|\right\}+\max \left\{\left|f^{\prime}(b)\right|,\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|\right\}\right]
\end{align*}
$$

Theorem 7. [2] Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where a, $b \in I$ with $a<b$. If $\left|f^{\prime}\right|^{p}$ is convex function on $[a, b]$, for $p>1$, then the following inequality holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{1.9}\\
& \leq \frac{b-a}{4(p+1)^{\frac{1}{p}}}\left[\left(\max \left\{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}},\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}\right. \\
& \left.\quad+\left(\max \left\{\left|f^{\prime}(b)\right|^{\frac{p}{p-1}},\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}\right]
\end{align*}
$$

Theorem 8. [2] Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where a, $b \in I$ with $a<b$. If $\left|f^{\prime}\right|^{q}$ is convex function on $[a, b]$, for $p>1$, then the following inequality holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{1.10}\\
& \leq \frac{b-a}{8}\left[\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q}\right\}\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\max \left\{\left|f^{\prime}(b)\right|^{q},\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q}\right\}\right)^{\frac{1}{q}}\right]
\end{align*}
$$

In recent years, lot of efforts have been made by many mathematicians to generalize the classical convexity. These studies include among others the work of Hanson in [10], Ben-Israel and Mond [5], Pini [22], M.A.Noor [19, 20], Yang and Li [34] and Weir [33]. Mond [5], Weir [32] and Noor [18, 19], have studied the basic properties of the preinvex functions and their role in optimization, variational inequalities and equilibrium problems. Hanson in [10], introduced invex functions as a significant generalization of convex functions. Ben-Israel and Mond [4], gave the concept of preinvex function which is special case of invexity. Pini [22], introduced the concept of prequasiinvex functions as a generalization of invex functions.

Let us recall some known results concerning preinvexity and quasi-preinvexity.
Let K be a closed set in \mathbb{R}^{n} and let $f: K \rightarrow \mathbb{R}$ and $\eta: K \times K \rightarrow \mathbb{R}$ be continuous functions. Let $x \in K$, then the set K is said to be invex at x with respect to $\eta(\cdot, \cdot)$,
if

$$
x+t \eta(y, x) \in K, \forall x, y \in K, t \in[0,1] .
$$

K is said to be an invex set with respect to η if K is invex at each $x \in K$. The invex set K is also called a η-connected set.

Definition 1. [33] The function f on the invex set K is said to be preinvex with respect to η, if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+t f(v), \forall u, v \in K, t \in[0,1]
$$

The function f is said to be preconcave if and only if $-f$ is preinvex.
It is to be noted that every convex function is preinvex with respect to the map $\eta(x, y)=x-y$ but the converse is not true see for instance [32].

Definition 2. [21] The function f on the invex set K is said to be preinvex with respect to η, if

$$
f(u+t \eta(v, u)) \leq \max \{f(u), f(v)\}, \forall u, v \in K, t \in[0,1]
$$

Also Every quasi-convex function is a prequasiinvex with respect to the map $\eta(v, u)$ but the converse does not holds, see for example [35].

In the recent paper, Noor [17] has obtained the following Hermite-Hadamard inequalities for the preinvex functions:

Theorem 9. [17]Let $f:[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be a preinvex function on the interval of the real numbers K° (the interior of K) and $a, b \in K \circ$ with $a<$ $a+\eta(b, a)$. Then the following inequality holds:

$$
f\left(\frac{2 a+\eta(b, a)}{2}\right) \leq \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

Barani, Ghazanfari and Dragomir in [4], presented the following estimates of the right-side of a Hermite- Hadamard type inequality in which some preinvex functions are involved.

Theorem 10. [4] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|$ is preinvex on K then, for every $a, b \in K$ with $\eta(b, a) \neq 0$, then the following inequality holds:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)}\right. & f(x) d x \mid \tag{1.11}\\
& \leq \frac{\eta(b, a)}{8}\left(\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right)
\end{align*}
$$

Theorem 11. [4] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. Assume $p \in \mathbb{R}$ with $p>1$. If $\left|f^{\prime}\right|^{\frac{p}{p-1}}$ is preinvex on K then, for every $a, b \in K$ with $\eta(b, a) \neq 0$, then the
following inequality holds:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\right. & \left.\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \tag{1.12}\\
& \leq \frac{\eta(b, a)}{2(1+p)^{\frac{1}{p}}}\left[\frac{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}}+\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}}{2}\right]^{\frac{p-1}{p}}
\end{align*}
$$

In [3], Barani, Ghazanfari and Dragomir gave similar results for quasi-preinvex functions as follows:

Theorem 12. [3] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|$ is qusi-preinvex on K then, for every $a, b \in K$ with $\eta(b, a) \neq 0$, then the following inequality holds:

$$
\begin{array}{r}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{1.13}\\
\leq \frac{\eta(b, a)}{8} \sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
\end{array}
$$

Theorem 13. [3] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. Assume $p \in \mathbb{R}$ with $p>1$. If $\left|f^{\prime}\right|^{\frac{p}{p-1}}$ is preinvex on K then, for every $a, b \in K$ with $\eta(b, a) \neq 0$, then the following inequality holds:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}\right. & \left.-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \tag{1.14}\\
& \leq \frac{\eta(b, a)}{2(1+p)^{\frac{1}{p}}}\left(\sup \left\{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}},\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}
\end{align*}
$$

For several new results on inequalities for preinvex functions we refer the interested reader to $[4,21,26]$ and the references therein.

In the present paper we give new inequalities of Hermite-Hadamard for functions whose derivatives in absolute value are preinvex and quasi-preinvex. Our results generalize those results presented in a very recent paper of Alomari, Darus and Kirmaci [2].

2. Main Results

The following Lemma is essential in establishing our main results in this section:
Lemma 1. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$ Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. Then for every $a, b \in K$ with $\eta(b, a) \neq 0$ the
following equality holds:

$$
\begin{aligned}
& \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x=\frac{\eta(b, a)}{4} \\
& \times\left[\int_{0}^{1}(-t) f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right) d t+\int_{0}^{1} t f^{\prime}\left(a+\left(\frac{1+t}{2}\right) \eta(b, a)\right) d t\right]
\end{aligned}
$$

Proof. It suffices to note that

$$
\begin{aligned}
I_{1} & =\int_{0}^{1}(-t) f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right) \\
& =\left.\frac{2(-t) f\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)}{-\eta(b, a)}\right|_{0} ^{1}-\frac{2}{\eta(b, a)} \int_{0}^{1} f\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right) \\
& =\frac{2 f(a)}{\eta(b, a)}-\frac{2}{\eta(b, a)} \int_{0}^{1} f\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)
\end{aligned}
$$

Setting $x=a+\left(\frac{1-t}{2}\right) \eta(b, a)$ and $d x=-\frac{\eta(b, a)}{2} d t$, which gives

$$
I_{1}=\frac{2 f(a)}{\eta(b, a)}-\frac{4}{(\eta(b, a))^{2}} \int_{a}^{a+\frac{1}{2} \eta(b, a)} f(x) d x
$$

Similarly, we also have

$$
I_{2}=\frac{2 f(a+\eta(b, a))}{\eta(b, a)}-\frac{4}{(\eta(b, a))^{2}} \int_{a+\frac{1}{2} \eta(b, a)}^{a+\eta(b, a)} f(x) d x
$$

Thus

$$
\frac{\eta(b, a)}{4}\left[I_{1}+I_{2}\right]=\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a+\frac{1}{2} \eta(b, a)}^{a+\eta(b, a)} f(x) d x
$$

which is the required result.
Remark 1. If we take $\eta(b, a)=b-a$, then Lemma 1 reduces to Lemma 2.1 from [2].

Now using Lemma 1, we shall propose some new upper bound for the right-hand side of Hadamard's inequality for quasi-preinvex mappings, which is better than the inequality had done in [3]. our results generalize those reults proved in [2] as well.

Theorem 14. Let $K \subseteq[0, \infty)$ be an open invex subset with respect to $\eta: K \times K \rightarrow$ \mathbb{R} and $a, b \in K$ with $a<a+\eta(b, a)$ Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|$ is preinvex on K, then for every $a, b \in K$ with $\eta(b, a) \neq 0$ we have the following inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.1}\\
& \leq \frac{\eta(b, a)}{8}\left[\sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|\right\}\right. \\
& \left.\quad+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|,\left|f^{\prime}(a+\eta(b, a))\right|\right\}\right] .
\end{align*}
$$

Proof. From Lemma 1 and by using the quasi-preinvexity of $\left|f^{\prime}\right|$ is preinvex on K, for any $t \in[0,1]$ we have

$$
\begin{gathered}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \\
\leq \frac{\eta(b, a)}{4}\left[\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)\right| d t+\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1+t}{2}\right) \eta(b, a)\right)\right| d t\right] \\
\leq \frac{\eta(b, a)}{4}\left[\sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|\right\} \int_{0}^{1} t d t\right. \\
\left.+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|,\left|f^{\prime}(a+\eta(b, a))\right|\right\} \int_{0}^{1} t d t\right] \\
=\frac{\eta(b, a)}{8}\left[\sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|\right\}\right. \\
\left.+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|,\left|f^{\prime}(a+\eta(b, a))\right|\right\}\right]
\end{gathered}
$$

This completes the proof of the theorem.
Corollary 1. Let f be as in Theorem 14, if in addition
(1) $\left|f^{\prime}\right|$ is increasing, then we have

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}\right. & \left.-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \tag{2.2}\\
\leq & \frac{\eta(b, a)}{8}\left[\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|+\left|f^{\prime}(a+\eta(b, a))\right|\right]
\end{align*}
$$

(2) $\left|f^{\prime}\right|$ is decreasing, then we have

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)}\right. & \int_{a}^{a+\eta(b, a)} f(x) d x \mid \tag{2.3}\\
& \leq \frac{\eta(b, a)}{8}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|\right]
\end{align*}
$$

Proof. The proof follows directly from Theorem 14.
Remark 2. We note that the inequalities (2.2) and (2.3) are two new refinements of the trapezoid inequality for quasi-preinvex functions, and thus for preinvex functions.

Remark 3. If we take $\eta(b, a)=b-a$ in Theorem 14, then the inequality reduces to the inequality (1.8). If we take $\eta(b, a)=b-a$ in corollary 1, then (2.2) and (2.3) reduce to the related corollary of Theorem 6 from [2].

Another similar result may be extended in the following theorem.
Theorem 15. Let $K \subseteq[0, \infty)$ be an open invex subset with respect to $\eta: K \times K \rightarrow$ \mathbb{R} and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping
on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|^{p}$ is quasi-preinvex on K, from some $p>1$, then for every $a, b \in K$ with $\eta(b, a) \neq 0$ we have the following inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.4}\\
& \leq \frac{\eta(b, a)}{4(p+1)^{\frac{1}{p}}}\left[\left(\sup \left\{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}},\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}\right. \\
& \left.\quad+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{\frac{p}{p-1}},\left|f^{\prime}(a+\eta(b, a))\right|^{\frac{p}{p-1}}\right\}^{\frac{p-1}{p}}\right] .
\end{align*}
$$

Proof. From Lemma 1 and using the well konwn Hölder's inequality, we have

$$
\begin{align*}
\leq \frac{\eta(b, a)}{4} & {\left[\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)\right| d t+\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1+t}{2}\right) \eta(b, a)\right)\right| d t\right] } \tag{2.5}\\
\leq & \frac{\eta(b, a)}{4}\left[\left(\int_{0}^{1} t^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{0}^{1} t^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f^{\prime}\left(a+\left(\frac{1+t}{2}\right) \eta(b, a)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right]
\end{align*}
$$

By the quasi-preinvexity of $\left|f^{\prime}\right|^{p}$ on K, from some $p>1$, we have for every $a, b \in K$ with $\eta(b, a) \neq 0$ and $t \in[0,1]$ that

$$
\left|f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)\right|^{q} \leq \sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{q}\right\}
$$

and

$$
\left|f^{\prime}\left(a+\left(\frac{1+t}{2}\right) \eta(b, a)\right)\right|^{q} \leq \sup \left\{\left|f^{\prime}(a+\eta(b, a))\right|^{q},\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{q}\right\}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Using the above inequalities in (2.5), we get the required result. This completes the proof of the theorem as well.

Corollary 2. Let f be as in Theorem 15, if in addition
(1) $\left|f^{\prime}\right|^{\frac{p}{p-1}}$ is increasing, then we have

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.6}\\
& \leq \frac{\eta(b, a)}{4(p+1)^{\frac{1}{p}}}\left[\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|+\left|f^{\prime}(a+\eta(b, a))\right|\right]
\end{align*}
$$

(2) $\left|f^{\prime}\right|^{\frac{p}{p-1}}$ is decreasing, then we have

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\right. & \left.\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \tag{2.7}\\
& \leq \frac{\eta(b, a)}{4(p+1)^{\frac{1}{p}}}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|\right]
\end{align*}
$$

Proof. It is a direct consequence of Theorem 15.
Remark 4. If we take $\eta(b, a)=b-a$ in Theorem 15, then the inequality reduces to the inequality (1.9). If we take $\eta(b, a)=b-a$ in corollary 2, then (2.6) and (2.7) reduce to the related corollary of Theorem 7 from [2].

An improvement of the constants in Theorem 15 and a consolidation of this result with Theorem 14 are given in the following theorem.
Theorem 16. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$ Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|^{q}, q \geq 1$, is quasi-preinvex on K, then for every $a, b \in K$ with $\eta(b, a) \neq 0$ we have the following inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.8}\\
& \leq \frac{\eta(b, a)}{8}\left[\left(\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{q}\right\}\right)^{\frac{1}{q}}\right. \\
& \\
& \left.\quad+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{q},\left|f^{\prime}(a+\eta(b, a))\right|^{q}\right\}^{\frac{1}{q}}\right] .
\end{align*}
$$

Proof. From Lemma ??, using the power-mean integral inequality and using the quasi-preinvexity of $\left|f^{\prime}\right|^{q}$ on K for $q \geq 1$, we have

$$
\begin{equation*}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.9}
\end{equation*}
$$

$$
\leq \frac{\eta(b, a)}{4}\left[\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)\right| d t+\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1+t}{2}\right) \eta(b, a)\right)\right| d t\right]
$$

$$
\leq \frac{\eta(b, a)}{4}\left[\left(\int_{0}^{1} t d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1-t}{2}\right) \eta(b, a)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right.
$$

$$
\left.+\left(\int_{0}^{1} t d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} t\left|f^{\prime}\left(a+\left(\frac{1+t}{2}\right) \eta(b, a)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right]
$$

$$
\leq \frac{\eta(b, a)}{8}\left[\left(\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{q}\right\}\right)^{\frac{1}{q}}\right.
$$

$$
\left.++\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} \eta(b, a)\right)\right|^{q},\left|f^{\prime}(a+\eta(b, a))\right|^{q}\right\}^{\frac{1}{q}}\right]
$$

which completes the proof
Corollary 3. Let f be as in Theorem 16, if in addition
(1) $\left|f^{\prime}\right|^{\frac{1}{q}}$ is increasing, then we have the iequality (2.2).
(2) $\left|f^{\prime}\right|^{\frac{1}{q}}$ is decreasing, then we have the iequality (2.3).

Remark 5. If we take $\eta(b, a)=b-a$ in Theorem 16, then the inequality reduces to the inequality (1.10). If we take $\eta(b, a)=b-a$ in corollary 3, then we get the results of the related corollary of Theorem 8 from [2].
Remark 6. For $q=1$, (2.8) reduces to Theorem 14. For $q=\frac{p}{p-1}(p>1)$ we have an improvement of the constants in Theorem 15, since $4^{p}>p+1$ if $p>1$ and accordingly

$$
\frac{1}{8}<\frac{1}{(p+1)^{\frac{1}{p}}}
$$

3. Applications to Special Means

In what follows we give certain generalizations of some notions for a positive valued function of a positive variable.

Definition 3. [6] A function $M: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$, is called a Mean function if it has the following properties:
(1) Homogeneity: $M(a x, a y)=a M(x, y)$, for all $a>0$,
(2) Symmetry : $M(x, y)=M(y, x)$,
(3) Reflexivity : $M(x, x)=x$,
(4) Monotonicity: If $x \leq x^{\prime}$ and $y \leq y^{\prime}$, then $M(x, y) \leq M\left(x^{\prime}, y^{\prime}\right)$,
(5) Internality: $\min \{x, y\} \leq M(x, y) \leq \max \{x, y\}$.

We consider some means for arbitrary positive real numbers α, β (see for instance [6]).
(1) The arithmetic mean:

$$
A:=A(\alpha, \beta)=\frac{\alpha+\beta}{2}
$$

(2) The geometric mean:

$$
G:=G(\alpha, \beta)=\sqrt{\alpha \beta}
$$

(3) The harmonic mean:

$$
H:=H(\alpha, \beta)=\frac{2}{\frac{1}{\alpha}+\frac{1}{\beta}}
$$

(4) The power mean:

$$
P_{r}:=P_{r}(\alpha, \beta)=\left(\frac{\alpha^{r}+\beta^{r}}{2}\right)^{\frac{1}{r}}, r \geq 1
$$

(5) The identric mean:

$$
I:=I(\alpha, \beta)= \begin{cases}\frac{1}{e}\left(\frac{\beta^{\beta}}{\alpha^{\alpha}}\right), & \alpha \neq \beta \\ \alpha, & \alpha=\beta\end{cases}
$$

(6) The logarithmic mean:

$$
L:=L(\alpha, \beta)=\frac{\alpha-\beta}{\ln |\alpha|-\ln |\beta|}, \quad|\alpha| \neq|\beta|
$$

(7) The generalized log-mean:

$$
L_{p}:=L_{p}(\alpha, \beta)=\left[\frac{\beta^{p+1}-\alpha^{p+1}}{(p+1)(\beta-\alpha)}\right], \alpha \neq \beta, p \in \mathbb{R} \backslash\{-1,0\}
$$

It is well known that L_{p} is monotonic nondecreasing over $p \in \mathbb{R}$, with $L_{-1}:=L$ and $L_{0}:=I$. In particular, we have the following inequality $H \leq G \leq L \leq I \leq A$.

Now, let a and b be positive real numbers such that $a<b$. Consider the function $M:=M(a, b):[a, a+\eta(b, a)] \times[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$, which is one of the above mentioned means, therefore one can obtain variant inequalities for these means as follows:

Setting $\eta(b, a)=M(b, a)$ in (2.1), (2.4) and (2.8), one can obtain the following interesting inequalities involving means:

$$
\begin{align*}
& \left\lvert\, \begin{aligned}
&\left|\frac{f(a)+f(a+M(b, a))}{2}-\frac{1}{M(b, a)} \int_{a}^{a+M(b, a)} f(x) d x\right| \\
& \leq \frac{M(b, a)}{8}\left[\sup \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(a+\frac{1}{2} M(b, a)\right)\right|\right\}\right. \\
&\left.+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} M(b, a)\right)\right|,\left|f^{\prime}(a+M(b, a))\right|\right\}\right] \\
& \begin{aligned}
\left.\frac{f(a)+f(a+M(b, a))}{2}-\frac{1}{M(b, a)} \int_{a}^{a+M(b, a)} f(x) d x \right\rvert\, \\
\leq \frac{M(b, a)}{4(p+1)^{\frac{1}{p}}}\left[\left(\sup \left\{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}},\left|f^{\prime}\left(a+\frac{1}{2} M(b, a)\right)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}}\right. \\
\left.\quad+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} M(b, a)\right)\right|^{\frac{p}{p-1}},\left|f^{\prime}(a+M(b, a))\right|^{\frac{p}{p-1}}\right\}^{\frac{p-1}{p}}\right]
\end{aligned}
\end{aligned} .\right. \tag{3.1}
\end{align*}
$$

for $p>1$, and

$$
\begin{align*}
&\left|\frac{f(a)+f(a+M(b, a))}{2}-\frac{1}{M(b, a)} \int_{a}^{a+M(b, a)} f(x) d x\right| \tag{3.3}\\
& \leq \frac{M(b, a)}{8}[{\left[\sup \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}\left(a+\frac{1}{2} M(b, a)\right)\right|^{q}\right\}\right)^{\frac{1}{q}} } \\
&\left.+\sup \left\{\left|f^{\prime}\left(a+\frac{1}{2} M(b, a)\right)\right|^{q},\left|f^{\prime}(a+M(b, a))\right|^{q}\right\}^{\frac{1}{q}}\right]
\end{align*}
$$

for $q \geq 1$. Letting $M=A, G, H, P_{r}, I, L, L_{p}$ in (3.1), (3.2) and (3.3), we can get the required inequalities, and the details are left to the interested reader.

References

[1] T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473-1484.
[2] M. Alomari, M. Darus, U.S. Kirmaci, Refinements of Hadamard-type inequalities for quasiconvex functions with applications to trapezoidal formula and to special means, Computers and Mathematics with Applications 59 (2010) 225232.
[3] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequsiinvex functions, RGMIA Research Report Collection, 14(2011), Article 48, 7 pp .
[4] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, RGMIA Research Report Collection, 14(2011), Article 64, 11 pp .
[5] A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc., Ser. B, 28(1986), No. 1, 1-9.
[6] P.S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
[7] S. S. Dragomir, and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5)(1998), 91-95.
[8] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992), 42-56.
[9] D. -Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables, Appl. Math. Comp., $217(23)(2011), 9598-9605$.
[10] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
[11] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 34 (2007) 8287.
[12] U. S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147(1)(2004), 137-146.
[13] U. S. Kırmacı and M. E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 153(2)(2004), 361-368.
[14] K. C. Lee and K. L. Tseng, On a weighted generalization of Hadamard's inequality for Gconvex functions, Tamsui-Oxford J. Math. Sci., 16(1)(2000), 91-104.
[15] A. Lupas, A generalization of Hadamard's inequality for convex functions, Univ. Beograd. Publ. Elek. Fak. Ser. Mat. Fiz., 544-576(1976), 115-121.
[16] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
[17] M. Aslam Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, Preprint.
[18] M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.
[19] M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.
[20] M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl.,11(2006),165171
[21] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007), No. 3, 1-14.
[22] R. Pini, Invexity and generalized convexity, Optimization 22 (1991) 513-525.
[23] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2)(2000), 51-55.
[24] F. Qi, Z. -L.Wei and Q. Yang, Generalizations and refinements of Hermite-Hadamard's inequality, Rocky Mountain J. Math., 35(2005), 235-251.
[25] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.
[26] M. Z. Sarikaya, H. Bozkurt and N. Alp, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, arXiv:1203.4759v1.
[27] M. Z. Sarıkaya and N. Aktan, On the generalization some integral inequalities and their applications Mathematical and Computer Modelling, 54(9-10)(2011), 2175-2182.
[28] M. Z. Sarikaya, M. Avci and H. Kavurmaci, On some inequalities of Hermite-Hadamard type for convex functions, ICMS International Conference on Mathematical Science, AIP Conference Proceedings 1309, 852(2010).
[29] M. Z. Sarikaya, O new Hermite-Hadamard Fejér type integral inequalities, Stud. Univ. BabeşBolyai Math. 57(2012), No. 3, 377-386.
[30] A. Saglam, M. Z. Sarikaya and H. Yıldırım and, Some new inequalities of Hermite-Hadamard's type, Kyungpook Mathematical Journal, 50(2010), 399-410.
[31] C. -L. Wang and X. -H. Wang, On an extension of Hadamard inequality for convex functions, Chin. Ann. Math., 3(1982), 567-570.
[32] S. -H. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, The Rocky Mountain J. of Math., 39(2009), no. 5, 1741-1749.
[33] T. Weir, and B. Mond, Preinvex functions in multiple bjective optimization, Journal of Mathematical Analysis and Applications, 136 (1998) 29-38.
[34] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001), 229-241.
[35] X.M. Yang, X.Q. Yang and K.L. Teo, Characterizations and applications of prequasiinvex functions, properties of preinvex functions, J. Optim. Theo. Appl. 110 (2001) 645-668.
[36] X. M. Yang, X. Q. Yang, K.L. Teo, Generalized invexity and generalized invariant monotonocity, Journal of Optimization Theory and Applications 117 (2003) 607-625.

College of Science, Department of Mathematics,, University of Hail, Hail 2440, Saudi Arabia

E-mail address: m_amer_latif@hotmail.com

[^0]: Date: Today.
 2000 Mathematics Subject Classification. 26D15, 26D20, 26D07.
 Key words and phrases. Hermite-Hadamard's inequality, invex set, preinvex function, prequasiinvex, Hölder's integral inequality.

 This paper is in final form and no version of it will be submitted for publication elsewhere.

