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SCHUR-CONVEXITY, SCHUR-GEOMETRIC AND HARMONIC
CONVEXITIES OF DUAL FORM OF A CLASS SYMMETRIC
FUNCTIONS

HUAN-NAN SHI AND JIAN ZHANG

ABSTRACT. By properties of Schur-convex function, Schur-geometrically con-
vex function and Schur-harmonically convex function, Schur-convexity, Schur-
geometric and harmonic convexities of the dual form for a class of symmetric
functions are simply proved. As an application, several inequalities are ob-
tained, some of which extend the known ones.
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1. INTRODUCTION

Throughout the article, R denotes the set of real numbers, = (z1, z2,...,z,)
denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

R*"={x=(21,...,2,) :2; ERji=1,...,n},

Ri:{a::(xla"'vxn):xi>0,i:1,...7n}.

In particular, the notations R and R, denote R! and R}r respectively.
For convenience, we introduce some definitions as follows.

Definition 1. [1, 2] Let © = (x1,...,2,) and y = (y1,...,¥n) € R™
(i) * >y means a; > y; foralli =1,2,... n.
(73) Let Q C R™, ¢:  — R is said to be increasing if > y implies ¢(x) >
©(y). ¢ is said to be decreasing if and only if —¢ is increasing.

Definition 2. [1, 2] Let € = (x1,...,2,) and y = (y1,...,yn) € R™

(i) « is said to be majorized by y (in symbols & < y) if Zle rp) < Zle Y[l
fork=1,2,....n—Tand >} 2 = > ;" y;, where x3) > --- > xp,,) and
Y] = -+ = Ypp are rearrangements of & and y in a descending order.

(73) Let Q C R™, ¢: Q — R is said to be a Schur-convex function on Qif x <y
on ) implies p(x) < ¢ (y). @ is said to be a Schur-concave function on
Q if and only if —¢ is Schur-convex function on €.

Definition 3. [1, 2] Let © = (z1,...,z,) and y = (y1,...,yn) € R™.
(7) © C R™ is said to be a convex set if z,y € 2,0 < a <1 implies ax + (1 —
a)y = (ax; + (1 — @)y, ...,az, + (1 — a)y,) € Q.
(i7) Let Q C R™ be convex set. A function ¢:  — R is said to be a convex
function on Q if

plax+ (1 - a)y) <ap(x) + (1 - a)e(y)
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for all ,y € Q, and all a € [0, 1]. ¢ is said to be a concave function on
if and only if —¢ is convex function on {2.

(797) Let Q@ C R™. A function ¢: @ — R is said to be a log-convex function on
Q if function In ¢ is convex.

Theorem A. (Schur-Convex Function Decision Theorem)[1, p. 5]: Let @ C R™ is

symmetric and has a nonempty interior convex set. 0 is the interior of . ¢ : Q —

R is continuous on 2 and differentiable in Q°. Then o is the Schur-convex (Schur-concave) function,
if and only if ¢ is symmetric on ) and

(21— 2) (gz - g;’;) > 0(<0) (1)

holds for any x € Q°.

Definition 4. [3] Let © = (z1,...,2,) € R" and y = (y1,...,yn) € R}.

(i) Q C R is called a geometrically convex set if (x¢y? ... a2yP) € Q for all

z,y € Q and o, € [0,1] such that a + 5 = 1.

(i1) Let Q@ C R%. The function ¢: € — R, is said to be Schur-geometrically
convex function on Q if (Inxy,...,Inx,) < (Inyy,...,Iny,) on Q implies
v () < p(y) . The function ¢ is said to be a Schur-geometrically concave
function on  if and only if —¢ is Schur-geometrically convex function.

Theorem B. (Schur-Geometrically Convex Function Decision Theorem)[3]: Let
Q C R} be a symmetric and geometrically convez set with a nonempty interior QU.
Let ¢ : Q — R, be continuous on 2 and differentiable in Q°. If ¢ is symmetric on
Q and

0 0
(log z1 — log xa) (xlaz — x28£> >0 (<£0) (2)
holds for any & = (x1,- -+ ,x,) € 00, then ¢ is a Schur-geometrically convex (Schur-

geometrically concave) function.

Definition 5. [4] Let Q C R”.
(1) A set  is said to be harmonically convex if s_—F55, € Q for every
z,y € Qand A € [0,1], where zy = > | 2;y; and 2 = (L, L),

xy’ P Ty

(2) A function ¢ : Q@ — Ry is said to be Schur-harmonically convex on € if
2 = 5 implies p(z) < (y).

Theorem C. (Schur-Harmonically Convex Function Decision Theorem)[4]: Let
Q C RY be a symmetric and harmonically convexr set with inner points and let
v : Q = Ry be a continuously symmetric function which is differentiable on Q°.
Then @ is Schur-harmonically convex(Schur-harmonically concave) on Q if and
only if

(1 — 22) (xf ag;‘f) — 22 8;;?) >0 (<0), xeQ° (3)

Let interval I C R and let ¢ : I — R4 be a log-convex function. Define the
symmetric function Fj by

F@ = 3 H::lf(mij),kzl,...,n. (4)

1<i1<...<ix<n
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In 2010, for 1,2 and n—1, I. Roventa [5]proved that Fy () is a Schur-convex func-
tion on I™, but without discuss the case of 2 < k < n—1. In 2011, Shu-hong Wang
et al.[6] studied completely Schur convexity, Schur geometric and harmonic convex-
ities of Fj(x) on I"™, using the above decision theorems, i.e. Theorem A, Theorem
B and Theorem C respectively to prove the following three theorems.

Theorem D. Let I C R is a symmetric convex set with non-empty interior and
let f: 1 — R be continuous on I and differentiable in the interior of I. If f is a
log-convex: function, then for any k = 1,2,...,n, Fi(x) is a Schur-convex function
on I™

Theorem E. Let I C Ry is a symmetric convex set with non-empty interior and
let f: 1 — Ry be continuous on I and differentiable in the interior of 1. If f is
an increasing log-conver function, then for any k = 1,2,...,n, Fy(x) is a Schur-
geometrically convexr function on I™.

Theorem F. Let I C Ry is a symmetric convex set with non-empty interior and
let f: 1 — Ry be continuous on I and differentiable in the interior of 1. If f is
an increasing log-convez function, then for any k = 1,2,...,n, Fx(x) is a Schur-
harmonically convex function on I™.

In this paper, we study the dual form of F(x):

F@ = ] Z:Zlf(xij),kzl,...,n. 5)

1<i1<...<ixg<n

By properties of Schur-convex function, Schur-geometrically convex function and
Schur-harmonically convex function, we obtained the following results:

Theorem 1. Let I C R is a symmetric convex set with non-empty interior and
let f: 1 — R be continuous on I and differentiable in the interior of I. If f is a
log-convex function, then for any k = 1,2,....,n, F}(x) is a Schur-conver function
on I™

Theorem 2. Let I C Ry is a symmetric convez set with non-empty interior and
let f: I — Ry be continuous on I and differentiable in the interior of 1. If f is
an increasing log-convex function, then for any k = 1,2,....,n, Fi(x) is a Schur-
geometrically convexr function on I™.

Theorem 3. Let I C Ry is a symmetric convez set with non-empty interior and
let f: 1 — Ry be continuous on I and differentiable in the interior of 1. If f is
an increasing log-convex function, then for any k = 1,2,....,n, Fi(x) is a Schur-
harmonically convex function on I™.

2. LEMMAS

To prove the above three theorems, we need the following lemmas.

Lemma 1. [1, p. 67],[2] If ¢ is symmetric and convex (concave) on symmetric
convex set Q, then ¢ is Schur-convex (Schur-concave) on €.

Lemma 2. [1, p. 73],[2] Let @ C R™, ¢: Q@ — Ry. Then logy is Schur-convex
(Schur-concave) if and only if ¢ is Schur-convexr (Schur-concave).
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Lemma 3. [1, p. 642],]2] Let Q C R™ be open convez set, p : Q@ — R. Forx,y € ,
defined one variable function g(t) = ¢ (tx + (1 — t)y) on interval (0,1). Then ¢ is
convez (concave) on Q if and only if g is convex (concave) on [0,1] for all x,y € .

Lemma 4. Let x = (x1,...,%m) and y = (y1,-..,Ym) € R™. If f is a log-convex
function, then the functions p(t) = log g(t) is convex on [0,1], where

Zf (tz; + (1 —1t)y;).

Proof.
0]
p(t) ot
where
= . - y])f (txj +(1— t)yj)
v g (Dg(t) = (g (1)
p ()= g2(t) ’
where
g (t) = Z(%‘ —yp)?f (twy + (1= t)y)),

by the Cauchy inequality, we have

g (t)g(t) — (g (1))

=D (@ — ) f bz + (1= t)yy) Z [tz + (1 —t)y;)

j=

=

2

— [ Do - yi)f (b + (1= t)y;)

<.
I
—

v

Dl = w4+ (L= ) -/t + (1= 1))

2

(z; — y;)f (tw; + (1= t)y;)

[

Il
-

J

From the log-convexity of f it follows that (logf(u))” = L (")f%)(;)(f @)® >,
hence

\/f” (txj + yj \/f tx] y]) > f (twj (1 - t)yj)v

and then ¢ (£)g(t) — (¢ (£))2 > 0, i.e. p (t) > 0, that is p(t) = log g(t) is convex on
[0, 1].
The proof of Lemma 4 is completed. O
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Lemma 5. Let

If . > 1, then f(t) is a log-convez function on R..

Proof. By computing, we have
(log /(1)) = —f;(fo_gf))f t o
We need only prove (log f(¢))” > 0. It equivalent to
t?2t(log x)? < (z' — 1)% (6)
In both sides the inequality (6), extracting the square root and dividing by !, then
the inequality (6) equivalent to
g(t) :=x7 —2~% —tlogz > 0.

When z > 1, g,(:v) = %logx (x% —zE — 2) > 0, hence ¢(t) is increasing on R,

and then g(t) > ¢(0) = 0, that is (log f(t))" > 0.
The proof of Lemma 5 is completed. O

’

3. PROOF OF MAIN RESULTS

Proof of Theorem 1: For any 1 <i; < --- < i <n, by Lemma 3 and Lemma
4, it follows that In Z?:l f(z;,) is convex on I*. Obviously, In 2?21 f(z;) is also

convex on I", and then log Fy/(x) = > 1o, o -, <, 108 Z?:l f(z;;) is convex on
I™. Furthermore, it is clear that log F)'(x) is symmetric on I”, by Lemma 1, it
follows that log F}(x) is Schur-convex on I™, and then from Lemma 2 we conclude
that F}'(x) is also Schur-convex on I"™.

The proof of Theorem 1 is completed.

Proof of Theorem 2: For x € I C R, and z1 # z2, we have

OF;  OF; >

T2
8951 81'2

A = (logzy — log xs) <9:1

OF; OF} OF} OF}
= (1 -1 k _ k k k
(log 1 —log z2) (ml 0xq o Oxa tn Oz 2 Oz
log x1 — log x» oFy  OF} OFy
o Tr1 — T2 (-’L’l -’L'Q) 81’1 81‘2 + (9172
Since F}(x) is Schur-convex on I™, by Theorem A, we have
OFy OF}
— — > 0.
(331 .732) (6961 0xo ) -
Notice that f and logt is increasing, we have g—i’g > 0, % > 0 and
(x1 — x2) (logz1 — logza) > 0, so that A > 0, by Theorem B, it follows that F; ()
is Schur-geometric convex on I"™.

Proof of Theorem 3: The proof of Theorem 3 similar to Theorem 2, the
detailed proof is left to the reader.

(1 — 22) (logz1 — log 22) .

Remark 1. If using the decision theorems, i.e. Theorem A, Theorem B and Theorem
C respectively direct to prove Theorem 1, Theorem 2 and Theorem 3, I am afraid
not above proofs are simple, interested readers may wish to try.
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4. APPLICATIONS

Theorem 4. The symmetric function

Qr(x) = H Z L+, L k=1,...,n. (7)

) Jj=1 l—xl
1<i1<..<ix<n

is Schur-convex function, Schur-geometrically and harmonically convex function on
(0,1)™. And for x € (0,1)", we have

N
1 i k Cn,
n > +xJ_< (”“)) Ck=1,....n. ®)
j=11—ux; n—s

1<i1<...<ix<n

where s ="' | x; and C* = k!(;ﬂk)l.

Proof. Let f(x) = }'_F—fc,x € (0,1). By computing, we have f/(x) = ﬁ >0
and log(f(x))” = W‘ﬁ > 0, that is f is an increasing log-convex function.
By Theorem 1, Theorem 2 and Theorem 3, it follows that Qx(x) is respectively
Schur-convex function, Schur-geometrically and harmonically convex function on

(0, 1)".

Since y = (£,2,...,2) <& = (1,22, ..., ¥y, from Schur-convexity of Gy (x), it
follows that Qx(y) < Qk(x), i.e. inequality (7) holds.
The proof of Theorem 4 is completed. O

Specially, taking k¥ = 1,s = 1, from the inequality (8) we can get the known

Klamkin inequality:
“14 T; n+1\"
> .
Hl—xi_(n—l) (9)

i=1
By analogous proof with Theorem 4, we can obtain the following theorem.

Theorem 5. The symmetric function

Ry(x) = II ZJ 117% L k=1,...,n. (10)

1<ip<...<ig<n

is Schur-convex function, Schur-geometrically and harmonically convex function on
[, 1)". And for ® € [1,1)", we have

ks Cn
H ZJ ll—xz (n_s) s k=1,....n (11)

1<i1 <. <t <n

!
where s =31 | x; and C¥ = R

Theorem 6. The symmetric function

Dy(z) = II ZJ ) v, k=1,...n. (12)

1<ii<...<ip<n

—1 n

is Schur-convex on R} and Schur-geometric and harmonic convex on [e™",00)".

And for ¢ € R, we have

11 Z 2 > (k [A(:c)]“(”“”)cs, k=1,...,n (13)

1<ip<...<ig<n

where A(x) = %Z?:l z; and C} = #lk)'
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Proof. Tt is not difficult to verify that z* is log-convex function on (0,00) and
increasing on [e7!,00). By Theorem 1, Theorem 2 and Theorem 3, it follows
that Dy () is Schur-convex on R’} and Schur-geometric and harmonic convex on
[e=1, 00)™.

Since y = (A(x), A(x), ..., A(x)) < = (21,2, ..., x,), from Schur-convexity of
Dy (), it follows that Dy (y) < Dy(x), i.e. inequality (11) holds.

The proof of Theorem 6 is completed. (]

From Lemma 5 and Theorem 1,we can obtain the following Theorem 2.

Theorem 7. Let x > 1.

kooghi —1
Pi(t) = 11 ijl k=1,...,n. (14)

: . ti,
1<ii<..<ip<n J

is Schur-conver on R’ . And for t € R}, we have

.
R(aA® — 1)\

11 Z:Zl It;_l Z< e ) L k=1,...,n.  (15)

1< <. <ix<n i

where A(t) = %le t; and Cf = ﬁlk)'

7

Specially, taking n = 2,k = 1 and ¢t = (m + r,m — r), from the inequality (15)
we can get the known inequality:
2

(z™T — 1) (@™ — 1) > (1 - 7’2) (z™ — 1)2, (16)

m
where r e Nym > 2,r < m.

Theorem 8. Let 0 < u(F) < 00,1 <p < oo and let

0= (o /. |fpdu)’1’ . (17
Then

Bp) = [ X (N k=tLon (1s)

1<i1<...<ip<n
is Schur-convex function, Schur-geometrically and harmonically convex function on
[1,00)™.

Proof. Since (Np(f))P is an increasing log-convex function ( see[7], p.36), from
Theorem 1, Theorem 2 and Theorem 3, it follows that Theorem 7 holds. (I
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