SCHUR-CONVEXITY, SCHUR-GEOMETRIC AND HARMONIC CONVEXITIES OF DUAL FORM OF A CLASS SYMMETRIC FUNCTIONS

HUAN-NAN SHI AND JIAN ZHANG

Abstract

By properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, Schur-convexity, Schurgeometric and harmonic convexities of the dual form for a class of symmetric functions are simply proved. As an application, several inequalities are obtained, some of which extend the known ones. 2000 Mathematics Subject Classification: Primary 26D15; 05E05; 26B25. Keywords: Schur-convexity; Schur-geometric convexity; Schur-harmonic convexity; inequality; log-convex function; symmetric functions; dual form

1. Introduction

Throughout the article, \mathbb{R} denotes the set of real numbers, $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

$$
\begin{aligned}
& \mathbb{R}^{n}=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}, i=1, \ldots, n\right\} \\
& \mathbb{R}_{+}^{n}=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i}>0, i=1, \ldots, n\right\}
\end{aligned}
$$

In particular, the notations \mathbb{R} and \mathbb{R}_{+}denote \mathbb{R}^{1} and \mathbb{R}_{+}^{1} respectively.
For convenience, we introduce some definitions as follows.
Definition 1. [1, 2] Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) $\boldsymbol{x} \geq \boldsymbol{y}$ means $x_{i} \geq y_{i}$ for all $i=1,2, \ldots, n$.
(ii) Let $\Omega \subset \mathbb{R}^{n}, \varphi: \Omega \rightarrow \mathbb{R}$ is said to be increasing if $\boldsymbol{x} \geq \boldsymbol{y}$ implies $\varphi(\boldsymbol{x}) \geq$ $\varphi(\boldsymbol{y}) . \varphi$ is said to be decreasing if and only if $-\varphi$ is increasing.

Definition 2. $[1,2]$ Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) \boldsymbol{x} is said to be majorized by \boldsymbol{y} (in symbols $\boldsymbol{x} \prec \boldsymbol{y}$) if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k=1,2, \ldots, n-1$ and $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of \boldsymbol{x} and \boldsymbol{y} in a descending order.
(ii) Let $\Omega \subset \mathbb{R}^{n}, \varphi: \Omega \rightarrow \mathbb{R}$ is said to be a Schur-convex function on Ω if $\boldsymbol{x} \prec \boldsymbol{y}$ on Ω implies $\varphi(\boldsymbol{x}) \leq \varphi(\boldsymbol{y}) . \varphi$ is said to be a Schur-concave function on Ω if and only if $-\varphi$ is Schur-convex function on Ω.

Definition 3. $[1,2]$ Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) $\Omega \subset \mathbb{R}^{n}$ is said to be a convex set if $\boldsymbol{x}, \boldsymbol{y} \in \Omega, 0 \leq \alpha \leq 1$ implies $\alpha \boldsymbol{x}+(1-$ $\alpha) \boldsymbol{y}=\left(\alpha x_{1}+(1-\alpha) y_{1}, \ldots, \alpha x_{n}+(1-\alpha) y_{n}\right) \in \Omega$.
(ii) Let $\Omega \subset \mathbb{R}^{n}$ be convex set. A function $\varphi: \Omega \rightarrow \mathbb{R}$ is said to be a convex function on Ω if

$$
\varphi(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq \alpha \varphi(\boldsymbol{x})+(1-\alpha) \varphi(\boldsymbol{y})
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$, and all $\alpha \in[0,1] . \varphi$ is said to be a concave function on Ω if and only if $-\varphi$ is convex function on Ω.
(iii) Let $\Omega \subset \mathbb{R}^{n}$. A function $\varphi: \Omega \rightarrow \mathbb{R}$ is said to be a log-convex function on Ω if function $\ln \varphi$ is convex.
Theorem A. (Schur-Convex Function Decision Theorem)[1, p. 5]: Let $\Omega \subset \mathbb{R}^{n}$ is symmetric and has a nonempty interior convex set. Ω^{0} is the interior of $\Omega . \varphi: \Omega \rightarrow$ \mathbb{R} is continuous on Ω and differentiable in Ω^{0}. Then φ is the Schur-convex (Schur-concave) function, if and only if φ is symmetric on Ω and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(\frac{\partial \varphi}{\partial x_{1}}-\frac{\partial \varphi}{\partial x_{2}}\right) \geq 0(\leq 0) \tag{1}
\end{equation*}
$$

holds for any $\boldsymbol{x} \in \Omega^{0}$.
Definition 4. [3] Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}$.
(i) $\Omega \subset \mathbb{R}_{+}^{n}$ is called a geometrically convex set if $\left(x_{1}^{\alpha} y_{1}^{\beta}, \ldots, x_{n}^{\alpha} y_{n}^{\beta}\right) \in \Omega$ for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$ and $\alpha, \beta \in[0,1]$ such that $\alpha+\beta=1$.
(ii) Let $\Omega \subset \mathbb{R}_{+}^{n}$. The function $\varphi: \Omega \rightarrow \mathbb{R}_{+}$is said to be Schur-geometrically convex function on Ω if $\left(\ln x_{1}, \ldots, \ln x_{n}\right) \prec\left(\ln y_{1}, \ldots, \ln y_{n}\right)$ on Ω implies $\varphi(\boldsymbol{x}) \leq \varphi(\boldsymbol{y})$. The function φ is said to be a Schur-geometrically concave function on Ω if and only if $-\varphi$ is Schur-geometrically convex function.

Theorem B. (Schur-Geometrically Convex Function Decision Theorem)[3]: Let $\Omega \subset \mathbb{R}_{+}^{n}$ be a symmetric and geometrically convex set with a nonempty interior Ω^{0}. Let $\varphi: \Omega \rightarrow \mathbb{R}_{+}$be continuous on Ω and differentiable in Ω^{0}. If φ is symmetric on Ω and

$$
\begin{equation*}
\left(\log x_{1}-\log x_{2}\right)\left(x_{1} \frac{\partial \varphi}{\partial x_{1}}-x_{2} \frac{\partial \varphi}{\partial x_{2}}\right) \geq 0 \quad(\leq 0) \tag{2}
\end{equation*}
$$

holds for any $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right) \in \Omega^{0}$, then φ is a Schur-geometrically convex (Schurgeometrically concave) function.

Definition 5. [4] Let $\Omega \subset \mathbb{R}_{+}^{n}$.
(1) A set Ω is said to be harmonically convex if $\frac{\boldsymbol{x} \boldsymbol{y}}{\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}} \in \Omega$ for every $\boldsymbol{x}, \boldsymbol{y} \in \Omega$ and $\lambda \in[0,1]$, where $\boldsymbol{x} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}$ and $\frac{1}{\boldsymbol{x}}=\left(\frac{1}{x_{1}}, \cdots, \frac{1}{x_{n}}\right)$.
(2) A function $\varphi: \Omega \rightarrow \mathbb{R}_{+}$is said to be Schur-harmonically convex on Ω if $\frac{1}{\boldsymbol{x}} \prec \frac{1}{\boldsymbol{y}}$ implies $\varphi(\boldsymbol{x}) \leq \varphi(\boldsymbol{y})$.
Theorem C. (Schur-Harmonically Convex Function Decision Theorem)[4]: Let $\Omega \subset \mathbb{R}_{+}^{n}$ be a symmetric and harmonically convex set with inner points and let $\varphi: \Omega \rightarrow \mathbb{R}_{+}$be a continuously symmetric function which is differentiable on Ω°. Then φ is Schur-harmonically convex(Schur-harmonically concave) on Ω if and only if

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(x_{1}^{2} \frac{\partial \varphi(\boldsymbol{x})}{\partial x_{1}}-x_{2}^{2} \frac{\partial \varphi(\boldsymbol{x})}{\partial x_{2}}\right) \geq 0 \quad(\leq 0), \quad \boldsymbol{x} \in \Omega^{\circ} \tag{3}
\end{equation*}
$$

Let interval $I \subset \mathbb{R}$ and let $\varphi: I \rightarrow \mathbb{R}_{+}$be a log-convex function. Define the symmetric function F_{k} by

$$
\begin{equation*}
F_{k}(\boldsymbol{x})=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \prod_{j=1}^{k} f\left(x_{i_{j}}\right), k=1, \ldots, n \tag{4}
\end{equation*}
$$

In 2010, for 1,2 and $n-1$, I. Roventa [5]proved that $F_{k}(\boldsymbol{x})$ is a Schur-convex function on I^{n}, but without discuss the case of $2<k<n-1$. In 2011, Shu-hong Wang et al.[6] studied completely Schur convexity, Schur geometric and harmonic convexities of $F_{k}(\boldsymbol{x})$ on I^{n}, using the above decision theorems, i.e. Theorem A,Theorem B and Theorem C respectively to prove the following three theorems.

Theorem D. Let $I \subset \mathbb{R}$ is a symmetric convex set with non-empty interior and let $f: I \rightarrow \mathbb{R}$ be continuous on I and differentiable in the interior of I. If f is a log-convex function, then for any $k=1,2, \ldots, n, F_{k}(\boldsymbol{x})$ is a Schur-convex function on I^{n}

Theorem E. Let $I \subset \mathbb{R}_{+}$is a symmetric convex set with non-empty interior and let $f: I \rightarrow \mathbb{R}_{+}$be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any $k=1,2, \ldots, n, F_{k}(\boldsymbol{x})$ is a Schurgeometrically convex function on I^{n}.

Theorem F. Let $I \subset \mathbb{R}_{+}$is a symmetric convex set with non-empty interior and let $f: I \rightarrow \mathbb{R}_{+}$be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any $k=1,2, \ldots, n, F_{k}(\boldsymbol{x})$ is a Schurharmonically convex function on I^{n}.

In this paper, we study the dual form of $F_{k}(\boldsymbol{x})$:

$$
\begin{equation*}
F_{k}^{*}(\boldsymbol{x})=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} f\left(x_{i_{j}}\right), k=1, \ldots, n \tag{5}
\end{equation*}
$$

By properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we obtained the following results:

Theorem 1. Let $I \subset \mathbb{R}$ is a symmetric convex set with non-empty interior and let $f: I \rightarrow \mathbb{R}$ be continuous on I and differentiable in the interior of I. If f is a log-convex function, then for any $k=1,2, \ldots, n, F_{k}^{*}(\boldsymbol{x})$ is a Schur-convex function on I^{n}

Theorem 2. Let $I \subset \mathbb{R}_{+}$is a symmetric convex set with non-empty interior and let $f: I \rightarrow \mathbb{R}_{+}$be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any $k=1,2, \ldots, n, F_{k}^{*}(\boldsymbol{x})$ is a Schurgeometrically convex function on I^{n}.

Theorem 3. Let $I \subset \mathbb{R}_{+}$is a symmetric convex set with non-empty interior and let $f: I \rightarrow \mathbb{R}_{+}$be continuous on I and differentiable in the interior of I. If f is an increasing log-convex function, then for any $k=1,2, \ldots, n, F_{k}^{*}(\boldsymbol{x})$ is a Schurharmonically convex function on I^{n}.

2. Lemmas

To prove the above three theorems, we need the following lemmas.
Lemma 1. [1, p. 67],[2] If φ is symmetric and convex (concave) on symmetric convex set Ω, then φ is Schur-convex (Schur-concave) on Ω.

Lemma 2. [1, p. 73],[2] Let $\Omega \subset \mathbb{R}^{n}, \varphi: \Omega \rightarrow \mathbb{R}_{+}$. Then $\log \varphi$ is Schur-convex (Schur-concave) if and only if φ is Schur-convex (Schur-concave).

Lemma 3. [1, p. 642],[2] Let $\Omega \subset \mathbb{R}^{n}$ be open convex set, $\varphi: \Omega \rightarrow \mathbb{R}$. For $\boldsymbol{x}, \boldsymbol{y} \in \Omega$, defined one variable function $g(t)=\varphi(t \boldsymbol{x}+(1-t) \boldsymbol{y})$ on interval $(0,1)$. Then φ is convex (concave) on Ω if and only if g is convex (concave) on $[0,1]$ for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$.

Lemma 4. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. If f is a log-convex function, then the functions $p(t)=\log g(t)$ is convex on $[0,1]$, where

$$
g(t)=\sum_{j=1}^{m} f\left(t x_{j}+(1-t) y_{j}\right)
$$

Proof.

$$
p^{\prime}(t)=\frac{g^{\prime}(t)}{g(t)}
$$

where

$$
\begin{gathered}
g^{\prime}(t)=\sum_{j=1}^{m}\left(x_{j}-y_{j}\right) f^{\prime}\left(t x_{j}+(1-t) y_{j}\right) \\
p^{\prime \prime}(t)=\frac{g^{\prime \prime}(t) g(t)-\left(g^{\prime}(t)\right)^{2}}{g^{2}(t)}
\end{gathered}
$$

where

$$
g^{\prime \prime}(t)=\sum_{j=1}^{m}\left(x_{j}-y_{j}\right)^{2} f^{\prime \prime}\left(t x_{j}+(1-t) y_{j}\right)
$$

by the Cauchy inequality, we have

$$
\begin{aligned}
& g^{\prime \prime}(t) g(t)-\left(g^{\prime}(t)\right)^{2} \\
&=\left(\sum_{j=1}^{m}\left(x_{j}-y_{j}\right)^{2} f^{\prime \prime}\left(t x_{j}+(1-t) y_{j}\right)\right)\left(\sum_{j=1}^{m} f\left(t x_{j}+(1-t) y_{j}\right)\right) \\
&-\left(\sum_{j=1}^{m}\left(x_{j}-y_{j}\right) f^{\prime}\left(t x_{j}+(1-t) y_{j}\right)\right)^{2} \\
& \geq\left(\sum_{j=1}^{m}\left|x_{j}-y_{j}\right| \sqrt{f^{\prime \prime}\left(t x_{j}+(1-t) y_{j}\right)} \cdot \sqrt{f\left(t x_{j}+(1-t) y_{j}\right)}\right)^{2} \\
&-\left(\sum_{j=1}^{m}\left(x_{j}-y_{j}\right) f^{\prime}\left(t x_{j}+(1-t) y_{j}\right)\right)^{2}
\end{aligned}
$$

From the log-convexity of f it follows that $(\log f(u))^{\prime \prime}=\frac{f^{\prime \prime}(u) f(u)-\left(f^{\prime}(u)\right)^{2}}{f^{2}(u)} \geq 0$, hence

$$
\sqrt{f^{\prime \prime}\left(t x_{j}+(1-t) y_{j}\right)} \cdot \sqrt{f\left(t x_{j}+(1-t) y_{j}\right)} \geq f^{\prime}\left(t x_{j}+(1-t) y_{j}\right)
$$

and then $g^{\prime \prime}(t) g(t)-\left(g^{\prime}(t)\right)^{2} \geq 0$, i.e. $p^{\prime \prime}(t) \geq 0$, that is $p(t)=\log g(t)$ is convex on $[0,1]$.

The proof of Lemma 4 is completed.

Lemma 5. Let

$$
f(t)=\frac{x^{t}-1}{t}
$$

If $x>1$, then $f(t)$ is a log-convex function on \mathbb{R}_{+}.
Proof. By computing, we have

$$
(\log f(t))^{\prime \prime}=-\frac{x^{t}(\log x)^{2}}{\left(x^{t}-1\right)^{2}}+\frac{1}{t^{2}}
$$

We need only prove $(\log f(t))^{\prime \prime} \geq 0$. It equivalent to

$$
\begin{equation*}
t^{2} x^{t}(\log x)^{2} \leq\left(x^{t}-1\right)^{2} \tag{6}
\end{equation*}
$$

In both sides the inequality (6), extracting the square root and dividing by x^{t}, then the inequality (6) equivalent to

$$
g(t):=x^{\frac{t}{2}}-x^{-\frac{t}{2}}-t \log x \geq 0
$$

When $x>1, g^{\prime}(x)=\frac{1}{2} \log x\left(x^{\frac{t}{2}}-x^{-\frac{t}{2}}-2\right) \geq 0$, hence $g(t)$ is increasing on \mathbb{R}_{+}, and then $g(t) \geq g(0)=0$, that is $(\log f(t))^{\prime \prime} \geq 0$.

The proof of Lemma 5 is completed.

3. Proof of Main Results

Proof of Theorem 1: For any $1 \leq i_{1}<\cdots<i_{k} \leq n$, by Lemma 3 and Lemma 4, it follows that $\ln \sum_{j=1}^{k} f\left(x_{i_{j}}\right)$ is convex on I^{k}. Obviously, $\ln \sum_{j=1}^{k} f\left(x_{i_{j}}\right)$ is also convex on I^{n}, and then $\log F_{k}^{*}(\boldsymbol{x})=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \log \sum_{j=1}^{k} f\left(x_{i_{j}}\right)$ is convex on I^{n}. Furthermore, it is clear that $\log F_{k}^{*}(\boldsymbol{x})$ is symmetric on I^{n}, by Lemma 1, it follows that $\log F_{k}^{*}(\boldsymbol{x})$ is Schur-convex on I^{n}, and then from Lemma 2 we conclude that $F_{k}^{*}(\boldsymbol{x})$ is also Schur-convex on I^{n}.

The proof of Theorem 1 is completed.
Proof of Theorem 2: For $\boldsymbol{x} \in I \subset \mathbb{R}_{+}$and $x_{1} \neq x_{2}$, we have

$$
\begin{aligned}
& \Delta=\left(\log x_{1}-\log x_{2}\right)\left(x_{1} \frac{\partial F_{k}^{*}}{\partial x_{1}}-x_{2} \frac{\partial F_{k}^{*}}{\partial x_{2}}\right) \\
& =\left(\log x_{1}-\log x_{2}\right)\left(x_{1} \frac{\partial F_{k}^{*}}{\partial x_{1}}-x_{1} \frac{\partial F_{k}^{*}}{\partial x_{2}}+x_{1} \frac{\partial F_{k}^{*}}{\partial x_{2}}-x_{2} \frac{\partial F_{k}^{*}}{\partial x_{2}}\right) \\
& =x_{1} \frac{\log x_{1}-\log x_{2}}{x_{1}-x_{2}}\left(x_{1}-x_{2}\right)\left(\frac{\partial F_{k}^{*}}{\partial x_{1}}-\frac{\partial F_{k}^{*}}{\partial x_{2}}\right)+\frac{\partial F_{k}^{*}}{\partial x_{2}}\left(x_{1}-x_{2}\right)\left(\log x_{1}-\log x_{2}\right)
\end{aligned}
$$

Since $F_{k}^{*}(\boldsymbol{x})$ is Schur-convex on I^{n}, by Theorem A, we have

$$
\left(x_{1}-x_{2}\right)\left(\frac{\partial F_{k}^{*}}{\partial x_{1}}-\frac{\partial F_{k}^{*}}{\partial x_{2}}\right) \geq 0
$$

Notice that f and $\log t$ is increasing, we have $\frac{\partial F_{k}^{*}}{\partial x_{2}} \geq 0, \frac{\log x_{1}-\log x_{2}}{x_{1}-x_{2}} \geq 0$ and $\left(x_{1}-x_{2}\right)\left(\log x_{1}-\log x_{2}\right) \geq 0$, so that $\Delta \geq 0$, by Theorem B, it follows that $F_{k}^{*}(\boldsymbol{x})$ is Schur-geometric convex on I^{n}.

Proof of Theorem 3: The proof of Theorem 3 similar to Theorem 2, the detailed proof is left to the reader.
Remark 1. If using the decision theorems, i.e. Theorem A, Theorem B and Theorem C respectively direct to prove Theorem 1, Theorem 2 and Theorem 3, I am afraid not above proofs are simple, interested readers may wish to try.

4. Applications

Theorem 4. The symmetric function

$$
\begin{equation*}
Q_{k}(\boldsymbol{x})=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} \frac{1+x_{i_{j}}}{1-x_{i_{j}}}, k=1, \ldots, n . \tag{7}
\end{equation*}
$$

is Schur-convex function, Schur-geometrically and harmonically convex function on $(0,1)^{n}$. And for $\boldsymbol{x} \in(0,1)^{n}$, we have

$$
\begin{equation*}
\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} \frac{1+x_{i_{j}}}{1-x_{i_{j}}} \geq\left(\frac{k(n+s)}{n-s}\right)^{C_{n}^{k}}, k=1, \ldots, n \tag{8}
\end{equation*}
$$

where $s=\sum_{i=1}^{n} x_{i}$ and $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
Proof. Let $f(x)=\frac{1+x}{1-x}, x \in(0,1)$. By computing, we have $f^{\prime}(x)=\frac{2}{(1-x)^{2}}>0$ and $\log (f(x))^{\prime \prime}=\frac{4 x}{(1+x)^{2}(1-x)^{2}} \geq 0$, that is f is an increasing log-convex function. By Theorem 1, Theorem 2 and Theorem 3, it follows that $Q_{k}(\boldsymbol{x})$ is respectively Schur-convex function, Schur-geometrically and harmonically convex function on $(0,1)^{n}$.

Since $\boldsymbol{y}=\left(\frac{s}{n}, \frac{s}{n}, \ldots, \frac{s}{n}\right) \prec \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, from Schur-convexity of $G_{k}(\boldsymbol{x})$, it follows that $Q_{k}(\boldsymbol{y}) \leq Q_{k}(\boldsymbol{x})$, i.e. inequality (7) holds.

The proof of Theorem 4 is completed.
Specially, taking $k=1, s=1$, from the inequality (8) we can get the known Klamkin inequality:

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{1+x_{i}}{1-x_{i}} \geq\left(\frac{n+1}{n-1}\right)^{n} \tag{9}
\end{equation*}
$$

By analogous proof with Theorem 4, we can obtain the following theorem.
Theorem 5. The symmetric function

$$
\begin{equation*}
R_{k}(\boldsymbol{x})=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} \frac{x_{i_{j}}}{1-x_{i_{j}}}, k=1, \ldots, n \tag{10}
\end{equation*}
$$

is Schur-convex function, Schur-geometrically and harmonically convex function on $\left[\frac{1}{2}, 1\right)^{n}$. And for $\boldsymbol{x} \in\left[\frac{1}{2}, 1\right)^{n}$, we have

$$
\begin{equation*}
\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} \frac{x_{i_{j}}}{1-x_{i_{j}}} \geq\left(\frac{k s}{n-s}\right)^{C_{n}^{k}}, k=1, \ldots, n \tag{11}
\end{equation*}
$$

where $s=\sum_{i=1}^{n} x_{i}$ and $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
Theorem 6. The symmetric function

$$
\begin{equation*}
D_{k}(\boldsymbol{x})=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} x_{i_{j}}^{x_{i_{j}}}, k=1, \ldots, n \tag{12}
\end{equation*}
$$

is Schur-convex on \mathbb{R}_{+}^{n} and Schur-geometric and harmonic convex on $\left[e^{-1}, \infty\right)^{n}$. And for $\boldsymbol{x} \in \mathbb{R}_{+}^{n}$, we have

$$
\begin{equation*}
\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} x_{i_{j}}^{x_{i_{j}}} \geq\left(k[A(\boldsymbol{x})]^{A(\boldsymbol{x})}\right)^{C_{n}^{k}}, k=1, \ldots, n \tag{13}
\end{equation*}
$$

where $A(\boldsymbol{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.

Proof. It is not difficult to verify that x^{x} is log-convex function on $(0, \infty)$ and increasing on $\left[e^{-1}, \infty\right)$. By Theorem 1, Theorem 2 and Theorem 3, it follows that $D_{k}(\boldsymbol{x})$ is Schur-convex on \mathbb{R}_{+}^{n} and Schur-geometric and harmonic convex on $\left[e^{-1}, \infty\right)^{n}$.

Since $\boldsymbol{y}=(A(\boldsymbol{x}), A(\boldsymbol{x}), \ldots, A(\boldsymbol{x})) \prec \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, from Schur-convexity of $D_{k}(\boldsymbol{x})$, it follows that $D_{k}(\boldsymbol{y}) \leq D_{k}(\boldsymbol{x})$, i.e. inequality (11) holds.

The proof of Theorem 6 is completed.
From Lemma 5 and Theorem 1, we can obtain the following Theorem 2.
Theorem 7. Let $x>1$.

$$
\begin{equation*}
P_{k}(\boldsymbol{t})=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} \frac{x^{t_{i_{j}}}-1}{t_{i_{j}}}, k=1, \ldots, n \tag{14}
\end{equation*}
$$

is Schur-convex on \mathbb{R}_{+}^{n}. And for $\boldsymbol{t} \in \mathbb{R}_{+}^{n}$, we have

$$
\begin{equation*}
\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} \frac{x^{t_{i_{j}}}-1}{t_{i_{j}}} \geq\left(\frac{k\left(x^{A(\boldsymbol{t})}-1\right)}{A(\boldsymbol{t})}\right)^{C_{n}^{k}}, k=1, \ldots, n \tag{15}
\end{equation*}
$$

where $A(\boldsymbol{t})=\frac{1}{n} \sum_{i=1}^{n} t_{i}$ and $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
Specially, taking $n=2, k=1$ and $\boldsymbol{t}=(m+r, m-r)$, from the inequality (15) we can get the known inequality:

$$
\begin{equation*}
\left(x^{m-r}-1\right)\left(x^{m+r}-1\right) \geq\left(1-\frac{r^{2}}{m^{2}}\right)\left(x^{m}-1\right)^{2} \tag{16}
\end{equation*}
$$

where $r \in \mathbb{N}, m \geq 2, r<m$.
Theorem 8. Let $0<\mu(E)<\infty, 1 \leq p<\infty$ and let

$$
\begin{equation*}
N_{p}(f)=\left(\frac{1}{\mu(E)} \int_{E}|f|^{p} d \mu\right)^{\frac{1}{p}} \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
B_{k}(\boldsymbol{p})=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k}\left(N_{p_{i}}(f)\right)^{p_{i}}, k=1, \ldots, n \tag{18}
\end{equation*}
$$

is Schur-convex function, Schur-geometrically and harmonically convex function on $[1, \infty)^{n}$.

Proof. Since $\left(N_{p}(f)\right)^{p}$ is an increasing log-convex function (see[7], p.36), from Theorem 1, Theorem 2 and Theorem 3, it follows that Theorem 7 holds.

Acknowledgment

Shi was supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201111417006). This article was typeset by using $\mathcal{A} \mathcal{M} \mathcal{S}$-IATEX.

References

[1] A. W.Marshall, I.Olkin and B.C.Arnold, Inequalities: theory of majorization and its application (Second Edition). New York : Springer Press, 2011
[2] B.-Y. Wang, Foundations of majorization inequalities, Beijing Normal Univ. Press, Beijing, China, (Chinese) 1990 (in Chinese).
[3] X.-M. Zhang, Geometrically Convex Functions, An'hui University Press, Hefei, 2004 (in Chinese).
[4] Y.-M. Chu, T.-C. Sun, The Schur harmonic convexity for a class of symmetric functions. Acta Mathematica Scientia 2010, 30B (5):1501-1506.
[5] Ionel Roventa, Schur convexity of a class of symmetric functions, Annals of the University of Craiova, Mathematics and Computer Science Series, 201037(1), 12-18.
[6] S.-H. Wang T.-Y. Zhang and Z.-Q. Hua,Schur Convexity and Schur Multiplicatively Convexity and Schur Harmonic Convexity for a Class of Symmetric Functions,Journal of Inner Mongolia University for the Nationalities (Natural Sciences), 2011, 26(4), 387-390.
[7] J. C. Kuang, Applied Inequalities, (Chang yong bu deng shi)4nd ed., Shandong Press of science and technology, Jinan, China, 2010. (in Chinese).
[8] H.-N.Shi, Theory of majorization and analytic Inequalities, Harbin Institute of Technology Press,Harbin, China, 2012 (in Chinese).
(H.-N. Shi) Department of Electronic Information, Teacher's College, Beijing Union University, Beijing City, 100011, P.R.China

E-mail address: shihuannan@yahoo.com.cn, sfthuannan@buu.com.cn
(J. Zhang) Department of Electronic Information, Teacher's College, Beijing Union University, Beijing City, 100011, P.R.China

E-mail address: sftzhangjian@buu.com.cn

