
OPERATOR INEQUALITIES INVOLVING SUPERQUADRATIC
FUNCTIONS

M. KIAN AND S. S. DRAGOMIR

Abstract. By the use of some integral inequalities containing superquadratic func-

tions we obtain an operator inequality which generalize some previous results. We

also present an inequality for positive linear mappings of operators on Hilbert spaces.

Some applications and examples are given as well.

1. Introduction

Let B(H ) be the C∗-algebra of all bounded linear operators on a Hilbert space H

and I denote the identity operator. If dimH = n, we identify B(H ) with the matrix

algebra Mn of all n× n matrices with complex entries.

We denote by σ(J) the set of all self-adjoint operators on H whose spectra are

contained in an interval J ⊆ R. Let f : J → R be a continuous real function. For

A ∈ σ(J), we mean by f(A) the continuous functional calculus at A. Let A ∈ σ([m,M ])

and {Et} be its spectral family. Then f(A) can be represented via the well known

spectral representation as

f(A) =

∫ M

m−0

f(t)dEt, (1)

in which the integral is in terms of the Riemann-Stieltjes integral. If x, y ∈H , then

〈f(A)x, y〉 =

∫ M

m−0

f(t)d〈Etx, y〉.

Mond and Pečarić [10] showed that if f : J → R is convex, then

f(〈Ax, x〉) ≤ 〈f(A)x, x〉 (2)

for all A ∈ σ(J) and every unit vector x ∈H . Regarding the possible converse of (2),

Dragomir [3] proved the following result.

Lemma A.([3, Theorem 5]) Let f : J → R be a convex and differentiable function on
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the interior J◦ of J , whose derivative f ′ is continuous on J◦. Then

0 ≤ 〈f(A)x, x〉 − f(〈Ax, x〉) ≤ 〈f ′(A)Ax, x〉 − 〈Ax, x〉〈f ′(A)x, x〉

for every A ∈ σ(J) and every unit vector x ∈H .

The authors of [8] proved a similar inequality to (2) for positive linear mappings.

Lemma B.([8, Lemma 2.4]) If f : J → R is convex with f(0) ≤ 0 and A is a

Hermitian matrix, then for every vector x ∈H with ‖x‖ ≤ 1 and every positive linear

map Φ :Mn(C)→Mm(C) with 0 ≤ Φ(I) ≤ I, the inequality

f(〈Φ(A)x, x〉) ≤ 〈Φ(f(A))x, x〉 (3)

holds true.

We would like to refer the reader to [3, 6, 9, 11] and references therein for a collection

of such inequalities.

A function f : [0,∞) → R is said to be superquadratic provided that for all s ≥ 0

there exists a constant Cs ∈ R such that

f(t) ≥ f(s) + Cs(t− s) + f(|t− s|) (4)

for all t ≥ 0. This notion was introduced in [2]. It was also shown that:

Lemma C.([2, Lemma 2.2]) If f is a superquadratic function with Cs as in (4), then

(i) f(0) ≤ 0;

(ii) If f(0) = f ′(0) = 0 and f is differentiable at s, then Cs = f ′(s);

(iii) If f ≥ 0, then f is convex and f(0) = f ′(0) = 0.

The reader is referred to [1, 2, 4] for more information about superquadratic fuctions.

Kian [7] presented a Jensen operator inequality for superquadratic functions.

Lemma D.([7, Theorem 2.1]) If f : [0,∞) → R is a continuous superquadratic func-

tion, then

f(〈Ax, x〉) ≤ 〈f(A)x, x〉 − 〈f(|A− 〈Ax, x〉|)x, x〉 (5)

for any positive operator A and any unit vector x ∈H . This inequality improves (2)

for some convex functions.

In section 2, we present an integral inequality for superquadratic functions and apply

it to generalize inequality (5). In section 3, we establish another generalization using

positive linear mappings. More precisely, an improvement of (3) is proved. In section

4, we give an improvement of Lemma A for superquadratic functions. Section 5 is

devoted to some applications and related results.
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2. Main Results

To prove our result we need the following lemma.

Lemma 2.1. ([2, Theorem 2.3]) Let f : [0,∞)→ R be a superquadratic function and

µ be a probability measure on a µ-measurable set Ω. Then

f

(∫
Ω

g dµ

)
≤
∫

Ω

(f ◦ g) dµ−
∫

Ω

f

(∣∣∣∣g(s)−
∫

Ω

g dµ

∣∣∣∣) dµ(s)

for all non-negative µ-integrable function g on Ω.

Now we are ready to prove our first generalization of (5).

Theorem 2.2. Let g, ω : [a, b] → R+ be continuous functions. If f : [0,∞) → R is a

continuous superquadratic function, then

f

(
〈g(A)ω(A)x, x〉
〈ω(A)x, x〉

)
≤ 1

〈ω(A)x, x〉
〈(fog)(A)ω(A)x, x〉 (6)

− 1

〈ω(A)x, x〉

〈
f

(∣∣∣∣g(A)− 1

〈ω(A)x, x〉
〈g(A)ω(A)x, x〉IH

∣∣∣∣)x, x〉
for every A ∈ σ([a, b]) and every x ∈H .

Proof. Assume that ν : [a, b] → R is monotone non-decreasing and ω : [a, b] → R is

continuous and ω(s) ≥ 0 for all s ∈ [a, b]. Define

µ(t) :=
1∫ b

a
ω(s)dν(s)

∫ t

a

ω(s)dν(s), t ∈ [a, b] (7)

where the integral is in terms of the Riemann-Stieltjes integral. Then µ is a probability

measure. Applying Lemma 2.1 with µ as in (7) we obtain

f

(
1∫ b

a ω(s)dν(s)

∫ b

a
g(t)ω(t)dν(t)

)

≤ 1∫ b
a ω(s)dν(s)

∫ b

a
(fog)(t)ω(t)dν(t) (8)

− 1∫ b
a ω(s)dν(s)

∫ b

a
f

(∣∣∣∣∣g(t)− 1∫ b
a ω(s)dν(s)

∫ b

a
g(s)ω(s)dν(s)

∣∣∣∣∣
)
ω(t)dν(t).

Now assume that A is a self-adjoint operator with m = min sp(A) and M = max sp(A) and

m,M ∈ [a, b]. Let {Et} be the spectral family of A. Fix x ∈ H and let ε > 0. Now if the
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function ν is defined on [m− ε,M ] by ν(t) = 〈Etx, x〉, then (8) implies that

f

(
1∫M

m−ε ω(s)d〈Esx, x〉

∫ M

m−ε
g(t)ω(t)d〈Etx, x〉

)

≤ 1∫M
m−ε ω(s)d〈Esx, x〉

∫ M

m−ε
(fog)(t)ω(t)d〈Etx, x〉 (9)

− 1∫M
m−ε ω(s)d〈Esx, x〉

∫ M

m−ε
f

(∣∣∣∣∣g(t)− 1∫M
m−ε ω(s)d〈Esx, x〉

∫ M

m−ε
g(s)ω(s)d〈Esx, x〉

∣∣∣∣∣
)
ω(t)d〈Etx, x〉.

Letting ε → 0+ and utilizing the spectral representation for the continuous function f we

obtain the desired inequality (6). �

Remark 2.3. (i) Note that Lemma D is a special case of Theorem 2.2. In fact if g(t) = t

and w(t) = 1, then inequality (6) turns out to be (5).

(ii) Inequality (8) is a generalization of [2, Theorem 2.3].

3. Inequalities containing positive linear mappings

We are going to obtain a similar result to (3) for superquadratic functions. Let

f : [0,∞)→ R be a continuous superquadratic function. Then

f

(
a+ b

2

)
≤ f(a) + f(b)

2
− f

(∣∣∣∣a− b2

∣∣∣∣) (10)

for all a, b ≥ 0. Now assume that the positive linear map Φ :M2 →M2 is defined by

Φ(A) = 1/2 tr(A) I2, where I2 is the 2× 2 identity matrix. Put

A =

(
a 0

0 b

)
and x =

( √
λ√

1− λ

)
.

Then f(〈Φ(A)x, x〉) = f
(
a+b

2

)
, Φ(f(A))x, x〉 = f(a)+f(b)

2
and

f

(∣∣∣∣a− b2

∣∣∣∣) = 〈Φ (f (|A− 〈Φ(A)x, x〉|))x, x〉 .

Therefore, for a superquadratic function f , inequality (3) turns to be

f(〈Φ(A)x, x〉) ≤ 〈Φ(f(A))x, x〉 − 〈Φ (f (|A− 〈Φ(A)x, x〉|))x, x〉

for every positive matrix A and every unit vector x.

We need some lemmas to prove our result.

Lemma 3.1. Every unital positive linear map on a commutative C∗-algebra is com-

pletely positive.
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Lemma 3.2. ([5, Theorem 3.1.2]) Let Φ be a unital completely positive linear map

from a C∗-subalgebra A of Mn(C) into Mm(C). Then there exists a Hilbert space K ,

an isometry V : Cm → K and a unital ∗-homomorphism π from A into the C∗-algebra

B(K ) such that Φ(A) = V ∗π(A)V .

The next theorem extend (3) for superquadratic functions.

Theorem 3.3. Let f : [0,∞) → R be a continuous superquadratic function and let

Φ :Mn(C)→Mm(C) be a unital positive linear map. Then

f(〈Φ(A)x, x〉) ≤ 〈Φ(f(A))x, x〉 − 〈Φ (f (|A− 〈Φ(A)x, x〉|))x, x〉 (11)

for every positive matrix A ∈Mn(C) and every unit vector x ∈ Cm.

Proof. Let A ∈ Mn(C) be positive. Assume that A is the C∗-subalgebra of Mn(C)

generated by A and I. Without loss of generality we may assume that Φ is defined onA.

It follows from Lemma 3.1 that Φ is completely positive. So there exists, by Lemma 3.2,

a Hilbert space K , an isometry V : Cm → K and a unital ∗-homomorphism π from

A into the C∗-algebra B(K ) such that Φ(A) = V ∗π(A)V . Clearly f(π(A)) = π(f(A)).

Moreover, for any α ∈ C, it is easy to see that

f(|π(A− αI)|) = π(f(|A− αI|)). (12)

If x ∈ Cm is a unit vector, then ‖V x‖ = 1. Hence

f(〈Φ(A)x, x〉) = f (〈V ∗π(A)V x, x〉)

= f (〈π(A)V x, V x〉)

≤ 〈f(π(A))V x, V x〉 − 〈f(|π(A)− 〈π(A)V x, V x〉|)V x, V x〉 ( By Lemma D)

= 〈f(π(A))V x, V x〉 − 〈π(f(|A− 〈π(A)V x, V x〉|))V x, V x〉 ( By (12))

= 〈V ∗π(f(A))V x, x〉 − 〈V ∗π(f(|A− 〈V ∗π(A)V x, x〉|))V x, x〉

= 〈Φ(f(A))x, x〉 − 〈Φ(f(|A− 〈Φ(A)x, x〉|))x, x〉.

This completes the proof. �

Remark 3.4. If the superquadratic function f is non-negative, then Theorem 3.3 gives

an improvement of (3) for the convex function f . In fact

f(〈Φ(A)x, x〉) ≤ 〈Φ(f(A))x, x〉 − 〈Φ(f(|A− 〈Φ(A)x, x〉|))x, x〉 ≤ 〈Φ(f(A))x, x〉. (13)

Furthermore, if f ≤ 0 is superquadratic and −f is convex, then Theorem 3.3 provides

a converse of (3) for the concave function f . More precisely if f ≤ 0 is superquadratic

and −f is convex, then

〈Φ(f(A))x, x〉 ≤ f(〈Φ(A)x, x〉) ≤ 〈Φ(f(A))x, x〉 − 〈Φ(f(|A− 〈Φ(A)x, x〉|))x, x〉. (14)
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Example 3.5. Assume that Φ :M3 →M2 is defined by Φ((aij)) = (aij)1≤i,j≤2. Let

A =

 2 0 1

0 1 0

1 0 1

 and x =

(
1

0

)
.

If f(t) = t3, then

f(〈Φ(A)x, x〉) = 8, 〈Φ(f(A))x, x〉 = 13, 〈Φ(f(|A− 〈Φ(A)x, x〉|))x, x〉 = 1.4142,

which shows that inequality (13) is really an improvement of (3). If g(t) = −t
√
t, then

g is superquadratic as well as concave. With the same values for A and x as above we

have

g(〈Φ(A)x, x〉) = −2
√

2, 〈Φ(g(A))x, x〉 = −3.1305

and

〈Φ(g(|A− 〈Φ(A)x, x〉|))x, x〉 = −0.8409,

whence

g(〈Φ(A)x, x〉) + 〈Φ(g(|A− 〈Φ(A)x, x〉|))x, x〉 � 〈Φ(g(A))x, x〉 � g(〈Φ(A)x, x〉).

Corollary 3.6. Let Φ1, · · · ,Φk :Mn →Mm be positive linear mappings with
∑k

i=1 Φi(I) =

I. If f : [0,∞)→ R is a continuous superquadratic function, then

f

(〈
k∑
i=1

Φi(Ai)x, x

〉)
≤

〈
k∑
i=1

Φi(f(Ai))x, x

〉
(15)

−

〈
k∑
i=1

Φi

f
∣∣∣∣∣∣Ai −

〈
k∑
j=1

Φj(Aj)x, x

〉∣∣∣∣∣∣
x, x

〉
for all positive matrices A1, · · · , Ak ∈Mn and every unit vector x ∈ Cm.

Proof. If A1, · · · , Ak ∈Mn are positive matrices, then A = A1 ⊕ · · · ⊕Ak is a positive

matrix in Mk(Mn). Let the unital positive linear mapping Φ : Mk(Mn) → Mm be

defined by Φ(A) =
∑k

i=1 Φi(Ai). Utilizing Theorem 3.3 we obtain desired inequality.

�

Remark 3.7. We can prove a more general result than Theorem 3.3. If x ∈ H is a

vector with ‖x‖ ≤ 1 and if f : [0,∞) → R is a continuous superquadratic function,

then it was shown [7] that

f(〈Ax, x〉) ≤ 1

2− ‖x‖2

(
〈f(A)x, x〉 −

〈
f

(∣∣∣∣A− 1

‖x‖2
〈Ax, x〉

∣∣∣∣)x, x〉− ‖x‖2f (1− ‖x‖2

‖x‖2
〈Ax, x〉

))
for every positive operator A. Using the last inequality and applying a similar argument as

in the proof of Theorem 3.3 we can prove the next theorem. We omit its proof.
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Theorem 3.8. Let f : [0,∞) → R be a continuous superquadratic function and let

Φ :Mn(C)→Mm(C) be a positive linear map with 0 < Φ(I) ≤ I. Then

f(〈Φ(A)x, x〉) ≤ 1

2− 〈Φ(I)x, x〉
{〈Φ(f(A))x, x〉

−
〈

Φ

(
f

(∣∣∣∣A− 1

〈Φ(I)x, x〉
〈Φ(A)x, x〉

∣∣∣∣))x, x〉
− 〈Φ(I)x, x〉f

(
1− 〈Φ(I)x, x〉
〈Φ(I)x, x〉

〈Φ(A)x, x〉
)
}

for every positive matrix A ∈Mn(C) and every vector x ∈ Cm with ‖x‖ ≤ 1.

4. A Reverse Inequality

Lemma A can be improved for non-negative superquadratic functions. First we give

a reverse inequality for (11).

Theorem 4.1. Let f : [0,∞) → [0,∞) be a differentiable superquadratic function

whose derivative f ′ is continuous. If Φ : Mn(C) → Mm(C) is a positive linear map,

then

0 ≤ 〈Φ(f(A))x, x〉 − f(〈Φ(A)x, x〉)

≤ 〈Φ(f ′(A)A)x, x〉 − 〈Φ(A)x, x〉〈Φ(f ′(A))x, x〉 − 〈Φ(f(|A− 〈Φ(A)x, x〉|))x, x〉

for every positive matrix A ∈Mn(C) and every unit vector x ∈ Cm.

Proof. Let s ≥ 0. Since f is superquadratic, there exists Cs ∈ R such that

f(t) ≥ f(s) + Cs(t− s) + f(|t− s|) (16)

for every t ≥ 0. As f ≥ 0, it follows from Lemma C that f is convex and Cs = f ′(s).

So the first inequality follows from (3).

Assume that x ∈ Cm with ‖x‖ = 1 and A ≥ 0. Utilizing functional calculus for (16)

with s = A and t = 〈Φ(A)x, x〉 we obtain

f(〈Φ(A)x, x〉) ≥ f(A) + f ′(A)〈Φ(A)x, x〉 − f ′(A)A+ f(|A− 〈Φ(A)x, x〉|).

Applying the positive linear map Φ to both sides of the last inequality we get

f(〈Φ(A)x, x〉) ≥ Φ(f(A)) + Φ(f ′(A))〈Φ(A)x, x〉 − Φ(f ′(A)A) + Φ(f(|A− 〈Φ(A)x, x〉|))

from which we have the desired result. �

With Φ(A) = A, Theorem 4.1 gives an improvement of Lemma A.
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Corollary 4.2. Let f be as in the Theorem 4.1. Then

0 ≤ 〈f(A)x, x〉 − f(〈Ax, x〉)

≤ 〈f ′(A)Ax, x〉 − 〈Ax, x〉〈f ′(A)x, x〉 − 〈f(|A− 〈Ax, x〉|)x, x〉

for every A ≥ 0 and every unit vector x ∈H .

Example 4.3. If r ≥ 2, then f(t) = tr is a non-negative superquadratic function on

[0,∞). Let A ≥ 0 and x ∈H be a unit vector. Applying Corollary 4.2 we get

0 ≤ 〈Arx, x〉 − 〈Ax, x〉r

≤ r〈Arx, x〉 − r〈Ax, x〉〈Ar−1x, x〉 − 〈|A− 〈Ax, x〉|rx, x〉

which is a reverse Hölder–McCarthy’s inequality(see e.g. [3]).

5. Some Applications and Related Results

Using Theorem 2.2 when f(t) = tr, (r ≥ 2 or 1 < r ≤ 2), we obtain the following

improvement of Hölder–McCarthy’s inequality (see e.g. [6, Theorem 32]) , which is

also a generalization of [7, Corollary 3.1].

Corollary 5.1. Let g, ω : [a, b]→ R+ be continuous functions. If r ≥ 2, then

〈g(A)ω(A)x, x〉r

〈ω(A)x, x〉r
≤ 1

〈ω(A)x, x〉
〈g(A)rω(A)x, x〉

− 1

〈ω(A)x, x〉

〈∣∣∣∣g(A)− 1

〈ω(A)x, x〉
〈g(A)ω(A)x, x〉IH

∣∣∣∣r x, x〉
for every A ∈ σ([a, b]) and every x ∈H . If 1 < r ≤ 2, then

1

〈ω(A)x, x〉
〈g(A)rω(A)x, x〉 ≤ 〈g(A)ω(A)x, x〉r

〈ω(A)x, x〉r

+
1

〈ω(A)x, x〉

〈∣∣∣∣g(A)− 1

〈ω(A)x, x〉
〈g(A)ω(A)x, x〉IH

∣∣∣∣r x, x〉
for every A ∈ σ([a, b]) and every x ∈H .

Utilizing Theorem 2.2 for some special functions, gives applicable inequalities.

Corollary 5.2. If f : [0,∞)→ R is a continuous superquadratic function, then

〈Ax, x〉f
(
〈A lnAx, x〉
〈Ax, x〉

)
≤ 〈Af(lnA)x, x〉 −

〈
f

(∣∣∣∣lnA− 1

〈Ax, x〉
〈A lnAx, x〉IH

∣∣∣∣)x, x〉
for every A ≥ 0 and every x ∈H .
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Corollary 5.3. Let p > 0 and f : [0,∞)→ R be a nonnegative superquadratic function.

If A ≥ 0, then

f (〈Ax, x〉p)

≤ f

(
〈Ap+1x, x〉
〈Ax, x〉

)
(17)

≤ 1

〈Ax, x〉

{
〈Af (Ap)x, x〉 −

〈
f

(∣∣∣∣Ap − 1

〈Ax, x〉
〈Ap+1x, x〉

∣∣∣∣)x, x〉}
for every unit vector x ∈H .

Proof. Applying Theorem 2.2 to g(t) = tp and w(t) = t we obtain the second inequality

of (17). To get the first one note that convexity of the function tp+1 for p > 0, implies

that (〈Ax, x〉)p+1 ≤ 〈Ap+1x, x〉. Using the fact that every nonnegative superquadratic

function is non-decreasing, we get the first inequality. �

Example 5.4. Assume that p > 0, r ≥ 2 and f(t) = tr. On making use of (17) we

obtain

〈Ax, x〉p+r ≤ 〈A
p+1x, x〉r

〈Ax, x〉r

≤ 1

〈Ax, x〉

{
〈Ap+r+1x, x〉 −

〈∣∣∣∣Ap − 1

〈Ax, x〉
〈Ap+1x, x〉

∣∣∣∣r x, x〉} .
Multiplying the last inequality by 〈Ax, x〉r and using the convexity of tr−1 we obtain

〈Ax, x〉p+2r ≤ 〈Ap+1x, x〉r

≤ 〈Ar−1x, x〉
{
〈Ap+r+1x, x〉 −

〈∣∣∣∣Ap − 1

〈Ax, x〉
〈Ap+1x, x〉

∣∣∣∣r x, x〉} .
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9. J. Mićić, J. Pečarić, J. Perić, Extension of the refined Jensen’s operator inequality with condition

on spectra, Ann. Funct. Anal. 3 (2012), no. 1, 67–85.
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