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Abstract. By properties of Schur-convex function, Schur-geometrically con-
vex function and Schur-harmonically convex function, Schur-convexity, Schur-

geometric and harmonic convexities of the dual form for a class of symmetric
functions are simply proved. As an application, several inequalities are ob-
tained, some of which extend the known ones.
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1. Introduction

Throughout the article, R denotes the set of real numbers, x = (x1, x2, . . . , xn)
denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

Rn = {x = (x1, . . . , xn) : xi ∈ R, i = 1, . . . , n} ,

Rn
+ = {x = (x1, . . . , xn) : xi > 0, i = 1, . . . , n}.

In particular, the notations R and R+ denote R1 and R1
+ respectively.

For convenience, we introduce some definitions as follows.

Definition 1. [1, 2] Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n.
(ii) Let Ω ⊂ Rn, φ: Ω → R is said to be increasing if x ≥ y implies φ(x) ≥

φ(y). φ is said to be decreasing if and only if −φ is increasing.

Definition 2. [1, 2] Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i]
for k = 1, 2, . . . , n− 1 and

∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ · · · ≥ x[n] and

y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.
(ii) Let Ω ⊂ Rn, φ: Ω → R is said to be a Schur-convex function on Ω if x ≺ y

on Ω implies φ (x) ≤ φ (y) . φ is said to be a Schur-concave function on
Ω if and only if −φ is Schur-convex function on Ω.

Definition 3. [1, 2] Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) Ω ⊂ Rn is said to be a convex set if x,y ∈ Ω, 0 ≤ α ≤ 1 implies αx+ (1−
α)y = (αx1 + (1− α)y1, . . . , αxn + (1− α)yn) ∈ Ω.

(ii) Let Ω ⊂ Rn be convex set. A function φ: Ω → R is said to be a convex
function on Ω if

φ (αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y)
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for all x,y ∈ Ω, and all α ∈ [0, 1]. φ is said to be a concave function on Ω
if and only if −φ is convex function on Ω.

(iii) Let Ω ⊂ Rn. A function φ: Ω → R is said to be a log-convex function on
Ω if function lnφ is convex.

Theorem A. (Schur-Convex Function Decision Theorem)[1, p. 5]: Let Ω ⊂ Rn is
symmetric and has a nonempty interior convex set. Ω0 is the interior of Ω. φ : Ω →
R is continuous on Ω and differentiable in Ω0. Then φ is the Schur-convex (Schur-concave) function,
if and only if φ is symmetric on Ω and

(x1 − x2)

(
∂φ

∂x1
− ∂φ

∂x2

)
≥ 0(≤ 0) (1)

holds for any x ∈ Ω0.

Definition 4. [3] Let x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn
+.

(i) Ω ⊂ Rn
+ is called a geometrically convex set if (xα

1 y
β
1 , . . . , x

α
ny

β
n) ∈ Ω for all

x,y ∈ Ω and α,β ∈ [0, 1] such that α+ β = 1.
(ii) Let Ω ⊂ Rn

+. The function φ: Ω → R+ is said to be Schur-geometrically
convex function on Ω if (lnx1, . . . , lnxn) ≺ (ln y1, . . . , ln yn) on Ω implies
φ (x) ≤ φ (y) . The function φ is said to be a Schur-geometrically concave
function on Ω if and only if −φ is Schur-geometrically convex function.

Theorem B. (Schur-Geometrically Convex Function Decision Theorem)[3]: Let
Ω ⊂ Rn

+ be a symmetric and geometrically convex set with a nonempty interior Ω0.
Let φ : Ω → R+ be continuous on Ω and differentiable in Ω0. If φ is symmetric on
Ω and

(log x1 − log x2)

(
x1

∂φ

∂x1
− x2

∂φ

∂x2

)
≥ 0 (≤ 0) (2)

holds for any x = (x1, · · · , xn) ∈ Ω0, then φ is a Schur-geometrically convex (Schur-
geometrically concave) function.

Definition 5. [4] Let Ω ⊂ Rn
+.

(1) A set Ω is said to be harmonically convex if xy
λx+(1−λ)y ∈ Ω for every

x,y ∈ Ω and λ ∈ [0, 1], where xy =
∑n

i=1 xiyi and
1
x =

(
1
x1
, · · · , 1

xn

)
.

(2) A function φ : Ω → R+ is said to be Schur-harmonically convex on Ω if
1
x ≺ 1

y implies φ(x) ≤ φ(y).

Theorem C. (Schur-Harmonically Convex Function Decision Theorem)[4]: Let
Ω ⊂ Rn

+ be a symmetric and harmonically convex set with inner points and let
φ : Ω → R+ be a continuously symmetric function which is differentiable on Ω◦.
Then φ is Schur-harmonically convex(Schur-harmonically concave) on Ω if and
only if

(x1 − x2)

(
x2
1

∂φ(x)

∂x1
− x2

2

∂φ(x)

∂x2

)
≥ 0 (≤ 0), x ∈ Ω◦. (3)

Let interval I ⊂ R and let φ : I → R+ be a log-convex function. Define the
symmetric function Fk by

Fk(x) =
∑

1≤i1<...<ik≤n

∏k

j=1
f(xij ), k = 1, . . . , n. (4)
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In 2010, for 1,2 and n−1, I. Roventa [5]proved that Fk(x) is a Schur-convex func-
tion on In, but without discuss the case of 2 < k < n− 1. In 2011, Shu-hong Wang
et al.[6] studied completely Schur convexity, Schur geometric and harmonic convex-
ities of Fk(x) on In, using the above decision theorems, i.e. Theorem A,Theorem
B and Theorem C respectively to prove the following three theorems.

Theorem D. Let I ⊂ R is a symmetric convex set with non-empty interior and
let f : I → R be continuous on I and differentiable in the interior of I. If f is a
log-convex function, then for any k = 1, 2, ..., n, Fk(x) is a Schur-convex function
on In

Theorem E. Let I ⊂ R+ is a symmetric convex set with non-empty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I. If f is
an increasing log-convex function, then for any k = 1, 2, ..., n, Fk(x) is a Schur-
geometrically convex function on In.

Theorem F. Let I ⊂ R+ is a symmetric convex set with non-empty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I. If f is
an increasing log-convex function, then for any k = 1, 2, ..., n, Fk(x) is a Schur-
harmonically convex function on In.

In this paper, we study the dual form of Fk(x):

F ∗
k (x) =

∏
1≤i1<...<ik≤n

∑k

j=1
f(xij ), k = 1, . . . , n. (5)

By properties of Schur-convex function, Schur-geometrically convex function and
Schur-harmonically convex function, we obtained the following results:

Theorem 1. Let I ⊂ R is a symmetric convex set with non-empty interior and
let f : I → R be continuous on I and differentiable in the interior of I. If f is a
log-convex function, then for any k = 1, 2, ..., n, F ∗

k (x) is a Schur-convex function
on In

Theorem 2. Let I ⊂ R+ is a symmetric convex set with non-empty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I. If f is
an increasing log-convex function, then for any k = 1, 2, ..., n, F ∗

k (x) is a Schur-
geometrically convex function on In.

Theorem 3. Let I ⊂ R+ is a symmetric convex set with non-empty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I. If f is
an increasing log-convex function, then for any k = 1, 2, ..., n, F ∗

k (x) is a Schur-
harmonically convex function on In.

2. Lemmas

To prove the above three theorems, we need the following lemmas.

Lemma 1. [1, p. 67],[2] If φ is symmetric and convex (concave) on symmetric
convex set Ω, then φ is Schur-convex (Schur-concave) on Ω.

Lemma 2. [1, p. 73],[2] Let Ω ⊂ Rn, φ: Ω → R+. Then logφ is Schur-convex
(Schur-concave) if and only if φ is Schur-convex (Schur-concave).
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Lemma 3. [1, p. 642],[2] Let Ω ⊂ Rn be open convex set, φ : Ω → R. For x,y ∈ Ω,
defined one variable function g(t) = φ (tx+ (1− t)y) on interval (0, 1). Then φ is
convex (concave) on Ω if and only if g is convex (concave) on [0, 1] for all x,y ∈ Ω.

Lemma 4. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) ∈ Rm. If f is a log-convex
function, then the functions p(t) = log g(t) is convex on [0, 1], where

g(t) =
m∑
j=1

f(txj + (1− t)yj).

Proof.

p
′
(t) =

g
′
(t)

g(t)
.

where

g
′
(t) =

m∑
j=1

(xj − yj)f
′
(txj + (1− t)yj).

p
′′
(t) =

g
′′
(t)g(t)− (g

′
(t))2

g2(t)
,

where

g
′′
(t) =

m∑
j=1

(xj − yj)
2f

′′
(txj + (1− t)yj),

by the Cauchy inequality, we have

g
′′
(t)g(t)− (g

′
(t))2

=

 m∑
j=1

(xj − yj)
2f

′′
(txj + (1− t)yj)

 m∑
j=1

f(txj + (1− t)yj)


−

 m∑
j=1

(xj − yj)f
′
(txj + (1− t)yj)

2

≥

 m∑
j=1

|xj − yj |
√
f ′′(txj + (1− t)yj) ·

√
f(txj + (1− t)yj)

2

−

 m∑
j=1

(xj − yj)f
′
(txj + (1− t)yj)

2

From the log-convexity of f it follows that (logf(u))
′′

= f
′′
(u)f(u)−(f

′
(u))2

f2(u) ≥ 0,

hence √
f ′′(txj + (1− t)yj) ·

√
f(txj + (1− t)yj) ≥ f

′
(txj + (1− t)yj),

and then g
′′
(t)g(t)− (g

′
(t))2 ≥ 0, i.e. p

′′
(t) ≥ 0, that is p(t) = log g(t) is convex on

[0, 1].
The proof of Lemma 4 is completed. �
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Lemma 5. Let

f(t) =
xt − 1

t
.

If x > 1, then f(t) is a log-convex function on R+.

Proof. By computing, we have

(log f(t))
′′
= −xt(log x)2

(xt − 1)2
+

1

t2
.

We need only prove (log f(t))
′′ ≥ 0. It equivalent to

t2xt(log x)2 ≤ (xt − 1)2. (6)

In both sides the inequality (6), extracting the square root and dividing by xt, then
the inequality (6) equivalent to

g(t) := x
t
2 − x− t

2 − t log x ≥ 0.

When x > 1, g
′
(x) = 1

2 log x
(
x

t
2 − x− t

2 − 2
)
≥ 0, hence g(t) is increasing on R+,

and then g(t) ≥ g(0) = 0, that is (log f(t))
′′ ≥ 0.

The proof of Lemma 5 is completed. �

3. Proof of Main Results

Proof of Theorem 1: For any 1 ≤ i1 < · · · < ik ≤ n, by Lemma 3 and Lemma

4, it follows that ln
∑k

j=1 f(xij ) is convex on Ik. Obviously, ln
∑k

j=1 f(xij ) is also

convex on In, and then logF ∗
k (x) =

∑
1≤i1<...<ik≤n log

∑k
j=1 f(xij ) is convex on

In. Furthermore, it is clear that logF ∗
k (x) is symmetric on In, by Lemma 1, it

follows that logF ∗
k (x) is Schur-convex on In, and then from Lemma 2 we conclude

that F ∗
k (x) is also Schur-convex on In.

The proof of Theorem 1 is completed.
Proof of Theorem 2: For x ∈ I ⊂ R+ and x1 ̸= x2, we have

∆ = (log x1 − log x2)

(
x1

∂F ∗
k

∂x1
− x2

∂F ∗
k

∂x2

)
= (log x1 − log x2)

(
x1

∂F ∗
k

∂x1
− x1

∂F ∗
k

∂x2
+ x1

∂F ∗
k

∂x2
− x2

∂F ∗
k

∂x2

)
= x1

log x1 − log x2

x1 − x2
(x1 − x2)

(
∂F ∗

k

∂x1
− ∂F ∗

k

∂x2

)
+

∂F ∗
k

∂x2
(x1 − x2) (log x1 − log x2) .

Since F ∗
k (x) is Schur-convex on In, by Theorem A, we have

(x1 − x2)

(
∂F ∗

k

∂x1
− ∂F ∗

k

∂x2

)
≥ 0.

Notice that f and log t is increasing, we have
∂F∗

k

∂x2
≥ 0, log x1−log x2

x1−x2
≥ 0 and

(x1 − x2) (log x1 − log x2) ≥ 0, so that ∆ ≥ 0, by Theorem B, it follows that F ∗
k (x)

is Schur-geometric convex on In.
Proof of Theorem 3: The proof of Theorem 3 similar to Theorem 2, the

detailed proof is left to the reader.

Remark 1. If using the decision theorems, i.e. Theorem A, Theorem B and Theorem
C respectively direct to prove Theorem 1, Theorem 2 and Theorem 3, I am afraid
not above proofs are simple, interested readers may wish to try.
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4. Applications

Theorem 4. The symmetric function

Qk(x) =
∏

1≤i1<...<ik≤n

∑k

j=1

1 + xij

1− xij

, k = 1, . . . , n. (7)

is Schur-convex function, Schur-geometrically and harmonically convex function on
(0, 1)n. And for x ∈ (0, 1)n, we have∏

1≤i1<...<ik≤n

∑k

j=1

1 + xij

1− xij

≥
(
k(n+ s)

n− s

)Ck
n

, k = 1, . . . , n. (8)

where s =
∑n

i=1 xi and Ck
n = n!

k!(n−k)! .

Proof. Let f(x) = 1+x
1−x , x ∈ (0, 1). By computing, we have f

′
(x) = 2

(1−x)2 > 0

and log(f(x))
′′
= 4x

(1+x)2(1−x)2 ≥ 0, that is f is an increasing log-convex function.

By Theorem 1, Theorem 2 and Theorem 3, it follows that Qk(x) is respectively
Schur-convex function, Schur-geometrically and harmonically convex function on
(0, 1)n.

Since y =
(
s
n ,

s
n , ...,

s
n

)
≺ x = (x1, x2, ..., xn), from Schur-convexity of Gk(x), it

follows that Qk(y) ≤ Qk(x), i.e. inequality (7) holds.
The proof of Theorem 4 is completed. �
Specially, taking k = 1, s = 1, from the inequality (8) we can get the known

Klamkin inequality:
n∏

i=1

1 + xi

1− xi
≥

(
n+ 1

n− 1

)n

. (9)

By analogous proof with Theorem 4, we can obtain the following theorem.

Theorem 5. The symmetric function

Rk(x) =
∏

1≤i1<...<ik≤n

∑k

j=1

xij

1− xij

, k = 1, . . . , n. (10)

is Schur-convex function, Schur-geometrically and harmonically convex function on
[ 12 , 1)

n. And for x ∈ [12 , 1)
n, we have∏

1≤i1<...<ik≤n

∑k

j=1

xij

1− xij

≥
(

ks

n− s

)Ck
n

, k = 1, . . . , n. (11)

where s =
∑n

i=1 xi and Ck
n = n!

k!(n−k)! .

Theorem 6. The symmetric function

Dk(x) =
∏

1≤i1<...<ik≤n

∑k

j=1
x
xij

ij
, k = 1, . . . , n. (12)

is Schur-convex on Rn
+ and Schur-geometric and harmonic convex on [e−1,∞)n.

And for x ∈ Rn
+, we have∏

1≤i1<...<ik≤n

∑k

j=1
x
xij

ij
≥

(
k[A(x)]A(x)

)Ck
n

, k = 1, . . . , n. (13)

where A(x) = 1
n

∑n
i=1 xi and Ck

n = n!
k!(n−k)! .
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Proof. It is not difficult to verify that xx is log-convex function on (0,∞) and
increasing on [e−1,∞). By Theorem 1, Theorem 2 and Theorem 3, it follows
that Dk(x) is Schur-convex on Rn

+ and Schur-geometric and harmonic convex on
[e−1,∞)n.

Since y = (A(x), A(x), ..., A(x)) ≺ x = (x1, x2, ..., xn), from Schur-convexity of
Dk(x), it follows that Dk(y) ≤ Dk(x), i.e. inequality (11) holds.

The proof of Theorem 6 is completed. �

From Lemma 5 and Theorem 1,we can obtain the following Theorem 2.

Theorem 7. Let x > 1.

Pk(t) =
∏

1≤i1<...<ik≤n

∑k

j=1

xtij − 1

tij
, k = 1, . . . , n. (14)

is Schur-convex on Rn
+. And for t ∈ Rn

+, we have

∏
1≤i1<...<ik≤n

∑k

j=1

xtij − 1

tij
≥

(
k(xA(t) − 1)

A(t)

)Ck
n

, k = 1, . . . , n. (15)

where A(t) = 1
n

∑n
i=1 ti and Ck

n = n!
k!(n−k)! .

Specially, taking n = 2, k = 1 and t = (m + r,m − r), from the inequality (15)
we can get the known inequality:

(xm−r − 1)(xm+r − 1) ≥
(
1− r2

m2

)
(xm − 1)2, (16)

where r ∈ N,m ≥ 2, r < m.

Theorem 8. Let 0 < µ(E) < ∞, 1 ≤ p < ∞ and let

Np(f) =

(
1

µ(E)

∫
E

|f |pdµ
) 1

p

. (17)

Then

Bk(p) =
∏

1≤i1<...<ik≤n

∑k

j=1
(Npi(f))

pi , k = 1, . . . , n. (18)

is Schur-convex function, Schur-geometrically and harmonically convex function on
[1,∞)n.

Proof. Since (Np(f))
p is an increasing log-convex function ( see[7], p.36), from

Theorem 1, Theorem 2 and Theorem 3, it follows that Theorem 7 holds. �
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