ON INVARIANCE EQUATION FOR MEANS OF POWER GROWTH

ALFRED WITKOWSKI

Abstract. We discuss properties of the solutions of the invariance equation

$$
M(N(x, y), K(x, y))=M(x, y)
$$

for homogeneous, symmetric means M, N, K of power growth.

By a mean we understand a function $M: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying for all $x, y \in \mathbb{R}_{+}$the conditions

$$
\min (x, y) \leq M(x, y) \leq \max (x, y)
$$

A mean is symmetric if for all x, y holds $M(x, y)=M(y, x)$ and homogeneous if $M(t x, t y)=t M(x, y)$ for all positive t. Given two means N, K, finding another mean M satisfying for all x, y the equation

$$
\begin{equation*}
M(N(x, y), K(x, y))=M(x, y) \tag{1}
\end{equation*}
$$

is called the invariance problem, and the equation (1) is called invariance equation. There is a vaste literature on the subject. The book "Pi and the AGM" ([3]) gives many examples and discusses probably the best known case of the arithmeticgeometric mean, while the historical overview and information on recent developments can be found in [1] and in [2].
The solution to the invariance equation is known to exists in most cases, so it is quite natural to ask whether the solution shares some properties of means N nad K. Sometimes the answer is immediate: if both K and N are symmetric, then obviously M is symmetric too. Sometimes it is not obvious and surprising: if K and N are homogeneous, then M need not be homogeneous.

Ádám Besenyei proved in [1] that in the class of Heinz means

$$
\begin{equation*}
H_{p}(x, y)=\frac{x^{p} y^{1-p}+x^{1-p} y^{p}}{2}, \quad 0 \leq p \leq \frac{1}{2} \tag{2}
\end{equation*}
$$

the invariance equation

$$
\begin{equation*}
H_{p}\left(H_{q}(x, y), H_{r}(x, y)\right)=H_{p}(x, y) \tag{3}
\end{equation*}
$$

has only trivial solutions $p=q=r$. The aim of this note is to extend this result to a much broader class of means.

Definition 1. We say that a homogeneous, symmetric mean M is of power growth if there exist a real number $\operatorname{ord}(M)$ and a positive number C_{M} such that

$$
\lim _{x \rightarrow 0} \frac{M(x, 1)}{x^{\operatorname{ord}(M)}}=C_{M}
$$

Date: March 9, 2013.
2000 Mathematics Subject Classification. 26E60.

We shall call $\operatorname{ord}(M)$ the order of M.
Observe that for $0<x<1$ the inequality $x \leq M(x, 1) \leq 1$ yields $x^{1-m} \leq$ $\frac{M(x, 1)}{x^{m}} \leq x^{-m}$. For $m<0$ the right-hand side tends to 0 and for $m>1$ the left-hand side tends to infinity. Thus we conclude that $0 \leq \operatorname{ord}(M) \leq 1$.
Theorem 1. Let M, N, K be symmetric, homogeneous means on \mathbf{R}_{+}^{2} of power growth. Assume additionally $\operatorname{ord}(N) \geq \operatorname{ord}(K)$ and

$$
\begin{equation*}
C_{N}^{\operatorname{ord}(M)} C_{K}^{1-\operatorname{ord}(M)} \neq 1 \quad \text { or } \quad \operatorname{ord}(M)(1-\operatorname{ord}(N)+\operatorname{ord}(K)) \neq \operatorname{ord}(K) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
M(N(x, y), K(x, y))=M(x, y) \tag{If}
\end{equation*}
$$

then $\operatorname{ord}(M)=\operatorname{ord}(N)=\operatorname{ord}(K)$.
Proof. Denote the orders of M, N, K by m, n, k respectively.
Suppose first that $n>k$. We have

$$
\begin{aligned}
\frac{M(x, 1)}{x^{m}} & =\frac{M(N(x, 1), K(x, 1))}{x^{m}}=x^{-m} K(x, 1) M\left(\frac{N(x, 1)}{K(x, 1)}, 1\right) \\
& =x^{-m} K(x, 1)\left(\frac{N(x, 1)}{K(x, 1)}\right)^{m} \frac{M\left(\frac{N(x, 1)}{K(x, 1)}, 1\right)}{\left(\frac{N(x, 1)}{K(x, 1)}\right)^{m}} \\
& =x^{-m+m n+(1-m) k}\left(\frac{N(x, 1)}{x^{n}}\right)^{m}\left(\frac{K(x, 1)}{x^{k}}\right)^{1-m} \frac{M\left(\frac{N(x, 1)}{K(x, 1)}, 1\right)}{\left(\frac{N(x, 1)}{K(x, 1)}\right)^{m}} .
\end{aligned}
$$

Since $\frac{N(x, 1)}{K(x, 1)}$ tends to 0 as x tends to 0 , we obtain a contradiction: the limit of the left-hand side equals C_{M} while the right-hand side tends to 0 or infinity (in case $\operatorname{ord}(M)(1-\operatorname{ord}(N)+\operatorname{ord}(K)) \neq \operatorname{ord}(K))$, or to $C_{N}^{m} C_{K}^{1-m} C_{M} \neq C_{M}$. Therefore we conclude that $n=k$. But this implies

$$
M\left(\frac{N(x, 1)}{x^{n}}, \frac{K(x, 1)}{x^{n}}\right)=\frac{M(N(x, 1), K(x, 1))}{x^{n}}=\frac{M(x, 1)}{x^{n}}
$$

and since the left-hand side remains bounded and separated from 0 for small x we conclude that $n=m$.

It is worth observing that the Heinz means are linked to the arithmetic mean by the formula $H_{\alpha}(x, y)=A\left(x^{\alpha} y^{1-\alpha}, x^{1-\alpha} y^{\alpha}\right)$. Clearly, we can apply the same method to an arbitary homogeneous, symmetric mean M thus obtaining a oneparameter family of means interpolating between M and the geometric mean. The following theorem deals with one-parameter families created this way.
Theorem 2. Let M be a symmetric, homogeneous mean of order $\operatorname{ord}(M) \neq \frac{1}{2}$ with $C_{M} \neq 1$ and let

$$
M_{\alpha}(x, y)=M\left(x^{\alpha} y^{1-\alpha}, x^{1-\alpha} y^{\alpha}\right) \text { for } 0 \leq \alpha \leq \frac{1}{2}
$$

Then the invariance equation

$$
\begin{equation*}
M_{\alpha}\left(M_{\beta}(x, y), M_{\gamma}(x, y)\right)=M_{\alpha}(x, y) \tag{5}
\end{equation*}
$$

admits only trivial solutions $\alpha=\beta=\gamma$.

Proof. The identity

$$
M_{\alpha}(x, 1)=M\left(x^{\alpha}, x^{1-\alpha}\right)=x^{\alpha} M\left(1, x^{1-2 \alpha}\right)=x^{\alpha+\operatorname{ord}(M)(1-2 \alpha)} \frac{M\left(1, x^{1-2 \alpha}\right)}{x^{\operatorname{ord}(M)(1-2 \alpha)}}
$$

implies that

$$
C_{M_{\alpha}}=\left\{\begin{array}{ll}
C_{M} & \alpha<\frac{1}{2}, \\
1 & \alpha=\frac{1}{2},
\end{array} \quad \text { and } \quad \operatorname{ord}\left(M_{\alpha}\right)=\alpha+\operatorname{ord}(M)(1-2 \alpha)\right.
$$

thus the means in the family are of different order and the result would follow from Theorem 1 once we verify the condition (4). To this end assume $\beta \leq \gamma$.
Consider two cases:
Case 1: $\operatorname{ord}(M)<\frac{1}{2}$
The function $\delta \rightarrow \operatorname{ord}\left(M_{\delta}\right)$ increases from ord (M) to $\frac{1}{2}$, so $\operatorname{ord}\left(M_{\beta}\right) \leq \operatorname{ord}\left(M_{\gamma}\right)$ and $C_{M_{\beta}}^{1-\operatorname{ord}\left(M_{\alpha}\right)} C_{M_{\gamma}}^{\operatorname{ord}\left(M_{\alpha}\right)}=1$ is possible only if $C_{M_{\beta}}=C_{M_{\gamma}}=1$ (which is equivalent to $\beta=\gamma=\frac{1}{2}$) or $C_{M_{\gamma}}=1$ and $1-\operatorname{ord}\left(M_{\alpha}\right)=0$. The first case gives immediately $\alpha=\frac{1}{2}$, while the second case is impossible, as $1-\operatorname{ord}\left(M_{\alpha}\right) \geq \frac{1}{2}$.
Case 2: ord $(M)>\frac{1}{2}$
Now $\operatorname{ord}\left(M_{\delta}\right)$ decreases from $\operatorname{ord}(M)$ to $\frac{1}{2}$, $\operatorname{so} \operatorname{ord}\left(M_{\beta}\right) \geq \operatorname{ord}\left(M_{\gamma}\right)$ and the equality $C_{M_{\beta}}^{\operatorname{ord}\left(M_{\alpha}\right)} C_{M_{\gamma}}^{1-\operatorname{ord}\left(M_{\alpha}\right)}=1$ can hold only if $C_{M_{\beta}}=C_{M_{\gamma}}=1$ or $C_{M_{\gamma}}=1$ and $\operatorname{ord}\left(M_{\alpha}\right)=0$. Again, the first case leads to $\alpha=\frac{1}{2}$, while the second case is impossible, as $\operatorname{ord}\left(M_{\alpha}\right) \geq \frac{1}{2}$.

Applying Theorem 2 to the arithmetic mean we obtain the result of Besenyei.
Corollary 1 ([1], Theorem 4). In the class of Heinz means (2) the identity (3) holds if and only if $p=q=r$.

As an application of Theorem 1 consider the following families of means:

$$
\begin{equation*}
Q_{s}(x, y)=G^{\frac{2}{s}}(x, y) E^{\frac{s-2}{s}}(s-1,1 ; x, y) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{s}^{1}(x, y)=G^{\frac{2}{s}}(x, y) E^{\frac{s-2}{s}}(1-1 / s, 1 / s ; x, y) \tag{7}
\end{equation*}
$$

where G is the geometric mean, $E(p, q ; x, y)=\left(\frac{q}{p} \frac{x^{p}-y^{p}}{x^{q}-y^{q}}\right)^{1 /(p-q)}$ is the Stolarsky mean and $s \geq 2$. Note that

$$
Q_{n}(x, y)=\left(\frac{x^{n-1} y+x^{n-2} y^{2}+\cdots+x y^{n-1}}{n-1}\right)^{1 / n}
$$

and

$$
H_{n}^{1}(x, y)=\frac{x^{\frac{n-1}{n}} y^{\frac{1}{n}}+\cdots+x^{\frac{1}{n}} y^{\frac{n-1}{n}}}{n-1}
$$

We see that $\operatorname{ord}\left(Q_{s}\right)=\operatorname{ord}\left(H_{s}^{1}\right)=1-1 / s, C_{Q_{s}}=(s-1)^{-1 / s}$ and $C_{H_{s}^{1}}=(s-1)^{-1}$. By Theorem 1 the invariance equations admit only trivial solutions in the two families. (The assumption (4) does not hold if $N=K=Q_{2}$ or $N=K=H_{2}^{1}$, but in this case triviality of the solution of the invariance equation follows immediately).

References

[1] Besenyei Ádám, On the invariance equation for Heinz means Math. Ineq. Appl., 16 (2013), 233-239.
[2] Baják Szabolcs, Invariance equation for Two-variable mean, PhD thesis, University of Debrecen, 2012
[3] Borwein Jonathan M. and Borwein Peter B., Pi and the AGM. A study in analytic number theory and computational complexity. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1987.

Institute of Mathematics and Physics, University of Technology and Life Sciences, al. prof. Kaliskiego 7, 85-796 Bydgoszcz, Poland

E-mail address: alfred.witkowski@utp.edu.pl

