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Abstract. We consider the d-dimensional Jensen inequality

T [ϕ(f1, . . . , fd)] ≥ ϕ(T [f1], . . . , T [fd]) (∗)

as it was established by McShane in 1937. Here T is a functional, ϕ is
a convex function defined on a closed convex set K ⊂ Rd and f1, . . . , fd

are from some linear space of functions. Our aim is to find necessary and
sufficient conditions for the validity of (∗). In particular, we show that
if we exclude three types of convex sets K, then Jensen’s inequality
holds for a sublinear functional T if and only if T is linear, positive
and satisfies T [1] = 1. Furthermore, for each of the excluded types of
convex sets, we present nonlinear, sublinear functionals T for which
Jensen’s inequality holds. Thus the conditions on K are optimal. Our
contributions generalize or complete several known results.
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1. Introduction

Let I be an interval. In 1906 Jensen [6], one of the founders of the theory of
convex functions [3, pp. 70], defined a function ϕ : I → R as being convex if

ϕ

(
x+ y

2

)
≤ ϕ(x) + ϕ(y)

2
(1.1)

for all x, y ∈ I. As a consequence, he obtained that, if a convex function
ϕ : I → R is in addition continuous, then

ϕ

(∑n
ν=1 aνxν∑n
ν=1 aν

)
≤
∑n
ν=1 aνϕ(xν)∑n

ν=1 aν
(1.2)
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for all x1, . . . , xn ∈ I and all positive a1, . . . , an. He mentioned that under the
additional assumption that ϕ′′ exists, this inequality was already obtained by
Hölder [4] in 1889. Furthermore, by a limiting process, Jensen extended (1.2)
to integrals. He showed that

ϕ

(∫ 1

0
a(x)f(x)dx∫ 1

0
a(x)dx

)
≤
∫ 1

0
a(x)ϕ(f(x))dx∫ 1

0
a(x)dx

(1.3)

holding for integrable functions a : [0, 1]→ (0,∞) and f : [0, 1]→ I.
In classical textbooks, inequalities (1.2) and (1.3) are named after Jensen.

However, in the more modern literature, the convexity of ϕ is defined as the
validity of (1.2) for n = 2 and all admissible a1, a2, x1, x2. Then a convex
function is automatically continuous on the interior of I.

Nowadays a Jensen’s inequality is understood as a generalization of (1.3)
due to McShane [8]. In its one-dimensional form it can be interpreted as the
inequality (1.3) with the role of the weighted integral being taken by a linear
functional. For a precise statement of that inequality in the d-dimensional
case and for the results of this article, we first introduce some notation and
definitions.

Let Ω be a nonempty set. Let F be any linear space of functions f :
Ω→ R that contains the real constants. Denote by F0 a subspace of bounded
functions that contains the constants. Furthermore we denote by F1 a linear
space of functions f : Ω → R that contains the constants and has the
additional property that f ∈ F1 implies |f | ∈ F1. If Ω is a compact set, then
C(Ω), the class of all functions that are continuous on Ω, qualifies as any of
the spaces F , F0 and F1. Note that definitions and statements valid for F
being any space as introduced before, will also be valid for F0 and F1.

By f ∈ Fd, we mean that

f = (f1, . . . , fd) (fj ∈ F for j = 1, . . . , d).

Generally, we use bold-faced letters for d-tuples and, if not specified other-
wise, the corresponding normal letter with an index j, say, denotes the jth
component.

By R+ and R− we denote the set of non-negative and non-positive real
numbers, respectively. A functional T on F is said to be

(i) positively homogeneous if T [λf ] = λT [f ] for all λ ∈ R+ and f ∈ F ;
(ii) subadditive if T [f1 + f2] ≤ T [f1] + T [f2] for all f1, f2 ∈ F ;

(iii) sublinear if it is positively homogeneous and subadditive;
(iv) linear if

T [λ1f1 + λ2f2] = λ1T [f1] + λ2T [f2]

for all λ1, λ2 ∈ R and f1, f2 ∈ F ;
(v) positive if T [f ] ≥ 0 for f ∈ F with f ≥ 0;
(vi) normalized if T [1] = 1.
Furthermore, for f ∈ Fd we define

T [f ] :=
(
T [f1], . . . , T [fd]

)
.
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With this terminology the generalization of Jensen’s inequality due to
McShane [8, Theorem 2] can be stated as follows.

Theorem 1.1 (McShane). In the previous notation, let T be a linear, positive
and normalized functional on F . For d ∈ N let K ⊂ Rd be a closed convex
set. Then

T [ϕ ◦ f ] ≥ ϕ
(
T [f ]

)
(1.4)

for all f ∈ Fd such that f(x) ∈ K for x ∈ Ω and all continuous convex
functions ϕ : K → R such that ϕ ◦ f ∈ F .

In a preliminary theorem [8, Theorem 1], McShane showed that under
the hypotheses on f and ϕ the existence of ϕ(T [f ]) is guaranteed, that is,
T [f ] ∈ K.

The continuity of ϕ is needed since McShane uses the d-dimensional
analogue of (1.1) for the definition of convexity.

For d = 1 Theorem 1.1 has gained much attention in books on proba-
bility (see, e.g., [1, p. 20, Theorem 3.9]), where it is established for f = X
being a random variable and T = E being a (mathematical) expectation.

In several recent papers the possibility of extending Jensen’s inequality
(1.4) to sublinear functionals has been studied in the setting of probability
and measure theory. In the case d = 1 and K = R, Hu [5] gave an extension
to certain nonlinear expectations. In the case d = 2 and K = R2, Jia [7]
showed that Jensen’s inequality holds for a sublinear, monotone and constant
preserving expectation E if and only if E is linear. For general d but with
K = Rd+, Haase [2] established an inequality which amounts to an extension
of (1.4) to sublinear functionals provided ϕ does not attain any positive value.

In this paper we consider a sublinear functional T and specify closed
convex sets K such that McShane’s hypotheses on T are not only sufficient
but also necessary for the validity of (1.4); see Section 2. For all the other
closed convex sets in Rd, we present nonlinear, sublinear functionals such
that (1.4) holds; see Section 5.

2. The main result

Our main result shows that if we exclude three types of convex sets K and
restrict ourselves to the subspace F0 of F , then Jensen’s inequality holds for
a sublinear functional T if and only if T is linear, positive and normalized.
Note that for the necessity we do not assume that T is monotone and constant
preserving.

The restriction to F0 is necessary for the following reason. The con-
vex set K in Theorem 1.1 may be bounded. In this case Jensen’s inequality
involves only bounded functions and so its validity cannot have any conse-
quences for the behavior of T on F \ F0.

Theorem 2.1. Let T be a sublinear functional on F0. For d ∈ N, let K ⊂ Rd
be a closed convex set with the following properties:

(i) K is not a subset of Rd+ or Rd− ;
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(ii) K is not a subset of a line {a + tw : t ∈ R}, where a,w ∈ Rd, w 6= 0
and the non-zero components of w are all of the same sign.

Then, in order that
T [ϕ ◦ f ] ≥ ϕ

(
T [f ]

)
holds for all f ∈ Fd0 such that f(x) ∈ K for x ∈ Ω and all continuous convex
functions ϕ : K → R such that ϕ◦f ∈ F0, it is necessary and sufficient that
T is linear, positive and normalized.

Note that property (ii) excludes d = 1.

Remark 2.2. One can state an alternative version of Theorem 2.1 that extends
to F by excluding bounded sets K in requiring that K contains a straight
line {a + tw : t ∈ R}, where a,w ∈ Rd and w has two non-zero components
of different signs.1

3. Some lemmas

Before proving Theorem 2.1, we want to state some useful auxiliary results.

Lemma 3.1. Let T be a sublinear functional on F with the additional property
that T [β] = β for all β ∈ R. Then

T [αf + β] ≥ αT [f ] + β (3.1)

for all α, β ∈ R and all f ∈ F . Equality occurs when α ≥ 0.

Proof. The subadditivity of T and the preservation of constants yield

T [f + β] ≤ T [f ] + T [β] = T [f ] + β

and
T [f ] = T [f + β − β] ≤ T [f + β] + T [−β] = T [f + β]− β.

Combining both inequalities, we obtain

T [f + β] = T [f ] + β. (3.2)

Next, if λ ≥ 0, then, by the positive homogeneity, T [λf ] = λT [f ].
Furthermore

0 = T [λf − λf ] ≤ T [λf ] + T [−λf ] = λT [f ] + T [−λf ],

which shows that T [−λf ] ≥ −λT [f ]. Hence, for any α ∈ R, we have

T [αf ] ≥ αT [f ] (3.3)

with equality when α ≥ 0. From (3.2) and (3.3), the conclusion of the lemma
follows immediately. �

As a test for the linearity of a sublinear functional, we want to use the
following known criterion; see, e.g., [7, Proposition 2.1].

Lemma 3.2. Let T be a sublinear functional on F . Then T is linear if and
only if T [f ] + T [−f ] ≤ 0 for all f ∈ F .

1This addresses a question asked by one of the referees.
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We shall also use the following lemma, which can be verified by basic
linear algebra.

Lemma 3.3. Let K be a convex subset of Rd. If K contains three points that
are not collinear, then it contains a line segment

{a + tw : t ∈ [0, 1]}, (3.4)

where a,w ∈ Rd and w has two non-zero components of different signs.

Proof. The three non-collinear points span a non-degenerate triangle ∆ ⊂ K.
Let a be the center of gravity of ∆. Knowing that the inradius of ∆ is positive,
we conclude that there exist two linearly independent vectors u,v ∈ Rd
and a δ > 0 such that a + λu + µv ∈ K whenever λ2 + µ2 ≤ δ2. As a
consequence of the linear independence of u and v, there exist indices k and
` with 1 ≤ k < ` ≤ d such that

det
(
uk vk
u` v`

)
6= 0 .

Hence the linear system(
uk vk
u` v`

)(
α
β

)
=
(

1
−1

)
has a unique solution. Defining

δ′ :=
δ√

α2 + β2
and w := αδ′u + βδ′v,

we see that wk = δ′, w` = −δ′ and a + tw ∈ K for t ∈ [0, 1]. �

4. Proof of Theorem 2.1

The sufficiency follows from McShane’s Theorem 1.1.
We now turn to the necessity. First we want to show that the validity

of (1.4) entails that T preserves constants.
Take any c ∈ R and define ϕ(y) ≡ c for y ∈ K, which is a convex

function. In this case Jensen’s inequality implies that

T [c] ≥ c (c ∈ R). (4.1)

Next, by its property (i), K contains a point b which has a positive and a
negative coordinate, say bk > 0 and b` < 0. The functions ϕ(y) := yk − bk
and f := b are admissible for Jensen’s inequality. Since T [ϕ ◦ f ] = 0 and

ϕ
(
T [f ]

)
= T [bk]− bk ,

Jensen’s inequality implies that T [bk] ≤ bk. Together with (4.1) we obtain
T [bk] = bk. Since T is positively homogeneous, we see that T [λbk] = λbk for
every λ ≥ 0. Hence T [β] = β for all β ≥ 0.

Analogously, consider ϕ(y) := y` − b` and f := b. Then by the same
arguments T [b`] = b`, which implies that T [γ] = γ for all γ ≤ 0. Altogether,
we have shown that T preserves constants. In particular, T is normalized.
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Next we show that T is linear. Property (ii) in conjunction with Lemma 3.3
ensures that K contains a line segment (3.4) with a vector w that has two
non-zero components of different signs, say wk > 0 and w` < 0. Now take
any f from F0. Then for a sufficiently small ε > 0 and an appropriate γ ∈ R,
we have εf(x) + γ ∈ [0, 1] for all x ∈ Ω, and so

f(x) := a + (εf(x) + γ)w ∈ K.

Defining

ϕ(y) :=
yk − ak
wk

− y` − a`
w`

,

our choices of f and ϕ are as required for Jensen’s inequality (1.4). Now, the
left-hand side of (1.4) yields

T [ϕ ◦ f ] = T [εf + γ − εf − γ] = 0.

For the right-hand side, we find by employing Lemma 3.1 that

ϕ
(
T [f ]

)
=
T [ak + (εf + γ)wk]− ak

wk
− T [a` + (εf + γ)w`]− a`

w`

=
T [εfwk]
wk

+ γ − T [εfw`]
w`

− γ = εT [f ] + εT [−f ] .

Hence the validity of (1.4) gives T [f ] + T [−f ] ≤ 0. Thus Lemma 3.2 ensures
that T is linear.

Finally, we show that T is positive. Again we use that K contains a line
segment (3.4). Clearly, there exists a vector v ∈ Rd such that 〈v,w〉 = 1,
where the standard inner product has been used. Define

ϕ(y) := 〈v,y − a〉 −min
{
〈v,y − a〉, 0

}
,

which is a convex function. Take any f ∈ F0 such that f ≥ 0. Then, for a
sufficiently small ε > 0, we have εf(x) ∈ [0, 1] for all x ∈ Ω. Hence

f(x) := a + εf(x)w ∈ K for all x ∈ Ω,

and so f is admissible for Jensen’s inequality. Since

〈v,f(x)− a〉 = 〈v,w〉εf(x) = εf(x),

we see that (
ϕ ◦ f

)
(x) = εf(x)−min{εf(x), 0} = εf(x).

Thus ϕ ◦ f ∈ F0 and
T [ϕ ◦ f ] = T [εf ]. (4.2)

Since we know already that T is linear and preserves constants, we find that

〈v,T [f ]− a〉 = 〈v,T [εfw]〉 = 〈v,w〉T [εf ] = T [εf ].

Therefore
ϕ
(
T [f ]

)
= T [εf ]−min{T [εf ], 0}. (4.3)

With (4.2) and (4.3) the validity of Jensen’s inequality yields

T [εf ] ≥ T [εf ]−min{T [εf ], 0},
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or equivalently, min{T [εf ], 0} ≥ 0. This shows that T [f ] ≥ 0 and so T is
positive. �

Remark 4.1. In the previous proof of the necessity, we needed Jensen’s in-
equality for piecewise affine convex functions ϕ only. Hence its validity for
these particular functions ϕ implies that it holds for all convex functions ϕ.

5. On the optimality of the conditions (i) and (ii) in
Theorem 2.1

In this section we want to show that in Theorem 2.1, conditions (i) and
(ii) cannot be abandoned. In fact, if K does not satisfy (i) or (ii), we shall
see that there exist nonlinear, sublinear functionals T for which Jensen’s
inequality holds. In the following proposition, condition (i) is violated. The
result may be compared with [2, Proposition 1.1] in which K = Rd+ and
an opposite Jensen inequality is obtained with ϕ being replaced by a non-
negative concave function F . Since −F is convex, an inequality of the form
(1.4) can be deduced.

Proposition 5.1. Let K be a closed convex subset of Rd− or Rd+. Then there
exists a nonlinear, sublinear functional T on F1 such that Jensen’s inequality
(1.4) holds for f and ϕ as specified in Theorem 1.1 with respect to the function
space F1.

Proof. Let L be any linear, positive and normalized functional on F1. Then,
by McShane’s Theorem 1.1

L[ϕ ◦ f ] ≥ ϕ(L[f ]) (5.1)

for the given K and ϕ and f as specified in Theorem 1.1 with F replaced by
F1.

Now suppose that K ⊂ Rd−. Then we define a functional T by

T [f ] := L[2f + |f |] (f ∈ F1).

It has the following properties:
(i) T [f ] ≥ L[f ] for f ∈ F1;

(ii) T [f ] = L[f ] for f ∈ F1, f ≤ 0;
(iii) T is not linear;
(iv) T is sublinear.
As regards (i), we know that a positive linear functional is monotonically
increasing and so the obvious inequality 2f+|f | ≥ f implies that L[2f+|f |] ≥
L[f ], which is (i). For (ii) we simply observe that 2f + |f | = f when f ≤ 0.
Since T [−1] = −1 but −T [1] = −3, we see that T cannot be linear. As
regards (iv), it is obvious that T is positively homogeneous. Since

T [f1+f2] = L[2(f1+f2)+|f1+f2|] ≤ L[2(f1+f2)+|f1|+|f2|] = T [f1]+T [f2],

we see that T is subadditive.
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Now, by (ii) and the fact that K ⊂ Rd−, we have ϕ(L[f ]) = ϕ(T [f ])
while (i) gives T [ϕ ◦ f ] ≥ L[ϕ ◦ f ]. Hence Jensen’s inequality for T follows
from (5.1).

Analogously, if K ⊂ Rd+, we define T [f ] := L[|f |] and see that (i), (iii)
and (iv) hold while (ii) is valid for f ≥ 0. Thus Jensen’s inequality for T
follows again from (5.1). �

The next proposition shows that if condition (ii) is violated, then there
exits a class of sublinear functionals T , containing nonlinear ones, such that
Jensen’s inequality holds.

Proposition 5.2. Let T be a sublinear functional on F with the additional
properties:

(i) T [λ] = λ for all λ ∈ R;
(ii) f ≤ g =⇒ T [f ] ≤ T [g] (f, g ∈ F).

Let K be a closed convex subset of a line

Λ := {a + tw : t ∈ R},

where a,w ∈ Rd, w 6= 0 and the non-zero components of w are all of the
same sign. Then Jensen’s inequality (1.4) holds for f and ϕ as specified in
Theorem 1.1.

Proof. We may assume that the components of w are all non-negative since
otherwise we may simply replace w by −w without changing the line Λ.

Since K is closed and convex, there exists a closed interval I ⊂ R such
that

K = {a + tw : t ∈ I}.
Let f be as specified in Theorem 1.1. The condition f(x) ∈ K for x ∈ Ω
means that we can associate with each x ∈ Ω a t ∈ I, which we may call
g(x), such that

f(x) = a + g(x)w. (5.2)

This way, we have defined a function g : Ω→ I. Suppose that wk > 0. Then
it follows from (5.2) that g(x) = (fk(x)−ak)/wk for x ∈ Ω, which shows that
g ∈ F .

Next we note that for ϕ as specified in Theorem 1.1, the function

ψ : t 7−→ ϕ(a + tv)

is a convex function defined on I and

(ϕ ◦ f)(x) = ψ(g(x)).

Now suppose that ψ(t) ≥ αt+ β for all t ∈ I. Then

ψ ◦ g ≥ αg + β. (5.3)

Employing property (ii) and Lemma 3.1, we conclude that

T [ψ ◦ g] ≥ T [αg + β] ≥ αT [g] + β. (5.4)
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Since g(x) ∈ I for all x ∈ Ω, we conclude by using properties (i) and (ii) of
the functional T that T [g] ∈ I. Thus, from (5.3) and (5.4), it follows that

T [ϕ ◦ f ] = T [ψ ◦ g] ≥ sup
α,β∈R

{
αT [g] + β : ψ(T [g]) ≥ αT [g] + β

}
. (5.5)

Since ψ is a convex function, its graph may be represented as the envelope
of all supporting lines, that is,

ψ(t) = sup
α,β∈R

{αt+ β : ψ(t) ≥ αt+ β} .

Hence the right-hand side of (5.5) equals ψ(T [g]).
We have proved so far that

T [ϕ ◦ f ] ≥ ψ(T [g]) = ϕ(a + T [g]w).

Now, by Lemma 3.1 and our assumptions on the vector w, there holds

aj + T [g]wj = T [aj + gwj ] (j = 1, . . . , d).

Hence

ϕ(a + T [g]w) = ϕ(T [a + gw]) = ϕ(T [f ]).

This completes the proof. �

Remark 5.3. An analysis of the previous proof reveals that instead of as-
suming that T is sublinear and satisfies (i) and (ii), it suffices to require
that T satisfies (ii) and the conclusion of Lemma 3.1 holds. This variant of
Proposition 5.2 generalizes [5, Theorem 4.1].

Remark 5.4. If K = Rd+ and ϕ is non-positive valued, the previous proof ex-
tends to arbitrary dimension d ∈ N by using supporting hyperplanes instead
of supporting lines. This way, one obtains [2, Theorem 1.1].

As a consequence of Theorem 2.1 and Propositions 5.1 and 5.2, we arrive
at the following conclusion: There exist nonlinear, sublinear functionals T for
which Jensen’s inequality as stated in Theorem 2.1 holds if and only if the
closed convex set K is a subset of either Rd+ or Rd− or of a line {a + tw : t ∈
R}, where a,w ∈ Rd, w 6= 0 and the non-zero components of w are all of
the same sign.

As emphasized by one of the referees, it may be interesting to give, for
each of the three types of closed convex sets K, a complete description of all
the sublinear functionals T which preserve the validity of Jensen’s inequality.
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