SCHUR-CONVEXITY, SCHUR-GEOMETRIC AND HARMONIC CONVEXITIES OF DUAL FORM OF A CLASS SYMMETRIC FUNCTIONS

HUAN-NAN SHI AND JIAN ZHANG

ABSTRACT. By properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, Schur-convexity, Schur-geometric and harmonic convexities of the dual form for a class of symmetric functions are simply proved. As an application, several inequalities are obtained, some of which extend the known ones.

2000 Mathematics Subject Classification: Primary 26D15; 05E05; 26B25.

Keywords: Schur-convexity; Schur-geometric convexity; Schur-harmonic convexity; inequality; log-convex function; symmetric functions; dual form

1. INTRODUCTION

Throughout the article, \(\mathbb{R} \) denotes the set of real numbers, \(x = (x_1, x_2, \ldots, x_n) \) denotes \(n \)-tuple \((n\text{-dimensional real vectors})\), the set of vectors can be written as

\[
\mathbb{R}^n = \{ x = (x_1, \ldots, x_n) : x_i \in \mathbb{R}, i = 1, \ldots, n \},
\]

\[
\mathbb{R}_+^n = \{ x = (x_1, \ldots, x_n) : x_i > 0, i = 1, \ldots, n \}.
\]

In particular, the notations \(\mathbb{R} \) and \(\mathbb{R}_+ \) denote \(\mathbb{R}^1 \) and \(\mathbb{R}_+^1 \) respectively. For convenience, we introduce some definitions as follows.

Definition 1. \([1, 2]\) Let \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n \).
(i) \(x \geq y \) means \(x_i \geq y_i \) for all \(i = 1, 2, \ldots, n \).
(ii) Let \(\Omega \subset \mathbb{R}_+^n \), \(\varphi : \Omega \to \mathbb{R} \) is said to be increasing if \(x \geq y \) implies \(\varphi(x) \geq \varphi(y) \). \(\varphi \) is said to be decreasing if and only if \(-\varphi \) is increasing.

Definition 2. \([1, 2]\) Let \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n \).
(i) \(x \) is said to be majorized by \(y \) (in symbols \(x \prec y \)) if \(\sum_{i=1}^{k} x[i] \leq \sum_{i=1}^{k} y[i] \) for \(k = 1, 2, \ldots, n - 1 \) and \(\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \), where \(x[1] \geq \cdots \geq x[n] \) and \(y[1] \geq \cdots \geq y[n] \) are rearrangements of \(x \) and \(y \) in a descending order.
(ii) Let \(\Omega \subset \mathbb{R}_+^n \), \(\varphi : \Omega \to \mathbb{R} \) is said to be a Schur-convex function on \(\Omega \) if \(x \prec y \) on \(\Omega \) implies \(\varphi(x) \leq \varphi(y) \). \(\varphi \) is said to be a Schur-concave function on \(\Omega \) if and only if \(-\varphi \) is Schur-convex function on \(\Omega \).

Definition 3. \([1, 2]\) Let \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n \).
(i) \(\Omega \subset \mathbb{R}_+^n \) is said to be a convex set if \(x, y \in \Omega, 0 \leq \alpha \leq 1 \) implies \(\alpha x + (1 - \alpha) y = (\alpha x_1 + (1 - \alpha) y_1, \ldots, \alpha x_n + (1 - \alpha) y_n) \in \Omega \).
(ii) Let \(\Omega \subset \mathbb{R}_+^n \) be convex set. A function \(\varphi : \Omega \to \mathbb{R} \) is said to be a convex function on \(\Omega \) if
\[
\varphi(\alpha x + (1 - \alpha) y) \leq \alpha \varphi(x) + (1 - \alpha) \varphi(y)
\]
for all \(x, y \in \Omega \), and all \(\alpha \in [0, 1] \). \(\varphi \) is said to be a concave function on \(\Omega \) if and only if \(-\varphi \) is convex function on \(\Omega \).

(iii) Let \(\Omega \subseteq \mathbb{R}^n \). A function \(\varphi : \Omega \to \mathbb{R} \) is said to be a log-convex function on \(\Omega \) if function \(\ln \varphi \) is convex.

Theorem A. (Schur-Convex Function Decision Theorem)[1, p. 5]: Let \(\Omega \subseteq \mathbb{R}^n \) is symmetric and has a nonempty interior convex set. \(\Omega^0 \) is the interior of \(\Omega \). \(\varphi : \Omega \to \mathbb{R} \) is continuous on \(\Omega \) and differentiable in \(\Omega^0 \). Then \(\varphi \) is the Schur-convex (Schur-concave) function, if and only if \(\varphi \) is symmetric on \(\Omega \) and

\[
(x_1 - x_2) \left(\frac{\partial \varphi}{\partial x_1} - \frac{\partial \varphi}{\partial x_2} \right) \geq 0 \quad (\leq 0)
\]

holds for any \(x \in \Omega^0 \).

Definition 4. [3] Let \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) and \(y = (y_1, \ldots, y_n) \in \mathbb{R}_+^n \).

(i) \(\Omega \subseteq \mathbb{R}_+^n \) is called a geometrically convex set if \((x_1^\alpha y_1^\beta, \ldots, x_n^\alpha y_n^\beta) \in \Omega \) for all \(x, y \in \Omega \) and \(\alpha, \beta \in [0, 1] \) such that \(\alpha + \beta = 1 \).

(ii) Let \(\Omega \subseteq \mathbb{R}_+^n \). The function \(\varphi : \Omega \to \mathbb{R}_+ \) is said to be Schur-geometrically convex function on \(\Omega \) if \((\ln x_1, \ldots, \ln x_n) \prec (\ln y_1, \ldots, \ln y_n) \) on \(\Omega^0 \) implies \(\varphi(x) \leq \varphi(y) \). The function \(\varphi \) is said to be a Schur-geometrically concave function on \(\Omega \) if and only if \(-\varphi \) is Schur-geometrically convex function.

Theorem B. (Schur-Geometrically Convex Function Decision Theorem)[3]: Let \(\Omega \subseteq \mathbb{R}_+^n \) be a symmetric and geometrically convex set with a nonempty interior \(\Omega^0 \). Let \(\varphi : \Omega \to \mathbb{R}_+ \) be continuous on \(\Omega \) and differentiable in \(\Omega^0 \). If \(\varphi \) is symmetric on \(\Omega \) and

\[
(\log x_1 - \log x_2) \left(x_1 \frac{\partial \varphi}{\partial x_1} - x_2 \frac{\partial \varphi}{\partial x_2} \right) \geq 0 \quad (\leq 0) \tag{2}
\]

holds for any \(x = (x_1, \ldots, x_n) \in \Omega^0 \), then \(\varphi \) is a Schur-geometrically convex (Schur-geometrically concave) function.

Definition 5. [4] Let \(\Omega \subseteq \mathbb{R}_+^n \).

(1) A set \(\Omega \) is said to be harmonically convex if \(\frac{x^y}{\lambda x_1^{\lambda - 1} y_1} \in \Omega \) for every \(x, y \in \Omega \) and \(\lambda \in [0, 1] \), where \(x^y = \sum_{i=1}^n x_i y_i \) and \(\frac{1}{\lambda} = (\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_n}) \).

(2) A function \(\varphi : \Omega \to \mathbb{R}_+ \) is said to be Schur-harmonically convex on \(\Omega \) if \(\frac{1}{x} \prec \frac{1}{y} \) implies \(\varphi(x) \leq \varphi(y) \).

Theorem C. (Schur-Harmonically Convex Function Decision Theorem)[4]: Let \(\Omega \subseteq \mathbb{R}_+^n \) be a symmetric and harmonically convex set with inner points and let \(\varphi : \Omega \to \mathbb{R}_+ \) be a continuously symmetric function which is differentiable on \(\Omega^0 \). Then \(\varphi \) is Schur-harmonically convex function on \(\Omega \) if and only if

\[
(x_1 - x_2) \left(x_1^2 \frac{\partial \varphi(x)}{\partial x_1} - x_2^2 \frac{\partial \varphi(x)}{\partial x_2} \right) \geq 0 \quad (\leq 0), \quad x \in \Omega^0.
\]

Let interval \(I \subseteq \mathbb{R} \) and let \(\varphi : I \to \mathbb{R}_+ \) be a log-convex function. Define the symmetric function \(F_k \) by

\[
F_k(x) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} \prod_{j=1}^k f(x_{i_j}), \quad k = 1, \ldots, n.
\]

\[\text{(4)}\]
In 2010, for 1, 2 and \(n - 1 \), I. Roventa [5] proved that \(F_k(x) \) is a Schur-convex function on \(I^n \), but without discuss the case of \(2 < k < n - 1 \). In 2011, Shu-hong Wang et al. [6] studied completely Schur convexity, Schur geometric and harmonic convexities of \(F_k(x) \) on \(I^n \), using the above decision theorems, i.e. Theorem A, Theorem B and Theorem C respectively to prove the following three theorems.

Theorem D. Let \(I \subset \mathbb{R} \) is a symmetric convex set with non-empty interior and let \(f : I \rightarrow \mathbb{R} \) be continuous on \(I \) and differentiable in the interior of \(I \). If \(f \) is a log-convex function, then for any \(k = 1, 2, \ldots, n \), \(F_k(x) \) is a Schur-convex function on \(I^n \).

Theorem E. Let \(I \subset \mathbb{R}_+ \) is a symmetric convex set with non-empty interior and let \(f : I \rightarrow \mathbb{R}_+ \) be continuous on \(I \) and differentiable in the interior of \(I \). If \(f \) is an increasing log-convex function, then for any \(k = 1, 2, \ldots, n \), \(F_k(x) \) is a Schur-geometrically convex function on \(I^n \).

Theorem F. Let \(I \subset \mathbb{R}_+ \) is a symmetric convex set with non-empty interior and let \(f : I \rightarrow \mathbb{R}_+ \) be continuous on \(I \) and differentiable in the interior of \(I \). If \(f \) is an increasing log-convex function, then for any \(k = 1, 2, \ldots, n \), \(F_k(x) \) is a Schur-harmonically convex function on \(I^n \).

In this paper, we study the dual form of \(F_k(x) \):

\[
F_k^*(x) = \prod_{1 \leq i_1 < \ldots < i_k \leq n} \sum_{j=1}^{k} f(x_{i_j}), \quad k = 1, \ldots, n. \tag{5}
\]

By properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we obtained the following results:

Theorem 1. Let \(I \subset \mathbb{R} \) is a symmetric convex set with non-empty interior and let \(f : I \rightarrow \mathbb{R} \) be continuous on \(I \) and differentiable in the interior of \(I \). If \(f \) is a log-convex function, then for any \(k = 1, 2, \ldots, n \), \(F_k^*(x) \) is a Schur-convex function on \(I^n \).

Theorem 2. Let \(I \subset \mathbb{R}_+ \) is a symmetric convex set with non-empty interior and let \(f : I \rightarrow \mathbb{R}_+ \) be continuous on \(I \) and differentiable in the interior of \(I \). If \(f \) is an increasing log-convex function, then for any \(k = 1, 2, \ldots, n \), \(F_k^*(x) \) is a Schur-geometrically convex function on \(I^n \).

Theorem 3. Let \(I \subset \mathbb{R}_+ \) is a symmetric convex set with non-empty interior and let \(f : I \rightarrow \mathbb{R}_+ \) be continuous on \(I \) and differentiable in the interior of \(I \). If \(f \) is an increasing log-convex function, then for any \(k = 1, 2, \ldots, n \), \(F_k^*(x) \) is a Schur-harmonically convex function on \(I^n \).

2. Lemmas

To prove the above three theorems, we need the following lemmas.

Lemma 1. [1, p. 67],[2] If \(\varphi \) is symmetric and convex (concave) on symmetric convex set \(\Omega \), then \(\varphi \) is Schur-convex (Schur-concave) on \(\Omega \).

Lemma 2. [1, p. 73],[2] Let \(\Omega \subset \mathbb{R}^n \), \(\varphi : \Omega \rightarrow \mathbb{R}_+ \). Then log \(\varphi \) is Schur-convex (Schur-concave) if and only if \(\varphi \) is Schur-convex (Schur-concave).
Lemma 3. [1, p. 642],[2] Let \(\Omega \subset \mathbb{R}^n \) be open convex set, \(\varphi : \Omega \to \mathbb{R} \). For \(x, y \in \Omega \), defined one variable function \(g(t) = \varphi (tx + (1 - t)y) \) on interval \((0, 1)\). Then \(\varphi \) is convex (concave) on \(\Omega \) if and only if \(g \) is convex (concave) on \([0, 1]\) for all \(x, y \in \Omega \).

Lemma 4. Let \(x = (x_1, \ldots, x_m) \) and \(y = (y_1, \ldots, y_m) \) \(\in \mathbb{R}^m \). If \(f \) is a log-convex function, then the functions \(p(t) = \log g(t) \) is convex on \([0, 1]\), where

\[
g(t) = \sum_{j=1}^{m} f(tx_j + (1 - t)y_j).
\]

Proof.

\[
p'(t) = \frac{g'(t)}{g(t)}.
\]

where

\[
g'(t) = \sum_{j=1}^{m} (x_j - y_j) f'(tx_j + (1 - t)y_j).
\]

\[
p''(t) = \frac{g''(t)g(t) - (g'(t))^2}{g^2(t)},
\]

where

\[
g''(t) = \sum_{j=1}^{m} (x_j - y_j)^2 f''(tx_j + (1 - t)y_j),
\]

by the Cauchy inequality, we have

\[
g''(t)g(t) - (g'(t))^2
\]

\[
= \left(\sum_{j=1}^{m} (x_j - y_j)^2 f''(tx_j + (1 - t)y_j) \right) \left(\sum_{j=1}^{m} f(tx_j + (1 - t)y_j) \right) - \left(\sum_{j=1}^{m} (x_j - y_j) f'(tx_j + (1 - t)y_j) \right)^2
\]

\[
\geq \left(\sum_{j=1}^{m} (x_j - y_j) \sqrt{f''(tx_j + (1 - t)y_j)} \cdot \sqrt{f(tx_j + (1 - t)y_j)} \right) \left(\sum_{j=1}^{m} (x_j - y_j) f'(tx_j + (1 - t)y_j) \right)^2
\]

From the log-convexity of \(f \) it follows that \((\log f(u))^\prime\prime = \frac{f''(u)f(u) - (f'(u))^2}{f^2(u)} \geq 0 \), hence

\[
\sqrt{f''(tx_j + (1 - t)y_j)} \cdot \sqrt{f(tx_j + (1 - t)y_j)} \geq f'(tx_j + (1 - t)y_j),
\]

and then \(g''(t)g(t) - (g'(t))^2 \geq 0 \), i.e. \(p''(t) \geq 0 \), that is \(p(t) = \log g(t) \) is convex on \([0, 1]\).

The proof of Lemma 4 is completed. \(\square \)
Lemma 5. Let
\[f(t) = \frac{x^t - 1}{t}. \]
If \(x > 1 \), then \(f(t) \) is a log-convex function on \(\mathbb{R}_+ \).

Proof. By computing, we have
\[(\log f(t))'' = -\frac{x^t (\log x)^2}{(x^t - 1)^2} + \frac{1}{t^2}. \]

We need only prove \((\log f(t))'' \geq 0\). It equivalent to
\[t^2 x^t (\log x)^2 \leq (x^t - 1)^2. \]
In both sides the inequality (6), extracting the square root and dividing by \(x^t \), then the inequality (6) equivalent to
\[g(t) := x^{\frac{t}{2}} - x^{-\frac{t}{2}} - t \log x \geq 0. \]
When \(x > 1 \), \(g'(x) = \frac{1}{2} \log x \left(x^{\frac{t}{2}} - x^{-\frac{t}{2}} - 2 \right) \geq 0 \), hence \(g(t) \) is increasing on \(\mathbb{R}_+ \), and then \(g(t) \geq g(0) = 0 \), that is \((\log f(t))'' \geq 0\).

The proof of Lemma 5 is completed. \(\square \)

3. Proof of Main Results

Proof of Theorem 1: For any \(1 \leq i_1 < \cdots < i_k \leq n \), by Lemma 3 and Lemma 4, it follows that \(\ln \sum_{j=1}^{k} f(x_{i_j}) \) is convex on \(I^k \). Obviously, \(\ln \sum_{j=1}^{k} f(x_{i_j}) \) is also convex on \(I^n \), and then \(F_k^*(x) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \log \sum_{j=1}^{k} f(x_{i_j}) \) is convex on \(I^n \). Furthermore, it is clear that \(\log F_k^*(x) \) is symmetric on \(I^n \), by Lemma 1, it follows that \(\log F_k^*(x) \) is Schur-convex on \(I^n \), and then from Lemma 2 we conclude that \(F_k^*(x) \) is also Schur-convex on \(I^n \).

The proof of Theorem 1 is completed.

Proof of Theorem 2: For \(x \in I \subset \mathbb{R}_+ \) and \(x_1 \neq x_2 \), we have
\[
\Delta = (\log x_1 - \log x_2) \left(x_1 \frac{\partial F_k^*}{\partial x_1} - x_2 \frac{\partial F_k^*}{\partial x_2} \right)
= (\log x_1 - \log x_2) \left(x_1 \frac{\partial F_k^*}{\partial x_1} - x_1 \frac{\partial F_k^*}{\partial x_2} + x_1 \frac{\partial F_k^*}{\partial x_2} - x_2 \frac{\partial F_k^*}{\partial x_2} \right)
= x_1 \log x_1 - \log x_2 \left(x_1 - x_2 \right) \left(\frac{\partial F_k^*}{\partial x_1} - \frac{\partial F_k^*}{\partial x_2} \right) + \frac{\partial F_k^*}{\partial x_2} \left(x_1 - x_2 \right) (\log x_1 - \log x_2).
\]

Since \(F_k^*(x) \) is Schur-convex on \(I^n \), by Theorem A, we have
\[(x_1 - x_2) \left(\frac{\partial F_k^*}{\partial x_1} - \frac{\partial F_k^*}{\partial x_2} \right) \geq 0. \]
Notice that \(f \) and \(\log t \) is increasing, we have \(\frac{\partial F_k^*}{\partial x_1} \geq 0 \), \(\frac{\log x_1 - \log x_2}{x_1 - x_2} \geq 0 \) and \((x_1 - x_2) (\log x_1 - \log x_2) \geq 0 \), so that \(\Delta \geq 0 \), by Theorem B, it follows that \(F_k^*(x) \) is Schur-geometric convex on \(I^n \).

Proof of Theorem 3: The proof of Theorem 3 similar to Theorem 2, the detailed proof is left to the reader.

Remark 1. If using the decision theorems, i.e. Theorem A, Theorem B and Theorem C respectively direct to prove Theorem 1, Theorem 2 and Theorem 3, I am afraid not above proofs are simple, interested readers may wish to try.
The symmetric function

\[Q_k(x) = \prod_{1 \leq i_1 < \ldots < i_k \leq n} \frac{1 + x_{i_1}}{1 - x_{i_1}}, \quad k = 1, \ldots, n. \]

(7)

is Schur-convex function, Schur-geometrically and harmonically convex function on \((0,1)^n\). And for \(x \in (0,1)^n\), we have

\[\prod_{1 \leq i_1 < \ldots < i_k \leq n} \frac{1 + x_{i_1}}{1 - x_{i_1}} \geq \left(\frac{k(n + s)}{n - s} \right)^{C_k}, \quad k = 1, \ldots, n. \]

(8)

where \(s = \sum_{i=1}^{n} x_i\) and \(C_k = \frac{n!}{k!(n-k)!}\).

Proof. Let \(f(x) = \frac{1+x}{1-x}, x \in (0,1)\). By computing, we have \(f'(x) = \frac{2}{(1-x)^2} > 0\) and \(\log(f(x))'' = \frac{4x}{(1+x)^2(1-x)^2} \geq 0\), that is \(f\) is an increasing log-convex function. By Theorem 1, Theorem 2 and Theorem 3, it follows that \(Q_k(x)\) is respectively Schur-convex function, Schur-geometrically and harmonically convex function on \((0,1)^n\).

Since \(y = (\frac{x_1}{n}, \frac{x_2}{n}, \ldots, \frac{x_n}{n}) < x = (x_1, x_2, \ldots, x_n)\), from Schur-convexity of \(G_k(x)\), it follows that \(Q_k(y) \leq Q_k(x)\), i.e. inequality (7) holds.

The proof of Theorem 4 is completed. \(\square\)

Specially, taking \(k = 1, s = 1\), from the inequality (8) we can get the known Klamkin inequality:

\[\prod_{i=1}^{n} \frac{1 + x_i}{1 - x_i} \geq \left(\frac{n + 1}{n - 1} \right)^n. \]

(9)

By analogous proof with Theorem 4, we can obtain the following theorem.

Theorem 5. The symmetric function

\[R_k(x) = \prod_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1}, \quad k = 1, \ldots, n. \]

(10)

is Schur-convex function, Schur-geometrically and harmonically convex function on \([\frac{1}{2}, 1)^n\). And for \(x \in [\frac{1}{2}, 1)^n\), we have

\[\prod_{1 \leq i_1 < \ldots < i_k \leq n} \frac{x_{i_1}}{1 - x_{i_1}} \geq \left(\frac{ks}{n - s} \right)^{C_k}, \quad k = 1, \ldots, n. \]

(11)

where \(s = \sum_{i=1}^{n} x_i\) and \(C_k = \frac{n!}{k!(n-k)!}\).

Theorem 6. The symmetric function

\[D_k(x) = \prod_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1}, \quad k = 1, \ldots, n. \]

(12)

is Schur-convex on \(\mathbb{R}^n_+\) and Schur-geometric and harmonic convex on \([e^{-1}, \infty)^n\).

And for \(x \in \mathbb{R}^n_+\), we have

\[\prod_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \geq \left(k[A(x)]^A(x) \right)^{C_k}, \quad k = 1, \ldots, n. \]

(13)

where \(A(x) = \frac{1}{n} \sum_{i=1}^{n} x_i\) and \(C_k = \frac{n!}{k!(n-k)!}\).
Proof. It is not difficult to verify that x^r is log-convex function on $(0, \infty)$ and increasing on $[e^{-1}, \infty)$. By Theorem 1, Theorem 2 and Theorem 3, it follows that $D_k(x)$ is Schur-convex on \mathbb{R}_+^n and Schur-geometric and harmonic convex on $[e^{-1}, \infty)^n$.

Since $y = (A(x), A(x), ..., A(x)) < x = (x_1, x_2, ..., x_n)$, from Schur-convexity of $D_k(x)$, it follows that $D_k(y) \leq D_k(x)$, i.e. inequality (11) holds.

The proof of Theorem 6 is completed.

From Lemma 5 and Theorem 1, we can obtain the following Theorem 2.

Theorem 7. Let $x > 1$.

\[P_k(t) = \prod_{1 \leq i_1 < \cdots < i_k \leq n} \sum_{j=1}^{k} \frac{x^{i_j} - 1}{t_{i_j}}, \quad k = 1, \ldots, n. \]

is Schur-convex on \mathbb{R}_+^n. And for $t \in \mathbb{R}_+^n$, we have

\[\prod_{1 \leq i_1 < \cdots < i_k \leq n} \sum_{j=1}^{k} \frac{x^{i_j} - 1}{t_{i_j}} \geq \left(\frac{k(x^{A(t)} - 1)}{A(t)} \right)^{C_k^n}, \quad k = 1, \ldots, n. \]

where $A(t) = \frac{1}{n} \sum_{i=1}^{n} t_i$ and $C_k^n = \frac{n!}{k!(n-k)!}$.

Specially, taking $n = 2, k = 1$ and $t = (m + r, m - r)$, from the inequality (15) we can get the known inequality:

\[(x^{m-r} - 1)(x^{m+r} - 1) \geq \left(1 - \frac{r^2}{m^2} \right) (x^{m} - 1)^2, \]

where $r \in \mathbb{N}, m \geq 2, r < m$.

Theorem 8. Let $0 < \mu(E) < \infty, 1 \leq p < \infty$ and let

\[N_p(f) = \left(\frac{1}{\mu(E)} \int_E |f|^p d\mu \right)^{\frac{1}{p}}. \]

Then

\[B_k(p) = \prod_{1 \leq i_1 < \cdots < i_k \leq n} \sum_{j=1}^{k} (N_{p_i}(f))^{p_i}, \quad k = 1, \ldots, n. \]

is Schur-convex function, Schur-geometrically and harmonically convex function on $[1, \infty)^n$.

Proof. Since $(N_{p_i}(f))^p$ is an increasing log-convex function (see[7], p.36), from Theorem 1, Theorem 2 and Theorem 3, it follows that Theorem 7 holds.

ACKNOWLEDGMENT

Shi was supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201111417006). This article was typeset by using \textsc{AMSLATEX}.

\[\text{\textsc{AMSLATEX}}. \]
References

(H.-N. Shi) Department of Electronic Information, Teacher’s College, Beijing Union University, Beijing City, 100011, P.R.China
E-mail address: shihuannan@yahoo.com.cn, sfthuannan@buu.com.cn

(J. Zhang) Department of Electronic Information, Teacher’s College, Beijing Union University, Beijing City, 100011, P.R.China
E-mail address: sftzhangjian@buu.com.cn