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REFINEMENTS OF THE OSTROWSKI INEQUALITY IN TERMS
OF THE CUMULATIVE VARIATION AND APPLICATIONS

S.S. DRAGOMIR!»2

ABSTRACT. Refinements of the Ostrowski inequality for functions of bounded
variation in terms of the cumulative variation function are given. Applications
for selfadjoint operators on complex Hilbert spaces are also provided.

1. INTRODUCTION

In order to extend the classical Ostrowski’s inequality for differentiable functions
with bounded derivatives to the larger class of functions of bounded variation,
the author obtained in 1999 (see [16] or the RGMIA preprint version of [18]) the
following result

b
(L1) /f(t)dt—f(x)(b—a)

< [s0-a+ - Ven

for any = € [a,b] and f a function of bounded variation on [a,b]. Here \/Z (f)
denotes the total variation of f on [a,b] and the constant % is best possible in (1.1).
The best inequality one can obtain from (1.1) is the midpoint inequality, namely

[roa-r(“2)o-0

for which the constant % is also sharp.
For recent related results, see [1]-[4], [6]-[10], [12]-[14], [24]-[28] and [30]-[42].
The main aim of the present paper is to provide some refinements of the inequal-
ities (1.1) and (1.2) in terms of the cumulative variation function. Applications for
selfadjoint operators on complex Hilbert spaces are also given.

(1.2)

1 b
Si(b_a‘)\/(f)a

2. REFINEMENTS OF THE OSTROWSKI INEQUALITY

For a function of bounded variation v : [a,b] — C we define the Cumulative
Variation Function (CVF) V : [a,b] — [0,00) by

t
V) =\ ()
the total variation of v on the interval [a,t] with ¢ € [a, b].
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It is know that the CVF is monotonic nondecreasing on [a, b] and is continuous
in a point ¢ € [a,b] if and only if the generating function v is continuing in that
point. If v is Lipschitzian with the constant L > 0, i.e.

lv(t) —v(s)| < L|t—s| for any t,s € [a,]

then V is also Lipschitzian with the same constant.
The following lemma is of interest in itself as well, see also [21].

Lemma 1. Let f,u : [a,b] — C. If f is continuous on [a,b] and u is of bounded
variation on [a,b], then

b

b t
</ f(t)|d<\/(u)> < max |7 (0] ().

The following result may be stated.

b
ey | rwae

Theorem 1. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then

(2.2)

b
/f(t)dt—f(x)(bw)

<[ (\7(f)>dt+/: (\:/(ﬁ) it

t

IN

for any = € [a, b).
Proof. We start with the equality
b x b
@3 f@e-a- [ foda=[ t-aso+ [ c-nao
that holds for any x € [a,b] and f : [a,b] — C a function of bounded variation on

[a,b] (see [16] or [18]).
Taking the modulus in (2.3) and using the property (2.1) we have

b
(2.4) ’f(:v) (b—a) - / £ (t)dt

IN

b
+ / (t— b df (1)

/m(t—a)d<\/(f)>+/ (b—t)d<\/(f)>

[ -

IN

for any x € [a,b].
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Utilising the integration by parts formula for the Riemann-Stieltjes integral, we
have

t

(2.5) /m(ta)d<\/(f)>(ta) (f)| - / (\/(f)) dt

a

for any z € [a,
Utilising (

2.4)
Since V7 (f

2.6) we deduce the first mequahty in (2.2).
/2 (f) for t € [a,z] and V2, (f )7\/ (f) for t € [x,b], then

i) )
oo

for any x € [a, ], which proves the second inequality in (2.2).
The last part is obvious by the max properties and the fact that for ¢,d € R we
have

b.
4)-
) <

c+d+|c—d|
—

The details are omitted. O

max {c,d} =

The following midpoint inequality holds:
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Corollary 1. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then

27) /abf(t)dtf<a;b)(ba)|
g/ a\j/%m dt+/; a\Z(f) dtsé(b—w\:/(f).

The first inequality in (2.7) is sharp and the constant % in the second, is best
possible.

Proof. We must prove only the sharpness of the inequalities in (2.7).
If we consider the function f : [a,b] — R given by

0, t&la,%?)

— a+2b

then this function is of bounded variation, we observe that \/%is (f) = 1 for any
2

a+b
te (et bl and \/,* (f) =1 for any ¢ € [a, “£%). Also, we have \/Z (f)=2.

If we replace these values in (2.7) we obtain in all terms the same quantity
b—a. O

Corollary 2. Let f : [a,b] — C be a function of bounded variation on [a,b]. If

p € (a,b) is a median point in variation, namely \/* (f) = \/2 (f), then we have
the inequality

b
(2.8) / F () di— £ (p) (b—a)

p [P b t b
</ <v<f>> dt+/p (\p/(f)) dtS;(b—a)\a/(f)-

t

The first inequality in (2.2) is useful when some properties for the CVF are
available, like for instance below:

Corollary 3. Let f : [a,b] — C be a function of bounded variation on [a,b]. If for
x € (a,b) there exist Ly >0 and o > —1 such that

(2.9) \ (D] < Lalt—al* for any t € 0,8\ {z},
then

b
(2.10) / F () di— £ (2) (b a)

1
<

< =L [(a: A (b a;)““} .
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In particular, for a =1 in (2.9) we get from (2.10) that

b
(2.11) / Fltydt— f(2) (b —a)

2
1 x — ofb
< 4+< b_;) L, (b—a)’.

Remark 1. If the CVF \/Z (f) is K-Lipschitzian, i.e.,

\V ()

< K|t—s| foranyt,s € [a,b],

then

b
(2.12) / f () di— f (2) (b a)

2
1 x — atb

Corollary 4. If there exists a constant L.ty > 0 and o > —1 such that
2

for any t € [a,b]\{a;rb},

for any x € [a, b].

t

(2.13) ()| < Logs

at
2

b
po ot

then we have the midpoint inequality

b
/ f(t)dt—f(“;b> (b—a) Sm%b (b—a)*".

(2.14)

In particular, if we take oo =1 in (2.18), then we get from (2.14)

[rwa-r(“2) o0

The constant § is best possible in (2.15).

<

(2.15) Law (b—a)?.

1
47%

Proof. First, we notice that if h : [a,b] — C is of bounded variation, then |h| :
[a,b] — [0,00) is of bounded variation and

b b
(2.16) V (r) < \/ ().
Indeed, by the continuity property of the modulus, we have that
n—1 n—1
DMl = [h ()] < Y A () = h(t)]
j=0 j=0

for any division @ = tg < t; < ... < tp—1 < t, = b, which, by taking the supremum
over all divisions of [a, b] , produces the desired inequality (2.16).
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If we consider the function fy : [a,b] — R, fo (s) := |s — %2| then, by denoting
with e the identity function on [a,b], i.e. e(t) =t,t € [a,b], we have
¢ ¢
a+b
V| = |V (le-"3"))
atb atb
2 2
t
a+b a+b
< V() Vel
= =N

for any ¢ € [a,b].
Therefore the function fy satisfies the condition (2.13) for @ = 1 and with the
constant Lat» = 1. Since
2

/abfo(t)dt—/ab

then we obtain in both sides of the inequality (2.15) the same quantity 1 (b — a)’.
O

a+b
2

1

L 0—a)’

t —

i

Remark 2. The inequalities (2.12) and (2.15) are known in the case of Lipschitzian
functions with the constant L > 0. We obtained them here under weaker conditions
for the function f. This show that the refinement in terms of the CVF for the
Ostrowski inequality (2.2) is also useful to extend known results to larger classes of
functions.

Theorem 2. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then

(2.17)

b
/f(t)dt—f(w)(b—a)

AN
—
&
|
=)
SN—
i:<8 Q
—~
kﬁ
N~—
+
=
|
&
<w
—
=

IA

for any x € [a,b].
Proof. Observe that

(2.18) fl)yb—a)— [ f(t)dt




REFINEMENTS OF THE OSTROWSKI INEQUALITY 7

for any x € [a, b)].
For a fixed x € [a,b], define the function g, : [a,b] — [0,00) by g, () =
|f (x) — f (¢)| . We observe that g, is of bounded variation on [a, b] and

/|f (1) dt.

Writing the inequality (2.2) for the function g, we have

(2.19)

%cww—a>1/g$ ) dt

b
(2.20) gA@@—@—/gdwﬁ

m )m/ (0 >t

x

T b
<(@-a)\/(f z)\/ (|
a xr

Utilising (2.18)-(2.20) we deduce the first two inequalities in (2.17).
By the inequality (2.16) we have

\/ <V =\

a

and
b b b
Vr@ =<\ @-n=\u,
which proves the third inequality in (2.17). O

Corollary 5. If f : [a,b] — C is a function of bounded variation on [a,b], then

ab<ﬂﬁ+f(“§b)wa>
[ (V) ) o
+/b (g <\f<a+b>—f\>)dt

2

oo (1 (5) o) <ol

All inequalities in (2.21) are sharp.

(2.21)

Proof. If we consider the function f : [a,b] — R, with

0, t&[a,t?)
f)y=<1, t= ‘”%
0 te (‘“’b b,
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then this function is of bounded variation, we observe that

’f<a+b> f(t)’:{ (112 ;s;a:b)

b,

and

V(l(5) ) -2

Replacing these values in (2.21) we get in all terms of this inequality the same
quantity b — a. O

Corollary 6. Let f : [a,b] — C be a function of bounded variation on [a,b]. If
q € (a,b) is a point for which

q b

Vir@=rm=\s@-

a q

then

b
(2.22) / F () dt— £ (g) (b—a)

<[ (V )dt+/b (\:/(If(q)—fl)> "

b b
<INV U@ - ie-aV
a a

l\DM—l

Remark 3. Since

T b
@ =)V (7 @)= )+ =)V (s

a

{ maX{x—mb—x}VaU( ) — f]
<

max {V/2 (1f (@) = f1). V5 (If () = £)} (b = a)
{ [3(b—a)+ |z — =[]V, If (@) - fI

[SVAIF @) = F14+ 3|VEAF @) = £) = V(1 @) - )

.
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then from (2 17) we also have the string of inequalities

(2.23) t)ydt — f (z) (b—a)
g/ (\/(If() )dt+/ <\/ ) at
T b
<@-a\(f @) - ) +b-)\ (f

(3 0—a)+]o = VIS (@) -
2 (If (@)

1
2
- [%Vfllf A1+

=)= Vo (s @) - 1]

for any x € [a,b].

Remark 4. If the function f : [a,b] — R is monotonic nondecreasing on [a,b],
then

(2.24) (t)dt — f (z) (b— a)

b
s/ sgn (z— ) [f (v) — £ (8)] dt
<(z

—a)[f (@) = f(@)]+(b—2)[f(b) - f ()]
[L(b—a)+|z— <] [f(b) - f(a)],
Rt
[

LF0) = f (@] + 5 | (@) - L0

|-,

for any z € [a,b].
In particular, for x = %H’, we get the trapezoid inequality

[roa-r(“) o0

< [ (- [r(“5) ~s@]a< jro - r@ie-o.

Moreover, if p € (a,b) is such that

(2.25)

then we have the trapezoid inequality

fla)+ /() /f 0 di

g/sgm t)[f(‘;f) Fo)ds 310 - 1@16-a).

(2.26)
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3. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows
1, for —oo0 < s < A,
px(s) =
0, for A < s < 4o0.
Then for every A € R the operator

(3.1) Ey =, (4)
is a projection which reduces A.

The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [23, p. 256]:

Theorem 3 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let m = min {\ |\ € Sp(A)} =: min Sp (A) and
M = max{\|A € Sp(A)} = maxSp(A). Then there exists a family of projections
{Ex} cr, called the spectral family of A, with the following properties

a) Ex < Ey for A <\

b) En—0=0,Ey =1 and Exio = E\\ for all A € R;

¢) We have the representation

M
A= / AdE},.

1—0

More generally, for every continuous complex-valued function ¢ defined on R

and for every € > 0 there exists a § > 0 such that
n

¥ (A) - Z ¥ ()\;c) [EAk - EAk—J

k=1

<e¢

whenever
A <m=A<..<A_1 <A\ =M,

A — Ap—1 <0 for 1 <k <,

N € [Me—1, M) for1<k<n
this means that

M
(3.2) wm=/ o (\) dE,

m—0

where the integral is of Riemann-Stieltjes type.

Corollary 7. With the assumptions of Theorem 3 for A, Ey and ¢ we have the
representations

M
go(A)x:/ (N dE\x for allz € H
m—0

and
M
(3.3) Waw= [ eMd(Brey) foralla,y e I,

m—0
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In particular,

M
(p(A)z,z) = / © (N d(Exz,z) forallx € H.

m—0

Moreover, we have the equality

M
o (A) |* = / . o (NI” dl|Exal* for all z € H.
m—

We need the following result that provides an upper bound for the total variation
of the function R 5 A — (Eyz,y) € C on an interval [«, 8], see [22].

Lemma 2. Let {Ex},cg be the spectral family of the bounded selfadjoint operator
A. Then for any x,y € H and o < 8 we have the inequality

8 2

V (Eoz.y ] < ((Es — Ea)z,x) (B — Ea) Y, y) ,

[0}

(3.4)

where \/ ()T, y denotes the total variation of the function <E(,):E7 y> on [, 5]

Remark 5. For a =m—¢c withe >0 and f = M we get from (3.4) the inequality

(3.5) \/ (Boyz.y)) <A = Epe) 2, 2)' 2 (T = Ep_) y.)'?

m—e

for any x,y € H.
This implies, for any x,y € H, that

(3.6) (Eeyz,9)) < =l lyll,

0

<z

m—0 m—e

M M
where \/ (<E(.)x,y>) denotes the limit lim._, o4 l\/ (<E(_)x,y>)] .

The following result holds:

Theorem 4. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min{A |\ € Sp(4)} =: minSp(A) and M = max{A|A € Sp(A)}
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=:max Sp (A). If {Ex} cp is the spectral family of the bounded selfadjoint opera-
tor A, then for any v € [m, M| we have

1) (M- E)+mE, - Alz,y)|
s/ (B, — B a,e)? (B, — By, )/ dt
m—0

M
+/<ermWWW@—&mm”w

< (Bya,2)"* (Eyy,y)""* (v — m)
(- B a,x)* (I — By, 9)"/* (M —v)

1 m + M
<= (M- -
< |g0r—m+ -]
x [(Bow,2) ? (Buy,y)' 2 4+ (1 = B w,2) (T - Eu)y,w)' )
1 m+ M
< |5 0 =)+ o= 52 ] el
for any x,y € H.
In particular,
(3.8) ‘< {M <I - EWHQ»IM) + mEsz — A] T, y>‘

m+M

<[ (BB 2e) ™ ((Bag =) )
() o) (5 B )

v

1 1/2 1/2
< 5 (M - m) |:<Em45M Z, LE> <Em4£M Y, y>

(1 a2 (1 P
1
2

< 5 (M —m) =] |yl

for any x,y € H.

Proof. For € > 0, by applying the inequality (2.2) on the interval [m — e, M| we
can write that

M
wwwﬂM—m+a—/'<aamﬁ

m—e

(3.9)

< [ (V) [7 (ViEsm) @

t v

for any z,y € H.
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Utilising Lemma 2 we also have

t

(3.10) /” <\U/ (<E(‘)z,y>)> dt + /vM (\/ (<E(‘)z,y>)> dt

t v

< / (By — By)z,2) (B, — E)y,y)"/* dt

m—eg

+

M
/ (By — By)x,2)/2 (B, — Ev)y,9)"/? dt

< ((By = Bne) 2,2)'* (By = Ene) y)' " (0 —m + ¢)
+ ((Ep — Ey) z, x>1/2 (Ex — Ey)y, y>1/2 (M —wv)
for any z,y € H.
Letting ¢ — 0+ in (3.9) and (3.10) produces the inequalities

M
(Eyz,y) (M —m) — / (Byx,y) dt

m—0

(3.11)

s/ (Ey — E)z,0)? (B, — Ey) y,y)"/? dt
m—0

M
+ / (B — By)z, ) (B, — By)y,y)'/* dt

< (Byz,2)' " (Eyy,1)'* (v — m)
(- B a,x) (I~ By, 9)"/* (M —v)

for any z,y € H.
Integrating by parts in the Riemann-Stieltjes integral and utilising the represen-
tation (3.3), we have

(312)  (Bozy) (M —m) / (Ev,y) dt

m—0
M M
(B M, - / td (Eve,y)

m—0

= <va7y> (M - m) -

= (Eyz,y) (M —m) — (z,y) M + (Az,y)
= <[A—mEv — (I_M)Ev]$>y>

for any z,y € H.
By (3.11) and (3.12) we obtain the first two inequalities in (3.7).
The rest is obvious and we omit the details. O
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