
REFINEMENTS OF THE GENERALIZED TRAPEZOID
INEQUALITY IN TERMS OF THE CUMULATIVE VARIATION

AND APPLICATIONS

S.S. DRAGOMIR1;2

Abstract. Re�nements of the generalized trapezoid inequality for functions
of bounded variation in terms of the cumulative variation function are given.
Applications for selfadjoint operators on complex Hilbert spaces are also pro-
vided.

1. Introduction

The following generalized trapezoidal inequality was obtained in 1999 by the
author [11, Proposition 1]�����

Z b

a

f (t) dt� (x� a) f (a)� (b� x) f (b)
�����(1.1)

�
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f) ;

where x 2 [a; b] : The constant 12 cannot be replaced by a smaller quantity. See also
[9] for a di¤erent proof and other details.
The best inequality one can derive from (1.1) is the trapezoid inequality

(1.2)

�����
Z b

a

f (t) dt� f (a) + f (b)
2

(b� a)
����� � 1

2
(b� a)

b_
a

(f) :

Here the constant 12 is also best possible.
For related results, see [1]-[4], [6]-[8], [10], [14], [15], [17], [18], [20], [22]-[27] and

[29]-[32].
The main aim of the present paper is to provide some re�nements of the inequal-

ities (1.1) and (1.2) in terms of the cumulative variation function. Applications for
selfadjoint operators on complex Hilbert spaces are also given.

2. Refinements of the Generalized Trapezoid Inequality

For a function of bounded variation v : [a; b] ! C we de�ne the Cumulative
Variation Function (CVF) V : [a; b]! [0;1) by

V (t) :=
t_
a

(v)
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2 S.S. DRAGOMIR1;2

the total variation of v on the interval [a; t] with t 2 [a; b] :
It is know that the CVF is monotonic nondecreasing on [a; b] and is continuous

in a point c 2 [a; b] if and only if the generating function v is continuing in that
point. If v is Lipschitzian with the constant L > 0; i.e.

jv (t)� v (s)j � L jt� sj for any t; s 2 [a; b]
then V is also Lipschitzian with the same constant.
The following lemma is of interest in itself as well, see also [16]. For the sake of

completeness, we give here a simple proof.

Lemma 1. Let f; u : [a; b] ! C. If f is continuous on [a; b] and u is of bounded
variation on [a; b] ; then

(2.1)

�����
Z b

a

f (t) du (t)

����� �
Z b

a

jf (t)j d
 

t_
a

(u)

!
� max

t2[a;b]
jf (t)j

b_
a

(u) :

Proof. Since the Riemann-Stieltjes integral
R b
a
f (t) du (t) exists, then for any divi-

sion
In : a = t0 < t1 < � � � < tn�1 < tn = b

with the norm
v (In) := max

i2f0;:::;n�1g
(ti+1 � ti)! 0

and for any intermediate points �i 2 [ti; ti+1]; i 2 f0; : : : ; n� 1g we have:�����
Z b

a

f (t) du (t)

����� =
����� lim
v(In)!0

n�1X
i=0

f (�i) [u (ti+1)� u (ti)]
�����(2.2)

� lim
v(In)!0

n�1X
i=0

jf (�i)j ju (ti+1)� u (ti)j :

However,

ju (ti+1)� u (ti)j �
ti+1_
ti

(u) =

ti+1_
a

(u)�
ti_
a

(u) ;

for any i 2 f0; : : : ; n� 1g ; and by (2.2) we have�����
Z b

a

f (t) du (t)

����� � lim
v(In)!0

n�1X
i=0

jf (�i)j
"
ti+1_
a

(u)�
ti_
a

(u)

#

=

Z b

a

jf (t)j d
 

t_
a

(u)

!
;

and the last Riemann-Stieltjes integral exists since jf j is continuous and
W�
a is

monotonic nondecreasing on [a; b] :
The last part follows from :�����

Z b

a

g (t) dv (t)

����� � max
t2[a;b]

jg (t)j [v (b)� v (a)] ;

holding for any function g continuous on [a; b] and v monotonic nondecreasing on
[a; b] :
The details are omitted. �
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The following result may be stated.

Theorem 1. Let f : [a; b]! C be a function of bounded variation on [a; b] : Then�����
Z b

a

f (t) dt� [f (a) (x� a) + f (b) (b� x)]
�����(2.3)

�
Z x

a

 
t_
a

(f)

!
dt+

Z b

x

 
b_
t

(f)

!
dt

� (x� a)
x_
a

(f) + (b� x)
b_
x

(f)

�

8><>:
�
1
2 (b� a) +

��x� a+b
2

���Wb
a (f) ;h

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i (b� a) ;
for any x 2 [a; b].
Proof. We use the identity obtained in [9]

(2.4) f (a) (x� a) + f (b) (b� x)�
Z b

a

f (t) dt =

Z b

a

(t� x) df (t) ;

which holds for any Riemann integrable function f : [a; b]! R. This can be easily
proved integrating by parts in the second integral.
Now, if f is of bounded variation on [a; b] ; then on applying the �rst inequality

in (2.1) we deduce that:�����
Z b

a

(t� x) df (t)
����� �

Z b

a

jt� xj d
 

t_
a

(f)

!
(2.5)

=

Z x

a

(x� t) d
 

t_
a

(f)

!
+

Z b

x

(t� x) d
 

t_
a

(f)

!
for any x 2 [a; b] :
Integrating by parts in the Riemann-Stieltjes integral we haveZ x

a

(x� t) d
 

t_
a

(f)

!
= (x� t)

 
t_
a

(f)

!�����
x

a

+

Z x

a

 
t_
a

(f)

!
dt(2.6)

=

Z x

a

 
t_
a

(f)

!
dt

and Z b

x

(t� x) d
 

t_
a

(f)

!
= (t� x)

 
t_
a

(f)

!�����
b

x

�
Z b

x

 
t_
a

(f)

!
dt(2.7)

= (b� x)
 

b_
a

(f)

!
�
Z b

x

 
t_
a

(f)

!
dt

=

Z b

x

 
b_
a

(f)�
t_
a

(f)

!
dt =

Z b

x

 
b_
t

(f)

!
dt
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for any x 2 [a; b] :
Making use of (2.5)-(2.7) we get the �rst inequality in (2.3).
Since

W�
a is monotonic nondecreasing on [a; b] while

Wb
� is nonincreasing in the

same interval, we haveZ x

a

 
t_
a

(f)

!
dt � (x� a)

x_
a

(f) and
Z b

x

 
b_
t

(f)

!
dt � (b� x)

b_
x

(f) ;

for any x 2 [a; b], which gives the second inequality in (2.3).
Using the properties of the maximum, we have

(x� a)
x_
a

(f) + (b� x)
b_
x

(f)

�

8><>:
max fx� a; b� xg

Wb
a (f)

max
nWx

a (f) ;
Wb
x (f)

o
(b� a)

=

8><>:
�
1
2 (b� a) +

��x� a+b
2

���Wb
a (f)h

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i (b� a)
for any x 2 [a; b]; and the proof is complete. �

An important particular case is where x = a+b
2 ; giving:

Corollary 1. Let f : [a; b]! C be a function of bounded variation on [a; b] : Then�����
Z b

a

f (t) dt� f (a) + f (b)
2

(b� a)
�����(2.8)

�
Z a+b

2

a

 
t_
a

(f)

!
dt+

Z b

a+b
2

 
b_
t

(f)

!
dt � 1

2
(b� a)

b_
a

(f) :

The �rst inequality in (2.8) is sharp. The constant 1
2 in the second inequality is

best possible.

Proof. We must prove only the sharpness of the �rst inequality in (2.8) and the
best constant.
Consider the function f : [a; b]! R given by

f (t) :=

8<: 1; t = a
0; t 2 (a; b)
1; t = b:

We observe that f is of bounded variation and the CVF is given by

t_
a

(f) =

8<: 0; t = a
1; t 2 (a; b)
2; t = b:

If we replace this function in (2.8) and perform the calculation, we get the same
quantity b� a in all three terms. �



REFINEMENTS OF THE GENERALIZED TRAPEZOID INEQUALITY 5

Corollary 2. Let f : [a; b] ! C be a function of bounded variation on [a; b] : If
p 2 (a; b) is a median point in variation, namely

Wp
a (f) =

Wb
p (f) ; then we have

the inequality�����
Z b

a

f (t) dt� [f (a) (p� a) + f (b) (b� p)]
�����(2.9)

�
Z p

a

 
t_
a

(f)

!
dt+

Z b

p

 
b_
t

(f)

!
dt � 1

2
(b� a)

b_
a

(f) :

The �rst inequality in (2.3) is useful when some properties for the CVF are
available, like for instance below:

Corollary 3. Let f : [a; b] ! C be a function of bounded variation on [a; b] : If
there exists the constants La; Lb > 0 and �; � > �1 so that

(2.10)
t_
a

(f) � La (t� a)� for any t 2 (a; b]

and

(2.11)
b_
t

(f) � Lb (b� t)� for any t 2 [a; b);

then �����
Z b

a

f (t) dt� [f (a) (x� a) + f (b) (b� x)]
�����(2.12)

� 1

�+ 1
La (x� a)�+1 +

1

� + 1
Lb (b� t)�+1

for any x 2 [a; b].
The inequality (2.12) follows by integrating the inequalities (2.10) and (2.12) via

(2.3).

Corollary 4. Let f : [a; b] ! C be a function of bounded variation on [a; b] : If
there exists the constant L > 0 so that

(2.13)
t_
a

(f) � L (t� a) and
b_
t

(f) � L (b� t) for any t 2 [a; b]

then �����
Z b

a

f (t) dt� [f (a) (x� a) + f (b) (b� x)]
�����(2.14)

�
"
1

4
+

 
x� a+b

2

b� a

!#
L (b� a)2

for any x 2 [a; b]. The constant 14 is best possible.
In particular, we have

(2.15)

�����
Z b

a

f (t) dt� f (a) + f (b)
2

(b� a)
����� � 1

4
L (b� a)2 :

The constant 14 is best possible.
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Proof. First, we notice that if h : [a; b] ! C is of bounded variation, then jhj :
[a; b]! [0;1) is of bounded variation and

(2.16)
b_
a

(jhj) �
b_
a

(h) :

Indeed, by the continuity property of the modulus, we have that

n�1X
j=0

jjh (tj+1)j � jh (tj)jj �
n�1X
j=0

jh (tj+1)� h (tj)j

for any division a = t0 < t1 < ::: < tn�1 < tn = b; which, by taking the supremum
over all divisions of [a; b] ; produces the desired inequality (2.16).
If we consider the function f0 : [a; b] ! R, f0 (s) :=

��s� a+b
2

�� then, by denoting
with e the identity function on [a; b] ; i.e. e (t) = t; t 2 [a; b] ; we have

t_
a

�����e�a+ b2
����� � t_

a

�
e�a+ b

2

�
=

t_
a

(e) = t� a

for any t 2 [a; b] :
Similarly,

b_
t

�����e�a+ b2
����� � b� t

for any t 2 [a; b] ; showing that f0 satis�es the condition (2.13) with L = 1:
Since

f0 (a) + f0 (b)

2
= b� a;

Z b

a

f0 (t) dt =
1

4
(b� a)2 ;

then we get in both sides of (2.15) the same quantity 1
4 (b� a)

2
: This proves the

sharpness of the constant 14 in (2.15) and therefore in (2.14). �

Remark 1. The inequalities (2.14) and (2.15) are known in the case of Lipschitzian
functions with the constant L > 0: We obtained them here under weaker conditions
for the function f: This show that the re�nement in terms of the CVF for the
trapezoid inequality (2.3) is also useful to extend known results to larger classes of
functions.

The following similar result also holds:
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Theorem 2. Let f : [a; b]! C be a function of bounded variation on [a; b] : Then�����
Z b

a

f (t) dt� [f (a) (x� a) + f (b) (b� x)]
�����(2.17)

�
Z x

a

 
t_
a

(jf � f (a)j)
!
dt+

Z b

x

 
b_
t

(jf (b)� f j)
!
dt

� (x� a)
x_
a

(jf � f (a)j) + (b� x)
b_
x

(jf (b)� f j)

� (x� a)
x_
a

(f) + (b� x)
b_
x

(f)

�

8><>:
�
1
2 (b� a) +

��x� a+b
2

���Wb
a (f) ;h

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i (b� a) ;
for any x 2 [a; b].

Proof. We observe that�����
Z b

a

f (t) dt� [f (a) (x� a) + f (b) (b� x)]
�����(2.18)

=

�����
Z x

a

(f (a)� f (t)) dt+
Z b

x

(f (b)� f (t)) dt
�����

�
Z x

a

jf (a)� f (t)j dt+
Z b

x

jf (b)� f (t)j dt

for any x 2 [a; b].
For a given x 2 (a; b) ; de�ne the function g : [a; b] ! [0;1) given by

g (t) :=

8<: jf (t)� f (a)j ; t 2 [a; x]

jf (b)� f (t)j ; t 2 (x; b]:

We observe that g is of bounded variation on the intervals [a; x] and [x; b] ; g (a) =
g (b) = 0: Moreover,Z b

a

g (t) dt =

Z x

a

jf (a)� f (t)j dt+
Z b

x

jf (b)� f (t)j dt;

for any x 2 (a; b) :
Since g is nonnegative, observe also thatZ b

a

g (t) dt =

�����
Z b

a

g (t) dt� (b� x) g (b)� (x� a) g (a)
�����

for any x 2 (a; b) :
Now, if we apply Theorem 1 for the function g (we should notice that the Theo-

rem 1 also holds if we assume the involved function is of bounded variation on the
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portions [a; x] and [x; b]), then we get�����
Z b

a

g (t) dt� (b� x) g (b)� (x� a) g (a)
�����(2.19)

�
Z x

a

 
t_
a

(g)

!
dt+

Z b

x

 
b_
t

(g)

!
dt

� (x� a)
x_
a

(g) + (b� x)
b_
x

(g) :

Since Z x

a

 
t_
a

(g)

!
dt+

Z b

x

 
b_
t

(g)

!
dt

=

Z x

a

 
t_
a

(jf � f (a)j)
!
dt+

Z b

x

 
b_
t

(jf (b)� f j)
!
dt

and

(x� a)
x_
a

(g) + (b� x)
b_
x

(g)

= (x� a)
x_
a

(jf � f (a)j) + (b� x)
b_
x

(jf (b)� f j)

then we get from (2.18) and (2.19) the �rst two inequalities in (2.17).
For the last part, we observe that

x_
a

(jf � f (a)j) �
x_
a

(f � f (a)) =
x_
a

(f)

and
b_
x

(jf (b)� f j) �
b_
x

(f (b)� f) =
b_
x

(f) :

for any x 2 (a; b) :
The proof is complete. �

Corollary 5. Let f : [a; b]! C be a function of bounded variation on [a; b] : Then�����
Z b

a

f (t) dt� f (a) + f (b)
2

(b� a)
�����(2.20)

�
Z a+b

2

a

 
t_
a

(jf � f (a)j)
!
dt+

Z b

a+b
2

 
b_
t

(jf (b)� f j)
!
dt

� 1

2
(b� a)

24 a+b
2_
a

(jf � f (a)j) +
b_

a+b
2

(jf (b)� f j)

35
� 1

2
(b� a)

b_
a

(f) :
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The inequalities in (2.20) are sharp.

Proof. We must prove only the sharpness of the inequalities.
Consider the function of bounded variation f : [a; b]! R given by

f (t) :=

8<: 1; t = a
0; t 2 (a; b)
1; t = b:

Observe that

jf (t)� f (a)j = jf (b)� f (t)j =

8<: 0; t = a
1; t 2 (a; b)
0; t = b:

Then
t_
a

(jf � f (a)j) = 1; t 2
�
a;
a+ b

2

�
and

b_
t

(jf (b)� f j) = 1; t 2
�
a+ b

2
; b

�
:

Replacing these values in (2.20) and performing the calculations we obtain the same
quantity b�a in all terms. This proves the sharpness of all inequalities in (2.20). �

3. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H; h�; �i) : Let A 2 B (H) be selfadjoint and let '� be
de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:
Then for every � 2 R the operator

(3.1) E� := '� (A)

is a projection which reduces A:
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [21, p. 256]:

Theorem 3 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let m = min f� j� 2 Sp (A)g =: minSp (A) and
M = max f� j� 2 Sp (A)g =: maxSp (A) : Then there exists a family of projections
fE�g�2R, called the spectral family of A; with the following properties

a) E� � E�0 for � � �0;
b) Em�0 = 0; EM = I and E�+0 = E� for all � 2 R;
c) We have the representation

A =

Z M

m�0
�dE�:
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More generally, for every continuous complex-valued function ' de�ned on R
and for every " > 0 there exists a � > 0 such that




' (A)�

nX
k=1

'
�
�0k
� �
E�k � E�k�1

�




 � "
whenever 8>>>><>>>>:

�0 < m = �1 < ::: < �n�1 < �n =M;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(3.2) ' (A) =

Z M

m�0
' (�) dE�;

where the integral is of Riemann-Stieltjes type.

Corollary 6. With the assumptions of Theorem 3 for A;E� and ' we have the
representations

' (A)x =

Z M

m�0
' (�) dE�x for all x 2 H

and

(3.3) h' (A)x; yi =
Z M

m�0
' (�) d hE�x; yi for all x; y 2 H:

In particular,

h' (A)x; xi =
Z M

m�0
' (�) d hE�x; xi for all x 2 H:

Moreover, we have the equality

k' (A)xk2 =
Z M

m�0
j' (�)j2 d kE�xk2 for all x 2 H:

We need the following result that provides an upper bound for the total variation
of the function R 3 � 7! hE�x; yi 2 C on an interval [�; �] ; see [16]. For the sake
of completeness, we give here a short proof.

Lemma 2. Let fE�g�2R be the spectral family of the bounded selfadjoint operator
A: Then for any x; y 2 H and � < � we have the inequality

(3.4)

"
�_
�

�

E(�)x; y

��#2
� h(E� � E�)x; xi h(E� � E�) y; yi ;

where
�_
�

�

E(�)x; y

��
denotes the total variation of the function



E(�)x; y

�
on [�; �] :

Proof. If P is a positive selfadjoint operator on H; i.e., hPx; xi � 0 for any x 2 H;
then the following inequality is a generalization of the Schwarz inequality in H

(3.5) jhPx; yij2 � hPx; xi hPy; yi ;
for any x; y 2 H:
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Now, if d : � = t0 < t1 < ::: < tn�1 < tn = � is an arbitrary partition of the
interval [�; �] ; then we have by Schwarz�s inequality for positive operators (3.5)
that

�_
�

�

E(�)x; y

��
(3.6)

= sup
d

(
n�1X
i=0

��
�Eti+1 � Eti�x; y���
)

� sup
d

(
n�1X
i=0

h
�
Eti+1 � Eti

�
x; x

�1=2 
�
Eti+1 � Eti

�
y; y
�1=2i)

:= B:

By the Cauchy-Bunyakovsky-Schwarz inequality for sequences of real numbers we
also have that

n�1X
i=0

h
�
Eti+1 � Eti

�
x; x

�1=2 
�
Eti+1 � Eti

�
y; y
�1=2i

(3.7)

�
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=2

= [h(E� � E�)x; xi]1=2 [h(E� � E�) y; yi]1=2

for any x; y 2 H: Taking the supremum over d in (3.7) we get

B � [h(E� � E�)x; xi]1=2 [h(E� � E�) y; yi]1=2

for any x; y 2 H which together with (3.6) produce the desired result (3.4). �

Remark 2. For � = m� " with " > 0 and � =M we get from (3.4) the inequality

(3.8)
M_
m�"

�

E(�)x; y

��
� h(I � Em�")x; xi1=2 h(I � Em�") y; yi1=2

for any x; y 2 H:
This implies, for any x; y 2 H, that

(3.9)
M_
m�0

�

E(�)x; y

��
� kxk kyk ;

where
M_
m�0

�

E(�)x; y

��
denotes the limit lim"!0+

"
M_
m�"

�

E(�)x; y

��#
:

The following result holds:

Theorem 4. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
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=: maxSp (A) : If fE�g�2R is the spectral family of the bounded selfadjoint opera-
tor A; then for any v 2 [m;M ] we have

jh(A� vI)x; yij(3.10)

�
Z v

m�0
hEtx; xi1=2 hEty; yi1=2 dt

+

Z M

v

h(I � Et)x; xi1=2 h(I � Et) y; yi1=2 dt

� (v �m) hEvx; xi1=2 hEvy; yi1=2

+ (M � v) h(I � Ev)x; xi1=2 h(I � Ev) y; yi1=2

�
�
1

2
(M �m) +

����v � a+ b2
�����

�
h
hEvx; xi1=2 hEvy; yi1=2 + h(I � Ev)x; xi1=2 h(I � Ev) y; yi1=2

i
�
�
1

2
(M �m) +

����v � a+ b2
����� kxk kyk

for any x; y 2 H:
In particular, we have

������A� m+M2 I

�
x; y

�����(3.11)

�
Z m+M

2

m�0
hEtx; xi1=2 hEty; yi1=2 dt

+

Z M

m+M
2

h(I � Et)x; xi1=2 h(I � Et) y; yi1=2 dt

� 1

2
(M �m)

�D
Em+M

2
x; x

E1=2 D
Em+M

2
y; y
E1=2

+
D�
I � Em+M

2

�
x; x

E1=2 D�
I � Em+M

2

�
y; y
E1=2�

� 1

2
(M �m) kxk kyk

for any x; y 2 H:

Proof. Utilising the representation in (3.3) we have

jh(A� vI)x; yij =
�����
Z M

m�0
(t� v) d hEtx; yi

�����
for any v 2 [m;M ] and for any x; y 2 H:



REFINEMENTS OF THE GENERALIZED TRAPEZOID INEQUALITY 13

For " > 0; by utilizing an argument similar to the one in Theorem 1 we have�����
Z M

m�"
(t� v) d hEtx; yi

�����
�
�����
Z M

m�"
jt� vj d

 
t_
a

hEtx; yi
!�����

�
Z v

m�"

 
t_
a

hEtx; yi
!
dt+

Z M

v

 
M_
t

hEtx; yi
!
dt

for any v 2 [m;M ] and for any x; y 2 H:
From Lemma 2 we haveZ v

m�"

 
t_
a

hEtx; yi
!
dt

�
Z v

m�"
h(Et � Em�")x; xi1=2 h(Et � Em�") y; yi1=2 dt

and Z M

v

 
M_
t

hEtx; yi
!
dt

�
Z M

v

h(EM � Et)x; xi1=2 h(EM � Et) y; yi1=2 dt

=

Z M

v

h(I � Et)x; xi1=2 h(I � Et) y; yi1=2 dt

for any v 2 [m;M ] and for any x; y 2 H:
Therefore, �����

Z M

m�"
(t� v) d hEtx; yi

�����(3.12)

�
Z v

m�"
h(Et � Em�")x; xi1=2 h(Et � Em�") y; yi1=2 dt

+

Z M

v

h(I � Et)x; xi1=2 h(I � Et) y; yi1=2 dt

for any " > 0; for any v 2 [m;M ] and for any x; y 2 H:
Taking the limit over "! 0+ and since Em�0 = 0; we get�����

Z M

m�0
(t� v) d hEtx; yi

�����(3.13)

�
Z v

m�0
hEtx; xi1=2 hEty; yi1=2 dt

+

Z M

v

h(I � Et)x; xi1=2 h(I � Et) y; yi1=2 dt

for any v 2 [m;M ] and for any x; y 2 H; which proves the �rst inequality in (3.13).
The rest is easy to see and we omit the details. �
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[29] N. UJEVIĆ, Error inequalities for a generalized trapezoid rule. Appl. Math. Lett. 19 (2006),
no. 1, 32�37.
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