
A GENERALIZED µCEBY�EV FUNCTIONAL FOR THE
RIEMANN-STIELTJES INTEGRAL WITH APPLICATIONS FOR

SELFADJOINT AND UNITARY OPERATORS

S.S. DRAGOMIR1;2

Abstract. Sharp bounds for a generalised µCeby�ev functional for the Riemann-
Stieltjes integral are given. Applications for continuous functions of selfadjoint
operators and unitary operators on Hilbert spaces are provided as well.

1. Introduction

For two Lebesgue integrable functions f; g : [a; b] ! R, consider the µCeby�ev
functional :

(1.1) C (f; g) :=
1

b� a

Z b

a

f(t)g(t)dt� 1

(b� a)2
Z b

a

f(t)dt

Z b

a

g(t)dt:

In 1935, Grüss [25] showed that

(1.2) jC (f; g)j � 1

4
(M �m) (N � n) ;

provided that there exists the real numbers m;M;n;N such that

(1.3) m � f (t) �M and n � g (t) � N for a.e. t 2 [a; b] :
The constant 1

4 is best possible in (1.1) in the sense that it cannot be replaced by
a smaller quantity.
Another, however less known result, even though it was obtained by µCeby�ev in

1882, [5], states that

(1.4) jC (f; g)j � 1

12
kf 0k1 kg

0k1 (b� a)
2
;

provided that f 0; g0 exist and are continuous on [a; b] and kf 0k1 = supt2[a;b] jf 0 (t)j :
The constant 1

12 cannot be improved in the general case.
The µCeby�ev inequality (1.4) also holds if f; g : [a; b] ! R are assumed to be

absolutely continuous and f 0; g0 2 L1 [a; b] while kf 0k1 = ess supt2[a;b] jf 0 (t)j :
A mixture between Grüss�result (1.2) and µCeby�ev�s one (1.4) is the following

inequality obtained by Ostrowski in 1970, [34]:

(1.5) jC (f; g)j � 1

8
(b� a) (M �m) kg0k1 ;

provided that f is Lebesgue integrable and satis�es (1.3) while g is absolutely con-
tinuous and g0 2 L1 [a; b] : The constant 18 is best possible in (1.5).
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The case of euclidean norms of the derivative was considered by A. Lupaş in [28]
in which he proved that

(1.6) jC (f; g)j � 1

�2
kf 0k2 kg

0k2 (b� a) ;

provided that f; g are absolutely continuous and f 0; g0 2 L2 [a; b] : The constant 1
�2

is the best possible.
Recently, P. Cerone and S.S. Dragomir [3] have proved the following results:

(1.7) jC (f; g)j � inf
2R

kg � kq �
1

b� a

 Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

�����
p

dt

! 1
p

;

where p > 1 and 1
p +

1
q = 1 or p = 1 and q =1; and

(1.8) jC (f; g)j � inf
2R

kg � k1 �
1

b� aess supt2[a;b]

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� ;
provided that f 2 Lp [a; b] and g 2 Lq [a; b] (p > 1; 1p +

1
q = 1; p = 1; q = 1 or

p =1; q = 1):
Notice that for q =1; p = 1 in (1.7) we obtain

jC (f; g)j � inf
2R

kg � k1 � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt(1.9)

� kgk1 � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt
and if g satis�es (1.3), then

jC (f; g)j � inf
2R

kg � k1 � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt(1.10)

�
g � n+N2


1
� 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt
� 1

2
(N � n) � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt:
The inequality between the �rst and the last term in (1.10) has been obtained by
Cheng and Sun in [6]. However, the sharpness of the constant 1

2 ; a generalization
for the abstract Lebesgue integral and the discrete version of it have been obtained
in [4].
For other recent results on the Grüss inequality, see [26], [31] and [35] and the

references therein.
In [11], in order to extend the Grüss inequality to Riemann-Stieltjes integral,

S.S. Dragomir introduced the following µCeby�ev functional

T (f; g;u) :=
1

u (b)� u (a)

Z b

a

f (t) g (t) du (t)(1.11)

� 1

u (b)� u (a)

Z b

a

f (t) du (t) � 1

u (b)� u (a)

Z b

a

g (t) du (t) ;
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where f; g are continuous on [a; b] and u is of bounded variation on [a; b] with
u (b) 6= u (a) :
The following result that provides sharp bounds for the µCeby�ev functional de-

�ned above was obtained in [11].

Theorem 1. Let f; g : [a; b] ! R be continuous on [a; b] and u : [a; b] ! R with
u (a) 6= u (b) : Assume also that there exists the real constants ;� such that
(1.12)  � f (t) � � for each t 2 [a; b] :

a) If u is of bounded variation on [a; b] ; then we have the inequality

jT (f; g;u)j(1.13)

� 1

2
� �� 
ju (b)� u (a)j

g � 1

u (b)� u (a)

Z b

a

g (s) du (s)


1

b_
a

(u) ;

where
Wb
a (u) denotes the total variation of u in [a; b] : The constant

1
2 is

sharp, in the sense that it cannot be replaced by a smaller quantity.
b) If u : [a; b] ! R is monotonic nondecreasing on [a; b] ; then one has the
inequality:

jT (f; g;u)j(1.14)

� 1

2
� �� 
u (b)� u (a)

Z b

a

�����g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

����� du (t) :
The constant 12 is sharp.

c) Assume that f; g : [a; b]! R are Riemann integrable functions on [a; b] and
f satis�es the condition (1.12). If u : [a; b] ! R is Lipschitzian with the
constant L; then we have the inequality

jT (f; g;u)j(1.15)

� 1

2
� L (�� )
ju (b)� u (a)j

Z b

a

�����g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

����� dt:
The constant 12 is best possible in (1.15).

We observe that if u (t) = t; then from (1.13) we get

jC (f; g)j � 1

2
(�� )

g � 1

b� a

Z b

a

g (s) ds


1

while from (1.14) and (1.15) we recapture the inequality between the �rst and last
term in (1.10).
For some recent inequalities for Riemann-Stieltjes integral see [7]-[12] and [27].
Motivated by the above results we consider here a more general µCeby�ev func-

tional depending on four functions and de�ned as

T (f; g; h;u)(1.16)

:=
1

u (b)� u (a)

Z b

a

h (t) du (t) � 1

u (b)� u (a)

Z b

a

f (t) g (t) du (t)

� 1

u (b)� u (a)

Z b

a

g (t) du (t) � 1

u (b)� u (a)

Z b

a

f (t)h (t) du (t) ;
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provided that all the Riemann-Stieltjes integrals incorporated in (1.16) exist and
u (b) 6= u (a). That happens, for instance, when u : [a; b] ! C is of bounded
variation and f; g; h : [a; b]! C are continuous on [a; b] :
The functional T (f; g; h;u) can be written in a determinant form as

T (f; g; h;u)(1.17)

= det

264 1
u(b)�u(a)

R b
a
h (t) du (t) 1

u(b)�u(a)
R b
a
g (t) du (t)

1
u(b)�u(a)

R b
a
f (t)h (t) du (t) 1

u(b)�u(a)
R b
a
f (t) g (t) du (t)

375 :
We remark that if h (t) = 1 (t) = 1 for all t 2 [a; b] then we get T (f; g;1;u) =
T (f; g;u) : By (1.17) we then have the determinant form of T (f; g;u) as

T (f; g;u)(1.18)

= det

264 1 1
u(b)�u(a)

R b
a
g (t) du (t)

1
u(b)�u(a)

R b
a
f (t) du (t) 1

u(b)�u(a)
R b
a
f (t) g (t) du (t)

375 :
We also observe that if e denotes the identity mapping on [a; b] ; i.e. e (t) = t; t 2
[a; b] then by choosing u = e in (1.18) we have T (f; g; e) = C (f; g) :
In this paper we establish some sharp bounds for the magnitude of the functional

T (f; g; h;u) under various assumptions for the functions involved and apply them
to obtain new inequalities for continuous functions of selfadjoint operators as well
as of unitary operators on Hilbert spaces.

2. The results

Now, for ;� 2 C and [a; b] an interval of real numbers, de�ne the sets of
complex-valued functions

�U[a;b] (;�) :=
n
f : [a; b]! CjRe

h
(�� f (t))

�
f (t)� 

�i
� 0 for each t 2 [a; b]

o
and

��[a;b] (;�) :=

�
f : [a; b]! Cj

����f (t)�  + �2
���� � 1

2
j�� j for each t 2 [a; b]

�
:

The following representation result may be stated.

Proposition 1. For any ;� 2 C,  6= �; we have that �U[a;b] (;�) and ��[a;b] (;�)
are nonempty, convex and closed sets and

(2.1) �U[a;b] (;�) = ��[a;b] (;�) :

Proof. We observe that for any z 2 C we have the equivalence����z �  + �2
���� � 1

2
j�� j

if and only if
Re [(�� z) (�z � �)] � 0:

This follows by the equality

1

4
j�� j2 �

����z �  + �2
����2 = Re [(�� z) (�z � �)]



A GENERALIZED µCEBY�EV FUNCTIONAL 5

that holds for any z 2 C.
The equality (2.1) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 1. For any ;� 2 C,  6= �;we have that

�U[a;b] (;�) = ff : [a; b]! C j (Re�� Re f (t)) (Re f (t)� Re )(2.2)

+(Im�� Im f (t)) (Im f (t)� Im ) � 0 for each t 2 [a; b]g :

Now, if we assume that Re (�) � Re () and Im (�) � Im () ; then we can de�ne
the following set of functions as well:

�S[a;b] (;�) := ff : [a; b]! C j Re (�) � Re f (t) � Re ()(2.3)

and Im (�) � Im f (t) � Im () for each t 2 [a; b]g :

One can easily observe that �S[a;b] (;�) is closed, convex and

(2.4) ; 6= �S[a;b] (;�) � �U[a;b] (;�) :

The following result can be stated.

Theorem 2. Assume that u : [a; b] ! C with u (b) 6= u (a) and f; g; h : [a; b] ! C
are such that the Riemann-Stieltjes integrals in the de�nition of T (f; g; h;u) exist.
Assume also that there exists the complex numbers ;�;  6= �; such that

(2.5) f 2 �U[a;b] (;�) :

i) If u is of bounded variation on [a; b] ; then we have the inequality

jT (f; g; h;u)j � 1

2
j�� j

b_
a

(u)
1

ju (b)� u (a)j2
(2.6)

� sup
t2[a;b]

������det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������
� 1

2
j�� j

"
b_
a

(u)

#2
1

ju (b)� u (a)j2

� sup
(t;s)22[a;b]2

������det
24 g (t) h (t)

g (s) h (s)

35������ :
The constant 12 is sharp in the �rst inequality.
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ii) If u : [a; b]! R is monotonic nondecreasing on [a; b] ; then

jT (f; g; h;u)j � 1

2
j�� j 1

[u (b)� u (a)]2

(2.7)

�
Z b

a

������det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������ du (t)
� 1

2
j�� j 1

[u (b)� u (a)]2

�
Z b

a

Z b

a

������det
24 g (t) h (t)

g (s) h (s)

35������ du (s) du (t)
�
p
2

2
j�� j 1

[u (b)� u (a)]2

�

0BB@det
2664

R b
a
jg (t)j2 du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a
jh (t)j2 du (t)

3775
1CCA
1=2

:

The multiplicative constant 12 in the �rst inequality is best possible.

iii) If u is Lipschitzian with the constant L > 0, then we have the inequality

jT (f; g; h;u)j � 1

2
j�� j L

ju (b)� u (a)j2
(2.8)

�
Z b

a

������det
24 g (t) h (t)R b

a
g (t) du (t)

R b
a
h (t) du (t)

35������ dt
� 1

2
j�� j L2

[u (b)� u (a)]2

�
Z b

a

Z b

a

������det
24 g (t) h (t)

g (s) h (s)

35������ dsdt
�
p
2

2
(�� ) L2

[u (b)� u (a)]2

�

0BB@det
2664

R b
a
jg (t)j2 dt

R b
a

�
g (t)h (t)

�
dt

R b
a

�
g (t)h (t)

�
dt

R b
a
jh (t)j2 dt

3775
1CCA
1=2

:

The constant 12 in the �rst inequality is sharp.

Remark 1. We notice that the above Theorem 2 not only provides a generalization
of Theorem 2 but also an extension of that result to the complex valued functions.
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Perhaps simpler, however coarser bounds for the magnitude of T (f; g; h;u) can
be provided if some connection between the other two functions g and h are known.

Corollary 2. Assume that u : [a; b]! C with u (b) 6= u (a) and f; g; h : [a; b]! C
are such that the Riemann-Stieltjes integrals in the de�nition of T (f; g; h;u) exist.
Assume also that there exists the complex numbers ;� such that (2.5) holds true.

a) Let u : [a; b] ! R be monotonic nondecreasing and g; h : [a; b] ! C be
continuous on [a; b] : If there exists the complex constants ' and � such
that either

(2.9) Re
h
(�h (t)� g (t))

�
g (t)� 'h (t)

�i
� 0 for any t 2 [a; b]

or, equivalently,

(2.10)

����g (t)� '+�2 h (t)

���� � 1

2
j�� 'j jh (t)j for any t 2 [a; b] ;

holds, then we have

(2.11) jT (f; g; h;u)j �
p
2

4
j�� j j�� 'j 1

[u (b)� u (a)]2
Z b

a

jh (t)j2 du (t) :

aa) Let u : [a; b]! C be Lipschitzian with the constant L > 0 and g; h : [a; b]!
C be continuous on [a; b] : If there exists the complex constants ' and �
such that either (2.9) or (2.10) hold true, then

(2.12) jT (f; g; h;u)j �
p
2

4
j�� j j�� 'j L2

[u (b)� u (a)]2
Z b

a

jh (t)j2 dt:

Remark 2. The above Corollary 2 can be then used to provide simpler bounds for
the functional T (�; �; �) as follows:

b) Let u : [a; b] ! R be monotonic nondecreasing and g; h : [a; b] ! C be
continuous on [a; b] : If there exists the complex constants � and � such
that either

(2.13) Re
h
(�� g (t))

�
g (t)� �

�i
� 0 for any t 2 [a; b]

or, equivalently,

(2.14)

����g (t)� �+ �2 h (t)

���� � 1

2
j�� �j for any t 2 [a; b] ;

holds, then we have

(2.15) jT (f; g;u)j �
p
2

4

j�� j j�� �j
u (b)� u (a) :

bb) Let u : [a; b]! C be Lipschitzian with the constant L > 0 and g : [a; b]! C
be continuous on [a; b] : If there exists the complex constants � and � such
that either (2.13) or (2.14) hold true, then

(2.16) jT (f; g;u)j �
p
2

4
j�� j j�� �j L2 (b� a)

[u (b)� u (a)]2
:
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3. Proofs

We observe that the following identity of interest holds:

[u (b)� u (a)]2 T (f; g; h;u)(3.1)

=

Z b

a

h (t) du (t) �
Z b

a

f (t) g (t) du (t)�
Z b

a

g (t) du (t) �
Z b

a

f (t)h (t) du (t)

=

Z b

a

(f (t)� �) det

24 g (t) h (t)R b
a
g (s) du (s)

R b
a
h (s) du (s)

35 du (t)
for each � 2 C.
i) It is well known that if the Riemann-Stieltjes integral

R b
a
p (t) dv (t) exists,

p : [a; b] ! C is bounded and v : [a; b] ! C is of bounded variation, then we have
the inequality [2]

(3.2)

�����
Z b

a

p (t) dv (t)

����� � sup
t2[a;b]

jp (t)j
b_
a

(v) :

Taking the modulus in (3.1) and utilizing (3.2) we get

ju (b)� u (a)j2 jT (f; g; h;u)j(3.3)

=

������
Z b

a

(f (t)� �) det

24 g (t) h (t)R b
a
g (s) du (s)

R b
a
h (s) du (s)

35 du (t)
������

� sup
t2[a;b]

������(f (t)� �) det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������
� sup

t2[a;b]
jf (t)� �j sup

t2[a;b]

������det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������ :
Since f 2 �U[a;b] (;�) ; then

(3.4)

����f (t)� � + 2
���� � 1

2
j�� j for each t 2 [a; b] :

Utilising (3.3) for � = +�
2 and (3.4) we deduce the �rst inequality in (2.6). The

rest is obvious.
We observe that for h (t) = 1; t 2 [a; b] and f a real function bounded below by

 and above by �; we recapture from the �rst part of (2.6) the inequality (1.13)
obtained in [11] whose multiplicative constant 12 is best possible. This fact implies
that the constant 12 in the �rst inequality is also best possible.

ii) It is well known that if the Riemann-Stieltjes integrals
R b
a
p (t) dv (t),

R b
a
jp (t)j dv (t)

exist and v : [a; b]! R is monotonic nondecreasing, then we have the inequality

(3.5)

�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :

For instance, when p is continuous and v is monotonic nondecreasing then (3.5)
holds true.
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Taking the modulus in (3.1) and utilizing (3.5) we get

(u (b)� u (a))2 jT (f; g; h;u)j(3.6)

=

������
Z b

a

(f (t)� �) det

24 g (t) h (t)R b
a
g (s) du (s)

R b
a
h (s) du (s)

35 du (t)
������

�
Z b

a

������(f (t)� �) det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������ du (t)
=

Z b

a

jf (t)� �j

������det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������ du (t) ;
which, by (3.4), produces the �rst inequality in (2.7).
The sharpness of this inequality follows from (1.14) which is a particular case of

(2.7).
Further on, observe that������det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������ =
������
Z b

a

det

24 g (t) h (t)

g (s) h (s)

35 du (s)
������

�
Z b

a

������det
24 g (t) h (t)

g (s) h (s)

35������ du (s) ;
which, by integration on [a; b] over the monotonic nondecreasing integrator u, pro-
duces the second part of (2.7).
Now, on utilizing the Cauchy-Bunyakovsky-Schwarz�s double integral inequality

for the Riemann-Stieltjes integral with monotonic nondecreasing integrators,namely

�����
Z b

a

Z b

a

h (t; s)m (t; s) du (t) du (s)

�����
2

(3.7)

�
Z b

a

Z b

a

jh (t; s)j2 du (t) du (s)
Z b

a

Z b

a

jm (t; s)j2 du (t) du (s)

where h;m : [a; b]
2 ! C are continuous, then we have

1

[u (b)� u (a)]2
Z b

a

Z b

a

������det
24 g (t) h (t)

g (s) h (s)

35������ du (s) du (t)(3.8)

�

264 1

[u (b)� u (a)]2
Z b

a

Z b

a

������det
24 g (t) h (t)

g (s) h (s)

35������
2

du (s) du (t)

375
1=2

:
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Since Z b

a

Z b

a

������det
24 g (t) h (t)

g (s) h (s)

35������
2

du (s) du (t)

=

Z b

a

Z b

a

n
jg (t)j2 jh (s)j2 + jg (s)j2 jh (t)j2

�2Re
h
(g (t)h (s)) (g (s)h (t))

io
du (s) du (t)

and Z b

a

Z b

a

jg (t)j2 jh (s)j2 du (s) du (t) =
Z b

a

Z b

a

jg (s)j2 jh (t)j2 du (s) du (t)

=

Z b

a

jg (t)j2 du (t)
Z b

a

jh (t)j2 du (t)

and Z b

a

Z b

a

Re
h
(g (t)h (s)) (g (s)h (t))

i
du (s) du (t)

=

Z b

a

Z b

a

Re

��
g (t)h (t)

��
g (s)h (s)

��
du (s) du (t)

= Re

"Z b

a

�
g (t)h (t)

�
du (t)

Z b

a

�
g (s)h (s)

�
du (s)

#

=

�����
Z b

a

�
g (t)h (t)

�
du (t)

�����
2

then Z b

a

Z b

a

������det
24 g (t) h (t)

g (s) h (s)

35������
2

du (s) du (t)(3.9)

= 2

24Z b

a

jg (t)j2 du (t)
Z b

a

jh (t)j2 du (t)�
�����
Z b

a

�
g (t)h (t)

�
du (t)

�����
2
35

= 2det

2664
R b
a
jg (t)j2 du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a
jh (t)j2 du (t)

3775 :
Making use of (3.8) and (3.9) we obtain the last part of (2.7).
iii) It is well known that if p : [a; b] ! C is Riemann integrable and v : [a; b] !

C is Lipschitzian with the constant L > 0; then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and we have the inequality

(3.10)

�����
Z b

a

p (t) dv (t)

����� � L
Z b

a

jp (t)j dt:
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Taking the modulus in (3.1) and utilizing (3.10) we get

ju (b)� u (a)j2 jT (f; g; h;u)j(3.11)

=

������
Z b

a

(f (t)� �) det

24 g (t) h (t)R b
a
g (s) du (s)

R b
a
h (s) du (s)

35 du (t)
������

� L
Z b

a

������(f (t)� �) det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������ dt
= L

Z b

a

jf (t)� �j

������det
24 g (t) h (t)R b

a
g (s) du (s)

R b
a
h (s) du (s)

35������ dt:
Utilising (3.4) and (3.11) we deduce the �rst inequality (2.8).
The second part follows from a similar argument to the one in the second part

of the statement ii) by choosing u (t) = t and the details are omitted.
We observe that for h (t) = 1; t 2 [a; b] we recapture from the �rst inequality in

(2.8) the inequality (1.15) which is sharp.
Now, in order to prove the statements a) and aa) we need the following result

that is of interest in its turn.

Lemma 1. Let u : [a; b]! R be a function of bounded variation and g; h : [a; b]! C
be continuous on [a; b] : If there exists the complex constants ' and � such that

(3.12)
Z b

a

jh (t)j2 du (t)
Z b

a

Re
h
(�h (t)� g (t))

�
g (t)� 'h (t)

�i
du (t) � 0;

then we have

det

2664
R b
a
jg (t)j2 du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a
jh (t)j2 du (t)

3775(3.13)

� 1

4
j�� 'j2

"Z b

a

jh (t)j2 du (t)
#2
:

Proof. Consider the quantities

K1 : = Re

("
�

Z b

a

jh (t)j2 du (t)�
Z b

a

�
g (t)h (t)

�
du (t)

#

�
"Z b

a

�
g (t)h (t)

�
du (t)� '

Z b

a

jh (t)j2 du (t)
#)

and

K2 :=

Z b

a

jh (t)j2 du (t)
Z b

a

Re
h
(�h (t)� g (t))

�
g (t)� 'h (t)

�i
du (t) :
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We have by simple calculation that

K1 =

Z b

a

jh (t)j2 du (t)Re
"
�

Z b

a

�
g (t)h (t)

�
du (t) + '

Z b

a

�
g (t)h (t)

�
du (t)

#

�
�����
Z b

a

�
g (t)h (t)

�
du (t)

�����
2

�
"Z b

a

jh (t)j2 du (t)
#2
Re (�')

and

K2 =

Z b

a

jh (t)j2Re
"
�

Z b

a

�
g (t)h (t)

�
du (t) + '

Z b

a

�
g (t)h (t)

�
du (t)

#

�
Z b

a

jg (t)j2 du (t)
Z b

a

jh (t)j2 du (t)�
"Z b

a

jh (t)j2 du (t)
#2
Re (�')

which produces the equality of interest

K1 �K2 =

Z b

a

jg (t)j2 du (t)
Z b

a

jh (t)j2 du (t)�
�����
Z b

a

�
g (t)h (t)

�
du (t)

�����
2

(3.14)

= det

2664
R b
a
jg (t)j2 du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a
jh (t)j2 du (t)

3775 :
Since, by (3.12), we have K2 � 0; then it follows from (3.14) that

det

2664
R b
a
jg (t)j2 du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a
jh (t)j2 du (t)

3775(3.15)

� Re
("
�

Z b

a

jh (t)j2 du (t)�
Z b

a

�
g (t)h (t)

�
du (t)

#

�
"Z b

a

�
g (t)h (t)

�
du (t)� '

Z b

a

jh (t)j2 du (t)
#)

= Re

( 
�

Z b

a

jh (t)j2 du (t)�
Z b

a

�
g (t)h (t)

�
du (t)

!

�
 Z b

a

�
g (t)h (t)

�
du (t)� '

Z b

a

jh (t)j2 du (t)
!9=; :

On utilizing the elementary inequality for complex numbers

Re (uv) � 1

4
ju+ vj2 ; u; v 2 C
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we have

Re

( 
�

Z b

a

jh (t)j2 du (t)�
Z b

a

�
g (t)h (t)

�
du (t)

!

�
 Z b

a

�
g (t)h (t)

�
du (t)� '

Z b

a

jh (t)j2 du (t)
!9=;

� 1

4
j�� 'j2

"Z b

a

jh (t)j2 du (t)
#2

which together with (3.15) produces the desired result (3.13). �

The following particular case is of interest since it provides a reverse inequality
for the Cauchy-Bunyakovsky-Schwarz�s integral inequality for the Riemann-Stieltjes
integral with monotonic nondecreasing integrators:

Corollary 3. Let u : [a; b]! R be monotonic nondecreasing and g; h : [a; b]! C be
continuous on [a; b] : If there exists the complex constants ' and � such that either

(3.16) Re
h
(�h (t)� g (t))

�
g (t)� 'h (t)

�i
� 0 for any t 2 [a; b]

or, equivalently,

(3.17)

����g (t)� '+�2 h (t)

���� � 1

2
j�� 'j jh (t)j for any t 2 [a; b] ;

holds, then we have

0 � det

2664
R b
a
jg (t)j2 du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a

�
g (t)h (t)

�
du (t)

R b
a
jh (t)j2 du (t)

3775(3.18)

� 1

4
j�� 'j2

"Z b

a

jh (t)j2 du (t)
#2
:

4. Applications for Functions of Selfadjoint Operators

Let A be a selfadjoint linear operator on a complex Hilbert space (H; h:; :i) :
The Gelfand map establishes a �-isometrically isomorphism � between the set
C (Sp (A)) of all continuous functions de�ned on the spectrum of A; denoted Sp (A) ;
an the C�-algebra C� (A) generated by A and the identity operator 1H on H as
follows (see for instance [24, p. 3]):
For any f; g 2 C (Sp (A)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) and �

�
�f
�
= �(f)

�
;

(iii) k� (f)k = kfk := supt2Sp(A) jf (t)j ;
(iv) � (f0) = 1H and � (f1) = A; where f0 (t) = 1 and f1 (t) = t; for t 2 Sp (A) :
With this notation we de�ne

f (A) := � (f) for all f 2 C (Sp (A))
and we call it the continuous functional calculus for a selfadjoint operator A:
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If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),
then f (t) � 0 for any t 2 Sp (A) implies that f (A) � 0; i:e: f (A) is a positive
operator on H: Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

(P) f (t) � g (t) for any t 2 Sp (A) implies that f (A) � g (A)
in the operator order of B (H) :
For a recent monograph devoted to various inequalities for functions of selfadjoint

operators, see [24] and the references therein.
For other results see [1], [16]-[20], [29], [32], [33] and [36].
We say that the functions f; g : [a; b] �! R are synchronous (asynchronous) on

the interval [a; b] if they satisfy the following condition:

(f (t)� f (s)) (g (t)� g (s)) � (�) 0 for each t; s 2 [a; b] :
It is obvious that, if f; g are monotonic and have the same monotonicity on

the interval [a; b] ; then they are synchronous on [a; b] while if they have opposite
monotonicity, they are asynchronous.
For some extensions of the discrete µCeby�ev inequality for synchronous (asyn-

chronous) sequences of vectors in an inner product space, see [22] and [23].
For a selfadjoint operator A on the Hilbert space A with Sp (A) � [m;M ] for

some real numbersm < M and for f; g : [m;M ] �! R that are continuous functions
on [m;M ] ; we can de�ne the following µCeby�ev functional

C (f; g;A;x) := hf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xi
where x 2 H with kxk = 1:
The following result provides an inequality of µCeby�ev type for functions of

selfadjoint operators, see [14]:

Theorem 3. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M: If f; g : [m;M ] �! R are continuous and synchronous (asynchro-
nous) on [m;M ] ; then

(4.1) C (f; g;A;x) � (�) 0;
for any x 2 H with kxk = 1:

The following result of Grüss�type can be stated as well, see [15]:

Theorem 4. Let A be a selfadjoint operator on the Hilbert space (H; h:; :i) and
assume that Sp (A) � [m;M ] for some scalars m < M: If f and g are continuous
on [m;M ] and  := mint2[m;M ] f (t) and � := maxt2[m;M ] f (t) then

(4.2) jC (f; g;A;x)j � 1

2
� (�� ) [C (g; g;A;x)]1=2

�
� 1

4
(�� ) (�� �)

�
;

for each x 2 H with kxk = 1; where � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) :

In order to provide some new vector Grüss� type inequalities for continuous
functions of selfadjoint operators in Hilbert spaces, we need the following facts
concerning the spectral representation of such functions.
Let U be a selfadjoint operator on the complex Hilbert space (H; h:; :i) with the

spectrum Sp (U) included in the interval [m;M ] for some real numbers m < M and
let fE�g� be its spectral family. Then for any continuous function f : [m;M ]! C,
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it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral :

(4.3) f (U) =

Z M

m�0
f (�) dE�;

which in terms of vectors can be written as

(4.4) hf (U)x; yi =
Z M

m�0
f (�) d hE�x; yi ;

for any x; y 2 H: The function gx;y (�) := hE�x; yi is of bounded variation on the
interval [m;M ] and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi

for any x; y 2 H: It is also well known that gx (�) := hE�x; xi is monotonic nonde-
creasing and right continuous on [m;M ].
For three continuos functions f; g; h : [m;M ]! C we de�ne the general µCeby�ev

functional for two vectors x; y 2 H by

C (f; g;h;A;x; y)(4.5)

:= hh (A)x; yi � hf (A) g (A)x; yi � hg (A)x; yi � hf (A)h (A)x; yi

= det

24 hh (A)x; yi hg (A)x; yi

hf (A)h (A)x; yi hf (A) g (A)x; yi

35 :
We denote C (f; g;h;A;x; x) by C (f; g;h;A;x) for x 2 H:
In particular, if h (t) = 1; t 2 [m;M ] ; then we get from (4.5) the functional

C (f; g;A;x; y) := hx; yi � hf (A) g (A)x; yi � hg (A)x; yi � hf (A)x; yi(4.6)

= det

24 hx; yi hg (A)x; yi

hf (A)x; yi hf (A) g (A)x; yi

35 :
where x; y 2 H:
We denote C (f; g;A;x; x) by C (f; g;A;x) for x 2 H:

Theorem 5. Let A be a selfadjoint operator on the Hilbert space (H; h:; :i), the
spectrum of A; Sp (A) � [m;M ] for some scalars m < M , fE�g� be its spectral
family and g; h : [m;M ] ! C continuous functions on [m;M ] : If f : [m;M ] ! C
is continuous and there exists the complex numbers ;�;  6= �; such that f 2
�U[a;b] (;�) then

jC (f; g;h;A;x; y)j(4.7)

� 1

2
j�� j

M_
m�0

�

E(�)x; y

��
max

t2[m;M ]

������det
24 g (t) h (t)

hg (A)x; yi hh (A)x; yi

35������
� 1

2
j�� j

"
M_
m�0

�

E(�)x; y

��#2
max

(t;s)22[a;b]2

������det
24 g (t) h (t)

g (s) h (s)

35������
for any x; y 2 H:
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We also have the simpler inequalities

jC (f; g;h;A;x; y)j(4.8)

� 1

2
j�� j kxk kyk max

t2[m;M ]

������det
24 g (t) h (t)

hg (A)x; yi hh (A)x; yi

35������
� 1

2
j�� j kxk2 kyk2 max

(t;s)22[a;b]2

������det
24 g (t) h (t)

g (s) h (s)

35������
for any x; y 2 H:

Proof. Utilising the inequality (2.6) we can state that

�������det
264
RM
m�" f (t) g (t) du (t)

RM
m�" f (t)h (t) du (t)RM

m�" g (t) du (t)
RM
m�" h (t) du (t)

375
�������

(4.9)

� 1

2
j�� j

M_
m�"

(u) max
t2[m�";M ]

������det
24 g (t) h (t)RM

m�" g (t) du (t)
RM
m�" h (t) du (t)

35������
� 1

2
j�� j

"
M_
m�"

(u)

#2
max

(t;s)22[m�";M ]2

������det
24 g (t) h (t)

g (s) h (s)

35������
for any function u : R! C that is of bounded variation on the compact interval
[m� ";M ] ; where " > 0:
Now, on applying (4.9) for the function u (t) = hEtx; yi ; t 2 R which is of

bounded variation on [m� ";M ] and x; y are �xed in H and utilizing the spectral
representation theorem (4.4), we deduce the desired inequality (4.7).
We also have the Total Variation Schwarz�s Inequality for the spectral family

fE�g� (see a detailed proof in [21, p. 11])

M_
m�0

�

E(�)x; y

��
� kxk kyk

any x; y 2 H:
These prove the inequalities (4.8). �

The following result also holds:

Theorem 6. Let A be a selfadjoint operator on the Hilbert space (H; h:; :i), the
spectrum of A; Sp (A) � [m;M ] for some scalars m < M , fE�g� be its spectral
family and g; h : [m;M ] ! C continuous functions on [m;M ] : If f : [m;M ] ! C
is continuous and there exists the complex numbers ;�;  6= �; such that f 2
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�U[a;b] (;�) then

jC (f; g;h;A;x)j � 1

2
j�� j(4.10)

�
Z M

m�0

������det
24 g (t) h (t)

hg (A)x; xi hh (A)x; xi

35������ d hEtx; xi
� 1

2
j�� j

�
Z M

m�0

Z M

m�0

������det
24 g (t) h (t)

g (s) h (s)

35������ d hEsx; xi d hEtx; xi
�
p
2

2
j�� j

�

0@det
24 kg (A)xk2 hg (A)x; h (A)xi

hh (A)x; g (A)xi kh (A)xk2

351A1=2

for any x 2 H:

Proof. Follows by (2.8) on taking into account that

kg (A)xk2 =
Z M

m�0
jg (t)j2 d hEtx; xi ; kh (A)xk2 =

Z M

m�0
jh (t)j2 d hEtx; xi

and

hg (A)x; h (A)xi =
Z M

m�0
g (t)h (t)d hEtx; xi

for any x 2 H:
These equalities follow by the spectral representation (4.4). �

The following particular case which provides a simpler, however a coarser in-
equality may be more useful for applications.

Corollary 4. Under the assumptions of Theorem 6 and, in addition, if there exists
the complex constants ' and � such that either

(4.11) Re
h
(�h (t)� g (t))

�
g (t)� 'h (t)

�i
� 0 for any t 2 [a; b]

or, equivalently,

(4.12)

����g (t)� '+�2 h (t)

���� � 1

2
j�� 'j jh (t)j for any t 2 [a; b] ;

holds, then we have

jC (f; g;h;A;x)j �
p
2

4
j�� j j�� 'j kh (A)xk2

for any x 2 H:
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5. Applications for Functions of Unitary Operators

Let (H; h�; �i) be a complex Hilbert space. We recall that the bounded linear
operator U : H ! H on the Hilbert space H is unitary i¤ U� = U�1:
It is well known that (see for instance [?, p. 275-p. 276]), if U is a unitary

operator, then there exists a family of projections fE�g�2[0;2�], called the spectral
family of U with the following properties:

a) E� � E� for 0 � � � � � 2�;
b) E0 = 0 and E2� = 1H (the identity operator on H);
c) E�+0 = E� for 0 � � < 2�;
d) U =

R 2�
0
ei�dE� where the integral is of Riemann-Stieltjes type.

Moreover, if fF�g�2[0;2�] is a family of projections satisfying the requirements
a)-d) above for the operator U; then F� = E� for all � 2 [0; 2�] :
Also, for every continuous complex valued function f : C (0; 1) ! C on the

complex unit circle C (0; 1), we have

(5.1) f (U) =

Z 2�

0

f
�
ei�
�
dE�

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(5.2) f (U)x =

Z 2�

0

f
�
ei�
�
dE�x;

(5.3) hf (U)x; yi =
Z 2�

0

f
�
ei�
�
d hE�x; yi

and

(5.4) kf (U)xk2 =
Z 2�

0

��f �ei����2 d kE�xk2 ;
for any x; y 2 H:
Now, for ;� 2 C, de�ne the sets of continuous complex valued functions f :

C (0; 1)! C on the complex unit circle C (0; 1)

�U (;�)

:=
n
f : C (0; 1)! C;Re

h�
�� f

�
eit
�� �

f (eit)� 
�i
� 0 for each t 2 [0; 2�]

o
and

�� (;�)

:=

�
f : C (0; 1)! C;

����f �eit��  + �2
���� � 1

2
j�� j for each t 2 [a; b]

�
:

As above, we observe that �U (;�) = �� (;�) :
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Now, by utilizing the inequality (2.6) for f 2 �U (;�) and two continuous func-
tions g; h : C (0; 1)! C we can state that������det

24 R 2�0 f
�
eit
�
g
�
eit
�
du (t)

R 2�
0
f
�
eit
�
h
�
eit
�
du (t)R 2�

0
g
�
eit
�
du (t)

R 2�
0
h
�
eit
�
du (t)

35������(5.5)

� 1

2
j�� j

2�_
0

(u) max
t2[0;2�]

������det
24 g

�
eit
�

h
�
eit
�

R 2�
0
g
�
eit
�
du (t)

R 2�
0
h
�
eit
�
du (t)

35������
� 1

2
j�� j

"
2�_
0

(u)

#2
max

(t;s)22[0;2�]2

������det
24 g

�
eit
�

h
�
eit
�

g
�
eis
�

h
�
eis
�
35������

for any function u : R! C that is of bounded variation on the compact interval
[0; 2�] :

Theorem 7. Let f; g; h : C (0; 1) ! C be three continuous functions and ;� 2 C
such that f 2 �U (;�) : If U : H ! H is a unitary operator on the Hilbert space H
and fE�g�2[0;2�] is the spectral family of U then������det

24 hf (U) g (U)x; yi hf (U)h (U)x; yi

hg (U)x; yi hh (U)x; yi

35������(5.6)
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for any x; y 2 H and the simpler inequality������det
24 hf (U) g (U)x; yi hf (U)h (U)x; yi

hg (U)x; yi hh (U)x; yi

35������(5.7)
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for any x; y 2 H:

Proof. For given x; y 2 H; de�ne the function u (�) := hE�x; yi ; � 2 [0; 2�] : We
will show that u is of bounded variation and

(5.8)
2�_
0

(u) =:
2�_
0

�

E(�)x; y

��
� kxk kyk :

It is well known that, if P is a nonnegative selfadjoint operator on H; i.e., hPx; xi �
0 for any x 2 H; then the following inequality is a generalization of the Schwarz
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inequality in H

(5.9) jhPx; yij2 � hPx; xi hPy; yi ;
for any x; y 2 H:
Now, if d : 0 = t0 < t1 < ::: < tn�1 < tn = 2� is an arbitrary partition of

the interval [0; 2�] ; then we have by Schwarz�s inequality for nonnegative operators
(5.9) that

2�_
0

�

E(�)x; y

��
(5.10)

= sup
d

(
n�1X
i=0

��
�Eti+1 � Eti�x; y���
)

� sup
d

(
n�1X
i=0

h
�
Eti+1 � Eti

�
x; x

�1=2 
�
Eti+1 � Eti

�
y; y
�1=2i)

:= I:

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

I � sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;(5.11)

� sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;

=

"
2�_
0

�

E(�)x; x

��#1=2 "2�_
0

�

E(�)y; y

��#1=2
= kxk kyk

for any x; y 2 H:
By making use of (5.10) and (5.11) we get (5.8).
The inequality (5.6) follows by (5.5) on choosing u (t) := hEtx; yi ; t 2 [0; 2�] :
The inequality (5.7) follows by (5.6) and by (5.8). �

Remark 3. The interested reader may obtain other similar results by utilizing the
rest of the inequalities for the Riemann-Stieltjes integral established above. However,
the details are omitted.
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