ON INVARIANCE EQUATION FOR MEANS OF POWER GROWTH

ALFRED WITKOWSKI

Abstract. We discuss properties of the solutions of the invariance equation

\[M(N(x,y), K(x,y)) = M(x,y) \]

for homogeneous, symmetric means \(M, N, K \) of power growth.

By a mean we understand a function \(M : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R} \) satisfying for all \(x, y \in \mathbb{R}_+ \) the conditions

\[\min(x,y) \leq M(x,y) \leq \max(x,y). \]

A mean is symmetric if for all \(x, y \) holds \(M(x, y) = M(y, x) \) and homogeneous if \(M(tx, ty) = tM(x, y) \) for all positive \(t \). Given two means \(N, K \), finding another mean \(M \) satisfying for all \(x, y \) the equation

\[M(N(x,y), K(x,y)) = M(x,y) \]

is called the invariance problem, and the equation (1) is called invariance equation. There is a vast literature on the subject. The book "Pi and the AGM" ([3]) gives many examples and discusses probably the best known case of the arithmetic-geometric mean, while the historical overview and information on recent developments can be found in [1] and in [2].

The solution to the invariance equation is known to exist in most cases, so it is quite natural to ask whether the solution shares some properties of means \(N \) and \(K \). Sometimes the answer is immediate: if both \(K \) and \(N \) are symmetric, then obviously \(M \) is symmetric too. Sometimes it is not obvious and surprising: if \(K \) and \(N \) are homogeneous, then \(M \) need not be homogeneous.

Ádám Besenyei proved in [1] that in the class of Heinz means

\[H_p(x,y) = \frac{x^p y^{1-p} + y^p x^{1-p}}{2}, \quad 0 \leq p \leq \frac{1}{2} \]

the invariance equation

\[H_p(H_q(x,y), H_r(x,y)) = H_p(x,y) \]

has only trivial solutions \(p = q = r \). The aim of this note is to extend this result to a much broader class of means.

Definition 1. We say that a homogeneous, symmetric mean \(M \) is of power growth if there exist a real number \(\text{ord}(M) \) and a positive number \(C_M \) such that

\[\lim_{x \to 0} \frac{M(x,1)}{x^{\text{ord}(M)}} = C_M. \]

Date: March 9, 2013.

2000 Mathematics Subject Classification. 26E60.
We shall call \(\text{ord}(M) \) the order of \(M \).

Observe that for \(0 < x < 1 \) the inequality \(x \leq M(x, 1) \leq 1 \) yields \(x^{1-m} \leq \frac{M(x, 1)}{x^m} \leq x^{-m} \). For \(m < 0 \) the right-hand side tends to 0 and for \(m > 1 \) the left-hand side tends to infinity. Thus we conclude that \(0 \leq \text{ord}(M) \leq 1 \).

Theorem 1. Let \(M, N, K \) be symmetric, homogeneous means on \(\mathbb{R}^2_+ \) of power growth. Assume additionally \(\text{ord}(N) \geq \text{ord}(K) \) and

\[
C_N^{\text{ord}(M)} C_K^{1 - \text{ord}(M)} \neq 1 \quad \text{or} \quad \text{ord}(M)(1 - \text{ord}(N) + \text{ord}(K)) \neq \text{ord}(K).
\]

If

\[
M(N(x, y), K(x, y)) = M(x, y),
\]

then \(\text{ord}(M) = \text{ord}(N) = \text{ord}(K) \).

Proof. Denote the orders of \(M, N, K \) by \(m, n, k \) respectively. Suppose first that \(n > k \). We have

\[
\frac{M(x, 1)}{x^m} = \frac{M(N(x, 1), K(x, 1))}{x^m} = x^{-m} K(x, 1) M\left(\frac{N(x, 1)}{K(x, 1)}, 1\right)
\]

\[
= x^{-m} K(x, 1) \left(\frac{N(x, 1)}{K(x, 1)}\right)^m \frac{M\left(\frac{N(x, 1)}{K(x, 1)}, 1\right)}{\left(\frac{N(x, 1)}{K(x, 1)}\right)^m}
\]

\[
= x^{-m + mn + (1-m)k} \left(\frac{N(x, 1)}{x^n}\right)^m \left(\frac{K(x, 1)}{x^k}\right)^{1-m} M\left(\frac{N(x, 1)}{K(x, 1)}, 1\right)^m.
\]

Since \(\frac{N(x, 1)}{K(x, 1)} \) tends to 0 as \(x \) tends to 0, we obtain a contradiction: the limit of the left-hand side equals \(C_M \) while the right-hand side tends to 0 or infinity (in case \(\text{ord}(M)(1 - \text{ord}(N) + \text{ord}(K)) \neq \text{ord}(K) \)), or to \(C_M C_K^{1-m} C_M \neq C_M \).

Therefore we conclude that \(n = k \). But this implies

\[
M\left(\frac{N(x, 1)}{x^n}, \frac{K(x, 1)}{x^n}\right) = M\left(\frac{N(x, 1)}{x^n}, K(x, 1)\right) = \frac{M(x, 1)}{x^n}
\]

and since the left-hand side remains bounded and separated from 0 for small \(x \) we conclude that \(n = m \).

\(\square \)

It is worth observing that the Heinz means are linked to the arithmetic mean by the formula \(H_\alpha(x, y) = A(x^\alpha y^{1-\alpha}, x^{1-\alpha} y^\alpha) \). Clearly, we can apply the same method to an arbitrary homogeneous, symmetric mean \(M \) thus obtaining a one-parameter family of means interpolating between \(M \) and the geometric mean. The following theorem deals with one-parameter families created this way.

Theorem 2. Let \(M \) be a symmetric, homogeneous mean of order \(\text{ord}(M) \neq \frac{1}{2} \) with \(C_M \neq 1 \) and let

\[
M_\alpha(x, y) = M(x^\alpha y^{1-\alpha}, x^{1-\alpha} y^\alpha) \quad \text{for } 0 \leq \alpha \leq \frac{1}{2}.
\]

Then the invariance equation

\[
M_\alpha(M_\beta(x, y), M_\gamma(x, y)) = M_\alpha(x, y)
\]

admits only trivial solutions \(\alpha = \beta = \gamma \).
Proof. The identity
\[M_\alpha(x, 1) = M(x^\alpha, x^{1-\alpha}) = x^\alpha M(1, x^{1-2\alpha}) = x^{\alpha + \text{ord}(M)(1 - 2\alpha)} \frac{M(1, x^{1 - 2\alpha})}{x^{\text{ord}(M)(1 - 2\alpha)}} , \]
implies that
\[C_{M_\alpha} = \begin{cases} C_M & \alpha < \frac{1}{2}, \\ 1 & \alpha = \frac{1}{2}, \text{ and } \text{ord}(M_\alpha) = \alpha + \text{ord}(M)(1 - 2\alpha) \end{cases} \]
thus the means in the family are of different order and the result would follow from Theorem 1 once we verify the condition (4). To this end assume \(\beta \leq \gamma \).
Consider two cases:

Case 1: \(\text{ord}(M) < \frac{1}{2} \)
The function \(\delta \to \text{ord}(M_\delta) \) increases from \(\text{ord}(M) \) to \(\frac{1}{2} \), so \(\text{ord}(M_\delta) \leq \text{ord}(M_\gamma) \) and \(C_{M_\beta}^{1 - \text{ord}(M_\beta)} C_{M_\gamma}^{\text{ord}(M_\gamma)} = 1 \) is possible only if \(C_{M_\beta} = C_{M_\gamma} = 1 \) (which is equivalent to \(\beta = \gamma = \frac{1}{2} \)) or \(C_{M_\beta} = 1 \) and \(1 - \text{ord}(M_\beta) = 0 \). The first case gives immediately \(\alpha = \frac{1}{2} \), while the second case is impossible, as \(1 - \text{ord}(M_\alpha) \geq \frac{1}{2} \).

Case 2: \(\text{ord}(M) > \frac{1}{2} \)
Now \(\text{ord}(M_\delta) \) decreases from \(\text{ord}(M) \) to \(\frac{1}{2} \), so \(\text{ord}(M_\beta) \geq \text{ord}(M_\gamma) \) and the equality \(C_{M_\beta}^{\text{ord}(M_\beta)} C_{M_\gamma}^{1 - \text{ord}(M_\gamma)} = 1 \) can hold only if \(C_{M_\beta} = C_{M_\gamma} = 1 \) or \(C_{M_\beta} = 1 \) and \(\text{ord}(M_\beta) = 0 \). Again, the first case leads to \(\alpha = \frac{1}{2} \), while the second case is impossible, as \(\text{ord}(M_\alpha) \geq \frac{1}{2} \).

Applying Theorem 2 to the arithmetic mean we obtain the result of Besenyei.

Corollary 1 ([1], Theorem 4). In the class of Heinz means (2) the identity (3) holds if and only if \(p = q = r \).

As an application of Theorem 1 consider the following families of means:

\[Q_s(x, y) = G \frac{2}{x} (x, y) E^{\frac{1}{s-2}} (s - 1, 1; x, y) \]
and

\[H^1_s(x, y) = G \frac{2}{x} (x, y) E^{\frac{1}{s-2}} (1 - 1/s, 1/s; x, y), \]
where \(G \) is the geometric mean, \(E(p, q; x, y) = \left(\frac{q x^p - y^p}{p x^p - y^p} \right)^{1/(p - q)} \) is the Stolarsky mean and \(s \geq 2 \). Note that

\[Q_n(x, y) = \left(\frac{x^{n-1} y + x^{n-2} y^2 + \cdots + x y^{n-1}}{n - 1} \right)^{1/n} \]
and

\[H^1_n(x, y) = \frac{x^{n-1} y^{\frac{1}{n}} + \cdots + x^{\frac{1}{n}} y^{n-1}}{n - 1}. \]

We see that \(\text{ord}(Q_s) = \text{ord}(H^1_s) = 1 - 1/s, C_{Q_s} = (s - 1)^{-1/s} \) and \(C_{H^1_s} = (s - 1)^{-1} \). By Theorem 1 the invariance equations admit only trivial solutions in the two families. (The assumption (4) does not hold if \(N = K = Q_2 \) or \(N = K = H^1_2 \), but in this case triviality of the solution of the invariance equation follows immediately).
References

Institute of Mathematics and Physics, University of Technology and Life Sciences, al. prof. Kaliskiego 7, 85-796 Bydgoszcz, Poland
E-mail address: alfred.witkowski@utp.edu.pl