SCHUR-CONVEXITY, SCHUR-GEOMETRIC AND HARMONIC CONVEXITIES OF DUAL FORM OF A CLASS SYMMETRIC FUNCTIONS

HUAN-NAN SHI AND JIAN ZHANG

ABSTRACT. By properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, Schur-convexity, Schur-geometric and harmonic convexities of the dual form for a class of symmetric functions are simply proved. As an application, several inequalities are obtained, some of which extend the known ones.

2000 Mathematics Subject Classification: Primary 26D15; 05E05; 26B25. Keywords: Schur-convexity; Schur-geometric convexity; Schur-harmonic convexity; inequality; log-convex function; symmetric functions; dual form

1. INTRODUCTION

Throughout the article, \mathbb{R} denotes the set of real numbers, $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ denotes *n*-tuple (*n*-dimensional real vectors), the set of vectors can be written as

 $\mathbb{R}^{n} = \{ \boldsymbol{x} = (x_{1}, \dots, x_{n}) : x_{i} \in \mathbb{R}, i = 1, \dots, n \},\$ $\mathbb{R}^{n}_{+} = \{ \boldsymbol{x} = (x_{1}, \dots, x_{n}) : x_{i} > 0, i = 1, \dots, n \}.$

In particular, the notations \mathbb{R} and \mathbb{R}_+ denote \mathbb{R}^1 and \mathbb{R}^1_+ respectively. For convenience, we introduce some definitions as follows.

Definition 1. [1, 2] Let $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$.

- (i) $\boldsymbol{x} \geq \boldsymbol{y}$ means $x_i \geq y_i$ for all $i = 1, 2, \ldots, n$.
- (*ii*) Let $\Omega \subset \mathbb{R}^n$, $\varphi: \Omega \to \mathbb{R}$ is said to be increasing if $x \geq y$ implies $\varphi(x) \geq \varphi(y)$. φ is said to be decreasing if and only if $-\varphi$ is increasing.

Definition 2. [1, 2] Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{R}^n$.

- (i) \boldsymbol{x} is said to be majorized by \boldsymbol{y} (in symbols $\boldsymbol{x} \prec \boldsymbol{y}$) if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k = 1, 2, \ldots, n-1$ and $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of \boldsymbol{x} and \boldsymbol{y} in a descending order.
- (*ii*) Let $\Omega \subset \mathbb{R}^n$, $\varphi \colon \Omega \to \mathbb{R}$ is said to be a Schur-convex function on Ω if $\boldsymbol{x} \prec \boldsymbol{y}$ on Ω implies $\varphi(\boldsymbol{x}) \leq \varphi(\boldsymbol{y})$. φ is said to be a Schur-concave function on Ω if and only if $-\varphi$ is Schur-convex function on Ω .

Definition 3. [1, 2] Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{R}^n$.

- (i) $\Omega \subset \mathbb{R}^n$ is said to be a convex set if $\boldsymbol{x}, \boldsymbol{y} \in \Omega, 0 \leq \alpha \leq 1$ implies $\alpha \boldsymbol{x} + (1 \alpha)\boldsymbol{y} = (\alpha x_1 + (1 \alpha)y_1, \dots, \alpha x_n + (1 \alpha)y_n) \in \Omega.$
- (*ii*) Let $\Omega \subset \mathbb{R}^n$ be convex set. A function $\varphi: \Omega \to \mathbb{R}$ is said to be a convex function on Ω if

$$\varphi(\alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{y}) \leq \alpha\varphi(\boldsymbol{x}) + (1-\alpha)\varphi(\boldsymbol{y})$$

H.-N. SHI AND J. ZHANG

for all $x, y \in \Omega$, and all $\alpha \in [0, 1]$. φ is said to be a concave function on Ω if and only if $-\varphi$ is convex function on Ω .

(*iii*) Let $\Omega \subset \mathbb{R}^n$. A function $\varphi: \Omega \to \mathbb{R}$ is said to be a log-convex function on Ω if function $\ln \varphi$ is convex.

Theorem A. (Schur-Convex Function Decision Theorem)[1, p. 5]: Let $\Omega \subset \mathbb{R}^n$ is symmetric and has a nonempty interior convex set. Ω^0 is the interior of Ω . $\varphi: \Omega \to \Omega$ \mathbb{R} is continuous on Ω and differentiable in Ω^0 . Then φ is the Schur-convex (Schur-concave) function, if and only if φ is symmetric on Ω and

$$(x_1 - x_2) \left(\frac{\partial \varphi}{\partial x_1} - \frac{\partial \varphi}{\partial x_2} \right) \ge 0 (\le 0) \tag{1}$$

holds for any $\boldsymbol{x} \in \Omega^0$.

Definition 4. [3] Let $\boldsymbol{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $\boldsymbol{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n_+$.

- (i) $\Omega \subset \mathbb{R}^n_+$ is called a geometrically convex set if $(x_1^{\alpha}y_1^{\beta}, \ldots, x_n^{\alpha}y_n^{\beta}) \in \Omega$ for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$ and $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta = 1$.
- (*ii*) Let $\Omega \subset \mathbb{R}^n_+$. The function $\varphi: \Omega \to \mathbb{R}_+$ is said to be Schur-geometrically convex function on Ω if $(\ln x_1, \ldots, \ln x_n) \prec (\ln y_1, \ldots, \ln y_n)$ on Ω implies $\varphi(\mathbf{x}) \leq \varphi(\mathbf{y})$. The function φ is said to be a Schur-geometrically concave function on Ω if and only if $-\varphi$ is Schur-geometrically convex function.

Theorem B. (Schur-Geometrically Convex Function Decision Theorem)[3]: Let $\Omega \subset \mathbb{R}^n_+$ be a symmetric and geometrically convex set with a nonempty interior Ω^0 . Let $\varphi: \Omega \to \mathbb{R}_+$ be continuous on Ω and differentiable in Ω^0 . If φ is symmetric on Ω and

$$\left(\log x_1 - \log x_2\right) \left(x_1 \frac{\partial \varphi}{\partial x_1} - x_2 \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \quad (\le 0) \tag{2}$$

holds for any $\mathbf{x} = (x_1, \cdots, x_n) \in \Omega^0$, then φ is a Schur-geometrically convex (Schurgeometrically concave) function.

Definition 5. [4] Let $\Omega \subset \mathbb{R}^n_+$.

- (1) A set Ω is said to be harmonically convex if $\frac{xy}{\lambda x + (1-\lambda)y} \in \Omega$ for every
- $\boldsymbol{x}, \boldsymbol{y} \in \Omega \text{ and } \lambda \in [0, 1], \text{ where } \boldsymbol{x}\boldsymbol{y} = \sum_{i=1}^{n} x_i y_i \text{ and } \frac{1}{\boldsymbol{x}} = \left(\frac{1}{x_1}, \cdots, \frac{1}{x_n}\right).$ (2) A function $\varphi : \Omega \to \mathbb{R}_+$ is said to be Schur-harmonically convex on Ω if $\frac{1}{\boldsymbol{x}} \prec \frac{1}{\boldsymbol{y}}$ implies $\varphi(\boldsymbol{x}) \leq \varphi(\boldsymbol{y}).$

Theorem C. (Schur-Harmonically Convex Function Decision Theorem)[4]: Let $\Omega \subset \mathbb{R}^n_+$ be a symmetric and harmonically convex set with inner points and let $\varphi: \Omega \to \mathbb{R}_+$ be a continuously symmetric function which is differentiable on Ω° . Then φ is Schur-harmonically convex (Schur-harmonically concave) on Ω if and only if

$$(x_1 - x_2) \left(x_1^2 \frac{\partial \varphi(\boldsymbol{x})}{\partial x_1} - x_2^2 \frac{\partial \varphi(\boldsymbol{x})}{\partial x_2} \right) \ge 0 \quad (\le 0), \quad \boldsymbol{x} \in \Omega^{\circ}.$$
(3)

Let interval $I \subset \mathbb{R}$ and let $\varphi : I \to \mathbb{R}_+$ be a log-convex function. Define the symmetric function F_k by

$$F_k(\boldsymbol{x}) = \sum_{1 \le i_1 < \dots < i_k \le n} \prod_{j=1}^k f(x_{i_j}), \ k = 1, \dots, n.$$
(4)

In 2010, for 1,2 and n-1, I. Roventa [5] proved that $F_k(\boldsymbol{x})$ is a Schur-convex function on I^n , but without discuss the case of 2 < k < n-1. In 2011, Shu-hong Wang et al.[6] studied completely Schur convexity, Schur geometric and harmonic convexities of $F_k(\boldsymbol{x})$ on I^n , using the above decision theorems, i.e. Theorem A, Theorem B and Theorem C respectively to prove the following three theorems.

Theorem D. Let $I \subset \mathbb{R}$ is a symmetric convex set with non-empty interior and let $f: I \to \mathbb{R}$ be continuous on I and differentiable in the interior of I. If f is a log-convex function, then for any k = 1, 2, ..., n, $F_k(\mathbf{x})$ is a Schur-convex function on I^n

Theorem E. Let $I \subset \mathbb{R}_+$ is a symmetric convex set with non-empty interior and let $f: I \to \mathbb{R}_+$ be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any k = 1, 2, ..., n, $F_k(\mathbf{x})$ is a Schurgeometrically convex function on I^n .

Theorem F. Let $I \subset \mathbb{R}_+$ is a symmetric convex set with non-empty interior and let $f: I \to \mathbb{R}_+$ be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any k = 1, 2, ..., n, $F_k(\mathbf{x})$ is a Schurharmonically convex function on I^n .

In this paper, we study the dual form of $F_k(\boldsymbol{x})$:

$$F_k^*(\boldsymbol{x}) = \prod_{1 \le i_1 < \dots < i_k \le n} \sum_{j=1}^k f(x_{i_j}), \ k = 1, \dots, n.$$
(5)

By properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we obtained the following results:

Theorem 1. Let $I \subset \mathbb{R}$ is a symmetric convex set with non-empty interior and let $f: I \to \mathbb{R}$ be continuous on I and differentiable in the interior of I. If f is a log-convex function, then for any k = 1, 2, ..., n, $F_k^*(\mathbf{x})$ is a Schur-convex function on I^n

Theorem 2. Let $I \subset \mathbb{R}_+$ is a symmetric convex set with non-empty interior and let $f: I \to \mathbb{R}_+$ be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any k = 1, 2, ..., n, $F_k^*(\mathbf{x})$ is a Schurgeometrically convex function on I^n .

Theorem 3. Let $I \subset \mathbb{R}_+$ is a symmetric convex set with non-empty interior and let $f: I \to \mathbb{R}_+$ be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any k = 1, 2, ..., n, $F_k^*(\mathbf{x})$ is a Schurharmonically convex function on I^n .

2. Lemmas

To prove the above three theorems, we need the following lemmas.

Lemma 1. [1, p. 67],[2] If φ is symmetric and convex (concave) on symmetric convex set Ω , then φ is Schur-convex (Schur-concave) on Ω .

Lemma 2. [1, p. 73],[2] Let $\Omega \subset \mathbb{R}^n$, $\varphi \colon \Omega \to \mathbb{R}_+$. Then $\log \varphi$ is Schur-convex (Schur-concave) if and only if φ is Schur-convex (Schur-concave).

Lemma 3. [1, p. 642],[2] Let $\Omega \subset \mathbb{R}^n$ be open convex set, $\varphi : \Omega \to \mathbb{R}$. For $x, y \in \Omega$, defined one variable function $g(t) = \varphi(tx + (1 - t)y)$ on interval (0, 1). Then φ is convex (concave) on Ω if and only if g is convex (concave) on [0, 1] for all $x, y \in \Omega$.

Lemma 4. Let $\boldsymbol{x} = (x_1, \ldots, x_m)$ and $\boldsymbol{y} = (y_1, \ldots, y_m) \in \mathbb{R}^m$. If f is a log-convex function, then the functions $p(t) = \log g(t)$ is convex on [0, 1], where

$$g(t) = \sum_{j=1}^{m} f(tx_j + (1-t)y_j).$$

Proof.

$$p^{'}(t) = rac{g^{'}(t)}{g(t)}.$$

where

$$g'(t) = \sum_{j=1}^{m} (x_j - y_j) f'(tx_j + (1 - t)y_j).$$
$$p''(t) = \frac{g''(t)g(t) - (g'(t))^2}{g^2(t)},$$

where

$$g''(t) = \sum_{j=1}^{m} (x_j - y_j)^2 f''(tx_j + (1-t)y_j),$$

by the Cauchy inequality, we have

$$g''(t)g(t) - (g'(t))^{2}$$

$$= \left(\sum_{j=1}^{m} (x_{j} - y_{j})^{2} f''(tx_{j} + (1 - t)y_{j})\right) \left(\sum_{j=1}^{m} f(tx_{j} + (1 - t)y_{j})\right)$$

$$- \left(\sum_{j=1}^{m} (x_{j} - y_{j}) f'(tx_{j} + (1 - t)y_{j})\right)^{2}$$

$$\geq \left(\sum_{j=1}^{m} |x_{j} - y_{j}| \sqrt{f''(tx_{j} + (1 - t)y_{j})} \cdot \sqrt{f(tx_{j} + (1 - t)y_{j})}\right)^{2}$$

$$- \left(\sum_{j=1}^{m} (x_{j} - y_{j}) f'(tx_{j} + (1 - t)y_{j})\right)^{2}$$

From the log-convexity of f it follows that $(log f(u))'' = \frac{f''(u)f(u) - (f'(u))^2}{f^2(u)} \ge 0$, hence

$$\sqrt{f''(tx_j + (1-t)y_j)} \cdot \sqrt{f(tx_j + (1-t)y_j)} \ge f'(tx_j + (1-t)y_j)$$

and then $g''(t)g(t) - (g'(t))^2 \ge 0$, i.e. $p''(t) \ge 0$, that is $p(t) = \log g(t)$ is convex on [0, 1].

The proof of Lemma 4 is completed.

4

Lemma 5. Let

$$f(t) = \frac{x^t - 1}{t}.$$

If x > 1, then f(t) is a log-convex function on \mathbb{R}_+ .

Proof. By computing, we have

$$(\log f(t))^{''} = -\frac{x^t(\log x)^2}{(x^t - 1)^2} + \frac{1}{t^2}.$$

We need only prove $(\log f(t))'' \ge 0$. It equivalent to

$$x^{2}x^{t}(\log x)^{2} \le (x^{t}-1)^{2}.$$
 (6)

In both sides the inequality (6), extracting the square root and dividing by x^t , then the inequality (6) equivalent to

$$g(t) := x^{\frac{t}{2}} - x^{-\frac{t}{2}} - t \log x \ge 0.$$

When x > 1, $g'(x) = \frac{1}{2} \log x \left(x^{\frac{t}{2}} - x^{-\frac{t}{2}} - 2 \right) \ge 0$, hence g(t) is increasing on \mathbb{R}_+ , and then $g(t) \ge g(0) = 0$, that is $(\log f(t))'' \ge 0$.

The proof of Lemma 5 is completed.

3. Proof of Main Results

Proof of Theorem 1: For any $1 \le i_1 < \cdots < i_k \le n$, by Lemma 3 and Lemma 4, it follows that $\ln \sum_{j=1}^k f(x_{i_j})$ is convex on I^k . Obviously, $\ln \sum_{j=1}^k f(x_{i_j})$ is also convex on I^n , and then $\log F_k^*(\boldsymbol{x}) = \sum_{1 \le i_1 < \cdots < i_k \le n} \log \sum_{j=1}^k f(x_{i_j})$ is convex on I^n . Furthermore, it is clear that $\log F_k^*(\boldsymbol{x})$ is symmetric on I^n , by Lemma 1, it follows that $\log F_k^*(\boldsymbol{x})$ is Schur-convex on I^n , and then from Lemma 2 we conclude that $F_k^*(\boldsymbol{x})$ is also Schur-convex on I^n .

The proof of Theorem 1 is completed.

Proof of Theorem 2: For $x \in I \subset \mathbb{R}_+$ and $x_1 \neq x_2$, we have

$$\begin{aligned} \Delta &= \left(\log x_1 - \log x_2\right) \left(x_1 \frac{\partial F_k^*}{\partial x_1} - x_2 \frac{\partial F_k^*}{\partial x_2} \right) \\ &= \left(\log x_1 - \log x_2\right) \left(x_1 \frac{\partial F_k^*}{\partial x_1} - x_1 \frac{\partial F_k^*}{\partial x_2} + x_1 \frac{\partial F_k^*}{\partial x_2} - x_2 \frac{\partial F_k^*}{\partial x_2} \right) \\ &= x_1 \frac{\log x_1 - \log x_2}{x_1 - x_2} \left(x_1 - x_2 \right) \left(\frac{\partial F_k^*}{\partial x_1} - \frac{\partial F_k^*}{\partial x_2} \right) + \frac{\partial F_k^*}{\partial x_2} \left(x_1 - x_2 \right) \left(\log x_1 - \log x_2 \right) \end{aligned}$$

Since $F_k^*(\boldsymbol{x})$ is Schur-convex on I^n , by Theorem A, we have

$$(x_1 - x_2)\left(\frac{\partial F_k^*}{\partial x_1} - \frac{\partial F_k^*}{\partial x_2}\right) \ge 0.$$

Notice that f and $\log t$ is increasing, we have $\frac{\partial F_k^*}{\partial x_2} \ge 0$, $\frac{\log x_1 - \log x_2}{x_1 - x_2} \ge 0$ and $(x_1 - x_2) (\log x_1 - \log x_2) \ge 0$, so that $\Delta \ge 0$, by Theorem B, it follows that $F_k^*(\boldsymbol{x})$ is Schur-geometric convex on I^n .

Proof of Theorem 3: The proof of Theorem 3 similar to Theorem 2, the detailed proof is left to the reader.

Remark 1. If using the decision theorems, i.e. Theorem A, Theorem B and Theorem C respectively direct to prove Theorem 1, Theorem 2 and Theorem 3, I am afraid not above proofs are simple, interested readers may wish to try.

4. Applications

Theorem 4. The symmetric function

$$Q_k(\boldsymbol{x}) = \prod_{1 \le i_1 < \dots < i_k \le n} \sum_{j=1}^k \frac{1 + x_{i_j}}{1 - x_{i_j}}, \ k = 1, \dots, n.$$
(7)

is Schur-convex function, Schur-geometrically and harmonically convex function on $(0,1)^n$. And for $\boldsymbol{x} \in (0,1)^n$, we have

$$\prod_{\leq i_1 < \dots < i_k \leq n} \sum_{j=1}^k \frac{1+x_{i_j}}{1-x_{i_j}} \ge \left(\frac{k(n+s)}{n-s}\right)^{C_n^k}, \ k = 1, \dots, n.$$
(8)

where $s = \sum_{i=1}^{n} x_i$ and $C_n^k = \frac{n!}{k!(n-k)!}$.

Proof. Let $f(x) = \frac{1+x}{1-x}, x \in (0,1)$. By computing, we have $f'(x) = \frac{2}{(1-x)^2} > 0$ and $\log(f(x))'' = \frac{4x}{(1+x)^2(1-x)^2} \ge 0$, that is f is an increasing log-convex function. By Theorem 1, Theorem 2 and Theorem 3, it follows that $Q_k(\boldsymbol{x})$ is respectively Schur-convex function, Schur-geometrically and harmonically convex function on $(0,1)^n$.

Since $\boldsymbol{y} = \left(\frac{s}{n}, \frac{s}{n}, ..., \frac{s}{n}\right) \prec \boldsymbol{x} = (x_1, x_2, ..., x_n)$, from Schur-convexity of $G_k(\boldsymbol{x})$, it follows that $Q_k(\boldsymbol{y}) \leq Q_k(\boldsymbol{x})$, i.e. inequality (7) holds.

The proof of Theorem 4 is completed.

Specially, taking k = 1, s = 1, from the inequality (8) we can get the known Klamkin inequality:

$$\prod_{i=1}^{n} \frac{1+x_i}{1-x_i} \ge \left(\frac{n+1}{n-1}\right)^n.$$
(9)

By analogous proof with Theorem 4, we can obtain the following theorem.

Theorem 5. The symmetric function

$$R_k(\boldsymbol{x}) = \prod_{1 \le i_1 < \dots < i_k \le n} \sum_{j=1}^k \frac{x_{i_j}}{1 - x_{i_j}}, \ k = 1, \dots, n.$$
(10)

is Schur-convex function, Schur-geometrically and harmonically convex function on $[\frac{1}{2},1)^n$. And for $x \in [\frac{1}{2},1)^n$, we have

$$\prod_{i_1 < \dots < i_k \le n} \sum_{j=1}^k \frac{x_{i_j}}{1 - x_{i_j}} \ge \left(\frac{ks}{n-s}\right)^{C_n^k}, \ k = 1, \dots, n.$$
(11)

where $s = \sum_{i=1}^{n} x_i$ and $C_n^k = \frac{n!}{k!(n-k)!}$.

Theorem 6. The symmetric function

$$D_k(\boldsymbol{x}) = \prod_{1 \le i_1 < \dots < i_k \le n} \sum_{j=1}^k x_{i_j}^{x_{i_j}}, \ k = 1, \dots, n.$$
(12)

is Schur-convex on \mathbb{R}^n_+ and Schur-geometric and harmonic convex on $[e^{-1},\infty)^n$. And for $\boldsymbol{x} \in \mathbb{R}^n_+$, we have

$$\prod_{i_1 < \ldots < i_k \le n} \sum_{j=1}^k x_{i_j}^{x_{i_j}} \ge \left(k[A(\boldsymbol{x})]^{A(\boldsymbol{x})} \right)^{C_n^k}, \ k = 1, \ldots, n.$$
(13)

where $A(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $C_n^k = \frac{n!}{k!(n-k)!}$.

7

Proof. It is not difficult to verify that x^x is log-convex function on $(0,\infty)$ and increasing on $[e^{-1},\infty)$. By Theorem 1, Theorem 2 and Theorem 3, it follows that $D_k(\boldsymbol{x})$ is Schur-convex on \mathbb{R}^n_+ and Schur-geometric and harmonic convex on $[e^{-1},\infty)^n$.

Since $\boldsymbol{y} = (A(\boldsymbol{x}), A(\boldsymbol{x}), ..., A(\boldsymbol{x})) \prec \boldsymbol{x} = (x_1, x_2, ..., x_n)$, from Schur-convexity of $D_k(\boldsymbol{x})$, it follows that $D_k(\boldsymbol{y}) \leq D_k(\boldsymbol{x})$, i.e. inequality (11) holds.

The proof of Theorem 6 is completed.

From Lemma 5 and Theorem 1, we can obtain the following Theorem 2.

Theorem 7. Let x > 1.

$$P_k(t) = \prod_{1 \le i_1 < \dots < i_k \le n} \sum_{j=1}^k \frac{x^{t_{i_j}} - 1}{t_{i_j}}, \ k = 1, \dots, n.$$
(14)

is Schur-convex on \mathbb{R}^n_+ . And for $t \in \mathbb{R}^n_+$, we have

$$\prod_{1 \le i_1 < \dots < i_k \le n} \sum_{j=1}^k \frac{x^{t_{i_j}} - 1}{t_{i_j}} \ge \left(\frac{k(x^{A(t)} - 1)}{A(t)}\right)^{C_n^k}, \ k = 1, \dots, n.$$
(15)

where $A(t) = \frac{1}{n} \sum_{i=1}^{n} t_i$ and $C_n^k = \frac{n!}{k!(n-k)!}$.

Specially, taking n = 2, k = 1 and $\mathbf{t} = (m + r, m - r)$, from the inequality (15) we can get the known inequality:

$$(x^{m-r}-1)(x^{m+r}-1) \ge \left(1 - \frac{r^2}{m^2}\right)(x^m-1)^2,\tag{16}$$

where $r \in \mathbb{N}, m \geq 2, r < m$.

Theorem 8. Let $0 < \mu(E) < \infty, 1 < p < \infty$ and let

$$N_{p}(f) = \left(\frac{1}{\mu(E)} \int_{E} |f|^{p} d\mu\right)^{\frac{1}{p}}.$$
(17)

Then

$$B_k(\mathbf{p}) = \prod_{1 \le i_1 < \dots < i_k \le n} \sum_{j=1}^k (N_{p_i}(f))^{p_i}, \ k = 1, \dots, n.$$
(18)

is Schur-convex function, Schur-geometrically and harmonically convex function on $[1,\infty)^n$.

Proof. Since $(N_p(f))^p$ is an increasing log-convex function (see[7], p.36), from Theorem 1, Theorem 2 and Theorem 3, it follows that Theorem 7 holds.

Acknowledgment

Shi was supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201111417006). This article was typeset by using \mathcal{AMS} -LATEX.

H.-N. SHI AND J. ZHANG

References

- A. W.Marshall, I.Olkin and B.C.Arnold, Inequalities: theory of majorization and its application (Second Edition). New York : Springer Press, 2011
- B.-Y. Wang, Foundations of majorization inequalities, Beijing Normal Univ. Press, Beijing, China, (Chinese) 1990 (in Chinese).
- [3] X.-M. Zhang, Geometrically Convex Functions, An'hui University Press, Hefei, 2004 (in Chinese).
- [4] Y.-M. Chu, T.-C. Sun, The Schur harmonic convexity for a class of symmetric functions. Acta Mathematica Scientia 2010, 30B (5):1501-1506.
- [5] Ionel Roventa, Schur convexity of a class of symmetric functions, Annals of the University of Craiova, Mathematics and Computer Science Series, 201037(1), 12-18.
- [6] S.-H. Wang T.-Y. Zhang and Z.-Q. Hua, Schur Convexity and Schur Multiplicatively Convexity and Schur Harmonic Convexity for a Class of Symmetric Functions, Journal of Inner Mongolia University for the Nationalities (Natural Sciences), 2011, 26(4), 387-390.
- [7] J. C. Kuang, Applied Inequalities, (Chang yong bu deng shi)4nd ed., Shandong Press of science and technology, Jinan, China, 2010. (in Chinese).
- [8] H.-N.Shi, Theory of majorization and analytic Inequalities, Harbin Institute of Technology Press, Harbin, China, 2012 (in Chinese).

(H.-N. Shi) DEPARTMENT OF ELECTRONIC INFORMATION, TEACHER'S COLLEGE, BEIJING UNION UNIVERSITY, BEIJING CITY, 100011, P.R.CHINA

 $E\text{-}mail\ address:\ \texttt{shihuannan@yahoo.com.cn, sfthuannan@buu.com.cn}$

(J. Zhang) DEPARTMENT OF ELECTRONIC INFORMATION, TEACHER'S COLLEGE, BEIJING UNION UNIVERSITY, BEIJING CITY, 100011, P.R.CHINA

E-mail address: sftzhangjian@buu.com.cn